251
|
Chen M, Lu B, Li Y, Wang Y, Zheng H, Zhong D, Liao Z, Wang M, Ma F, Liao Q, Xie Z. Metabolomics insights into the modulatory effects of long-term compound polysaccharide intake in high-fat diet-induced obese rats. Nutr Metab (Lond) 2018; 15:8. [PMID: 29410697 PMCID: PMC5781284 DOI: 10.1186/s12986-018-0246-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background Polysaccharides can alleviate obesity in mammals; however, studies on mechanism of this alleviation are limited. A few studies have indicated that polysaccharides improve obesity by regulating the metabolism of the body. Therefore, a metabolomics approach, consisting of high resolution nuclear magnetic resonance (NMR) spectroscopy and a multivariate statistical technique, was applied to explore the mechanism of the protective effects of lentinan and Flos Lonicera polysaccharides (LF) on high-fat diet (HFD) induced obesity. Methods In this study, rats were randomly divided into three groups: control diet (CD), HFD, and HFD supplemented with a mixture of lentinan and Flos Lonicera polysaccharide. Histopathological and clinical biochemical assessments were also conducted. A combination of a NMR metabolomics study and a multivariable statistical analysis method to distinguish urinary and fecal metabolites was applied. Results Significant obesity symptoms appeared in HFD rats (for example, significant weight gain, epididymal adipose accumulation and lipid deposition in hepatocytes), which was attenuated in the LF group. Additionally, the HFD induced a reduction of choline, citrate, pyruvate and glycerol and increased the levels of trimethylamine oxide (TMAO) and taurine. Of note, these metabolic disorders were reversed by LF intervention mainly through pathways of energy metabolism, choline metabolism and gut microbiota metabolism. Conclusions LF supplementation had a re-balancing effect on the disturbed metabolic pathways in the obese body. The results of this study validate the therapeutic effect of the compound polysaccharide--LF in obesity and described the biochemical and metabolic mechanisms involved. Electronic supplementary material The online version of this article (10.1186/s12986-018-0246-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyi Chen
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People's Republic of China
| | - Biyu Lu
- 2School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510407 People's Republic of China
| | - Yuan Li
- 2School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510407 People's Republic of China
| | - Yuanyuan Wang
- Infinitus (China) Company Ltd, Guangzhou, 510623 China
| | - Haihui Zheng
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People's Republic of China
| | - Danmin Zhong
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People's Republic of China
| | - Ziqiong Liao
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People's Republic of China
| | - Mengxia Wang
- 2School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510407 People's Republic of China
| | - Fangli Ma
- Infinitus (China) Company Ltd, Guangzhou, 510623 China
| | - Qiongfeng Liao
- 2School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510407 People's Republic of China
| | - Zhiyong Xie
- 1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006 People's Republic of China
| |
Collapse
|
252
|
Lau JKC, Zhang X, Yu J. Animal Models of Non-alcoholic Fatty Liver Diseases and Its Associated Liver Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:139-147. [DOI: 10.1007/978-981-10-8684-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
253
|
Bu X, Fu Y, Jin H, Gui R. Specific enzymatic synthesis of 2,3-diaminophenazine and copper nanoclusters used for dual-emission ratiometric and naked-eye visual fluorescence sensing of choline. NEW J CHEM 2018. [DOI: 10.1039/c8nj03927e] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work reports a novel biosensor for dual-emission ratiometric and visual fluorescence detection of choline.
Collapse
Affiliation(s)
- Xiangning Bu
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Yongxin Fu
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Hui Jin
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Rijun Gui
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| |
Collapse
|
254
|
Li H, Toth E, Cherrington NJ. Asking the Right Questions With Animal Models: Methionine- and Choline-Deficient Model in Predicting Adverse Drug Reactions in Human NASH. Toxicol Sci 2018; 161:23-33. [PMID: 29145614 PMCID: PMC6454421 DOI: 10.1093/toxsci/kfx253] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the past few decades, great conceptual and technological advances have been made in the field of toxicology, but animal model-based research still remains one of the most widely used and readily available tools for furthering our current knowledge. However, animal models are not perfect in predicting all systemic toxicity in humans. Extrapolating animal data to accurately predict human toxicities remains a challenge, and researchers are obligated to question the appropriateness of their chosen animal model. This paper provides an assessment of the utility of the methionine- and choline-deficient (MCD) diet fed animal model in reflecting human nonalcoholic steatohepatitis (NASH) and the potential risks of adverse drug reactions and toxicities that are associated with the disease. As a commonly used NASH model, the MCD model fails to exhibit most metabolic abnormalities in a similar manner to the human disease. The MCD model, on the other hand, closely resembles human NASH histology and reflects signatures of drug transporter alterations in humans. Due to the nature of the MCD model, it should be avoided in studies of NASH pathogenesis, metabolic parameter evaluation, and biomarker identification. But it can be used to accurately predict altered drug disposition due to NASH-associated transporter alterations.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Erica Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
255
|
Kumei S, Yuhki KI, Kojima F, Kashiwagi H, Imamichi Y, Okumura T, Narumiya S, Ushikubi F. Prostaglandin I 2 suppresses the development of diet-induced nonalcoholic steatohepatitis in mice. FASEB J 2017; 32:2354-2365. [PMID: 29247122 DOI: 10.1096/fj.201700590r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a hepatic manifestation of metabolic syndrome. Although the prostaglandin (PG)I2 receptor IP is expressed broadly in the liver, the role of PGI2-IP signaling in the development of NASH remains to be determined. Here, we investigated the role of the PGI2-IP system in the development of steatohepatitis using mice lacking the PGI2 receptor IP [IP-knockout (IP-KO) mice] and beraprost (BPS), a specific IP agonist. IP-KO and wild-type (WT) mice were fed a methionine- and choline-deficient diet (MCDD) for 2, 5, or 10 wk. BPS was administered orally to mice every day during the experimental periods. The effect of BPS on the expression of chemokine and inflammatory cytokines was examined also in cultured Kupffer cells. WT mice fed MCDD developed steatohepatitis at 10 wk. IP-KO mice developed steatohepatitis at 5 wk with augmented histologic derangements accompanied by increased hepatic monocyte chemoattractant protein-1 (MCP-1) and TNF-α concentrations. After 10 wk of MCDD, IP-KO mice had greater hepatic iron deposition with prominent oxidative stress, resulting in hepatocyte damage. In WT mice, BPS improved histologic and biochemical parameters of steatohepatitis, accompanied by reduced hepatic concentration of MCP-1 and TNF-α. Accordingly, BPS suppressed the LPS-stimulated Mcp-1 and Tnf-α mRNA expression in cultured Kupffer cells prepared from WT mice. PGI2-IP signaling plays a crucial role in the development and progression of steatohepatitis by modulating the inflammatory response, leading to augmented oxidative stress. We suggest that the PGI2-IP system is an attractive therapeutic target for treating patients with NASH.-Kumei, S., Yuhki, K.-I., Kojima, F., Kashiwagi, H., Imamichi, Y., Okumura, T., Narumiya, S., Ushikubi, F. Prostaglandin I2 suppresses the development of diet-induced nonalcoholic steatohepatitis in mice.
