251
|
Lee JH, Lee HH, Kim HW, Yu JW, Kim KN, Kim KM. Immunomodulatory/anti-inflammatory effect of ZOE-based dental materials. Dent Mater 2016; 33:e1-e12. [PMID: 27726970 DOI: 10.1016/j.dental.2016.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/25/2016] [Accepted: 09/03/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The study assessed the cytotoxicity and immunomodulatory/anti-inflammatory effect of extract from zinc oxide-eugenol (ZOE)-based dental materials during setting using immortalized human dental pulp stem cells (IHDPSCs) and mouse bone marrow monocytes (IMBMMs), and identified the responsible extract component. METHODS In accord with the ISO 10993-12, we extracted a mixture of ZOE cement and sealer after a specified time. The extract was analyzed by two types of mass spectrometry (ICP-MS and GC-MS). Cell viability was evaluated with extract and serial concentrations of ZnCl2, ZnSO4, and eugenol liquid by WST assay. The immunomodulatory/anti-inflammatory effect of a ZOE component was determined by RT-PCR to detect the downregulatory effect of inflammatory mRNA expression after lipopolysaccharide (LPS)-induced inflammation. RESULTS Zn2+ and eugenol (2-20ppm) were detected in the ZOE cement and sealer extracts. During the early stage of setting, significant cytotoxicity was observed in IHDPSCs and IMBMMs (p<0.05). The half maximal effective concentration of Zn2+ was 5-8ppm, whereas that of eugenol could not be detected within 80ppm. After extract treatment, the expression of inflammatory mRNA was significantly lower in inflamed IHDPSCs, but not inflamed IMBMMs, than in the LPS control (p<0.05). However, eugenol, not Zn2+, at 5-20ppm downregulated inflammatory mRNA expression in the inflamed IMBMMs with and without the exchange of LPS-pretreated medium. SIGNIFICANCE ZOE was highly cytotoxic, especially during setting, to both cells due to Zn2+ while the immunomodulatory/anti-inflammatory effect of ZOE was induced by eugenol.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Je-Wook Yu
- Department of Microbiology, BK 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung-Nam Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, BK21 PLUS Project, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
252
|
Cheng K, Li J, Yang D, Yang Y, Rao C, Zhang S, Wang W, Guo H, Fang L, Zhu D, Han Y, Xie P. 2D-gel based proteomics unravels neurogenesis and energetic metabolism dysfunction of the olfactory bulb in CUMS rat model. Behav Brain Res 2016; 313:302-309. [DOI: 10.1016/j.bbr.2016.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
|
253
|
Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 2016; 7:12917. [PMID: 27686526 PMCID: PMC5056437 DOI: 10.1038/ncomms12917] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022] Open
Abstract
Although protein ADP-ribosylation is involved in diverse biological processes, it has remained a challenge to identify ADP-ribose acceptor sites. Here, we present an experimental workflow for sensitive and unbiased analysis of endogenous ADP-ribosylation sites, capable of detecting more than 900 modification sites in mammalian cells and mouse liver. In cells, we demonstrate that Lys residues, besides Glu, Asp and Arg residues, are the dominant in vivo targets of ADP-ribosylation during oxidative stress. In normal liver tissue, we find Arg residues to be the predominant modification site. The cellular distribution and biological processes that involve ADP-ribosylated proteins are different in cultured cells and liver tissue, in the latter of which the majority of sites were found to be in cytosolic and mitochondrial protein networks primarily associated with metabolism. Collectively, we describe a robust methodology for the assessment of the role of ADP-ribosylation and ADP-ribosyltransferases in physiological and pathological states. ADP-ribosylation is a reversible post-translational protein modification involved in many cellular processes. Here the authors describe a sensitive approach for the analysis of ADP-ribosylation sites under physiologic conditions and identify lysine residues as in vivo targets of ADP-ribosylation.
Collapse
|
254
|
Ding C, Li Y, Guo F, Jiang Y, Ying W, Li D, Yang D, Xia X, Liu W, Zhao Y, He Y, Li X, Sun W, Liu Q, Song L, Zhen B, Zhang P, Qian X, Qin J, He F. A Cell-type-resolved Liver Proteome. Mol Cell Proteomics 2016; 15:3190-3202. [PMID: 27562671 PMCID: PMC5054343 DOI: 10.1074/mcp.m116.060145] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 01/16/2023] Open
Abstract
Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level.
Collapse
Affiliation(s)
- Chen Ding
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; **State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- ¶School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feifei Guo
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Ying Jiang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Wantao Ying
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Dong Li
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Dong Yang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Xia Xia
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Wanlin Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Yan Zhao
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Yangzhige He
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; ¶School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xianyu Li
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Wei Sun
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Qiongming Liu
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Lei Song
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Bei Zhen
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Pumin Zhang
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China
| | - Xiaohong Qian
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China;
| | - Jun Qin
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; ‖Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030; **State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Fuchu He
- From the ‡State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100039, China; §National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing 102206, China; **State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
255
|
Salawu A, Fernando M, Hughes D, Reed MWR, Woll P, Greaves C, Day C, Alhajimohammed M, Sisley K. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br J Cancer 2016; 115:1058-1068. [PMID: 27560552 PMCID: PMC5117779 DOI: 10.1038/bjc.2016.259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Soft-tissue sarcomas (STS) are a diverse group of malignancies that remain a diagnostic and therapeutic challenge. Relatively few reliable cell lines currently exist. Rapidly developing technology for genomic profiling with emerging insights into candidate functional (driver) aberrations raises the need for more models for in vitro functional validation of molecular targets. Methods: Primary cell culture was performed on STS tumours utilising a differential attachment approach. Cell lines were characterised by morphology, immunocytochemistry, proliferation assays, short tandem repeat (STR) and microarray-based genomic copy number profiling. Results: Of 47 STS cases of various subtypes, half formed adherent monolayers. Seven formed self-immortalised cell lines, including three undifferentiated pleomorphic sarcomas, two dedifferentiated liposarcomas (one of which had received radiotherapy), a leiomyosarcoma and a myxofibrosarcoma. Two morphologically distinct yet genetically identical variants were established in separate cultures for the latter two tumours. All cell lines demonstrated genomic and phenotypic features that not only confirm their malignant characteristics but also confirm retention of DNA copy number aberrations present in their parent tumours that likely include drivers. Conclusions: These primary cell lines are much-needed additions to the number of reliable cell lines of STS with complex genomics available for initial functional validation of candidate molecular targets.
