251
|
FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice. PLoS Genet 2009; 5:e1000693. [PMID: 19834537 PMCID: PMC2752996 DOI: 10.1371/journal.pgen.1000693] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/18/2009] [Indexed: 11/25/2022] Open
Abstract
CLAVATA signaling restricts stem cell identity in the shoot apical meristem (SAM) in Arabidopsis thaliana. In rice (Oryza sativa), FLORAL ORGAN NUMBER2 (FON2), closely related to CLV3, is involved as a signaling molecule in a similar pathway to negatively regulate stem cell proliferation in the floral meristem (FM). Here we show that the FON2 SPARE1 (FOS1) gene encoding a CLE protein functions along with FON2 in maintenance of the FM. In addition, FOS1 appears to be involved in maintenance of the SAM in the vegetative phase, because constitutive expression of FOS1 caused termination of the vegetative SAM. Genetic analysis revealed that FOS1 does not need FON1, the putative receptor of FON2, for its action, suggesting that FOS1 and FON2 may function in meristem maintenance as signaling molecules in independent pathways. Initially, we identified FOS1 as a suppressor that originates from O. sativa indica and suppresses the fon2 mutation in O. sativa japonica. FOS1 function in japonica appears to be compromised by a functional nucleotide polymorphism (FNP) at the putative processing site of the signal peptide. Sequence comparison of FOS1 in about 150 domesticated rice and wild rice species indicates that this FNP is present only in japonica, suggesting that redundant regulation by FOS1 and FON2 is commonplace in species in the Oryza genus. Distribution of the FNP also suggests that this mutation may have occurred during the divergence of japonica from its wild ancestor. Stem cell maintenance may be regulated by at least three negative pathways in rice, and each pathway may contribute differently to this regulation depending on the type of the meristem. This situation contrasts with that in Arabidopsis, where CLV signaling is the major single pathway in all meristems. The body plan of plants is regulated by the function of apical meristems that are generated in the embryo. Leaves and floral organs are derived from cells supplied by stem cells in the vegetative shoot apical meristem (SAM) and the floral meristem (FM), respectively. Thus, genetic regulation of stem cell maintenance is a central issue in plant development. In the model plant Arabidopsis thaliana, CLAVATA3 (CLV3) functions as a key signaling molecule to restrict the size of the stem cell population in both the SAM and the FM. In rice, however, we show here that two CLV3-like genes, FLORAL ORGAN NUMBER2 (FON2) and FON2 SPARE1 (FOS1), redundantly regulate maintenance of the FM. We also show that FOS1 is likely to be involved in maintenance of the vegetative SAM, whereas FON2 plays no role in regulation in this meristem. FOS1 appears to act via a putative receptor that differs from the FON2 receptor, suggesting that these two signaling molecules function in independent pathways to restrict stem cells in different ways depending on the type of meristem. In addition, we show that the FOS1 gene was compromised in the standard rice, Oryza sativa spp. japonica, during the evolution of rice.
Collapse
|
252
|
Rieu I, Laux T. Signaling pathways maintaining stem cells at the plant shoot apex. Semin Cell Dev Biol 2009; 20:1083-8. [PMID: 19770061 DOI: 10.1016/j.semcdb.2009.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/29/2022]
Abstract
The above ground organs of plants are generated by the shoot apical meristem. Cellular characteristics and molecular markers indicate that the shoot meristem is patterned into domains with different functions, with stem cells residing in the outer three cell layers of the central zone of the meristem. The boundaries of the domains are determined by positional signals. Here we will discuss our current understanding of the signaling network involved in determining stem cell fate and in setting the boundaries of the stem cell niche at the plant shoot apex.
Collapse
Affiliation(s)
- Ivo Rieu
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | |
Collapse
|
253
|
Liu JX, Srivastava R, Howell S. Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. PLANTA 2009; 230:687-697. [PMID: 19588163 DOI: 10.1007/s00425-009-0976-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/19/2009] [Indexed: 05/28/2023]
Abstract
Arabidopsis thaliana encodes 56 subtilisin-like serine proteases (subtilases), and some are involved in the proteolytic processing of plant peptide hormones. Here, we have investigated the role of one subtilase, AtSBT5.4, in whole plant physiology by examining gain- or loss-of-function phenotypes. Knockouts of AtSBT5.4 had no apparent phenotype; however, overexpression produced a clavata-like phenotype with fasciated inflorescence stems and compounded terminal buds. Production of the phenotype depended on the enzymatic activity of the subtilase, because substitution of serine at the active site abolished the overexpression phenotype. When AtSBT5.4 was overexpressed in a clavata3 mutant background, a novel phenotype was produced suggesting that AtSBT5.4 interacts with the clavata signaling pathway. However, AtSBT5.4 did not cleave CLAVATA3 (CLV3) or a fluorogenic peptide representing the putative cleavage site in CLV3 under in vitro conditions suggesting that the interaction in vivo does not involve the cleavage of CLV3. Overexpression of AtSBT5.4 in a wuschel (wus) background suppressed the AtSBT5.4 overexpression phenotype indicating that WUS function is required for the AtSBT5.4 overexpression phenotype.
Collapse
Affiliation(s)
- Jian-Xiang Liu
- Department of Genetics Development and Cell Biology, Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
254
|
Lu SW, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1128-42. [PMID: 19656047 DOI: 10.1094/mpmi-22-9-1128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.
Collapse
Affiliation(s)
- Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
255
|
|
256
|
Analyses of non-leucine-rich repeat (non-LRR) regions intervening between LRRs in proteins. Biochim Biophys Acta Gen Subj 2009; 1790:1217-37. [PMID: 19580846 DOI: 10.1016/j.bbagen.2009.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 05/01/2009] [Accepted: 06/26/2009] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many proteins have LRR (leucine-rich repeat) units interrupted by non-LRRs which we call IR (non-LRR island region). METHODS We identified proteins containing LRR@IRs (LRRs having IR) by using a new method and then analyzed their natures and distributions. RESULTS LRR@IR proteins were found in over two hundred proteins from prokaryotes and from eukaryotes. These are divided into twenty-one different protein families. The IRs occur one to four times in LRR regions and range in length from 5 to 11,265 residues. The IR lengths in Fungi adenylate cyclases (acys) range from 5 to 116 residues; there are 22 LRR repeats. The IRs in Leishmania proteophosphoglycans (ppgs) vary from 105 to 11,265 residues. These results indicate that the IRs evolved rapidly. A group of LRR@IR proteins-LRRC17, chondroadherin-like protein, ppgs, and four Pseudomonas proteins-have a super motif consisting of an LRR block and its adjacent LRR@IR region. This indicates that the entire super motif experienced duplication. The sequence analysis of IRs offers functional similarity in some LRR@IR protein families. GENERAL SIGNIFICANCE This study suggests that various IRs and super motifs provide a great variety of structures and functions for LRRs.