Collapse
Affiliation(s)
- Shima Kumei
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Koh-Ichi Yuhki
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Fumiaki Kojima
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Hitoshi Kashiwagi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshitaka Imamichi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto, Japan
| | - Fumitaka Ushikubi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
256
|
Zhu J, Lu T, Chen F, Yan J, Chen F, Zhang Q, Wang J, Yan W, Yu T, Tang Q, Cai W. Choline Protects Against Intestinal Failure-Associated Liver Disease in Parenteral Nutrition-Fed Immature Rats. JPEN J Parenter Enteral Nutr 2017; 42:436-445. [PMID: 27856995 DOI: 10.1177/0148607116677048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Deficiency of choline, a required nutrient, is related to intestinal failure-associated liver disease (IFALD). Therefore, we aimed to investigate the effects of choline supplementation on IFALD and the underlying mechanisms. METHODS Male Sprague-Dawley rats (4 weeks old) were fed AIN-93G chow and administered intravenous 0.9% saline (control), parenteral nutrition (PN), or PN plus intravenous choline (600 mg/kg) for 7 days. We evaluated body weight, hepatic histology, biochemical indicators, triglycerides, oxidative status, methylation levels of peroxisomal proliferator-activated receptor alpha (PPARα) gene promoter, expression of PPARα and carnitine palmitoyltransferase 1 (CPT1), and levels of choline metabolites. RESULTS The PN + choline group exhibited improved body weight compared with the PN group. PN impaired hepatic function, increased hepatic triglycerides, induced dyslipidemia, enhanced reactive oxygen species and malondialdehyde, and reduced total antioxidant capacity. The PN group had higher pathologic scores than the control group. These results were prevented by choline administration. Compared with the control group, PN increased PPARα promoter methylation and hepatic betaine concentration, reduced hepatic choline and phosphatidylcholine (PC) levels, decreased plasma choline and betaine concentrations, and downregulated PPARα and CPT1 mRNA and protein expression. Choline supplementation elevated hepatic choline and PC levels and enhanced plasma choline, betaine, and PC concentrations but reduced hepatic betaine level, reversed PPARα promoter hypermethylation, and upregulated PPARα and CPT1 mRNA and protein expression in PN-fed rats, compared with rats receiving PN alone. CONCLUSION Choline addition to PN may prevent IFALD by reducing oxidative stress, enhancing hepatic fat export, and promoting fatty acid catabolism in immature rats receiving PN.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Clinical Nutrition, School of Medicine, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Lu
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Chen
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junkai Yan
- Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Fan Chen
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaosen Zhang
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jifan Wang
- Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Yan
- Department of Clinical Nutrition, School of Medicine, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Tingxi Yu
- Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, School of Medicine, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Clinical Nutrition, School of Medicine, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Department of Nutrition, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
257
|
Yan J, Zhu J, Gong Z, Wen J, Xiao Y, Zhang T, Cai W. Supplementary choline attenuates olive oil lipid emulsion-induced enterocyte apoptosis through suppression of CELF1/AIF pathway. J Cell Mol Med 2017; 22:1562-1573. [PMID: 29105957 PMCID: PMC5824412 DOI: 10.1111/jcmm.13430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
Enterocyte apoptosis induced by lipid emulsions is a key cause of intestinal atrophy under total parenteral nutrition (TPN) support, and our previous work demonstrated that olive oil lipid emulsion (OOLE) could induce enterocyte apoptosis via CUGBP, Elav‐like family member 1 (CELF1)/ apoptosis‐inducing factor (AIF) pathway. As TPN‐associated complications are partially related to choline deficiency, we aimed to address whether choline supplementation could attenuate OOLE‐induced enterocyte apoptosis. Herein we present evidence that supplementary choline exhibits protective effect against OOLE‐induced enterocyte apoptosis both in vivo and in vitro. In a rat model of TPN, substantial reduction in apoptotic rate along with decreased expression of CELF1 was observed when supplementary choline was added to OOLE. In cultured Caco‐2 cells, supplementary choline attenuated OOLE‐induced apoptosis and mitochondria dysfunction by suppressing CELF1/AIF pathway. Compared to OOLE alone, the expression of CELF1 and AIF was significantly decreased by supplementary choline, whereas the expression of Bcl‐2 was evidently increased. No obvious alterations were observed in Bax expression and caspase‐3 activation. Mechanistically, supplementary choline repressed the expression of CELF1 by increasing the recruitment of CELF1 mRNA to processing bodies, thus resulting in suppression of its protein translation. Taken together, our data suggest that supplementary choline exhibits effective protection against OOLE‐induced enterocyte apoptosis, and thus, it has the potential to be used for the prevention and treatment of TPN‐induced intestinal atrophy.
Collapse
Affiliation(s)
- Jun‐Kai Yan
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Jie Zhu
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Zi‐Zhen Gong
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Jie Wen
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Yong‐Tao Xiao
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Tian Zhang
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| | - Wei Cai
- Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghai Institute for Pediatric ResearchShanghaiChina
| |
Collapse
|
258
|
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients 2017; 9:nu9101124. [PMID: 29035308 PMCID: PMC5691740 DOI: 10.3390/nu9101124] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.
Collapse
|
259
|
Fuchs CD, Claudel T, Scharnagl H, Stojakovic T, Trauner M. FXR controls CHOP expression in steatohepatitis. FEBS Lett 2017; 591:3360-3368. [PMID: 28895119 PMCID: PMC5698708 DOI: 10.1002/1873-3468.12845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
The farnesoid X receptor (FXR) and C/EBP homologous protein (CHOP) have critical functions in hepatic lipid metabolism. Here, we aimed to explore a potential relationship between FXR and CHOP. We fed wild‐type (WT) and FXR KO mice a MCD diet (model of steatohepatitis) and found that Chop mRNA expression is upregulated in WT but not FXR KO mice. The absence of FXR aggravates hepatic inflammation after MCD feeding. In HepG2 cells, we found that Chop expression is regulated in a FXR/Retinoid X receptor (RXR)‐dependent manner. We identified a FXR/RXR‐binding site in the human CHOP promoter, demonstrating a highly conserved regulatory pathway. Our study shows that FXR/RXR regulates Chop expression in a mouse model of steatohepatitis, providing novel insights into pathogenesis of this disorder.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| |
Collapse
|
260
|
Aissa AF, Amaral CLD, Venancio VP, Machado CDS, Hernandes LC, Santos PWDS, Curi R, Bianchi MDLP, Antunes LMG. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1116-1128. [PMID: 28880739 DOI: 10.1080/15287394.2017.1357366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- a Department of Genetics, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Catia Lira do Amaral
- b Campus Henrique Santillo , Universidade Estadual de Goiás , Anápolis , GO , Brazil
| | - Vinicius Paula Venancio
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Carla da Silva Machado
- a Department of Genetics, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Lívia Cristina Hernandes
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Patrick Wellington da Silva Santos
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Rui Curi
- d Department of Physiology and Biophysics , Institute of Biomedical Sciences, University of São Paulo , São Paulo , SP , Brazil
| | - Maria de Lourdes Pires Bianchi
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Lusânia Maria Greggi Antunes
- c Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| |
Collapse
|
261
|
Jack-Roberts C, Joselit Y, Nanobashvili K, Bretter R, Malysheva OV, Caudill MA, Saxena A, Axen K, Gomaa A, Jiang X. Choline Supplementation Normalizes Fetal Adiposity and Reduces Lipogenic Gene Expression in a Mouse Model of Maternal Obesity. Nutrients 2017; 9:nu9080899. [PMID: 28820499 PMCID: PMC5579692 DOI: 10.3390/nu9080899] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Maternal obesity increases fetal adiposity which may adversely affect metabolic health of the offspring. Choline regulates lipid metabolism and thus may influence adiposity. This study investigates the effect of maternal choline supplementation on fetal adiposity in a mouse model of maternal obesity. C57BL/6J mice were fed either a high-fat (HF) diet or a control (NF) diet and received either 25 mM choline supplemented (CS) or control untreated (CO) drinking water for 6 weeks before timed-mating and throughout gestation. At embryonic day 17.5, HF feeding led to higher (p < 0.05) percent total body fat in fetuses from the HFCO group, while the choline supplemented HFCS group did not show significant difference versus the NFCO group. Similarly, HF feeding led to higher (p < 0.05) hepatic triglyceride accumulation in the HFCO but not the HFCS fetuses. mRNA levels of lipogenic genes such as Acc1, Fads1, and Elovl5, as well as the transcription factor Srebp1c that favors lipogenesis were downregulated (p < 0.05) by maternal choline supplementation in the HFCS group, which may serve as a mechanism to reduce fat accumulation in the fetal liver during maternal HF feeding. In summary, maternal choline supplementation improves indices of fetal adiposity in obese dams at late gestation.
Collapse
Affiliation(s)
- Chauntelle Jack-Roberts
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Yaelle Joselit
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Khatia Nanobashvili
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Rachel Bretter
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Anjana Saxena
- Department of Biology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Kathleen Axen
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Ahmed Gomaa
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
262
|
Nam J, Greenwald E, Jack-Roberts C, Ajeeb TT, Malysheva OV, Caudill MA, Axen K, Saxena A, Semernina E, Nanobashvili K, Jiang X. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J Nutr Biochem 2017; 49:80-88. [PMID: 28915389 DOI: 10.1016/j.jnutbio.2017.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 01/27/2023]
Abstract
Maternal obesity increases placental transport of macronutrients, resulting in fetal overgrowth and obesity later in life. Choline participates in fatty acid metabolism, serves as a methyl donor and influences growth signaling, which may modify placental macronutrient homeostasis and affect fetal growth. Using a mouse model of maternal obesity, we assessed the effect of maternal choline supplementation on preventing fetal overgrowth and restoring placental macronutrient homeostasis. C57BL/6J mice were fed either a high-fat (HF, 60% kcal from fat) diet or a normal (NF, 10% kcal from fat) diet with a drinking supply of either 25 mM choline chloride or control purified water, respectively, beginning 4 weeks prior to mating until gestational day 12.5. Fetal and placental weight, metabolites and gene expression were measured. HF feeding significantly (P<.05) increased placental and fetal weight in the HF-control (HFCO) versus NF-control (NFCO) animals, whereas the HF choline-supplemented (HFCS) group effectively normalized placental and fetal weight to the levels of the NFCO group. Compared to HFCO, the HFCS group had lower (P<.05) glucose transporter 1 and fatty acid transport protein 1 expression as well as lower accumulation of glycogen in the placenta. The HFCS group also had lower (P<.05) placental 4E-binding protein 1 and ribosomal protein s6 phosphorylation, which are indicators of mechanistic target of rapamycin complex 1 activation favoring macronutrient anabolism. In summary, our results suggest that maternal choline supplementation prevented fetal overgrowth in obese mice at midgestation and improved biomarkers of placental macronutrient homeostasis.