Collapse
Affiliation(s)
- Abdulazeez Salawu
- Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Malee Fernando
- Department of Histopathology, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Glossop Road Sheffield S10 2JF, UK
| | - David Hughes
- Department of Histopathology, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Glossop Road Sheffield S10 2JF, UK
| | - Malcolm W R Reed
- Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PX, UK
| | - Penella Woll
- Academic Unit of Clinical Oncology, Weston Park Hospital, University of Sheffield, Whitham Road, Sheffield S10 2SJ, UK
| | - Claire Greaves
- Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Chris Day
- Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Meshal Alhajimohammed
- Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,Prince Sultan Military Medical City, Post Box 7897 Riyadh 11159, Kingdom of Saudi Arabia
| | - Karen Sisley
- Department of Oncology and Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
256
|
Merkle R, Steiert B, Salopiata F, Depner S, Raue A, Iwamoto N, Schelker M, Hass H, Wäsch M, Böhm ME, Mücke O, Lipka DB, Plass C, Lehmann WD, Kreutz C, Timmer J, Schilling M, Klingmüller U. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells. PLoS Comput Biol 2016; 12:e1005049. [PMID: 27494133 PMCID: PMC4975441 DOI: 10.1371/journal.pcbi.1005049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023] Open
Abstract
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. A major challenge in the development of therapeutic interventions is the selective inhibition of a signal transduction pathway in one cell type such as a cancer cell leaving the other cell type such as a healthy cell as unaffected as possible. Here, we propose a new approach that combines mathematical modeling based on quantitative experimental data with statistical methods. We demonstrate based on simulated data that our approach can determine which parameters are the same and which parameters differ in two exemplary cell types. We compare a lung cancer cell line to the precursor cells of red blood cells. We show that the same signal transduction network induced by erythropoietin (EPO), a hormone that is frequently employed to treat anemia in cancer patients, regulates survival of both cell types. Based on our experimental data in combination with our computational approach, we identify seven cell type-specific differences in this signaling pathway. Our strategy allows predicting therapeutic targets that could be inhibited to interfere with survival of lung cancer cells while leaving production of red blood cells unaffected.
Collapse
Affiliation(s)
- Ruth Merkle
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Bernhard Steiert
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Florian Salopiata
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Sofia Depner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Andreas Raue
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Nao Iwamoto
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Max Schelker
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Helge Hass
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Marvin Wäsch
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin E. Böhm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Oliver Mücke
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Daniel B. Lipka
- Regulation of Cellular Differentiation Group, Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Christoph Plass
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Wolf D. Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Clemens Kreutz
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- * E-mail: (JT); (MS); (UK)
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- * E-mail: (JT); (MS); (UK)
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- * E-mail: (JT); (MS); (UK)
| |
Collapse
|
257
|
Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry. PLoS One 2016; 11:e0159824. [PMID: 27490675 PMCID: PMC4973913 DOI: 10.1371/journal.pone.0159824] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/09/2016] [Indexed: 12/14/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.
Collapse
|
258
|
Wang Y, Li W, Phay JE, Shen R, Pellegata NS, Saji M, Ringel MD, de la Chapelle A, He H. Primary Cell Culture Systems for Human Thyroid Studies. Thyroid 2016; 26:1131-40. [PMID: 27296473 PMCID: PMC4976228 DOI: 10.1089/thy.2015.0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cell models are key instruments for in vitro studies of the thyroid. Permanent thyroid cell lines that are widely used in laboratory research typically originate from tumors. For many purposes, it is desirable to compare tumor cells with cells originating from normal tissue. However, such cultures grow slowly, have a highly limited life-span, and are known to lose their thyroid characteristics. The aim of the present study was to type coding and noncoding thyroid markers in different culture systems in an attempt to determine the optimal conditions for in vitro experimentation. METHODS Human primary thyroid cells were isolated from histologically non-tumorous tissues. Two alternative media (6H and h7H) were used. The morphology and behavior of the ensuing monolayer (two-dimensional) cultures was monitored by microscopy. The expression of key thyroid-related genes (n = 9) was monitored by reverse transcription polymerase chain reaction on days 8, 21, and 43 after initiation. As a pilot study, the same markers were studied in a three-dimensional hanging-drop culture system. RESULTS In the cultures with 6H or h7H medium, the primary thyroid cells displayed growth in numbers and size. Most cells retained the main morphological characteristics of thyroid cells throughout the first two weeks of culture, and fibroblast-like cells appeared around day 19. By day 21, most thyroid gene markers were retained, but by day 43, several markers were no longer present. The lncRNA transcripts PTCSC2 (spliced) and PTCSC3 were the first to disappear. There were no fundamental differences between the two media in the early period of culture. In the three-dimensional system, most thyroid markers were retained by day 21. CONCLUSION Cultures of thyroid cells retain many thyroid characteristics up to day 21. Thereafter, fibroblast-like dedifferentiated cells begin to dominate.
Collapse
Affiliation(s)
- Yanqiang Wang
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Wei Li
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - John E. Phay
- Department of Surgery, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Rulong Shen
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Natalia S. Pellegata
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Pathologie, Neuherberg, Germany
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew D. Ringel
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Albert de la Chapelle
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Huiling He
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
259
|
McConnell KI, Shamsudeen S, Meraz IM, Mahadevan TS, Ziemys A, Rees P, Summers HD, Serda RE. Reduced Cationic Nanoparticle Cytotoxicity Based on Serum Masking of Surface Potential. J Biomed Nanotechnol 2016; 12:154-64. [PMID: 27301181 DOI: 10.1166/jbn.2016.2134] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Functionalization of nanoparticles with cationic moieties, such as polyethyleneimine (PEI), enhances binding to the cell membrane; however, it also disrupts the integrity of the cell's plasma and vesicular membranes, leading to cell death. Primary fibroblasts were found to display high surface affinity for cationic iron oxide nanoparticles and greater sensitivity than their immortalized counterparts. Treatment of cells with cationic nanoparticles in the presence of incremental increases in serum led to a corresponding linear decrease in cell death. The surface potential of the nanoparticles also decreased linearly as serum increased and this was strongly and inversely correlated with cell death. While low doses of nanoparticles were rendered non-toxic in 25% serum, large doses overcame the toxic threshold. Serum did not reduce nanoparticle association with primary fibroblasts, indicating that the decrease in nanoparticle cytotoxicity was based on serum masking of the PEI surface, rather than decreased exposure. Primary endothelial cells were likewise more sensitive to the cytotoxic effects of cationic nanoparticles than their immortalized counterparts, and this held true for cellular responses to cationic microparticles despite the much lower toxicity of microparticles compared to nanoparticles.