Collapse
|
257
|
Stahl Y, Wink RH, Ingram GC, Simon R. A Signaling Module Controlling the Stem Cell Niche in Arabidopsis Root Meristems. Curr Biol 2009; 19:909-14. [DOI: 10.1016/j.cub.2009.03.060] [Citation(s) in RCA: 375] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 11/29/2022]
|
258
|
Miwa H, Tamaki T, Fukuda H, Sawa S. Evolution of CLE signaling: origins of the CLV1 and SOL2/CRN receptor diversity. PLANT SIGNALING & BEHAVIOR 2009; 4:477-81. [PMID: 19816140 PMCID: PMC2688290 DOI: 10.4161/psb.4.6.8391] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/12/2009] [Indexed: 05/20/2023]
Abstract
The shoot apical meristem is maintained by the intercellular factor, CLV3, a dodecapeptide in Arabidopsis. CLV3 belongs to the CLE family and putative CLE genes have been found in various plants, even in the moss Physcomitrella patens. Here, we report that a pteridophyte, Selaginella moelendorffii, also has 15 putative CLE genes in its genome. On the other hand, CLV1 is reported to function as a receptor for the CLV3 peptide, and other CLE peptides might be recognized by CLV1 homologues in various plants. Recent genetic studies of the crn and sol2 mutants of Arabidopsis have revealed that SOL2/CRN encodes a receptor-like kinase protein. SOL2/CRN functions together with CLV2 independently of CLV1 in the CLE signaling pathway. Phylogenetic analysis of CLV1, CLV2 and SOL2/CRN revealed that Arabidopsis, rice, Populus trichocarpa and Vitis vinifera have one copy of the SOL2/CRN and CLV2 homologues, and Selaginella moelendorffii and Physcomitrella patens have no homologues. In contrast, a number of CLV1 homologues were identified in the genomic databases of Arabidopsis, rice, Populus trichocarpa, Vitis vinifera, and even a pteridophyte, Selaginella moelendorffii, and a moss, Physcomitrella patens. These results indicate that CLV1 and its homologues play multiple roles in plant development and environmental responses, whereas SOL2/CRN and CLV2 have more specific roles in vascular plants.
Collapse
Affiliation(s)
- Hiroki Miwa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
259
|
The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize. Genetics 2009; 181:1693-7. [PMID: 19153258 DOI: 10.1534/genetics.108.098350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis, SHOOT MERISTEMLESS (STM) and CLAVATA1 (CLV1) competitively regulate meristem homeostasis. Here, we explore the interaction of their maize homologs knotted1 (kn1) and thick tassel dwarf1 (td1). kn1 mutants form fewer lateral organs and td1 inflorescences are fasciated with additional floral organs. Double mutants show kn1 epistatic to td1 in seedling and ear development but dose-sensitivity exists later to promote leaf initiation. Thus kn1 and td1 function in a pathway to maintain meristem homeostasis but their products may interact with different partners during development.
Collapse
|
260
|
Tör M, Lotze MT, Holton N. Receptor-mediated signalling in plants: molecular patterns and programmes. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3645-54. [PMID: 19628572 PMCID: PMC2766824 DOI: 10.1093/jxb/erp233] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 05/18/2023]
Abstract
A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed.
Collapse
Affiliation(s)
- Mahmut Tör
- Warwick HRI, University of Warwick, Wellesbourne Campus, UK.
| | | | | |
Collapse
|
261
|
Miwa H, Kinoshita A, Fukuda H, Sawa S. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. JOURNAL OF PLANT RESEARCH 2009; 122:31-9. [PMID: 19104754 DOI: 10.1007/s10265-008-0207-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/27/2008] [Indexed: 05/23/2023]
Abstract
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUS-CLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species.
Collapse
Affiliation(s)
- Hiroki Miwa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
262
|
Capron A, Chatfield S, Provart N, Berleth T. Embryogenesis: pattern formation from a single cell. THE ARABIDOPSIS BOOK 2009; 7:e0126. [PMID: 22303250 PMCID: PMC3243344 DOI: 10.1199/tab.0126] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During embryogenesis a single cell gives rise to a functional multicellular organism. In higher plants, as in many other multicellular systems, essential architectural features, such as body axes and major tissue layers are established early in embryogenesis and serve as a positional framework for subsequent pattern elaboration. In Arabidopsis, the apicalbasal axis and the radial pattern of tissues wrapped around it are already recognizable in young embryos of only about a hundred cells in size. This early axial pattern seems to provide a coordinate system for the embryonic initiation of shoot and root. Findings from genetic studies in Arabidopsis are revealing molecular mechanisms underlying the initial establishment of the axial core pattern and its subsequent elaboration into functional shoots and roots. The genetic programs operating in the early embryo organize functional cell patterns rapidly and reproducibly from minimal cell numbers. Understanding their molecular details could therefore greatly expand our ability to generate plant body patterns de novo, with important implications for plant breeding and biotechnology.
Collapse
Affiliation(s)
- Arnaud Capron
- Dept. of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, M5S 3G5 Canada
- Each of these authors contributed equally. Address correspondence to or
| | - Steven Chatfield
- Dept. of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, M5S 3G5 Canada
- Each of these authors contributed equally. Address correspondence to or
| | - Nicholas Provart
- Dept. of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, M5S 3G5 Canada
| | - Thomas Berleth
- Dept. of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario, M5S 3G5 Canada
| |
Collapse
|
263
|
Rodakowska E, Derba-Maceluch M, Kasprowicz A, Zawadzki P, Szuba A, Kierzkowski D, Wojtaszek P. Signaling and Cell Walls. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
264
|
Abstract
Plant stem cells secrete peptides that, after processing to release the active form, prevent neighboring cells from adopting a stem cell fate by activating a leucine-rich repeat (LRR) receptor-mediated pathway. Other plant meristematic cell fate decisions, such as those made during the patterning of veins and stomata, also appear to be controlled by similar LRR receptor pathways that are activated by secreted peptide signals. It is therefore probable that peptide ligands regulate meristematic activity in many plant developmental processes.
Collapse
Affiliation(s)
- Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
265
|
Miwa H, Betsuyaku S, Iwamoto K, Kinoshita A, Fukuda H, Sawa S. The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis. PLANT & CELL PHYSIOLOGY 2008; 49:1752-7. [PMID: 18854335 PMCID: PMC2582179 DOI: 10.1093/pcp/pcn148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 10/06/2008] [Indexed: 05/18/2023]
Abstract
Arabidopsis sol2 mutants showed CLV3 peptide resistance. Twenty-six synthetic CLE peptides were examined in the clv1, clv2 and sol2 mutants. sol2 showed different levels of resistance to the various peptides, and the spectrum of peptide resistance was quite similar to that of clv2. SOL2 encoded a receptor-like kinase protein which is identical to CORYNE (CRN). GeneChip analysis revealed that the expression of several genes was altered in the sol2 root tip. Here, we suggest that SOL2, together with CLV2, plays an important role in the regulation of root meristem development through the CLE signaling pathway.