Collapse
Affiliation(s)
- Juha Nam
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Esther Greenwald
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Chauntelle Jack-Roberts
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Tamara T Ajeeb
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA; Department of Clinical Nutrition, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Kathleen Axen
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Ekaterina Semernina
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Khatia Nanobashvili
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
263
|
Nishio T, Taura K, Iwaisako K, Koyama Y, Tanabe K, Yamamoto G, Okuda Y, Ikeno Y, Yoshino K, Kasai Y, Okuno M, Seo S, Sakurai T, Asagiri M, Hatano E, Uemoto S. Hepatic vagus nerve regulates Kupffer cell activation via α7 nicotinic acetylcholine receptor in nonalcoholic steatohepatitis. J Gastroenterol 2017; 52:965-976. [PMID: 28044208 DOI: 10.1007/s00535-016-1304-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). Kupffer cells play a central role in promoting hepatic inflammation, which leads to the development of NASH. We investigated the anti-inflammatory effect of hepatic vagus-mediated stimulation of the α7 nicotinic acetylcholine receptor (α7nAChR) on Kupffer cells in NASH pathogenesis. METHODS Wild-type (WT) mice undergoing hepatic vagotomy (HV) were fed a methionine- and choline-deficient (MCD) diet for 1 week. α7nAChR knockout (α7KO) chimeric mice were generated by transplanting α7KO bone marrow cells into irradiated and Kupffer cell-deleted WT recipients. Kupffer cells were isolated from WT mice and treated with α7nAChR agonist under stimulation by lipopolysaccharide and/or palmitic acid. RESULTS HV aggravated MCD diet-induced NASH in both steatosis and inflammation. The hepatic inflammatory response, including the upregulation of tumor necrosis factor alpha (TNFα), interleukin (IL)-12, and monocyte chemoattractant protein 1 (MCP-1), was accelerated in HV mice, accompanied by the downregulation of PPARα pathway genes. Kupffer cells were highly activated via the phosphorylation and nuclear translocation of nuclear factor-kappa B (NF-κB) in MCD diet-fed HV mice. The α7nAchR agonist suppressed the inflammatory response of primary Kupffer cells induced by lipopolysaccharide and palmitic acid by attenuating the NF-κB cascade. α7KO chimeric mice fed an MCD diet for 1 week developed advanced NASH with highly activated Kupffer cells. The hepatic expression of TNFα, IL-12, and MCP-1 was upregulated in α7KO chimeric mice, accompanied by abnormal lipid metabolism. CONCLUSIONS Hepatic vagus activity regulates the inflammatory response of Kupffer cells via α7nAChR in NASH development.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.
| | - Keiko Iwaisako
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Department of Target Therapy Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Koyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kazutaka Tanabe
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Gen Yamamoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yukihiro Okuda
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yoshinobu Ikeno
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Kenji Yoshino
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Masayuki Okuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| | - Takaki Sakurai
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Asagiri
- Innovation Center for Immunoregulation and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.,Department of Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
264
|
Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury. Life Sci 2017; 184:103-111. [PMID: 28711489 DOI: 10.1016/j.lfs.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023]
Abstract
AIMS Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. MAIN METHODS Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. KEY FINDINGS The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. SIGNIFICANCE This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development.
Collapse
|
265
|
Xiao X, Hu M, Zhang X, Hu JZ. NMR-based Metabolomics Analysis of Liver from C57BL/6 Mouse Exposed to Ionizing Radiation. Radiat Res 2017; 188:44-55. [PMID: 28463589 PMCID: PMC5564182 DOI: 10.1667/rr14602.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of ionizing radiation to human health are of great concern in the field of space exploration and for patients considering radiotherapy. However, to date, the effect of high-dose radiation on metabolism in the liver has not been clearly defined. In this study, 1H nuclear magnetic resonance (NMR)-based metabolomics combined with multivariate data analysis was applied to study the changes of metabolism in the liver of C57BL/6 mouse after whole-body gamma (3.0 and 7.8 Gy) or proton (3.0 Gy) irradiation. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) were used for classification and identification of potential biomarkers associated with exposure to gamma and proton radiation. The results show that the radiation exposed groups can be well separated from the control group. Where the same dose was received, the proton exposed group was nevertheless well separated from the gamma-exposed group, indicating that different radiation sources induce different alterations in the metabolic profile. Common among all high-dose gamma and proton exposed groups were the statistically decreased concentrations of choline, O-phosphocholine and trimethylamine N-oxide, while the concentrations of glutamine, glutathione, malate, creatinine, phosphate, betaine and 4-hydroxyphenylacetate were statistically and significantly elevated. Since these altered metabolites are associated with multiple biological pathways, the results suggest that radiation induces abnormality in multiple biological pathways. In particular, metabolites such as 4-hydroxyphenylacetate, betaine, glutamine, choline and trimethylamine N-oxide may be prediagnostic biomarkers candidates for ionizing exposure of the liver.
Collapse
Affiliation(s)
- Xiongjie Xiao
- Pacific Northwest National Laboratory, Richland, Washington 99352
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mary Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jian Zhi Hu
- Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
266
|
Han J, Dzierlenga AL, Lu Z, Billheimer DD, Torabzadehkhorasani E, Lake AD, Li H, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lehman-McKeeman LD, Cherrington NJ. Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model. Obesity (Silver Spring) 2017; 25:1069-1076. [PMID: 28452429 PMCID: PMC5513172 DOI: 10.1002/oby.21855] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Characteristic pathological changes define the progression of steatosis to nonalcoholic steatohepatitis (NASH) and are correlated to metabolic pathways. A common rodent model of NASH is the methionine and choline deficient (MCD) diet. The objective of this study was to perform full metabolomic analyses on liver samples to determine which pathways are altered most pronouncedly in this condition in humans, and to compare these changes to rodent models of nonalcoholic fatty liver disease (NAFLD). METHODS A principal component analysis for all 91 metabolites measured indicated that metabolome perturbation is greater and less varied for humans than for rodents. RESULTS Metabolome changes in human and rat NAFLD were greatest for the amino acid and bile acid metabolite families (e.g., asparagine, citrulline, gamma-aminobutyric acid, lysine); although, in many cases, the trends were reversed when compared between species (cholic acid, betaine). CONCLUSIONS Overall, these results indicate that metabolites of specific pathways may be useful biomarkers for NASH progression, although these markers may not correspond to rodent NASH models. The MCD model may be useful when studying certain end points of NASH; however, the metabolomics results indicate important differences between humans and rodents in the biochemical pathogenesis of the disease.
Collapse
Affiliation(s)
- JianHua Han
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ, USA
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Department of Clinical Laboratory, Beijing, China
| | - Anika L. Dzierlenga
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ, USA
| | - Zhengqiang Lu
- The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ, USA
| | - Dean D. Billheimer
- The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ, USA
| | | | - April D. Lake
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ, USA
| | - Hui Li
- University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ, USA
| | - Petr Novak
- Biology Centre CAS, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic
| | - Petia Shipkova
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA
| | - Nelly Aranibar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA
| | - Donald Robertson
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA
| | - Michael D. Reily
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ, USA
| | | | | |
Collapse
|
267
|
Botchlett R, Woo SL, Liu M, Pei Y, Guo X, Li H, Wu C. Nutritional approaches for managing obesity-associated metabolic diseases. J Endocrinol 2017; 233:R145-R171. [PMID: 28400405 PMCID: PMC5511693 DOI: 10.1530/joe-16-0580] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 01/10/2023]
Abstract
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.