Collapse
|
260
|
Xiang P, Liu RY, Sun HJ, Han YH, He RW, Cui XY, Ma LQ. Molecular mechanisms of dust-induced toxicity in human corneal epithelial cells: Water and organic extract of office and house dust. ENVIRONMENT INTERNATIONAL 2016; 92-93:348-356. [PMID: 27131017 DOI: 10.1016/j.envint.2016.04.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 06/05/2023]
Abstract
Human corneal epithelial (HCE) cells are continually exposed to dust in the air, which may cause corneal epithelium damage. Both water and organic soluble contaminants in dust may contribute to cytotoxicity in HCE cells, however, the associated toxicity mechanisms are not fully elucidated. In this study, indoor dust from residential houses and commercial offices in Nanjing, China was collected and the effects of organic and water soluble fraction of dust on primary HCE cells were examined. The concentrations of heavy metals in the dust and dust extracts were determined by ICP-MS and PAHs by GC-MS, with office dust having greater concentrations of heavy metals and PAHs than house dust. Based on LC50, organic extract was more toxic than water extract, and office dust was more toxic than house dust. Accordingly, the organic extracts induced more ROS, malondialdehyde, and 8-Hydroxydeoxyguanosine and higher expression of inflammatory mediators (IL-1β, IL-6, and IL-8), and AhR inducible genes (CYP1A1, and CYP1B1) than water extracts (p<0.05). Extracts of office dust presented greater suppression of superoxide dismutase and catalase activity than those of house dust. In addition, exposure to dust extracts activated NF-κB signal pathway except water extract of house dust. The results suggested that both water and organic soluble fractions of dust caused cytotoxicity, oxidative damage, inflammatory response, and activation of AhR inducible genes, with organic extracts having higher potential to induce adverse effects on primary HCE cells. The results based on primary HCE cells demonstrated the importance of reducing contaminants in indoor dust to reduce their adverse impacts on human eyes.
Collapse
Affiliation(s)
- Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Rong-Yan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Yong-He Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Rui-Wen He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
261
|
Cepeda-Pérez E, López-Luke T, Plascencia-Villa G, Perez-Mayen L, Ceja-Fdez A, Ponce A, Vivero-Escoto J, de la Rosa E. SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells. JOURNAL OF BIOPHOTONICS 2016; 9:683-693. [PMID: 27120043 DOI: 10.1002/jbio.201600034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
CdTe quantum dots (QDs) are widely used in bio-applications due to their size and highly efficient optical properties. However internalization mechanisms thereof for the variety of freshly extracted, not cultivated human cells and their specific molecular interactions remains an open topic for discussion. In this study, we assess the internalization mechanism of CdTe quantum dots (3.3 nm) capped with thioglycolic acid using non cultivated oral epithelial cells obtained from healthy donors. Naked gold nanoparticles (40 nm) were successfully used as nanosensors for surface-enhanced Raman spectroscopy to efficiently identify characteristic Raman peaks, providing new evidence indicating that the first interactions of these QDs with epithelial cells occurred preferentially with aromatic rings and amine groups of amino acid residues and glycans from trans-membrane proteins and cytoskeleton. Using an integrative combination of advanced imaging techniques, including ultra-high resolution SEM, high resolution STEM coupled with EDX spectroscopy together with the results obtained by Raman spectroscopy, it was determined that thioglycolic acid capped CdTe QDs are efficiently internalized into freshly extracted oral epithelial cells only by facilitated diffusion, distributed into cytoplasm and even within the cell nucleus in three minutes.
Collapse
Affiliation(s)
| | | | - Germán Plascencia-Villa
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | - Arturo Ponce
- Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Juan Vivero-Escoto
- The University of North Carolina-Charlotte, Department of Chemistry, 9201 University City Blvd., Charlotte, NC 28223, USA
| | | |
Collapse
|
262
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
263
|
Tatárová Z, Abbuehl JP, Maerkl S, Huelsken J. Microfluidic co-culture platform to quantify chemotaxis of primary stem cells. LAB ON A CHIP 2016; 16:1934-45. [PMID: 27137768 DOI: 10.1039/c6lc00236f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional analysis of primary tissue-specific stem cells is hampered by their rarity. Here we describe a greatly miniaturized microfluidic device for the multiplexed, quantitative analysis of the chemotactic properties of primary, bone marrow-derived mesenchymal stem cells (MSC). The device was integrated within a fully customized platform that both increased the viability of stem cells ex vivo and simplified manipulation during multidimensional acquisition. Since primary stem cells can be isolated only in limited number, we optimized the design for efficient cell trapping from low volume and low concentration cell suspensions. Using nanoliter volumes and automated microfluidic controls for pulsed medium supply, our platform is able to create stable gradients of chemoattractant secreted from mammalian producer cells within the device, as was visualized by a secreted NeonGreen fluorescent reporter. The design was functionally validated by a CXCL/CXCR ligand/receptor combination resulting in preferential migration of primary, non-passaged MSC. Stable gradient formation prolonged assay duration and resulted in enhanced response rates for slowly migrating stem cells. Time-lapse video microscopy facilitated determining a number of migratory properties based on single cell analysis. Jackknife-resampling revealed that our assay requires only 120 cells to obtain statistically significant results, enabling new approaches in the research on rare primary stem cells. Compartmentalization of the device not only facilitated such quantitative measurements but will also permit future, high-throughput functional screens.
Collapse
Affiliation(s)
- Z Tatárová
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne CH-1015, Switzerland.
| | | | | | | |
Collapse
|
264
|
Cytotoxicity and anti-inflammatory effects of zinc ions and eugenol during setting of ZOE in immortalized human oral keratinocytes grown as three-dimensional spheroids. Dent Mater 2016; 32:e93-104. [DOI: 10.1016/j.dental.2016.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/22/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
|
265
|
Tammam SN, Azzazy HME, Lamprecht A. How successful is nuclear targeting by nanocarriers? J Control Release 2016; 229:140-153. [PMID: 26995759 DOI: 10.1016/j.jconrel.2016.03.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022]
Abstract
The nucleus is ultimately the final target for many therapeutics treating various disorders including cancers, heart dysfunction and brain disorders. Owing to their specialized cell uptake and trafficking mechanisms, nanoparticles (NPs) allow drug targeting where degradation sensitive therapeutics could be delivered to their target tissues and cell in active form and sufficient concentration. However, it has recently become increasingly obvious that cytosolic internalization of a drug molecule does not entail its interaction with its subcellular target and hence careful nanoparticle design and optimization is required to enable nuclear targeting. This review, discusses the barriers to NP nuclear delivery; crossing the cell membrane, endo/lysosomal escape, cytoplasmic trafficking and finally nuclear entry focusing on how NP synthesis and modification could allow for bypassing each of the aforementioned barriers and successfully reaching the nucleus. Examples of nuclear targeted NPs are also discussed, stressing on the critical aspects of nuclear targeting and pointing out how the disease state might change the normal NP path and how such change could be exploited to increase efficiency of nuclear targeting. Finally, the criteria set for the evaluation of nanocarriers for nuclear delivery are discussed highlighting that quantitative rather than qualitative evaluation is required to evaluate how successful nanocarriers for nuclear delivery are, particularly with regards to the amount of drug delivered and released in the nucleus.