Collapse
|
266
|
Zhang XQ, Zou JS, Zhu HT, Li XY, Zeng RZ. [Genetic analysis and gene mapping of an early flowering and multi-ovary mutant in rice (Oryza sativa L.).]. YI CHUAN = HEREDITAS 2008; 30:1349-55. [PMID: 18930897 DOI: 10.3724/sp.j.1005.2008.01349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A rice floral mutant was obtained from a japonica variety Zhonghua 11, which was characterized with the phenotype of more stamens, more pistils and early flowering. Genetic analysis showed that the mutant phenotype was controlled by a single recessive gene, which was designed as floral organ number 5 (fon5). To map fon5, an F2 population was derived from the cross between Huajingxian 74 and fon5 mutant. Gene fon5 was roughly mapped between the microsatellite markers RM400 and RM412 on chromosome 6 with genetic distances of 10.5 and 1.6 cM, respectively. Then, six new po-lymorphic InDel markers were developed in the region. According to the physical information of the markers, locus fon5 was finally delimited to a region of 116 kb.
Collapse
Affiliation(s)
- Xiang-Qian Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China E-mail:
| | | | | | | | | |
Collapse
|
267
|
Deyoung BJ, Clark SE. BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics 2008; 180:895-904. [PMID: 18780746 PMCID: PMC2567389 DOI: 10.1534/genetics.108.091108] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/10/2008] [Indexed: 11/18/2022] Open
Abstract
The CLAVATA1 (CLV1) receptor kinase regulates stem cell specification at shoot and flower meristems of Arabidopsis. Most clv1 alleles are dominant negative, and clv1 null alleles are weak in phenotype, suggesting additional receptors functioning in parallel. We have identified two such parallel receptors, BAM1 and BAM2. We show that the weak nature of the phenotype of clv1 null alleles is dependent on BAM activity, with bam clv mutants exhibiting severe defects in stem cell specification. Furthermore, BAM activity in the meristem depends on CLV2, which is required in part for CLV1 function. In addition, clv1 mutants enhance many of the Bam(-) organ phenotypes, indicating that, contrary to current understanding, CLV1 function is not specific to the meristem. CLV3 encodes a small, secreted peptide that acts as the ligand for CLV1. Mutations in clv3 lead to increased stem cell accumulation. Surprisingly, bam1 and bam2 mutants suppress the phenotype of clv3 mutants. We speculate that in addition to redundant function in the meristem center, BAM1 and BAM2 act to sequester CLV3-like ligands in the meristem flanks.
Collapse
Affiliation(s)
- Brody J Deyoung
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
268
|
Ellendorff U, Zhang Z, Thomma BP. Gene silencing to investigate the roles of receptor-like proteins in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2008; 3:893-6. [PMID: 19704533 PMCID: PMC2634408 DOI: 10.4161/psb.3.10.6543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 07/06/2008] [Indexed: 05/23/2023]
Abstract
Receptor-like proteins (RLPs) are cell surface receptors that play important roles in various processes. In several plant species RLPs have been found to play a role in disease resistance, including the tomato Cf and Ve proteins and the apple HcrVf proteins that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. The Arabidopsis genome contains 57 AtRLP genes. Two of these, CLV2 (AtRLP10) and TMM (AtRLP17), have well-characterized functions in meristem and stomatal development, respectively, while AtRLP52 is required for defense against powdery mildew. We recently reported the assembly of a genome-wide collection of T-DNA insertion lines for the Arabidopsis AtRLP genes. This collection was functionally analyzed with respect to plant growth, development and sensitivity to various stress responses including pathogen susceptibility. Only few new phenotypes were discovered; while AtRLP41 was found to mediate abscisic acid sensitivity, AtRLP30 (and possibly AtRLP18) was found to be required for full non-host resistance to a bacterial pathogen. Possibly, identification of novel phenotypes is obscured by functional redundancy. Therefore, RNA interference (RNAi) to target the expression of multiple AtRLP genes simultaneously was employed followed by functional analysis of the RNAi lines.
Collapse
Affiliation(s)
- Ursula Ellendorff
- Laboratory of Phytopathology, Wageningen University, Wageningen The Netherlands
| | | | | |
Collapse
|
269
|
Miyahara A, Hirani TA, Oakes M, Kereszt A, Kobe B, Djordjevic MA, Gresshoff PM. Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro. J Biol Chem 2008; 283:25381-25391. [PMID: 18606823 DOI: 10.1074/jbc.m800400200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The NARK (nodule autoregulation receptor kinase) gene, a negative regulator of cell proliferation in nodule primordia in several legumes, encodes a receptor kinase that consists of an extracellular leucine-rich repeat and an intracellular serine/threonine protein kinase domain. The putative catalytic domain of NARK was expressed and purified as a maltose-binding or a glutathione S-transferase fusion protein in Escherichia coli. The recombinant NARK proteins showed autophosphorylation activity in vitro. Several regions of the NARK kinase domain were shown by mass spectrometry to possess phosphoresidues. The kinase-inactive protein K724E failed to autophosphorylate, as did three other proteins corresponding to phenotypically detected mutants defective in whole plant autoregulation of nodulation. A wild-type NARK fusion protein transphosphorylated a kinase-inactive mutant NARK fusion protein, suggesting that it is capable of intermolecular autophosphorylation in vitro. In addition, Ser-861 and Thr-963 in the NARK kinase catalytic domain were identified as phosphorylation sites through site-directed mutagenesis. The genes coding for the kinase-associated protein phosphatases KAPP1 and KAPP2, two putative interacting components of NARK, were isolated. NARK kinase domain phosphorylated recombinant KAPP proteins in vitro. Autophosphorylated NARK kinase domain was, in turn, dephosphorylated by both KAPP1 and KAPP2. Our results suggest a model for signal transduction involving NARK in the control of nodule development.
Collapse
Affiliation(s)
- Akira Miyahara
- Australian Research Council Centre of Excellence for Integrative Legume Research, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Tripty A Hirani
- Australian Research Council Centre of Excellence for Integrative Legume Research, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Marie Oakes
- Australian Research Council Centre of Excellence for Integrative Legume Research, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Attila Kereszt
- Australian Research Council Centre of Excellence for Integrative Legume Research, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Bostjan Kobe
- School of Microbial and Molecular Sciences and Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia and the
| | - Michael A Djordjevic
- Australian Research Council Centre of Excellence for Integrative Legume Research, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Peter M Gresshoff
- Australian Research Council Centre of Excellence for Integrative Legume Research, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
270
|
Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK. The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. MOLECULAR PLANT 2008; 1:732-50. [PMID: 19825577 DOI: 10.1093/mp/ssn047] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Receptor-like cytoplasmic kinases (RLCKs) in plants belong to the super family of receptor-like kinases (RLKs). These proteins show homology to RLKs in kinase domain but lack the transmembrane domain. Some of the functionally characterized RLCKs from plants have been shown to play roles in development and stress responses. Previously, 149 and 187 RLCK encoding genes were identified from Arabidopsis and rice, respectively. By using HMM-based domain structure and phylogenetic relationships, we have identified 379 OsRLCKs from rice. OsRLCKs are distributed on all 12 chromosomes of rice and some members are located on duplicated chromosomal segments. Several OsRLCKs probably also undergo alternative splicing, some having evidence only in the form of gene models. To understand their possible functions, expression patterns during landmark stages of vegetative and reproductive development as well as abiotic and biotic stress using microarray and MPSS-based data were analyzed. Real-time PCR-based expression profiling for a selected few genes confirmed the outcome of microarray analysis. Differential expression patterns observed for majority of OsRLCKs during development and stress suggest their involvement in diverse functions in rice. Majority of the stress-responsive OsRLCKs were also found to be localized within mapped regions of abiotic stress QTLs. Outcome of this study would help in selecting organ/development stage specific OsRLCK genes/targets for functional validation studies.