Collapse
Affiliation(s)
- Rachel Botchlett
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Pinnacle Clinical ResearchLive Oak, USA
| | - Shih-Lung Woo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Mengyang Liu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Ya Pei
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Xin Guo
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
- Baylor College of MedicineHouston, USA
| | - Honggui Li
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M University, College Station, USA
| |
Collapse
|
268
|
Zöhrer E, Alisi A, Jahnel J, Mosca A, Della Corte C, Crudele A, Fauler G, Nobili V. Efficacy of docosahexaenoic acid-choline-vitamin E in paediatric NASH: a randomized controlled clinical trial. Appl Physiol Nutr Metab 2017; 42:948-954. [PMID: 28511023 DOI: 10.1139/apnm-2016-0689] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nonalcoholic steatohepatitis (NASH), a progressive form of nonalcoholic fatty liver disease, is one of the most common hepatic diseases in children. We conducted a randomized controlled clinical trial on children with biopsy-proven NASH based on a combinatorial nutritional approach compared with placebo. Participants were assigned to lifestyle modification plus placebo or lifestyle modification plus a mix containing docosahexaenoic acid, choline, and vitamin E (DHA-CHO-VE). Forty children and adolescents participated in the entire trial. The primary outcome was the improvement of liver hyperechogenicity. Secondary outcomes included alterations of alanine aminotransferase (ALT) and other metabolic parameters. Furthermore, changes of serum bile acids (BA) and plasma fibroblast growth factor 19 (FGF19) levels were evaluated as inverse biomarkers of disease severity. At the end of the study, we observed a significant decrease in severe steatosis in the treatment group (50% to 5%, p = 0.001). Furthermore, although the anthropometric and biochemical measurements in the placebo and DHA-CHO-VE groups were comparable at baseline, at the end of the study ALT and fasting glucose levels improved only in the treatment group. Finally, we found that BA levels were not influenced whereas FGF19 levels were significantly increased by DHA-CHO-VE. The results suggest that a combination of DHA, VE, and CHO could improve steatosis and reduce ALT and glucose levels in children with NASH. However, further studies are needed to assess the impact of a DHA and VE combination on repair of liver damage in paediatric NASH.
Collapse
Affiliation(s)
- Evelyn Zöhrer
- a Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz 8036, Austria
| | - Anna Alisi
- b Liver Research Unit, Bambino Gesù Children's Hospital - IRCCS, Rome 00165, Italy
| | - Jörg Jahnel
- a Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz 8036, Austria
| | - Antonella Mosca
- c Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital - IRCCS, Rome 00165, Italy
| | - Claudia Della Corte
- c Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital - IRCCS, Rome 00165, Italy
| | - Annalisa Crudele
- b Liver Research Unit, Bambino Gesù Children's Hospital - IRCCS, Rome 00165, Italy
| | - Günter Fauler
- d Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz 8036, Austria
| | - Valerio Nobili
- b Liver Research Unit, Bambino Gesù Children's Hospital - IRCCS, Rome 00165, Italy.,c Hepato-Metabolic Disease Unit, Bambino Gesù Children's Hospital - IRCCS, Rome 00165, Italy
| |
Collapse
|
269
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder in the world, yet the pathogenesis of the disease is not well elucidated. Due to the close anatomic and functional association between the intestinal lumen and the liver through the portal system, it is speculated that the gut microbiome may play a pivotal role in the pathogenesis of NAFLD. Furthermore, diet, which can modulate the gut microbiome and several metabolic pathways involved in NAFLD development, shows a potential tripartite relation between the gut, diet, and the liver. In this review, we summarize the current evidence that supports the association between NAFLD, the gut microbiome, and the role of diet.
Collapse
Affiliation(s)
- Zeinab Mokhtari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada; and
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
- Department of Gastroenterology, Hepatology, and Nutrition, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
270
|
Metabolomic Fingerprinting in the Comprehensive Study of Liver Changes Associated with Onion Supplementation in Hypercholesterolemic Wistar Rats. Int J Mol Sci 2017; 18:ijms18020267. [PMID: 28134852 PMCID: PMC5343803 DOI: 10.3390/ijms18020267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 02/07/2023] Open
Abstract
The consumption of functional ingredients has been suggested to be a complementary tool for the prevention and management of liver disease. In this light, processed onion can be considered as a source of multiple bioactive compounds with hepatoprotective properties. The liver fingerprint of male Wistar rats (n = 24) fed with three experimental diets (control (C), high-cholesterol (HC), and high-cholesterol enriched with onion (HCO) diets) was obtained through a non-targeted, multiplatform metabolomics approach to produce broad metabolite coverage. LC-MS, CE-MS and GC-MS results were subjected to univariate and multivariate analyses, providing a list of significant metabolites. All data were merged in order to figure out the most relevant metabolites that were modified by the onion ingredient. Several relevant metabolic changes and related metabolic pathways were found to be impacted by both HC and HCO diet. The model highlighted several metabolites (such as hydroxybutyryl carnitine and palmitoyl carnitine) modified by the HCO diet. These findings could suggest potential impairments in the energy−lipid metabolism, perturbations in the tricarboxylic acid cycle (TCA) cycle and β-oxidation modulated by the onion supplementation in the core of hepatic dysfunction. Metabolomics shows to be a valuable tool to evaluate the effects of complementary dietetic approaches directed to hepatic damage amelioration or non-alcoholic fatty liver disease (NAFLD) prevention.
Collapse
|
271
|
Sagami S, Ueno Y, Tanaka S, Fujita A, Niitsu H, Hayashi R, Hyogo H, Hinoi T, Kitadai Y, Chayama K. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency. PLoS One 2017; 12:e0169681. [PMID: 28095507 PMCID: PMC5241147 DOI: 10.1371/journal.pone.0169681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.
Collapse
Affiliation(s)
- Shintaro Sagami
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
- * E-mail: (SS); (YU)
| | - Yoshitaka Ueno
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail: (SS); (YU)
| | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Fujita
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Niitsu
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryohei Hayashi
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideyuki Hyogo
- Department of Gastroenterology, Hiroshima General Hospital, Hiroshima, Japan
| | - Takao Hinoi
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chu-goku Cancer Center, Hiroshima, Japan
| | - Yasuhiko Kitadai
- Department of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Medicine and Molecular Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
272
|
High dietary choline and betaine intake is associated with low insulin resistance in the Newfoundland population. Nutrition 2017; 33:28-34. [DOI: 10.1016/j.nut.2016.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/19/2016] [Accepted: 08/27/2016] [Indexed: 02/08/2023]
|
273
|
Ding Y, Pedersen ER, Svingen GF, Helgeland Ø, Gregory JF, Løland KH, Meyer K, Tell GS, Ueland PM, Nygård OK. Methylenetetrahydrofolate Dehydrogenase 1 Polymorphisms Modify the Associations of Plasma Glycine and Serine With Risk of Acute Myocardial Infarction in Patients With Stable Angina Pectoris in WENBIT (Western Norway B Vitamin Intervention Trial). ACTA ACUST UNITED AC 2016; 9:541-547. [DOI: 10.1161/circgenetics.116.001483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Background—
Serine and glycine interconversion and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1)–mediated 1-carbon transfer are the major sources of methyl groups for 1-carbon metabolism. Recently, plasma glycine and a common polymorphism in MTHFD1 have been associated with risk of acute myocardial infarction (AMI). It is, therefore, of interest to explore if these 2 pathways interact in relation to AMI.
Methods and Results—
A total of 2571 participants in the WENBIT (Western Norway B Vitamin Intervention Trial) undergoing coronary angiography for stable angina pectoris were studied. Associations of plasma serine and glycine concentrations with risk of AMI across 2 common and functional MTHFD1 polymorphisms (
rs2236225
and
rs1076991
) were explored in Cox regression models. During a median follow-up of 4.7 years, 212 patients (8.2%) experienced an AMI. In age- and sex-adjusted analyses, plasma glycine (
P
<0.01), but not serine (
P
=0.52), showed an overall association with AMI. However, interactions of MTHFD1
rs2236225
polymorphism with both plasma serine and glycine were observed (
P
interaction
=0.03 for both). Low plasma serine and glycine were associated with an increased risk of AMI among patients carrying the
rs2236225
minor A allele. Similarly, low plasma glycine showed stronger risk relationship with AMI in the
rs1076991
CC genotype carriers but weaker associations in patients carrying the minor T allele (
P
interaction
=0.02).
Conclusions—
Our results showed that 2 common and functional polymorphisms in the
MTHFD1
gene modulate the risk associations of plasma serine and glycine with AMI. These findings emphasize the possible role of the MTHFD1 in regulating serine and glycine metabolism in relation to atherosclerotic complications.
Clinical Trial Registration—
URL:
http://www.clinicaltrials.gov
. Unique Identifier: NCT00354081.