Collapse
Affiliation(s)
- Salma N Tammam
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121, Germany; Department of Chemistry, The American University in Cairo, 11835, Egypt.
| | - Hassan M E Azzazy
- Department of Chemistry, The American University in Cairo, 11835, Egypt
| | - Alf Lamprecht
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121, Germany; Laboratory of Pharmaceutical Engineering, University of Franche-Comté, Besançon 25000, France
| |
Collapse
|
266
|
Zhao M, Li H, Liu X, Wei J, Ji J, Yang S, Hu Z, Wei S. Response of Human Osteoblast to n-HA/PEEK--Quantitative Proteomic Study of Bio-effects of Nano-Hydroxyapatite Composite. Sci Rep 2016; 6:22832. [PMID: 26956660 PMCID: PMC4783780 DOI: 10.1038/srep22832] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/22/2016] [Indexed: 01/27/2023] Open
Abstract
Nano-sized hydroxyapatite (n-HA) is considered as a bio-active material, which is often mixed into bone implant material, polyetheretherketone (PEEK). To reveal the global protein expression modulations of osteoblast in response to direct contact with the PEEK composite containing high level (40%) nano-sized hydroxyapatite (n-HA/PEEK) and explain its comprehensive bio-effects, quantitative proteomic analysis was conducted on human osteoblast-like cells MG-63 cultured on n-HA/PEEK in comparison with pure PEEK. Results from quantitative proteomic analysis showed that the most enriched categories in the up-regulated proteins were related to calcium ion processes and associated functions while the most enriched categories in the down-regulated proteins were related to RNA process. This enhanced our understanding to the molecular mechanism of the promotion of the cell adhesion and differentiation with the inhibition of the cell proliferation on n-HA/PEEK composite. It also exhibited that although the calcium ion level of incubate environment hadn't increased, merely the calcium fixed on the surface of material had influence to intracellular calcium related processes, which was also reflect by the higher intracellular Ca(2+) concentration of n-HA/PEEK. This study could lead to more comprehensive cognition to the versatile biocompatibility of composite materials. It further proves that proteomics is useful in new bio-effect discovery.
Collapse
Affiliation(s)
- Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaochen Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyuan Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shicheng Wei
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing 100081, China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| |
Collapse
|
267
|
Oral squamous cell carcinoma: Key clinical questions, biomarker discovery, and the role of proteomics. Arch Oral Biol 2016; 63:53-65. [PMID: 26691574 DOI: 10.1016/j.archoralbio.2015.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/08/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
268
|
Caetano-Pinto P, Janssen MJ, Gijzen L, Verscheijden L, Wilmer MJ, Masereeuw R. Fluorescence-Based Transport Assays Revisited in a Human Renal Proximal Tubule Cell Line. Mol Pharm 2016; 13:933-44. [DOI: 10.1021/acs.molpharmaceut.5b00821] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pedro Caetano-Pinto
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3508 TB Utrecht, The Netherlands
| | - Manoe J. Janssen
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3508 TB Utrecht, The Netherlands
| | - Linda Gijzen
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Laurens Verscheijden
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Martijn J.G. Wilmer
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department
of Pharmacology and Toxicology, Radboud university medical center, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
- Division
of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
269
|
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016; 113:E968-77. [PMID: 26858453 PMCID: PMC4776515 DOI: 10.1073/pnas.1521230113] [Citation(s) in RCA: 2524] [Impact Index Per Article: 280.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Marina Colombo
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Jakob Paul Morath
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Bjarke Primdal-Bengtson
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Mercedes Tkach
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France;
| |
Collapse
|
270
|
|
271
|
The Antisense Transcriptome and the Human Brain. J Mol Neurosci 2015; 58:1-15. [PMID: 26697858 DOI: 10.1007/s12031-015-0694-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
The transcriptome of a cell is made up of a varied array of RNA species, including protein-coding RNAs, long non-coding RNAs, short non-coding RNAs, and circular RNAs. The cellular transcriptome is dynamic and can change depending on environmental factors, disease state and cellular context. The human brain has perhaps the most diverse transcriptome profile that is enriched for many species of RNA, including antisense transcripts. Antisense transcripts are produced when both the plus and minus strand of the DNA helix are transcribed at a particular locus. This results in an RNA transcript that has a partial or complete overlap with an intronic or exonic region of the sense transcript. While antisense transcription is known to occur at some level in most organisms, this review focuses specifically on antisense transcription in the brain and how regulation of genes by antisense transcripts can contribute to functional aspects of the healthy and diseased brain. First, we discuss different techniques that can be used in the identification and quantification of antisense transcripts. This is followed by examples of antisense transcription and modes of regulatory function that have been identified in the brain.
Collapse
|
272
|
Albrethsen J, Goetze JP, Johnsen AH. Mining the granule proteome: a potential source of endocrine biomarkers. Biomark Med 2015; 9:259-65. [PMID: 25731211 DOI: 10.2217/bmm.14.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of granule proteins and peptides. Analytical strategies within this research line include so-called 'subtractive proteomics', 'peptidomics' and granule purification by the use of multiple gradient centrifugations. Here we review the literature, and describe the challenges and opportunities in proteomics of secretory granules.
Collapse
Affiliation(s)
- Jakob Albrethsen
- Department of Clinical Biochemistry (KB3014), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
273
|
3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 2015; 67:264-73. [DOI: 10.1016/j.biomaterials.2015.07.022] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/11/2015] [Indexed: 12/31/2022]
|
274
|
Mu J, Yang Y, Chen J, Cheng K, Li Q, Wei Y, Zhu D, Shao W, Zheng P, Xie P. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients. Biochem Biophys Res Commun 2015; 466:689-95. [PMID: 26348777 DOI: 10.1016/j.bbrc.2015.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). METHODS CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. RESULTS Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. CONCLUSIONS CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation.
Collapse
Affiliation(s)
- Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yongtao Yang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yongdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Dan Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Weihua Shao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
275
|
Arai Y, Sampaio JL, Wilsch-Bräuninger M, Ettinger AW, Haffner C, Huttner WB. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis. Front Cell Neurosci 2015; 9:325. [PMID: 26379497 PMCID: PMC4551859 DOI: 10.3389/fncel.2015.00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid (CF) in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane's lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS), among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the CF of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point toward that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.
Collapse
Affiliation(s)
- Yoko Arai
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Julio L Sampaio
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | | | - Andreas W Ettinger
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| |
Collapse
|
276
|
Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: Principles, applications, and developments. Proteomics 2015; 15:3175-92. [PMID: 26097186 DOI: 10.1002/pmic.201500108] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/24/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Shasha Wei
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Yanlong Ji
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics; Institute of Biophysics; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
277
|
Le Bihan MC, Barrio-Hernandez I, Mortensen TP, Henningsen J, Jensen SS, Bigot A, Blagoev B, Butler-Browne G, Kratchmarova I. Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts. J Proteome Res 2015; 14:3348-61. [DOI: 10.1021/acs.jproteome.5b00397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie-Catherine Le Bihan
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inigo Barrio-Hernandez
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tenna Pavia Mortensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jeanette Henningsen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren Skov Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Anne Bigot
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Blagoy Blagoev
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Gillian Butler-Browne
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Irina Kratchmarova
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
278
|
Molecular profiling of tumour budding implicates TGFβ-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma. J Pathol 2015; 236:505-16. [DOI: 10.1002/path.4550] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/20/2015] [Accepted: 04/25/2015] [Indexed: 11/07/2022]
|
279
|
Optimization of methods for the genetic modification of human T cells. Immunol Cell Biol 2015; 93:896-908. [PMID: 26027856 PMCID: PMC4659746 DOI: 10.1038/icb.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are critical in the fight against parasitic, bacterial, and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNAi due to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low due to multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4+ T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T cell lines. Importantly, we demonstrate that activated primary human CD4+ T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4+ T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4+ T cells.