Collapse
Affiliation(s)
- Shubha Vij
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | | | | | | | | |
Collapse
|
271
|
Song SK, Hofhuis H, Lee MM, Clark SE. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev Cell 2008; 15:98-109. [PMID: 18606144 DOI: 10.1016/j.devcel.2008.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/15/2008] [Accepted: 05/16/2008] [Indexed: 11/17/2022]
Abstract
Arabidopsis development proceeds from three stem cell populations located at the shoot, flower, and root meristems. The relationship between the highly related shoot and flower stem cells and the very divergent root stem cells has been unclear. We show that the related phosphatases POL and PLL1 are required for all three stem cell populations. pol pll1 mutant embryos lack key asymmetric divisions that give rise to the root stem cell organizer and the central vascular axis. Instead, these cells divide in a superficially symmetric fashion in pol pll1 embryos, leading to a loss of embryonic and postembryonic root stem cells and vascular specification. We present data that show that POL/PLL1 drive root stem cell specification by promoting expression of the WUS homolog WOX5. We propose that POL and PLL1 are required for the proper divisions of shoot, flower, and root stem cell organizers, WUS/WOX5 gene expression, and stem cell maintenance.
Collapse
Affiliation(s)
- Sang-Kee Song
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
272
|
Suzaki T, Yoshida A, Hirano HY. Functional diversification of CLAVATA3-related CLE proteins in meristem maintenance in rice. THE PLANT CELL 2008; 20:2049-58. [PMID: 18676878 PMCID: PMC2553609 DOI: 10.1105/tpc.107.057257] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 06/04/2008] [Accepted: 07/17/2008] [Indexed: 05/19/2023]
Abstract
Postembryonic development in plants depends on the activity of the shoot apical meristem (SAM) and root apical meristem (RAM). In Arabidopsis thaliana, CLAVATA signaling negatively regulates the size of the stem cell population in the SAM by repressing WUSCHEL. In other plants, however, studies of factors involved in stem cell maintenance are insufficient. Here, we report that two proteins closely related to CLAVATA3, FLORAL ORGAN NUMBER2 (FON2) and FON2-LIKE CLE PROTEIN1 (FCP1/Os CLE402), have functionally diversified to regulate the different types of meristem in rice (Oryza sativa). Unlike FON2, which regulates the maintenance of flower and inflorescence meristems, FCP1 appears to regulate the maintenance of the vegetative SAM and RAM. Constitutive expression of FCP1 results in consumption of the SAM in the vegetative phase, and application of an FCP1 CLE peptide in vitro disturbs root development by misspecification of cell fates in the RAM. FON1, a putative receptor of FON2, is likely to be unnecessary for these FCP1 functions. Furthermore, we identify a key amino acid residue that discriminates between the actions of FCP1 and FON2. Our results suggest that, although the basic framework of meristem maintenance is conserved in the angiosperms, the functions of the individual factors have diversified during evolution.
Collapse
Affiliation(s)
- Takuya Suzaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | | | | |
Collapse
|
273
|
Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. THE PLANT CELL 2008; 20:1805-1817. [PMID: 18660431 PMCID: PMC2518227 DOI: 10.1105/tpc.108.059139] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 06/04/2008] [Accepted: 07/04/2008] [Indexed: 11/08/2022]
Abstract
In Arabidopsis thaliana, the final step of floral organ abscission is regulated by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA): ida mutants fail to abscise floral organs, and plants overexpressing IDA display earlier abscission. We show that five IDA-LIKE (IDL) genes are expressed in different tissues, but plants overexpressing these genes have phenotypes similar to IDA-overexpressing plants, suggesting functional redundancy. IDA/IDL proteins have N-terminal signal peptides and a C-terminal conserved motif (extended PIP [EPIP]) at the C terminus (EPIP-C). IDA can, similar to CLAVATA3, be processed by an activity from cauliflower meristems. The EPIP-C of IDA and IDL1 replaced IDA function in vivo, when the signal peptide was present. In addition, synthetic IDA and IDL1 EPIP peptides rescued ida and induced early floral abscission in wild-type flowers. The EPIP-C of the other IDL proteins could partially substitute for IDA function. Similarly to ida, a double mutant between the receptor-like kinases (RLKs) HAESA (HAE) and HAESA-LIKE2 (HSL2) displays nonabscising flowers. Neither overexpression of IDA nor synthetic EPIP or EPIP-C peptides could rescue the hae hsl2 abscission deficiency. We propose that IDA and the IDL proteins constitute a family of putative ligands that act through RLKs to regulate different events during plant development.
Collapse
|
274
|
Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Bastas K, Liu CM, Woods-Tör A, Zipfel C, de Wit PJGM, Jones JDG, Tör M, Thomma BPHJ. A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:503-17. [PMID: 18434605 PMCID: PMC2409048 DOI: 10.1104/pp.108.119487] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 04/11/2008] [Indexed: 05/18/2023]
Abstract
Receptor-like proteins (RLPs) are cell surface receptors that typically consist of an extracellular leucine-rich repeat domain, a transmembrane domain, and a short cytoplasmatic tail. In several plant species, RLPs have been found to play a role in disease resistance, such as the tomato (Solanum lycopersicum) Cf and Ve proteins and the apple (Malus domestica) HcrVf2 protein that mediate resistance against the fungal pathogens Cladosporium fulvum, Verticillium spp., and Venturia inaequalis, respectively. In addition, RLPs play a role in plant development; Arabidopsis (Arabidopsis thaliana) TOO MANY MOUTHS (TMM) regulates stomatal distribution, while Arabidopsis CLAVATA2 (CLV2) and its functional maize (Zea mays) ortholog FASCINATED EAR2 regulate meristem maintenance. In total, 57 RLP genes have been identified in the Arabidopsis genome and a genome-wide collection of T-DNA insertion lines was assembled. This collection was functionally analyzed with respect to plant growth and development and sensitivity to various stress responses, including susceptibility toward pathogens. A number of novel developmental phenotypes were revealed for our CLV2 and TMM insertion mutants. In addition, one AtRLP gene was found to mediate abscisic acid sensitivity and another AtRLP gene was found to influence nonhost resistance toward Pseudomonas syringae pv phaseolicola. This genome-wide collection of Arabidopsis RLP gene T-DNA insertion mutants provides a tool for future investigations into the biological roles of RLPs.