Collapse
Affiliation(s)
- Yunpeng Ding
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Eva R. Pedersen
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Gard F.T. Svingen
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Øyvind Helgeland
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Jesse F. Gregory
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Kjetil H. Løland
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Klaus Meyer
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Grethe S. Tell
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Per M. Ueland
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| | - Ottar K. Nygård
- From the Department of Clinical Science (Y.D., E.R.P., P.M.U., O.K.N.), KG Jebsen Center for Diabetes Research, Department of Clinical Science (Ø.H., O.K.N.), and Department of Global Public Health and Primary Care (G.S.T.), University of Bergen, Norway; Department of Heart Disease (G.F.T.S., K.H.L., O.K.N.) and Department of Pediatrics (Ø.H.), Haukeland University Hospital, Bergen, Norway; Laboratory of Clinical Biochemistry, Bergen, Norway (P.M.U.); Food Science and Human Nutrition Department,
| |
Collapse
|
274
|
Lau JKC, Zhang X, Yu J. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol 2016; 241:36-44. [PMID: 27757953 PMCID: PMC5215469 DOI: 10.1002/path.4829] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/12/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is a continuous spectrum of diseases characterized by excessive lipid accumulation in hepatocytes. NAFLD progresses from simple liver steatosis to non‐alcoholic steatohepatitis and, in more severe cases, to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Because of its growing worldwide prevalence, various animal models that mirror both the histopathology and the pathophysiology of each stage of human NAFLD have been developed. The selection of appropriate animal models continues to be one of the key questions faced in this field. This review presents a critical analysis of the histopathology and pathogenesis of NAFLD, the most frequently used and recently developed animal models for each stage of NAFLD and NAFLD‐induced HCC, the main mechanisms involved in the experimental pathogenesis of NAFLD in different animal models, and a brief summary of recent therapeutic targets found by the use of animal models. Integrating the data from human disease with those from animal studies indicates that, although current animal models provide critical guidance in understanding specific stages of NAFLD pathogenesis and progression, further research is necessary to develop more accurate models that better mimic the disease spectrum, in order to provide both increased mechanistic understanding and identification/testing of novel therapeutic approaches. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jennie Ka Ching Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.,Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
275
|
Mailloux RJ, Young A, Chalker J, Gardiner D, O'Brien M, Slade L, Brosnan JT. Choline and dimethylglycine produce superoxide/hydrogen peroxide from the electron transport chain in liver mitochondria. FEBS Lett 2016; 590:4318-4328. [PMID: 27761911 DOI: 10.1002/1873-3468.12461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 11/07/2022]
Abstract
Here, we report that choline and dimethylglycine can stimulate reactive oxygen species (ROS) production in liver mitochondria. Choline stimulated O2 ˙- /H2 O2 formation at a concentration of 5 μm. We also observed that Complex II and III inhibitors, atpenin A5 and myxothiazol, collectively induced a 95% decrease in O2 ˙- /H2 O2 production indicating both sites serve as the main sources of ROS during choline oxidation. Dimethylglycine, an intermediate of choline oxidation, was a more effective ROS generator. Rates of production were ~ 43% higher than choline-mediated O2 ˙- /H2 O2 production. The main site for dimethylglycine-mediated ROS production was via reverse electron transfer to Complex I. Our results demonstrate that metabolism of essential metabolites involved in methionine and folic acid biosynthesis can stimulate mitochondrial ROS production.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Adrian Young
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Julia Chalker
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Marisa O'Brien
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Liam Slade
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
276
|
Zhou Z, Vailati-Riboni M, Trevisi E, Drackley J, Luchini D, Loor J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J Dairy Sci 2016; 99:8716-8732. [DOI: 10.3168/jds.2015-10525] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 07/17/2016] [Indexed: 01/24/2023]
|
277
|
Abstract
Metabolic imaging is a field of molecular imaging that focuses and targets changes in metabolic pathways for the evaluation of different clinical conditions. Targeting and quantifying metabolic changes noninvasively is a powerful approach to facilitate diagnosis and evaluate therapeutic response. This review addresses only techniques targeting metabolic pathways. Other molecular imaging strategies, such as affinity or receptor imaging or microenvironment-dependent methods are beyond the scope of this review. Here we describe the current state of the art in clinically translatable metabolic imaging modalities. Specifically, we focus on PET and MR spectroscopy, including conventional (1)H- and (13)C-MR spectroscopy at thermal equilibrium and hyperpolarized MRI. In this article, we first provide an overview of metabolic pathways that are altered in many pathologic conditions and the corresponding probes and techniques used to study those alterations. We then describe the application of metabolic imaging to several common diseases, including cancer, neurodegeneration, cardiac ischemia, and infection or inflammation.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - David M Wilson
- Department of Radiology and Biomedical Imaging University of California San Francisco (UCSF), San Francisco, CA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY.
| |
Collapse
|
278
|
Monsanto SP, Hintze KJ, Ward RE, Larson DP, Lefevre M, Benninghoff AD. The new total Western diet for rodents does not induce an overweight phenotype or alter parameters of metabolic syndrome in mice. Nutr Res 2016; 36:1031-1044. [DOI: 10.1016/j.nutres.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
|
279
|
Zhou Z, Bulgari O, Vailati-Riboni M, Trevisi E, Ballou MA, Cardoso FC, Luchini DN, Loor JJ. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. J Dairy Sci 2016; 99:8956-8969. [PMID: 27592438 DOI: 10.3168/jds.2016-10986] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022]
Abstract
The immunometabolic status of peripartal cows is altered due to changes in liver function, inflammation, and oxidative stress. Nutritional management during this physiological state can affect the biological components of immunometabolism. The objectives of this study were to measure concentrations of biomarkers in plasma, liver tissue, and milk, and also polymorphonuclear leukocyte function to assess the immunometabolic status of cows supplemented with rumen-protected methionine (Met) or choline (CHOL). Forty-eight multiparous Holstein cows were used in a randomized complete block design with 2×2 factorial arrangement of Met (Smartamine M, Adisseo NA, Alpharetta, GA) and CHOL (ReaShure, Balchem Inc., New Hampton, NY) level (with or without). Treatments (12 cows each) were control (CON), no Met or CHOL; CON and Met (SMA); CON and CHOL (REA); and CON and Met and CHOL (MIX). From -50 to -21d before expected calving, all cows received the same diet [1.40Mcal of net energy for lactation (NEL)/kg of DM] with no Met or CHOL. From -21d to calving, cows received the same close-up diet (1.52Mcal of NEL/kg of DM) and were assigned randomly to each treatment. From calving to 30d, cows were on the same postpartal diet (1.71Mcal of NEL/kg of DM) and continued to receive the same treatments until 30d. The Met supplementation was adjusted daily at 0.08% DM of diet, and CHOL was supplemented at 60g/cow per day. Liver (-10, 7, 21, and 30d) and blood (-10, 4, 8, 20, and 30d) samples were harvested for biomarker analyses. Neutrophil and monocyte phagocytosis and oxidative burst were assessed at d 1, 4, 14, and 28d. The Met-supplemented cows tended to have greater plasma paraoxonase. Greater plasma albumin and IL-6 as well as a tendency for lower haptoglobin were detected in Met- but not CHOL-supplemented cows. Similarly, cows fed Met compared with CHOL had greater concentrations of total and reduced glutathione (a potent intracellular antioxidant) in liver tissue. Upon a pathogen challenge in vitro, blood polymorphonuclear leukocyte phagocytosis capacity and oxidative burst activity were greater in Met-supplemented cows. Overall, liver and blood biomarker analyses revealed favorable changes in liver function, inflammation status, and immune response in Met-supplemented cows.
Collapse
Affiliation(s)
- Z Zhou
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - O Bulgari
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, 25121 Brescia, Italy
| | - M Vailati-Riboni
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Trevisi
- Istituto di Zootecnica Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - M A Ballou
- Department of Animal Sciences, Texas Tech University, Lubbock 79409
| | - F C Cardoso
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | | | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
280
|
Mahady SE, George J. Exercise and diet in the management of nonalcoholic fatty liver disease. Metabolism 2016; 65:1172-82. [PMID: 26805014 DOI: 10.1016/j.metabol.2015.10.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition worldwide, and is projected to become the leading cause for liver transplantation in the United States as early as 2020. The mainstay of treatment remains lifestyle modification with diet and exercise recommendations, as although some pharmacological treatments such as glitazones and Vitamin E have shown benefit, there are concerns regarding long term safety. The evidence base for dietary interventions in NAFLD such as the Mediterranean diet, omega-3 polyunsaturated fatty acids and coffee is mainly derived from observational data with questionable validity. Where trials exist, they have shown benefit for surrogate outcomes such as hepatic steatosis and insulin resistance, but no trials have been conducted with salient clinical outcomes such as reduction in progression to chronic liver disease. Benefit in surrogate outcomes has also been seen for aerobic, anaerobic and combined modality exercise but it remains unclear if one type is superior. Furthermore, a reduction in sedentary time appears equally important. To provide a sound evidence base for lifestyle recommendations to people with NAFLD, longer duration trials of standardized dietary or exercise interventions, and testing various doses, types and with liver related outcomes, are essential.