Collapse
|
280
|
Al-Maleki AR, Mariappan V, Vellasamy KM, Tay ST, Vadivelu J. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells. PLoS One 2015; 10:e0127398. [PMID: 25996927 PMCID: PMC4440636 DOI: 10.1371/journal.pone.0127398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA) and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno) is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk), ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.
Collapse
Affiliation(s)
- Anis Rageh Al-Maleki
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
281
|
Beck S, Michalski A, Raether O, Lubeck M, Kaspar S, Goedecke N, Baessmann C, Hornburg D, Meier F, Paron I, Kulak NA, Cox J, Mann M. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics. Mol Cell Proteomics 2015; 14:2014-29. [PMID: 25991688 PMCID: PMC4587313 DOI: 10.1074/mcp.m114.047407] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/06/2022] Open
Abstract
Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far.
Collapse
Affiliation(s)
- Scarlet Beck
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | - Oliver Raether
- §Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | - Markus Lubeck
- §Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Niels Goedecke
- §Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany
| | | | - Daniel Hornburg
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Florian Meier
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Igor Paron
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nils A Kulak
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Juergen Cox
- ¶Computational Systems Biochemistry, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany;
| |
Collapse
|
282
|
Mills JD, Chen J, Kim WS, Waters PD, Prabowo AS, Aronica E, Halliday GM, Janitz M. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics 2015; 16:201-13. [PMID: 25819921 DOI: 10.1007/s10048-015-0445-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/14/2015] [Indexed: 12/30/2022]
Abstract
Pervasive transcription of the genome produces a diverse array of functional non-coding RNAs (ncRNAs). One particular class of ncRNAs, long intervening non-coding RNAs (lincRNAs) are thought to play a role in regulating gene expression and may be a major contributor to organism and tissue complexity. The human brain with its heterogeneous cellular make-up is a rich source of lincRNAs; however, the functions of the majority of lincRNAs are unknown. Recently, by completing RNA sequencing (RNA-Seq) of the human frontal cortex, we identified linc00320 as being highly expressed in the white matter compared to grey matter in multiple system atrophy (MSA) brain. Here, we further investigate the expression patterns of linc00320 and conclude that it is involved in specific brain regions rather than having involvement in the MSA disease process. We also show that the full-length linc00320 is only expressed in human brain tissue and not in other primates, suggesting that it may be involved in improved functional connectivity for higher human brain cognition.
Collapse
Affiliation(s)
- James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Selection strategies for anticancer antibody discovery: searching off the beaten path. Trends Biotechnol 2015; 33:292-301. [PMID: 25819764 DOI: 10.1016/j.tibtech.2015.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/13/2023]
Abstract
Antibody-based drugs represent one of the most successful and promising therapeutic approaches in oncology. Large combinatorial phage antibody libraries are available for the identification of therapeutic antibodies and various technologies exist for their further conversion into multivalent and multispecific formats optimized for the desired pharmacokinetics and the pathological context. However, there is no technology for antigen profiling of intact tumors to identify tumor markers targetable with antibodies. Such constraints have led to a relative paucity of tumor-associated antigens for antibody targeting in oncology. Here we review novel approaches aimed at the identification of antibody-targetable, accessible antigens in intact tumors. We hope that such advanced selection approaches will be useful in the development of next-generation antibody therapies for cancer.
Collapse
|
284
|
Vick B, Rothenberg M, Sandhöfer N, Carlet M, Finkenzeller C, Krupka C, Grunert M, Trumpp A, Corbacioglu S, Ebinger M, André MC, Hiddemann W, Schneider S, Subklewe M, Metzeler KH, Spiekermann K, Jeremias I. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One 2015; 10:e0120925. [PMID: 25793878 PMCID: PMC4368518 DOI: 10.1371/journal.pone.0120925] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/27/2015] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups.
Collapse
Affiliation(s)
- Binje Vick
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maja Rothenberg
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Nadine Sandhöfer
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michela Carlet
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Cornelia Finkenzeller
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Immunotherapy, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michaela Grunert
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Andreas Trumpp
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg, Germany
| | - Selim Corbacioglu
- Department of Pediatrics, University of Regensburg, Regensburg, Germany
| | - Martin Ebinger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, University Children’s Hospital, Eberhard Karls Universität, Tuebingen, Germany
| | - Maya C. André
- Department of Pediatric Hematology/Oncology, University Children’s Hospital, Eberhard Karls Universität, Tuebingen, Germany
- Department of Pediatric Intensive Care Medicine, University Children's Hospital (UKBB), Basel, Switzerland
| | - Wolfgang Hiddemann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Stephanie Schneider
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marion Subklewe
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Immunotherapy, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Klaus H. Metzeler
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Karsten Spiekermann
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany
- Clinical Cooperation Group Leukemia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Irmela Jeremias
- Group Apoptosis, Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Oncology, Dr von Haunersches Kinderspital, Ludwig Maximilians-Universität (LMU), Munich, Germany
- * E-mail:
| |
Collapse
|
285
|
Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:298-313. [PMID: 25517923 DOI: 10.1089/ten.teb.2014.0290] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling.