Collapse
Affiliation(s)
- Guodong Wang
- Plant Research International, B.V., Business Unit of Bioscience, 6700 AA Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Afzal AJ, Wood AJ, Lightfoot DA. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:507-17. [PMID: 18393610 DOI: 10.1094/mpmi-21-5-0507] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are hosts to a wide array of pathogens from all kingdoms of life. In the absence of an active immune system or combinatorial diversifications that lead to recombination-driven somatic gene flexibility, plants have evolved different strategies to combat both individual pathogen strains and changing pathogen populations. The receptor-like kinase (RLK) gene-family expansion in plants was hypothesized to have allowed accelerated evolution among domains implicated in signal reception, typically a leucine-rich repeat (LRR). Under that model, the gene-family expansion represents a plant-specific adaptation that leads to the production of numerous and variable cell surface and cytoplasmic receptors. More recently, it has emerged that the LRR domains of RLK interact with a diverse group of proteins leading to combinatorial variations in signal response specificity. Therefore, the RLK appear to play a central role in signaling during pathogen recognition, the subsequent activation of plant defense mechanisms, and developmental control. The future challenges will include determinations of RLK modes of action, the basis of recognition and specificity, which cellular responses each receptor mediates, and how both receptor and kinase domain interactions fit into the defense signaling cascades. These challenges will be complicated by the limited information that may be derived from the primary sequence of the LRR domain. The review focuses upon implications derived from recent studies of the secondary and tertiary structures of several plant RLK that change understanding of plant receptor function and signaling. In addition, the biological functions of plant and animal RLK-containing receptors were reviewed and commonalities among their signaling mechanisms identified. Further elucidated were the genomic and structural organizations of RLK gene families, with special emphasis on RLK implicated in resistance to disease and development.
Collapse
Affiliation(s)
- Ahmed J Afzal
- Department of Molecular Biology, Microbiology and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | | | | |
Collapse
|
276
|
Müller R, Bleckmann A, Simon R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. THE PLANT CELL 2008; 20:934-46. [PMID: 18381924 PMCID: PMC2390746 DOI: 10.1105/tpc.107.057547] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/02/2008] [Accepted: 03/10/2008] [Indexed: 05/18/2023]
Abstract
Stem cells in shoot and floral meristems of Arabidopsis thaliana secrete the signaling peptide CLAVATA3 (CLV3) that restricts stem cell proliferation and promotes differentiation. The CLV3 signaling pathway is proposed to comprise the receptor kinase CLV1 and the receptor-like protein CLV2. We show here that the novel receptor kinase CORYNE (CRN) and CLV2 act together, and in parallel with CLV1, to perceive the CLV3 signal. Mutations in CRN cause stem cell proliferation, similar to clv1, clv2, and clv3 mutants. CRN has additional functions during plant development, including floral organ development, that are shared with CLV2. The CRN protein lacks a distinct extracellular domain, and we propose that CRN and CLV2 interact via their transmembrane domains to establish a functional receptor.
Collapse
Affiliation(s)
- Ralf Müller
- Institut für Genetik, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
277
|
Hink MA, Shah K, Russinova E, de Vries SC, Visser AJ. Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 2008; 94:1052-62. [PMID: 17905839 PMCID: PMC2186235 DOI: 10.1529/biophysj.107.112003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 08/31/2007] [Indexed: 11/18/2022] Open
Abstract
Receptor kinases play a key role in the cellular perception of signals. To verify models for receptor activation through dimerization, an experimental system is required to determine the precise oligomerization status of proteins within living cells. Here we show that photon counting histogram analysis and dual-color fluorescence cross correlation spectroscopy are able to monitor fluorescently labeled proteins at the single-molecule detection level in living plant cells. In-frame fusion proteins of the brassinosteroid insensitive 1 (BRI1) receptor and the Arabidopsis thaliana somatic embryogenesis receptor-like kinases 1 and 3 (AtSERK1 and 3) to the enhanced cyan or yellow fluorescent protein were transiently expressed in plant cells. Although no oligomeric structures were detected for AtSERK3, 15% (AtSERK1) to 20% (BRI1) of the labeled proteins in the plasma membrane was found to be present as homodimers, whereas no evidence was found for higher oligomeric complexes.
Collapse
Affiliation(s)
- Mark A. Hink
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Khalid Shah
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Eugenia Russinova
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Sacco C. de Vries
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Antonie J.W.G. Visser
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
278
|
Abstract
Higher plants display a variety of architectures that are defined by the degree of branching, internodal elongation, and shoot determinancy. Studies on the model plants of Arabidopsis thaliana and tomato and on crop plants such as rice and maize have greatly strengthened our understanding on the molecular genetic bases of plant architecture, one of the hottest areas in plant developmental biology. The identification of mutants that are defective in plant architecture and characterization of the corresponding and related genes will eventually enable us to elucidate the molecular mechanisms underlying plant architecture. The achievements made so far in studying plant architecture have already allowed us to pave a way for optimizing the plant architecture of crops by molecular design and improving grain productivity.
Collapse
Affiliation(s)
- Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
279
|
Plant Stem Cells: Divide et Impera. Stem Cells 2008. [DOI: 10.1007/978-1-4020-8274-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
280
|
Abstract
Stomata play a pivotal role in the regulation of gas exchange in flowering plants and are distributed throughout the aerial epidermis. In leaves, the pattern of stomatal distribution is highly variable between species but is regulated by a mechanism that maintains a minimum of one cell spacing between stomata. In Arabidopsis, a number of the genetic components of this mechanism have been identified and include, SDD1, EPF1 and the putative receptors TMM and the ERECTA-gene family. A mitogen-activated protein (MAP) kinase signalling cascade is believed to act downstream of these putative receptors while a number of transcription factors including SPCH, MUTE and FAMA have been identified that control consecutive steps of stomatal development. The environment also has significant effects on stomatal development. In a number of species both light intensity and CO(2) concentrations have been shown to influence the frequency at which stomata develop on leaves. Long-distance signalling mechanisms have been implicated in these environmental responses with the conditions sensed by mature leaves determining the stomatal frequency in developing leaves. Thus, changes in the environment appear to act by modulating the developmental and patterning pathways to determine stomatal frequency.
Collapse
Affiliation(s)
- Stuart Casson
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
281
|
Kinoshita A, Nakamura Y, Sasaki E, Kyozuka J, Fukuda H, Sawa S. Gain-of-Function Phenotypes of Chemically Synthetic CLAVATA3/ESR-Related (CLE) Peptides in Arabidopsis thaliana and Oryza sativa. ACTA ACUST UNITED AC 2007; 48:1821-5. [DOI: 10.1093/pcp/pcm154] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
282
|
Dunning FM, Sun W, Jansen KL, Helft L, Bent AF. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. THE PLANT CELL 2007; 19:3297-313. [PMID: 17933906 PMCID: PMC2174712 DOI: 10.1105/tpc.106.048801] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Revised: 09/13/2007] [Accepted: 09/19/2007] [Indexed: 05/19/2023]
Abstract
Mutational, phylogenetic, and structural modeling approaches were combined to develop a general method to study leucine-rich repeat (LRR) domains and were used to identify residues within the Arabidopsis thaliana FLAGELLIN-SENSING2 (FLS2) LRR that contribute to flagellin perception. FLS2 is a transmembrane receptor kinase that binds bacterial flagellin or a flagellin-based flg22 peptide through a presumed physical interaction within the FLS2 extracellular domain. Double-Ala scanning mutagenesis of solvent-exposed beta-strand/beta-turn residues across the FLS2 LRR domain identified LRRs 9 to 15 as contributors to flagellin responsiveness. FLS2 LRR-encoding domains from 15 Arabidopsis ecotypes and 20 diverse Brassicaceae accessions were isolated and sequenced. FLS2 is highly conserved across most Arabidopsis ecotypes, whereas more diversified functional FLS2 homologs were found in many but not all Brassicaceae accessions. flg22 responsiveness was correlated with conserved LRR regions using Conserved Functional Group software to analyze structural models of the LRR for diverse FLS2 proteins. This identified conserved spatial clusters of residues across the beta-strand/beta-turn residues of LRRs 12 to 14, the same area identified by the Ala scan, as well as other conserved sites. Site-directed randomizing mutagenesis of solvent-exposed beta-strand/beta-turn residues across LRRs 9 to 15 identified mutations that disrupt flg22 binding and showed that flagellin perception is dependent on a limited number of tightly constrained residues of LRRs 9 to 15 that make quantitative contributions to the overall phenotypic response.