Collapse
Affiliation(s)
- Suzanne E Mahady
- Storr Liver Centre, Westmead Millennium Institute for Medical Research and Westmead Hospital, the University of Sydney, NSW, Australia; Sydney School of Public Health, University of Sydney, NSW Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Millennium Institute for Medical Research and Westmead Hospital, the University of Sydney, NSW, Australia
| |
Collapse
|
281
|
|
282
|
Moreno FS, Heidor R, Pogribny IP. Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents. Nutr Cancer 2016; 68:719-733. [PMID: 27266713 DOI: 10.1080/01635581.2016.1180410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and life-threatening disease often diagnosed at intermediate or advanced stages, which substantially limits therapeutic approaches to its successful treatment. This indicates that the prevention of HCC may be the most promising strategy in reducing its incidence and mortality. Emerging evidence indicates that numerous nutrients and nonnutrient dietary bioactive components can reduce the occurrence and/or delay the development of HCC through modifications of deregulated epigenetic mechanisms. This review examines the existing knowledge on the epigenetic mechanism-based studies in in vitro and in vivo models of HCC on the chemopreventive potential of epigenetic food components, including dietary methyl-group donors, epigallocatechin-3-gallate, sodium butyrate, resveratrol, curcumin, and sulforaphane, on liver carcinogenesis. Future direction and potential challenges in the effective use of bioactive food constituents in the prevention of HCC are highlighted and discussed.
Collapse
Affiliation(s)
- Fernando Salvador Moreno
- a Laboratory of Diet, Nutrition, and Cancer , Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , Brazil
| | - Renato Heidor
- a Laboratory of Diet, Nutrition, and Cancer , Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo , São Paulo , Brazil
| | - Igor P Pogribny
- b Division of Biochemical Toxicology, National Center for Toxicological Research , Jefferson , Arkansas , USA
| |
Collapse
|
283
|
Arslanow A, Teutsch M, Walle H, Grünhage F, Lammert F, Stokes CS. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter. Clin Transl Gastroenterol 2016; 7:e176. [PMID: 27311064 PMCID: PMC4931593 DOI: 10.1038/ctg.2016.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. METHODS In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical-chemical assays. RESULTS The median age was 56 years (25-78 years); 51.7% were women and median body mass index was 31.9 kg/m(2) (22.4-44.8 kg/m(2)). After 14 days, a significant CAP reduction (14.0%; P<0.001) was observed from 295 dB/m (216-400 dB/m) to 266 dB/m (100-353 dB/m). In parallel, body weight decreased by 4.6% (P<0.001), of which 61.9% was body fat. In addition, liver stiffness (P=0.002), γ-GT activities, and serum lipid concentrations decreased (all P<0.001). CONCLUSIONS This study shows for the first time that non-invasive elastography can be used to monitor rapid effects of dietary treatment for hepatic steatosis. CAP improvements occur after only 14 days on short-term low-calorie diet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover.
Collapse
Affiliation(s)
- Anita Arslanow
- Department of Medicine II, Saarland University and Saarland University Medical Center, Homburg, Germany
| | | | | | - Frank Grünhage
- Department of Medicine II, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Caroline S Stokes
- Department of Medicine II, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
284
|
Schoeman JC, Hou J, Harms AC, Vreeken RJ, Berger R, Hankemeier T, Boonstra A. Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med 2016; 8:64. [PMID: 27286979 PMCID: PMC4902991 DOI: 10.1186/s13073-016-0318-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection—immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases—remains unexplored. Methods To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels. Results Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate–NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase. Conclusions The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate–NADH shuttle. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0318-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes C Schoeman
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Jun Hou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands
| | - Amy C Harms
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Rob J Vreeken
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Present address: Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ruud Berger
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands.
| |
Collapse
|
285
|
Effects of dietary milk- and soya-phospholipids on lipid-parameters and other risk indicators for cardiovascular diseases in overweight or obese men - two double-blind, randomised, controlled, clinical trials. J Nutr Sci 2016; 5:e21. [PMID: 27293558 PMCID: PMC4891556 DOI: 10.1017/jns.2016.9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/22/2016] [Accepted: 03/03/2016] [Indexed: 02/07/2023] Open
Abstract
The present study examined the effect of milk phospholipids (milk-PL) on lipid metabolism and on other risk factors for CVD, in comparison with milk fat (control) or soya phospholipids (soya-PL), respectively. Two double-blind parallel-group intervention trials were conducted in overweight or obese male subjects. In the first trial (trial 1), sixty-two men consumed milk enriched with either 2 g milk-PL or 2 g milk fat (control) for 8 weeks. In trial 2, fifty-seven men consumed milk enriched with either 3 g milk-PL or 2·8 g soya-PL for 7 weeks. In trial 1, milk-PL as compared with control reduced waist circumference but did not affect plasma lipids (total, HDL- and LDL-cholesterol, total cholesterol:HDL-cholesterol ratio, TAG, phospholipids), apoB, apoA1, glucose, insulin, insulin sensitivity index, C-reactive protein, IL-6, soluble intracellular adhesion molecule and total homocysteine (tHcy). Serum activities of alanine transaminase and aspartate transaminase were not changed. Activity of γ-glutamyl transferase (GGT), a marker of fatty liver, increased in the control but not in the milk-PL group, with a significant intervention effect. In trial 2, milk-PL as compared with soya-PL did not affect the above-mentioned parameters, but decreased GGT. Subjects with the methylenetetrahydrofolate reductase mutations CT and TT had 11 % (P < 0·05) higher baseline tHcy concentrations than those with the wild-type CC. However, genotype did not modulate the phospholipid intervention effect on tHcy. In conclusion, supplementation with milk-PL as compared with control fat reduced waist circumference and, as compared with both control fat and soya-PL, GGT activity.
Collapse
Key Words
- ALT, alanine transaminase
- AST, aspartate transaminase
- CRP, C-reactive protein
- CVD
- GGT, γ-glutamyl transferase
- HDL-C, HDL-cholesterol
- HOMA-IR, homeostasis model assessment of insulin resistance
- Human nutrition
- LDL-C, LDL-cholesterol
- MFGM, milk fat globule membrane
- MTHFR, methylenetetrahydrofolate reductase
- Milk phospholipids
- PC, phosphatidylcholine
- PL, phospholipid
- Plasma lipids
- SM, sphingomyelin
- Soya phospholipids
- TC, total cholesterol
- tHcy, total homocysteine
Collapse
|
286
|
Jiang X, Greenwald E, Jack-Roberts C. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in In Vitro Models of Hyperglycemia. Nutr Metab Insights 2016; 9:11-7. [PMID: 27081315 PMCID: PMC4825771 DOI: 10.4137/nmi.s29465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Choline is an essential nutrient that plays an important role in lipid metabolism and DNA methylation. Studies in rodents suggest that choline may adversely affect glycemic control, yet studies in humans are lacking. Using the human hepatic and placental cells, HepG2 and BeWo, respectively, we examined the interaction between choline and glucose treatments. In HepG2 cells, choline supplementation (1 mM) increased global DNA methylation and DNA methyltransferase expression in both low-glucose (5 mM) and high-glucose (35 mM) conditions. Choline supplementation increased the expression of peroxisomal acyl-coenzyme A oxidase 1 (ACOX1), which mediates fatty acid β-oxidation, especially in the high-glucose condition. High-glucose exposure increased the transcription of the gluconeogenic gene phosphoenolpyruvate carboxykinase (PEPCK), while choline supplementation mitigated such increase. Compared to HepG2 cells, the placenta-derived BeWo cells were relatively unresponsive to either high-glucose or -choline treatment. In conclusion, choline and glucose interacted to affect macronutrient metabolic genes, yet there was no indication that choline may worsen glycemic control in these in vitro human cell culture models.
Collapse
Affiliation(s)
- Xinyin Jiang
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY, USA
| | - Esther Greenwald
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY, USA
| | | |
Collapse
|
287
|
Gut Microbiota and Lifestyle Interventions in NAFLD. Int J Mol Sci 2016; 17:447. [PMID: 27023533 PMCID: PMC4848903 DOI: 10.3390/ijms17040447] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed "dysbiosis", has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host-microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis.
Collapse
|
288
|
He X, Ji G, Jia W, Li H. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics. Int J Mol Sci 2016; 17:300. [PMID: 26999104 PMCID: PMC4813164 DOI: 10.3390/ijms17030300] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota are intricately involved in the development of obesity-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes, and insulin resistance. In the current review, we discuss the role of gut microbiota in the development of NAFLD by focusing on the mechanisms of gut microbiota-mediated host energy metabolism, insulin resistance, regulation of bile acids and choline metabolism, as well as gut microbiota-targeted therapy. We also discuss the application of a metabolomic approach to characterize gut microbial metabotypes in NAFLD.