Collapse
Affiliation(s)
- Luis M Delgado
- 1Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Yves Bayon
- 2Covidien - Sofradim Production, Trévoux, France
| | - Abhay Pandit
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- 3Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
286
|
Yang Y, Mu J, Chen G, Zhan Y, Zhong J, Wei Y, Cheng K, Qin B, You H, Xie P. iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid reveals NELL2 as a potential diagnostic biomarker of tuberculous meningitis. Int J Mol Med 2015; 35:1323-32. [PMID: 25760060 DOI: 10.3892/ijmm.2015.2131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 02/17/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculous meningitis (TBM) is a serious complication of tuberculosis that affects the central nervous system. As TBM may result in permanent sequelae and death, rapid, accurate diagnostic tests using novel biomarkers are required for the early diagnosis and treatment of TBM. A quantitative proteomic study was therefore performed to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n=12) and healthy controls (n=12). CSF samples were labelled with iTRAQ™ and analyzed by LC-MS/MS. Gene ontology and Pathway analysis were conducted using DAVID bioinformatics resources. Neural epidermal growth factor-like like 2 (NELL2) with the largest fold-change value was selected for validation by western blotting. Proteomic phenotyping revealed over-representation in two inflammation-associated processes, complement and coagulation cascades as well as cell adhesion molecules. Western blotting showed a significant decrease in NELL2 levels in TBM subjects compared to healthy controls. The AUC analysis revealed NELL2 was able to distinguish TBM subjects from healthy controls with 83.3% sensitivity and 75% specificity. In conclusion, the results showed that CSF NELL2 is a potential diagnostic biomarker for TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other intracranial infectious diseases is required for clinical translation.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun Mu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guanghui Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Yuan Zhan
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Jiaju Zhong
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Youdong Wei
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ke Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Bin Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Hongmin You
- Institute of Neuroscience, Chongqing Medical University, Chongqing, P.R. China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
287
|
Visk D. Will Advances in Preclinical In Vitro Models Lower the Costs of Drug Development? ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.1503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
288
|
SteatoNet: the first integrated human metabolic model with multi-layered regulation to investigate liver-associated pathologies. PLoS Comput Biol 2014; 10:e1003993. [PMID: 25500563 PMCID: PMC4263370 DOI: 10.1371/journal.pcbi.1003993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Current state-of-the-art mathematical models to investigate complex biological processes, in particular liver-associated pathologies, have limited expansiveness, flexibility, representation of integrated regulation and rely on the availability of detailed kinetic data. We generated the SteatoNet, a multi-pathway, multi-tissue model and in silico platform to investigate hepatic metabolism and its associated deregulations. SteatoNet is based on object-oriented modelling, an approach most commonly applied in automotive and process industries, whereby individual objects correspond to functional entities. Objects were compiled to feature two novel hepatic modelling aspects: the interaction of hepatic metabolic pathways with extra-hepatic tissues and the inclusion of transcriptional and post-transcriptional regulation. SteatoNet identification at normalised steady state circumvents the need for constraining kinetic parameters. Validation and identification of flux disturbances that have been proven experimentally in liver patients and animal models highlights the ability of SteatoNet to effectively describe biological behaviour. SteatoNet identifies crucial pathway branches (transport of glucose, lipids and ketone bodies) where changes in flux distribution drive the healthy liver towards hepatic steatosis, the primary stage of non-alcoholic fatty liver disease. Cholesterol metabolism and its transcription regulators are highlighted as novel steatosis factors. SteatoNet thus serves as an intuitive in silico platform to identify systemic changes associated with complex hepatic metabolic disorders.
Collapse
|
289
|
Azimifar SB, Nagaraj N, Cox J, Mann M. Cell-type-resolved quantitative proteomics of murine liver. Cell Metab 2014; 20:1076-87. [PMID: 25470552 DOI: 10.1016/j.cmet.2014.11.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/11/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Mass spectrometry (MS)-based proteomics provides a powerful approach to globally investigate the biological function of individual cell types in mammalian organs. Here, we applied this technology to the in-depth analysis of purified hepatic cell types from mouse. We quantified 11,520 proteins, making this the most comprehensive proteomic resource of any organ to date. Global protein copy number determination demonstrated that a large proportion of the hepatocyte proteome is dedicated to fatty acid and xenobiotic metabolism. We identified as-yet-unknown components of the TGF-β signaling pathway and extracellular matrix in hepatic stellate cells, uncovering their regulative role in liver physiology. Moreover, our high-resolution proteomic data set enabled us to compare the distinct functional roles of hepatic cell types in cholesterol flux, cellular trafficking, and growth factor receptor signaling. This study provides a comprehensive resource for liver biology and biomedicine.
Collapse
Affiliation(s)
- S Babak Azimifar
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Juergen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
290
|
Iliuk AB, Arrington JV, Tao WA. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications. Electrophoresis 2014; 35:3430-40. [PMID: 24890697 PMCID: PMC4250476 DOI: 10.1002/elps.201400153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
Phosphoproteomics is the systematic study of one of the most common protein modifications in high throughput with the aim of providing detailed information of the control, response, and communication of biological systems in health and disease. Advances in analytical technologies and strategies, in particular the contributions of high-resolution mass spectrometers, efficient enrichments of phosphopeptides, and fast data acquisition and annotation, have catalyzed dramatic expansion of signaling landscapes in multiple systems during the past decade. While phosphoproteomics is an essential inquiry to map high-resolution signaling networks and to find relevant events among the apparently ubiquitous and widespread modifications of proteome, it presents tremendous challenges in separation sciences to translate it from discovery to clinical practice. In this mini-review, we summarize the analytical tools currently utilized for phosphoproteomic analysis (with focus on MS), progresses made on deciphering clinically relevant kinase-substrate networks, MS uses for biomarker discovery and validation, and the potential of phosphoproteomics for disease diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Anton B. Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | | | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
291
|
D'Alessandro LA, Hoehme S, Henney A, Drasdo D, Klingmüller U. Unraveling liver complexity from molecular to organ level: challenges and perspectives. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:78-86. [PMID: 25433231 DOI: 10.1016/j.pbiomolbio.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/28/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Biological responses are determined by information processing at multiple and highly interconnected scales. Within a tissue the individual cells respond to extracellular stimuli by regulating intracellular signaling pathways that in turn determine cell fate decisions and influence the behavior of neighboring cells. As a consequence the cellular responses critically impact tissue composition and architecture. Understanding the regulation of these mechanisms at different scales is key to unravel the emergent properties of biological systems. In this perspective, a multidisciplinary approach combining experimental data with mathematical modeling is introduced. We report the approach applied within the Virtual Liver Network to analyze processes that regulate liver functions from single cell responses to the organ level using a number of examples. By facilitating interdisciplinary collaborations, the Virtual Liver Network studies liver regeneration and inflammatory processes as well as liver metabolic functions at multiple scales, and thus provides a suitable example to identify challenges and point out potential future application of multi-scale systems biology.