Collapse
Affiliation(s)
- F Mark Dunning
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
| | | | | | | | | |
Collapse
|
283
|
Sawa S, Kinoshita A, Nakanomyo I, Fukuda H. CLV3/ESR-related (CLE) peptides as intercellular signaling molecules in plants. CHEM REC 2007; 6:303-10. [PMID: 17304552 DOI: 10.1002/tcr.20091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For many years, the plant hormones auxin, cytokinin, ethylene, gibberellin, abscisic acid, brassinosteroid, jasmonic acid, and salicylic acid have been extensively studied as key regulators of plant growth and development. However, recent biochemical and genetic analyses have revealed that secretory peptides are also responsible for intercellular signaling in plants and regulate various events including wound response, cell division control, and pollen self-incompatibility. We discovered two natural CLAVATA3 (CLV3)/ESR-related (CLE) peptides: tracheary elements differentiation inhibitory factor (TDIF) and CLV3, which are dodecapeptides with two hydroxyproline residues that regulate vascular development and meristem formation, respectively. This discovery enabled us to predict the chemical form of CLE gene products. In the Arabidopsis genome, there are 31 CLE genes that correspond to 26 CLE peptides. The application of all 26 chemically synthesized peptides to plants revealed the existence of distinctive functional groups. From these results, we discuss the functions of CLE peptides in plant development and plant-parasite interactions.
Collapse
Affiliation(s)
- Shinichiro Sawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
284
|
Sonoda Y, Yao SG, Sako K, Sato T, Kato W, Ohto MA, Ichikawa T, Matsui M, Yamaguchi J, Ikeda A. SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:586-96. [PMID: 17461786 DOI: 10.1111/j.1365-313x.2007.03062.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Post-embryonic plant growth is dependent on a functional shoot apical meristem (SAM) that provides cells for continuous development of new aerial organs. However, how the SAM is dynamically maintained during vegetative development remains largely unclear. We report here the characterization of a new SAM maintenance mutant, sha1-1 (shoot apical meristem arrest 1-1), that shows a primary SAM-deficient phenotype at the adult stage. The SHA1 gene encodes a novel RING finger protein, and is expressed most intensely in the shoot apex. We show that, in the sha1-1 mutant, the primary SAM develops normally during the juvenile vegetative stage, but cell layer structure becomes disorganized after entering the adult vegetative stage, resulting in a dysfunctional SAM that cannot initiate floral primordia. The sha1-1 SAM terminates completely at the stage when the wild-type begins to bolt, producing adult plants with a primary inflorescence-deficient phenotype. These observations indicate that SHA1, a putative E3 ligase, is required for post-embryonic SAM maintenance by controlling proper cellular organization.
Collapse
Affiliation(s)
- Yutaka Sonoda
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Peaucelle A, Morin H, Traas J, Laufs P. Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 2007; 134:1045-50. [PMID: 17251269 DOI: 10.1242/dev.02774] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In plants, the arrangement of organs along the stem (phyllotaxy) follows a predictable pattern. Recent studies have shown that primordium position at the meristem is governed by local auxin gradients, but little is known about the subsequent events leading to the phyllotaxy along the mature stem. We show here that plants expressing a miR164-resistant CUP-SHAPED COTYLEDON2 (CUC2) gene have an abnormal phyllotactic pattern in the fully grown stem, despite the pattern of organ initiation by the meristem being normal. This implies that abnormal phyllotaxy is generated during stem growth. These plants ectopically express CUC2 in the stem, suggesting that the proper timing of CUC2 expression is required to maintain the pattern initiated in the meristem. Furthermore, by carefully comparing the phyllotaxy in the meristem and along the mature inflorescence in wild types,we show that such deviation also occurs during wild-type development, although to a smaller extent. We therefore suggest that the phyllotactic pattern in a fully grown stem results not only from the organogenetic activity of the meristem, but also from the subsequent growth pattern during stem development.
Collapse
Affiliation(s)
- Alexis Peaucelle
- Laboratoire de Biologie Cellulaire UR501, Institut J. P. Bourgin, INRA, F-78000 Versailles, France
| | | | | | | |
Collapse
|
286
|
Wang H, Chevalier D, Larue C, Ki Cho S, Walker JC. The Protein Phosphatases and Protein Kinases of Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2007; 5:e0106. [PMID: 22303230 PMCID: PMC3243368 DOI: 10.1199/tab.0106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
| | | | | | | | - John C. Walker
- Corresponding author: Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA,
| |
Collapse
|
287
|
Shinohara H, Ogawa M, Sakagami Y, Matsubayashi Y. Identification of ligand binding site of phytosulfokine receptor by on-column photoaffinity labeling. J Biol Chem 2007; 282:124-31. [PMID: 17092941 DOI: 10.1074/jbc.m604558200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytosulfokine (PSK), an endogenous 5-amino-acid-secreted peptide in plants, affects cellular potential for growth via binding to PSKR1, a member of the leucine-rich repeat receptor kinase (LRR-RK) family. PSK interacts with PSKR1 in a highly specific manner with a nanomolar dissociation constant. However, it is not known which residues in the PSKR1 extracellular domain constitute the ligand binding pocket. Here, we have identified the PSK binding domain of carrot PSKR1 (DcPSKR1) by photoaffinity labeling. We cross-linked the photoactivatable PSK analog [(125)I]-[N(epsilon)-(4-azidosalicyl)Lys(5)]PSK with DcPSKR1 using UV irradiation and mapped the cross-linked region using chemical and enzymatic fragmentation. We also established a novel "on-column photoaffinity labeling" methodology that allows repeated incorporation of the photoaffinity label to increase the efficiency of the photoaffinity cross-linking reactions. We purified a labeled DcPSKR1 tryptic fragment using anti-PSK antibodies and identified a peptide fragment that corresponds to the 15-amino-acid Glu(503)-Lys(517) region of DcPSKR1 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Deletion of Glu(503)-Lys(517) completely abolishes the ligand binding activity of DcPSKR1. This region is in the island domain flanked by extracellular LRRs, indicating that this domain forms a ligand binding pocket that directly interacts with PSK.