Collapse
Affiliation(s)
- Xuyun He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei Jia
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Houkai Li
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
289
|
Subramani E, Jothiramajayam M, Dutta M, Chakravorty D, Joshi M, Srivastava S, Mukherjee A, Datta Ray C, Chakravarty BN, Chaudhury K. NMR-based metabonomics for understanding the influence of dormant female genital tuberculosis on metabolism of the human endometrium. Hum Reprod 2016; 31:854-65. [PMID: 26851602 DOI: 10.1093/humrep/dew003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/13/2023] Open
Abstract
STUDY QUESTION Does investigation of metabolic perturbations in endometrial tissue of women with dormant genital tuberculosis (GTB) during the window of implantation (WOI) assist in improving the understanding of endometrial receptivity? SUMMARY ANSWER In dormant GTB cases significant alterations in endometrial tissue metabolites occur, largely related to energy metabolism and amino acid biosynthesis in dormant GTB cases. WHAT IS KNOWN ALREADY As an intracellular pathogen, Mycobacterium tuberculosis strongly influences the metabolism of host cells causing metabolic dysregulation. It is also accepted that dormant GTB impairs the receptive status of the endometrium. Global metabolic profiling is useful for an understanding of disease progression and distinguishing between diseased and non-diseased groups. STUDY DESIGN, SIZE, DURATION Endometrial tissue samples were collected from patients reporting at the tertiary infertility care center during the period September 2011-March 2013. Women having tested positive for GTB were considered as the study group (n = 24). Normal healthy women undergoing sterilization (n = 26) and unexplained infertile women with repeated IVF failure (n = 21) volunteered to participate as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Endometrial tissue samples were collected 6-10 days after confirmation of ovulation. PCR and BACTEC-460 culture were used for diagnosing GTB. Proton nuclear magnetic resonance (1H NMR) spectra of tissue were recorded using a 700 MHz Bruker Avance AV III spectrometer. Following phase and baseline correction of all NMR spectra by Bruker Topspin 2.1 software, spectral peak alignment of the data was performed. Multivariate analysis was applied to all spectra and individual metabolites identified and multiple correlation analysis was performed. MAIN RESULTS AND THE ROLE OF CHANCE Leucine, isoleucine, acetate, lactate, glutamate, glutamine, methionine, lysine, creatine, glycogen, glycine, proline and choline were found to be significantly increased (P < 0.05) in endometrial tissue of women with dormant GTB compared with unexplained infertile women with repeated implantation failure. Valine, citrate, succinate and aspartate were also observed to be significantly up-regulated (P < 0.01). Furthermore, a significant decrease in glucose (P < 0.05), threonine (P < 0.05), tyrosine (P < 0.01) and phenylalanine (P < 0.0001) was observed in women with dormant GTB. Pearson's correlation analysis between the expression of various endometrial receptivity markers and metabolites showed a significant negative correlation (-0.236 to -0.545, P < 0.05). Also, the metabolites were positively correlated with endometrial receptivity markers (0.207 to 0.618, P < 0.05). LIMITATIONS, REASONS FOR CAUTION It is often difficult to diagnose dormant GTB because it tends to exist without any clinical signs or symptoms. In addition, the diagnosis of GTB by culture remains a challenge due to low detection rates and its paucibacillary nature. Testing for prostate-specific antigen or the Y chromosome in order to account for the possible influences of recent exposure to semen on endometrial metabolism would be important. WIDER IMPLICATIONS OF THE FINDINGS The metabolic changes associated with the dormant tubercle infection are of potential relevance to clinicians for the treatment of dormant GTB-related infertility. STUDY FUNDING/COMPETING INTERESTS Government of India, Indian Council of Medical Research. There are no conflicts of interest.
Collapse
Affiliation(s)
- E Subramani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - M Jothiramajayam
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced study, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - M Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - D Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - M Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - S Srivastava
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - A Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced study, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - C Datta Ray
- Department of Obstetrics and Gynaecology, Institute of Post-Graduate Medical Education and Research (IPGME&R) and SSKM Hospital, Kolkata 700020, India
| | | | - K Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
290
|
Valcheva R, Dieleman LA. Prebiotics: Definition and protective mechanisms. Best Pract Res Clin Gastroenterol 2016; 30:27-37. [PMID: 27048894 DOI: 10.1016/j.bpg.2016.02.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
The increase in chronic metabolic and immunologic disorders in the modern society is linked to major changes in the dietary patterns. These chronic conditions are associated with intestinal microbiota dysbiosis where important groups of carbohydrate fermenting, short-chain fatty acids-producing bacteria are reduced. Dietary prebiotics are defined as a selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health. Application of prebiotics may then restore the gut microbiota diversity and activity. Unlike the previously accepted prebiotics definition, where a limited number of bacterial species are involved in the prebiotic activity, new data from community-wide microbiome analysis demonstrated a broader affect of the prebiotics on the intestinal microbiota. These new findings require a revision of the current definition. In addition, prebiotics may exert immunomodulatory effects through microbiota-independent mechanisms that will require future investigations involving germ-free animal disease models.
Collapse
Affiliation(s)
- Rosica Valcheva
- Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, AB, Canada.
| | - Levinus A Dieleman
- Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, AB, Canada
| |
Collapse
|
291
|
Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 2016; 6:19076. [PMID: 26743949 PMCID: PMC4705470 DOI: 10.1038/srep19076] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Many studies suggest that trimethylamine-N-oxide (TMAO), a gut-flora-dependent metabolite of choline, contributes to the risk of cardiovascular diseases, but little is known for non-alcoholic fatty liver disease (NAFLD). We examined the association of circulating TMAO, choline and betaine with the presence and severity of NAFLD in Chinese adults. We performed a hospital-based case-control study (CCS) and a cross-sectional study (CSS). In the CCS, we recruited 60 biopsy-proven NAFLD cases and 35 controls (18–60 years) and determined serum concentrations of TMAO, choline and betaine by HPLC-MS/MS. For the CSS, 1,628 community-based adults (40-75 years) completed the blood tests and ultrasonographic NAFLD evaluation. In the CCS, analyses of covariance showed adverse associations of ln-transformed serum levels of TMAO, choline and betaine/choline ratio with the scores of steatosis and total NAFLD activity (NAS) (all P-trend <0.05). The CSS revealed that a greater severity of NAFLD was independently correlated with higher TMAO but lower betaine and betaine/choline ratio (all P-trend <0.05). No significant choline-NAFLD association was observed. Our findings showed adverse associations between the circulating TMAO level and the presence and severity of NAFLD in hospital- and community-based Chinese adults, and a favorable betaine-NAFLD relationship in the community-based participants.
Collapse
|
292
|
Liu D, Mai K, Zhang Y, Xu W, Ai Q. Wnt/β-catenin signaling participates in the regulation of lipogenesis in the liver of juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol B Biochem Mol Biol 2016; 191:155-62. [DOI: 10.1016/j.cbpb.2015.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 01/20/2023]
|
293
|
Sherriff JL, O'Sullivan TA, Properzi C, Oddo JL, Adams LA. Choline, Its Potential Role in Nonalcoholic Fatty Liver Disease, and the Case for Human and Bacterial Genes. Adv Nutr 2016; 7:5-13. [PMID: 26773011 PMCID: PMC4717871 DOI: 10.3945/an.114.007955] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the impact of poor hepatic choline/phosphatidylcholine availability in promoting the steatosis characteristic of human nonalcoholic fatty liver disease (NAFLD) has recently advanced and possibly relates to phosphatidylcholine/phosphatidylethanolamine concentrations in various, membranes as well as cholesterol dysregulation. A role for choline/phosphatidylcholine availability in the progression of NAFLD to liver injury and serious hepatic consequences in some individuals requires further elucidation. There are many reasons for poor choline/phosphatidylcholine availability in the liver, including low intake, estrogen status, and genetic polymorphisms affecting, in particular, the pathway for hepatic de novo phosphatidylcholine synthesis. In addition to free choline, phosphatidylcholine has been identified as a substrate for trimethylamine production by certain intestinal bacteria, thereby reducing host choline bioavailability and providing an additional link to the increased risk of cardiovascular disease faced by those with NAFLD. Thus human choline requirements are highly individualized and biomarkers of choline status derived from metabolomics studies are required to predict those at risk of NAFLD induced by choline deficiency and to provide a basis for human intervention trials.