Collapse
Affiliation(s)
- L A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany
| | - S Hoehme
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Germany
| | - A Henney
- Obsidian Biomedical Consulting Ltd., Macclesfield, UK; The German Virtual Liver Network, University of Heidelberg, 69120 Heidelberg, Germany
| | - D Drasdo
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Germany; Institut National de Recherche en Informatique et en Automatique (INRIA), Domaine de Voluceau, 78150 Rocquencourt, France; University Pierre and Marie Curie and CNRS UMR 7598, LJLL, F-75005 Paris, France; CNRS, 7598 Paris, France
| | - U Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg, Germany.
| |
Collapse
|
292
|
Fisher CP, Kierzek AM, Plant NJ, Moore JB. Systems biology approaches for studying the pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20:15070-15078. [PMID: 25386055 PMCID: PMC4223240 DOI: 10.3748/wjg.v20.i41.15070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease of increasing public health concern. In western populations the disease has an estimated prevalence of 20%-40%, rising to 70%-90% in obese and type II diabetic individuals. Simplistically, NAFLD is the macroscopic accumulation of lipid in the liver, and is viewed as the hepatic manifestation of the metabolic syndrome. However, the molecular mechanisms mediating both the initial development of steatosis and its progression through non-alcoholic steatohepatitis to debilitating and potentially fatal fibrosis and cirrhosis are only partially understood. Despite increased research in this field, the development of non-invasive clinical diagnostic tools and the discovery of novel therapeutic targets has been frustratingly slow. We note that, to date, NAFLD research has been dominated by in vivo experiments in animal models and human clinical studies. Systems biology tools and novel computational simulation techniques allow the study of large-scale metabolic networks and the impact of their dysregulation on health. Here we review current systems biology tools and discuss the benefits to their application to the study of NAFLD. We propose that a systems approach utilising novel in silico modelling and simulation techniques is key to a more comprehensive, better targeted NAFLD research strategy. Such an approach will accelerate the progress of research and vital translation into clinic.
Collapse
|
293
|
Gottschalk MG, Wesseling H, Guest PC, Bahn S. Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. Int J Neuropsychopharmacol 2014; 18:pyu019. [PMID: 25609598 PMCID: PMC4368887 DOI: 10.1093/ijnp/pyu019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/28/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although genetic studies suggest an overlap in risk alleles across the major psychiatric disorders, disease signatures reflecting overlapping symptoms have not been found. Profiling studies have identified candidate protein markers associated with specific disorders of the psychoaffective spectrum, but this has always been done in a selective fashion without accounting for the entire proteome composition of the system under investigation. METHODS Employing an orthogonal system-based proteomic enrichment approach based on label-free liquid chromatography mass spectrometry, we analyzed anterior prefrontal human post-mortem brain tissue of patients affected by schizophrenia (n = 23), bipolar disorder (n = 23), major depressive disorder with (n = 12) and without psychotic features (n = 11), and healthy controls (n = 23). Labeled selected reaction monitoring (SRM) was used to validate these findings on a pathway level. Independent in silico analyses of biological annotations revealed common pathways across the diseases, associated with presynaptic glutamatergic neurotransmission and energy metabolism. We validated the proteomic findings using SRM and confirmed that there were no effects of post-mortem confounders. RESULTS Schizophrenia and affective psychosis were linked to a hypoglutamatergic state and hypofunction of energy metabolism, while bipolar disorder and major depressive disorder were linked to a hyperglutamatergic state and hyperfunction of energy metabolism. CONCLUSIONS These findings support recent investigations, which have focused on the therapeutic potential of glutamatergic modulation in psychotic and affective disorders. We suggest a disease model in which disturbances of the glutamatergic system and ensuing adaptations of neuronal energy metabolism are linked to distinct psychiatric symptom dimensions, delivering novel evidence for targeted treatment approaches.
Collapse
Affiliation(s)
- Michael G Gottschalk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK (Drs Gottschalk, Wesseling, and Drs Guest and Bahn); Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands (Dr Bahn)
| | - Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK (Drs Gottschalk, Wesseling, and Drs Guest and Bahn); Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands (Dr Bahn)
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK (Drs Gottschalk, Wesseling, and Drs Guest and Bahn); Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands (Dr Bahn)
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK (Drs Gottschalk, Wesseling, and Drs Guest and Bahn); Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands (Dr Bahn).
| |
Collapse
|
294
|
Drabovich AP, Martínez-Morillo E, Diamandis EP. Toward an integrated pipeline for protein biomarker development. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:677-86. [PMID: 25218201 DOI: 10.1016/j.bbapap.2014.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 09/04/2014] [Indexed: 01/06/2023]
Abstract
Protein biomarker development is a multidisciplinary task involving basic, translational and clinical research. Integration of multidisciplinary efforts in a single pipeline is challenging, but crucial to facilitate rational discovery of protein biomarkers and alleviate existing disappointments in the field. In this review, we discuss in detail individual phases of biomarker development pipeline, such as biomarker candidate identification, verification and validation. We focus on mass spectrometry as a principal technique for protein identification and quantification, and discuss complementary -omics approaches for selection of biomarker candidates. Proteomic samples, protein-based clinical laboratory tests and limitations of biomarker development are reviewed in detail, and critical assessment of all phases of biomarker development pipeline is provided. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Andrei P Drabovich
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | | | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
295
|
Hornburg D, Drepper C, Butter F, Meissner F, Sendtner M, Mann M. Deep proteomic evaluation of primary and cell line motoneuron disease models delineates major differences in neuronal characteristics. Mol Cell Proteomics 2014; 13:3410-20. [PMID: 25193168 PMCID: PMC4256493 DOI: 10.1074/mcp.m113.037291] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.
Collapse
Affiliation(s)
- Daniel Hornburg
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Carsten Drepper
- §Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, 97078 Germany; ¶Institute for Clinical Neurobiology, Wuerzburg, Germany
| | - Falk Butter
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; ‖Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Felix Meissner
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany;
| | | | - Matthias Mann
- From the ‡Max Planck Institute of Biochemistry, Martinsried, 82152, Germany;
| |
Collapse
|
296
|
Shien JH, Su YD, Wu HY. Regulation of coronaviral poly(A) tail length during infection is not coronavirus species- or host cell-specific. Virus Genes 2014; 49:383-92. [PMID: 25034371 PMCID: PMC7089208 DOI: 10.1007/s11262-014-1103-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/04/2014] [Indexed: 11/27/2022]
Abstract
It has been demonstrated that the length of the poly(A) tail in the bovine coronavirus (BCoV), which belongs to genus betacoronaviruses, is regulated throughout infection in human rectal tumor-18 (HRT-18) cells, and the length of the poly(A) tail is associated with the efficiency of virus translation. Here, we examined whether the regulation of viral poly(A) tail length is cell-type independent and whether it is a common feature of coronaviruses to assess the significance of the regulation. By ligating head-to-tail viral RNA positive strands and sequencing, we found that (1) the regulation pattern of coronaviral poly(A) tail length in BCoV-infected hamster kidney-21 (BHK-21) cells was similar to that in BCoV-infected HRT-18 cells and (2) the poly(A) tail length of wild-type avian infectious bronchitis virus (IBV) virulent strain IBV-TW1, which is in the genus gammacoronaviruses, varied throughout infection in primary chicken embryo kidney (CEK) cells and in the tracheas of 1-day-old chicks. Interestingly, the poly(A) tail length variation was similarly found in the avirulent IBV strain H120 in CEK cells, although the overall poly(A) tail length was shorter for this virus. The results suggest that the regulation of coronaviral poly(A) tail length during infection may be a common feature among coronaviruses and can occur in a noncancerous cell line (BHK-21 cells), primary cell culture (CEK cells), and living system (chickens), further reinforcing the biological significance of this regulation during coronavirus infection.