Collapse
Affiliation(s)
- Hidefumi Shinohara
- Graduate School of Bio-agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
288
|
Abstract
Stomata are cellular epidermal valves in plants central to gas exchange and biosphere productivity. The pathways controlling their formation are best understood for Arabidopsis thaliana where stomata are produced through a series of divisions in a dispersed stem cell compartment. The stomatal pathway is an accessible system for analyzing core developmental processes including position-dependent patterning via intercellular signaling and the regulation of the balance between proliferation and cell specification. This review synthesizes what is known about the mechanisms and genes underlying stomatal development. We contrast the functions of genes that act earlier in the pathway, including receptors, kinases, and proteases, with those that act later in the cell lineage. In addition, we discuss the relationships between environmental signals, stomatal development genes, and the capacity for controlling shoot gas exchange.
Collapse
|
289
|
Develey-Rivière MP, Galiana E. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. THE NEW PHYTOLOGIST 2007; 175:405-416. [PMID: 17635216 DOI: 10.1111/j.1469-8137.2007.02130.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The induction of resistance to disease during plant development is widespread in the plant kingdom. Resistance appears at different stages of host development, varies with plant age or tissue maturity, may be specific or broad-spectrum and is driven by diverse mechanisms, depending on plantpathogen interactions. Studies of these forms of resistance may help us to evaluate more exhaustively the plethora of levels of regulation during development, the variability of the defense potential of developing hosts and may have practical applications, making it possible to reduce pesticide applications. Here, we review the various types of developmental resistance in plants and current knowledge of the molecular and cellular processes involved in their expression. We discuss the implications of these studies, which provide new knowledge from the molecular to the agrosystem level.
Collapse
Affiliation(s)
- Marie-Pierre Develey-Rivière
- UMR1064 Interactions Plantes-Microorganismes et Santé Végétale, INRA-Université Nice Sophia-Antipolis-CNRS, F 06903 Sophia Antipolis Cedex, France
| | - Eric Galiana
- UMR1064 Interactions Plantes-Microorganismes et Santé Végétale, INRA-Université Nice Sophia-Antipolis-CNRS, F 06903 Sophia Antipolis Cedex, France
| |
Collapse
|
290
|
Cairney J, Pullman GS. The cellular and molecular biology of conifer embryogenesis. THE NEW PHYTOLOGIST 2007; 176:511-536. [PMID: 17953539 DOI: 10.1111/j.1469-8137.2007.02239.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.
Collapse
Affiliation(s)
- John Cairney
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta GA 30318, USA
| | - Gerald S Pullman
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta GA 30318, USA
| |
Collapse
|
291
|
Song SK, Lee MM, Clark SE. POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 2006; 133:4691-8. [PMID: 17079273 DOI: 10.1242/dev.02652] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The post-embryonic development of above-ground tissues in plants is dependent upon the maintenance and differentiation of stem cells at the shoot meristem. The Arabidopsis WUSCHEL (WUS) transcription factor establishes an organizing center within the shoot meristem that is essential for specification of stem-cell identity in overlying cells. The CLAVATA (CLV)signaling pathway, including the CLV1 receptor-kinase, promotes the differentiation of stem cells by limiting the WUS expression domain,yet the mechanism of CLV signaling is largely unknown. Previously, we have shown that mutations in two protein phosphatases, POLTERGEIST (POL) and PLL1,partially suppress clv mutant phenotypes. Here, we demonstrate that POL and PLL1 are integral components of the CLV1 signaling pathway. POL and PLL1 are essential for stem-cell specification, and can also block stem-cell differentiation when overexpressed. We provide extensive evidence that POL and PLL1 act downstream of CLV signaling to maintain WUS expression and that they regulate WUS at a transcriptional level. Our findings suggest that POL and PLL1 are central players in regulating the balance between stem-cell maintenance and differentiation, and are the closest known factors to WUS regulation in the shoot meristem.
Collapse
Affiliation(s)
- Sang-Kee Song
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
292
|
Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY. Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene. PLANT & CELL PHYSIOLOGY 2006; 47:1591-602. [PMID: 17056620 DOI: 10.1093/pcp/pcl025] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To elucidate the genetic mechanism that regulates meristem maintenance in monocots, here we have examined the function of the gene FLORAL ORGAN NUMBER2 (FON2) in Oryza sativa (rice). Mutations in FON2 cause enlargement of the floral meristem, resulting in an increase in the number of floral organs, although the vegetative and inflorescence meristems are largely normal. Molecular cloning reveals that FON2 encodes a small secreted protein, containing a CLE domain, that is closely related to CLAVATA3 in Arabidopsis thaliana. FON2 transcripts are localized at the apical region in all meristems in the aerial parts of rice plants, showing an expression pattern similar to that of Arabidopsis CLV3. Constitutive expression of FON2 causes a reduction in the number of floral organs and flowers, suggesting that both the flower and inflorescence meristems are reduced in size. This action of FON2 requires the function of FON1, an ortholog of CLV1. Constitutive expression of FON2 also causes premature termination of the shoot apical meristem in Arabidopsis, a phenotype similar to that caused by constitutive expression of CLV3. Together with our previous study of FON1, these results clearly indicate that the FON1-FON2 system in rice corresponds to the CLV signaling system in Arabidopsis and suggest that the negative regulation of stem cell identity by these systems may be principally conserved in a wide range of plants within the Angiosperms. In addition, we propose a model of the genetic regulation of meristem maintenance in rice that includes an alternative pathway independent of FON2-FON1.
Collapse
Affiliation(s)
- Takuya Suzaki
- Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | | | |
Collapse
|
293
|
Chu H, Qian Q, Liang W, Yin C, Tan H, Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. PLANT PHYSIOLOGY 2006; 142:1039-52. [PMID: 17012407 PMCID: PMC1630730 DOI: 10.1104/pp.106.086736] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To understand the molecular mechanism regulating meristem development in the monocot rice (Oryza sativa), we describe here the isolation and characterization of three floral organ number4 (fon4) alleles and the cloning of the FON4 gene. The fon4 mutants showed abnormal enlargement of the embryonic and vegetative shoot apical meristems (SAMs) and the inflorescence and floral meristems. Likely due to enlarged SAMs, fon4 mutants produced thick culms (stems) and increased numbers of both primary rachis branches and floral organs. We identified FON4 using a map-based cloning approach and found it encodes a small putatively secreted protein, which is the putative ortholog of the Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) gene. FON4 transcripts mainly accumulated in the small group of cells at the apex of the SAMs, whereas the rice ortholog of CLV1 (FON1) is expressed throughout the SAMs, suggesting that the putative FON4 ligand might be sequestered as a possible mechanism for rice meristem regulation. Exogenous application of the peptides FON4p and CLV3p corresponding to the CLV3/ESR-related (CLE) motifs of FON4 and CLV3, respectively, resulted in termination of SAMs in rice, and treatment with CLV3p caused consumption of both rice and Arabidopsis root meristems, suggesting that the CLV pathway in limiting meristem size is conserved in both rice and Arabidopsis. However, exogenous FON4p did not have an obvious effect on limiting both rice and Arabidopsis root meristems, suggesting that the CLE motifs of Arabidopsis CLV3 and FON4 are potentially functionally divergent.