Collapse
Affiliation(s)
- Jill L Sherriff
- School of Public Health, Curtin Health Innovation Research Institute-Metabolic Health, Curtin University, Bentley, Australia;
| | - Therese A O'Sullivan
- School of Exercise and Health Science, Edith Cowan University, Joondalup, Australia
| | - Catherine Properzi
- School of Exercise and Health Science, Edith Cowan University, Joondalup, Australia
| | - Josephine-Lee Oddo
- School of Exercise and Health Science, Edith Cowan University, Joondalup, Australia
| | - Leon A Adams
- School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Australia; and Liver Transplant Unit, Sir Charles Gairdner Hospital, Nedlands, Australia
| |
Collapse
|
294
|
Strilakou A, Perelas A, Lazaris A, Papavdi A, Karkalousos P, Giannopoulou I, Kriebardis A, Panayiotides I, Liapi C. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine. Fundam Clin Pharmacol 2015; 30:47-57. [PMID: 26501493 DOI: 10.1111/fcp.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine.
Collapse
Affiliation(s)
- Athina Strilakou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Apostolos Perelas
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Andreas Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Asteria Papavdi
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Petros Karkalousos
- Department of Medical Laboratories, Technological Institute of Athens, Agiou Spyridonos and Dimitsanas Street, Egaleo, 12210, Athens, Greece
| | - Ioanna Giannopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Anastasios Kriebardis
- Department of Medical Laboratories, Technological Institute of Athens, Agiou Spyridonos and Dimitsanas Street, Egaleo, 12210, Athens, Greece
| | - Ioannis Panayiotides
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, 1Rimini Street, Chaidari, 12462, Athens, Greece
| | - Charis Liapi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| |
Collapse
|
295
|
Majnik AV, Lane RH. The relationship between early-life environment, the epigenome and the microbiota. Epigenomics 2015; 7:1173-84. [DOI: 10.2217/epi.15.74] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
296
|
Khaire AA, Kale AA, Joshi SR. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot Essent Fatty Acids 2015; 98:49-55. [PMID: 25958298 DOI: 10.1016/j.plefa.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.
Collapse
Affiliation(s)
- Amrita A Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
297
|
Leermakers ETM, Moreira EM, Kiefte-de Jong JC, Darweesh SKL, Visser T, Voortman T, Bautista PK, Chowdhury R, Gorman D, Bramer WM, Felix JF, Franco OH. Effects of choline on health across the life course: a systematic review. Nutr Rev 2015; 73:500-22. [PMID: 26108618 DOI: 10.1093/nutrit/nuv010] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CONTEXT Choline is a precursor of both betaine and acetylcholine and might, therefore, influence cardiovascular and cognitive outcomes. There has been concern, however, that it may influence blood lipid levels because it is an essential component of very-low-density lipoproteins. OBJECTIVE The aim was to systematically review, using PRISMA guidelines, the literature pertaining to the effects of choline on body composition and on metabolic, cardiovascular, respiratory, and neurological outcomes in different life stages. DATA SOURCES The MEDLINE, Embase, Cochrane Central, Web of Science, PubMed, and Google Scholar databases were searched up to July 2014. DATA EXTRACTION Fifty relevant articles were identified. These comprised trials and cohort, case-control, and cross-sectional studies that assessed blood levels of choline, dietary intake of choline, and supplementation with choline in a population free of diseases at baseline. DATA SYNTHESIS There is some observational evidence that choline during pregnancy may be beneficial for the neurological health of the child. In adults, choline may have beneficial effects on cognition, but high-quality (intervention) studies are lacking. Results on the effects of choline on body composition, blood lipids, and cardiovascular health were inconsistent. CONCLUSIONS Evidence to confirm the suggested effects of choline on health in different stages of life is scarce. Potential effects of choline need to be confirmed by intervention studies. Possible harmful effects on cardiometabolic health need careful evaluation.
Collapse
Affiliation(s)
- Elisabeth T M Leermakers
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Eduardo M Moreira
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Jessica C Kiefte-de Jong
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Sirwan K L Darweesh
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Thirsa Visser
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Trudy Voortman
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Paula K Bautista
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Rajiv Chowdhury
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Donal Gorman
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Wichor M Bramer
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Janine F Felix
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Oscar H Franco
- E.T.M. Leermakers, E.M. Moreira, J.C. Kiefte-de Jong, S.K.L. Darweesh, T. Visser, T. Voortman, P.K. Bautista, J.F. Felix, and O.H. Franco are with the Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, the Netherlands. R. Chowdhury and D. Gorman are with the Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom. W.M. Bramer is with the Medical Library, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
298
|
Choline and Cystine Deficient Diets in Animal Models with Hepatocellular Injury: Evaluation of Oxidative Stress and Expression of RAGE, TNF-α, and IL-1β. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:121925. [PMID: 26137185 PMCID: PMC4468296 DOI: 10.1155/2015/121925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023]
Abstract
This study aims to evaluate the effects of diets deficient in choline and/or cystine on hepatocellular injury in animal models (young male Wistar rats, aged 21 days), by monitoring some of the oxidative stress biomarkers and the expression of RAGE, TNF-α, and IL-1β. The animals were divided into 6 groups (n = 10) and submitted to different diets over 30 days: AIN-93 diet (standard, St), AIN-93 choline deficient (CD) diet and AIN-93 choline and cystine deficient (CCD) diet, in the pellet (pl) and powder (pw) diet forms. Independently of the diet form, AIN-93 diet already led to hepatic steatosis and CD/CCD diets provoked hepatic damage. The increase of lipid peroxidation, represented by the evaluation of thiobarbituric acid reactive species, associated with the decrease of levels of antioxidant enzymes, were the parameters with higher significance toward redox profile in this model of hepatic injury. Regarding inflammation, in relation to TNF-α, higher levels were evidenced in CD(pl), while, for IL-1β, no significant alteration was detected. RAGE expression was practically the same in all groups, with exception of CCD(pw) versus CCD(pl). These results together confirm that AIN-93 causes hepatic steatosis and choline and/or cysteine deficiencies produce important hepatic injury associated with oxidative stress and inflammatory profiles.
Collapse
|
299
|
Bhopale KK, Kondraganti S, Fernando H, Boor PJ, Kaphalia BS, Shakeel Ansari GA. Alcoholic Steatosis in Different Strains of Rat: A Comparative Study. ACTA ACUST UNITED AC 2015; 4. [PMID: 27213081 PMCID: PMC4874529 DOI: 10.4303/jdar/235912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Different strains of rats have been used to study alcoholic liver disease (ALD) while the reason for selecting a particular rat strain was not apparent. Purpose The aim of our study was to compare outbred (Wistar) and inbred (Fischer) strains to evaluate pathological, biochemical changes, and gene expression differences associated with ethanol-induced early hepatic steatosis. Study Design Male Wistar and Fischer-344 rats were pair-fed for 6 weeks with or without 5% ethanol in Lieber-DeCarli liquid diet. Livers were analyzed for histological and lipid-related differences. Results Hepatic midzonal steatosis was mainly found in Wistar rats while Fischer rats showed mostly pericentral steatosis. Increased hepatic steatosis in ethanol-fed Wistar rats is supported by increases in lipids with related genes and transcription factors involved in fatty acid and triglyceride synthesis. Conclusion Our data showed that Fischer rats are relatively less prone to ethanol-mediated steatosis with pericentral lipid deposition pattern in the liver which is similar to humans and show no trace level of lipid accumulation in pair-fed controls as observed in Wistar (outbred) strain. Therefore, Fischer rats are better suited for lipid studies in an early development of ALD.
Collapse
Affiliation(s)
- Kamlesh K Bhopale
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shakuntala Kondraganti
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Harshica Fernando
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Paul J Boor
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bhupendra S Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - G A Shakeel Ansari
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
300
|
Biswas S, Giri S. Importance of Choline as Essential Nutrient and Its Role in Prevention of Various Toxicities. Prague Med Rep 2015; 116:5-15. [DOI: 10.14712/23362936.2015.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Choline is a water-soluble essential nutrient included as a member of the vitamin B12 group owing to its structural similarities with that of the other members of the group. Its roles and functions, however, extend much wider than that of the vitamins with which it is grouped. Choline is vital for maintenance of various key metabolic processes which play a role in the prevention or progression of various health impairments. The occurrence of diseases like neural tube defect (NTD) and Alzheimer’s is prevented by the metabolic role of choline. It is also indispensable for mitigation of various forms of toxic contamination. While adequate level of choline in the body is essential, an excess of choline can result in various forms of disorder. To maintain the optimal level of choline in the body can be a challenge. The vital roles played by choline together with the range of contradictions and problems that choline presents make choline an interesting area of study. This paper attempts to summarize and review some recent publications on choline that have opened up new prospect in understanding the multiple role played by choline and in throwing light on the role played by this wonder essential nutrient in mitigating various forms of toxic contamination.
Collapse
|