Collapse
Affiliation(s)
- Jui-Hung Shien
- Department of Veterinary Medicine, Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | |
Collapse
|
297
|
Wesseling H, Guest PC, Lee CM, Wong EH, Rahmoune H, Bahn S. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders. Mol Autism 2014; 5:38. [PMID: 25061506 PMCID: PMC4109791 DOI: 10.1186/2040-2392-5-38] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo−/−) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo−/− mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo−/− mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MSE profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were found only in the frontal cortex and abnormalities of proteins involved in the purinergic system were found exclusively in the hippocampus. Conclusions Taken together, this multi-platform profiling study has identified peripheral changes which are potentially linked to central alterations in synaptic plasticity and neuronal function associated with NMDAR-NR1 hypofunction. Therefore, the reported proteomic changes may be useful as translational biomarkers in human and rodent model drug discovery efforts.
Collapse
Affiliation(s)
- Hendrik Wesseling
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Paul C Guest
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Chi-Ming Lee
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Erik Hf Wong
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK ; Department of Neuroscience, Erasmus Medical Center, Rotterdam, CA, 3000, The Netherlands
| |
Collapse
|
298
|
Poussin C, Mathis C, Alexopoulos LG, Messinis DE, Dulize RHJ, Belcastro V, Melas IN, Sakellaropoulos T, Rhrissorrakrai K, Bilal E, Meyer P, Talikka M, Boué S, Norel R, Rice JJ, Stolovitzky G, Ivanov NV, Peitsch MC, Hoeng J. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells. Sci Data 2014; 1:140009. [PMID: 25977767 PMCID: PMC4322580 DOI: 10.1038/sdata.2014.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/25/2014] [Indexed: 11/19/2022] Open
Abstract
The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.
Collapse
Affiliation(s)
- Carine Poussin
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- These authors contributed equally to this work
| | - Carole Mathis
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- These authors contributed equally to this work
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Scientific Park Lefkippos, Patriarchou Grigoriou & Neapoleos, 15343 Ag. Paraskevi, Attiki, Greece
- National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece
- These authors contributed equally to this work
| | - Dimitris E Messinis
- ProtATonce Ltd, Scientific Park Lefkippos, Patriarchou Grigoriou & Neapoleos, 15343 Ag. Paraskevi, Attiki, Greece
- National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece
| | - Rémi H J Dulize
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ioannis N Melas
- ProtATonce Ltd, Scientific Park Lefkippos, Patriarchou Grigoriou & Neapoleos, 15343 Ag. Paraskevi, Attiki, Greece
- National Technical University of Athens, Heroon Polytechniou 9, Zografou 15780, Greece
| | | | | | - Erhan Bilal
- IBM Computational Biology Center, Yorktown Heights, NY 10598, USA
| | - Pablo Meyer
- IBM Computational Biology Center, Yorktown Heights, NY 10598, USA
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Stéphanie Boué
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Raquel Norel
- IBM Computational Biology Center, Yorktown Heights, NY 10598, USA
| | - John J Rice
- IBM Computational Biology Center, Yorktown Heights, NY 10598, USA
| | | | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S. A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
299
|
Pink M, Ratsch BA, Mardahl M, Schröter MF, Engelbert D, Triebus J, Hamann A, Syrbe U. Identification of two regulatory elements controlling Fucosyltransferase 7 transcription in murine CD4+ T cells. Mol Immunol 2014; 62:1-9. [PMID: 24915132 DOI: 10.1016/j.molimm.2014.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 02/04/2023]
Abstract
Fucosyltransferase VII encoded by the gene Fut7 is essential in CD4(+) T cells for the generation of E- and P-selectin ligands (E- and P-lig) which facilitate recruitment of lymphocytes into inflamed tissues and into the skin. This study aimed to identify regulatory elements controlling the inducible Fut7 expression in CD4(+) T cells that occurs upon activation and differentiation of naive T cells into effector cells. Comparative analysis of the histone modification pattern in non-hematopoetic cells and CD4(+) T cell subsets revealed a differential histone modification pattern within the Fut7 locus including a conserved non-coding sequence (CNS) identified by cross-species conservation comparison suggesting that regulatory elements are confined to this region. Cloning of the CNS located about 500 bp upstream of the Fut7 locus, into a luciferase reporter vector elicited reporter activity after transfection of the αβ-WT T cell line, but not after transfection of primary murine CD4(+) Th1 cells. As quantification of different Fut7 transcripts revealed a predominance of transcripts lacking the first exons in primary Th1 cells we searched for an alternative promoter. Cloning of an intragenic region spanning a 1kb region upstream of exon 4 into an enhancer-containing vector indeed elicited promoter activity. Interestingly, also the CNS enhanced activity of this intragenic minimal promoter in reporter assays in primary Th1 cells suggesting that both elements interact in primary CD4(+) T cells to induce Fut7 transcription.
Collapse
Affiliation(s)
- Matthias Pink
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Boris A Ratsch
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Maibritt Mardahl
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Micha F Schröter
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Dirk Engelbert
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Julia Triebus
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Alf Hamann
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany
| | - Uta Syrbe
- Charité, Universitätsmedizin Berlin, Experimentelle Rheumatologie c/o. Deutsches Rheuma-Forschungszentrum, Charitèplatz 1, 10117 Berlin, Germany; Charité, Universitätsmedizin Berlin, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Hindenburgdamm 30, 12200 Berlin, Germany.
| |
Collapse
|
300
|
Škrott Z, Cvek B. Linking the activity of bortezomib in multiple myeloma and autoimmune diseases. Crit Rev Oncol Hematol 2014; 92:61-70. [PMID: 24890785 DOI: 10.1016/j.critrevonc.2014.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023] Open
Abstract
Since their introduction to the clinic 10 years ago, proteasome inhibitors have become the cornerstone of anti-multiple myeloma therapy. Despite significant progress in understanding the consequences of proteasome inhibition, the unique activity of bortezomib is still unclear. Disappointing results from clinical trials with bortezomib in other malignancies raise the question of what makes multiple myeloma so sensitive to proteasome inhibition. Successful administration of bortezomib in various immunological disorders that exhibit high antibody production suggests that the balance between protein synthesis and degradation is a key determinant of sensitivity to proteasome inhibition because a high rate of protein production is a shared characteristic in plasma and myeloma cells. Initial or acquired resistance to bortezomib remains a major obstacle in the clinic as in vitro data from cell lines suggest a key role for the β5 subunit mutation in resistance; however the mutation was not found in patient samples. Recent studies indicate the importance of selecting for a subpopulation of cells that produce lower amounts of paraprotein during bortezomib therapy.
Collapse
Affiliation(s)
- Zdeněk Škrott
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic
| | - Boris Cvek
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 78371 Olomouc, Czech Republic.
| |
Collapse
|