Collapse
Affiliation(s)
- Huangwei Chu
- Shanghai Jiaotong University, Shanghai Institutes for Biological Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Mehra A, Fredrick J, Petri WA, Bhattacharya S, Bhattacharya A. Expression and function of a family of transmembrane kinases from the protozoan parasite Entamoeba histolytica. Infect Immun 2006; 74:5341-51. [PMID: 16926429 PMCID: PMC1594846 DOI: 10.1128/iai.00025-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signaling proteome of Entamoeba histolytica is made of transmembrane kinases (TMKs) that are rarely found in unicellular eukaryotes. There are 90 TMK genes reported for E. histolytica, and these have been grouped into nine distinct families based on motifs present on both extracellular and kinase domains. Of these, the B1 family was chosen for further analysis. Genomic sequencing revealed the presence of 28 members belonging to this family. Genes corresponding to the majority of these were truncated and not considered for further analysis. Only five members were full length and contained both extracellular and cytosolic kinase domains. BLAST analysis revealed the presence of homologs of these B1 TMKs in the nonpathogenic Entamoeba dispar. However, the ligand binding domains of the orthologous B1 TMKs of the two species showed considerable divergence, indicating the possibility of a correlation with the pathogenic potential of the organism. Only two of the five full-length copies (B1.I.1 and B1.I.2) were expressed in E. histolytica under the culture conditions used. Antisera generated against the extracellular domain of B1.I.1 stained the cell surface, particularly the areas of contact between the trophozoites. Staining was also seen in the frontal and posterior regions of the motile amoeba. An amoebic cell line expressing a truncated version of the B1.I.1 that lacked the kinase domain was generated. Inducible expression of the truncated TMK resulted in a decrease in cellular proliferation and an increase in sensitivity to serum starvation. Our data indicate that the B1.I class of TMKs is involved in parasite proliferation.
Collapse
Affiliation(s)
- Alka Mehra
- School of Life Sciences, Lab No. 117, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | |
Collapse
|
295
|
Morillo SA, Tax FE. Functional analysis of receptor-like kinases in monocots and dicots. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:460-9. [PMID: 16877029 DOI: 10.1016/j.pbi.2006.07.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Accepted: 07/17/2006] [Indexed: 05/03/2023]
Abstract
Receptor-like kinases (RLKs) are signaling proteins that feature an extracellular domain connected via a transmembrane domain to a cytoplasmic kinase. This architecture indicates that RLKs perceive external signals, transducing them into the cell. In plants, RLKs were first implicated in the regulation of development, in pathogen responses, and in recognition events. RLKs comprise a major gene family in plants, with more than 600 encoded in the Arabidopsis genome and more than 1100 found in rice genomes. The greater number of RLKs in rice is mostly attributable to expansions in the clades that are involved in pathogen responses. Recent functional studies in both monocots and dicots continue to identify individual RLKs that have similar developmental and abiotic stress roles. Analysis of closely related RLKs reveals that family members might have overlapping roles but can also possess distinct functions.
Collapse
Affiliation(s)
- Santiago A Morillo
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
296
|
Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. PLANT PHYSIOLOGY 2006; 142:265-79. [PMID: 16844829 PMCID: PMC1557615 DOI: 10.1104/pp.106.084657] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 07/08/2006] [Indexed: 05/10/2023]
Abstract
Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.
Collapse
Affiliation(s)
- Jean-François Arrighi
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 441/2594, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y. Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. PLANT PHYSIOLOGY 2006; 142:45-53. [PMID: 16829587 PMCID: PMC1557600 DOI: 10.1104/pp.106.081109] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 07/04/2006] [Indexed: 05/10/2023]
Abstract
Phytosulfokine (PSK), a 5-amino acid sulfated peptide that has been identified in conditioned medium of plant cell cultures, promotes cellular growth in vitro via binding to the membrane-localized PSK receptor. Here, we report that loss-of-function and gain-of-function mutations of the Arabidopsis (Arabidopsis thaliana) PSK receptor gene (AtPSKR1) alter cellular longevity and potential for growth without interfering with basic morphogenesis of plants. Although mutant pskr1-1 plants exhibit morphologically normal growth until 3 weeks after germination, individual pskr1-1 cells gradually lose their potential to form calluses as tissues mature. Shortly after a pskr1-1 callus forms, it loses potential for growth, resulting in formation of a smaller callus than the wild type. Leaves of pskr1-1 plants exhibit premature senescence after bolting. Leaves of AtPSKR1ox plants exhibit greater longevity and significantly greater potential for callus formation than leaves of wild-type plants, irrespective of their age. Calluses derived from AtPSKR1ox plants maintain their potential for growth longer than wild-type calluses. Combined with our finding that PSK precursor genes are more strongly expressed in mature plant parts than in immature plant parts, the available evidence indicates that PSK signaling affects cellular longevity and potential for growth and thereby exerts a pleiotropic effect on cultured tissue in response to environmental hormonal conditions.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
298
|
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y. A Plant Peptide Encoded by CLV3 Identified by in Situ MALDI-TOF MS Analysis. Science 2006; 313:845-8. [PMID: 16902141 DOI: 10.1126/science.1128439] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis CLAVATA3 (CLV3) gene encodes a stem cell-specific protein presumed to be a precursor of a secreted peptide hormone. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) applied to in situ Arabidopsis tissues determined the structure of a modified 12-amino acid peptide (MCLV3), which was derived from a conserved motif in the CLV3 sequence. Synthetic MCLV3 induced shoot and root meristem consumption as cells differentiated into other organs, displaying the typical phenotype of transgenic plants overexpressing CLV3. These results suggest that the functional peptide of CLV3 is MCLV3.
Collapse
Affiliation(s)
- Tatsuhiko Kondo
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
299
|
Shepard KA. The molecular population genetics of shoot development in Arabidopsis thaliana. Genetica 2006; 129:19-36. [PMID: 16900315 DOI: 10.1007/s10709-006-0030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/01/2005] [Indexed: 02/05/2023]
Abstract
Studies in Arabidopsis thaliana have provided us with a wealth of information about the genetic pathways that regulate plant morphogenesis. This developmental genetic treasure trove represents a fantastic resource for researchers interested in the microevolution of development. Several laboratories have begun using molecular population genetic analyses to investigate the evolutionary forces that act upon loci that regulate shoot morphogenesis. Much of this work has focused on coding sequence variation in transcription factors; however, recent studies have explored sequence variation in other types of proteins and in promoter regions. Several genes that regulate shoot development contain signatures of selective sweeps associated with positive selection or harbor putative balanced polymorphisms in coding and noncoding sequences. Other regulatory genes appear to be evolving neutrally, but have accumulated potentially deleterious replacement polymorphisms.
Collapse
Affiliation(s)
- Kristen A Shepard
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| |
Collapse
|
300
|
Diévart A, Hymes MJ, Li J, Clark SE. Brassinosteroid-independent function of BRI1/CLV1 chimeric receptors. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:723-730. [PMID: 32689282 DOI: 10.1071/fp06080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/17/2006] [Indexed: 06/11/2023]
Abstract
CLAVATA1 (CLV1) and BRASSINOSTEROID INSENSITIVE 1 (BRI1) belong to the leucine-rich repeat receptor-like kinase (LRR-RLK) family, comprising more than 200 members in Arabidopsis thaliana (L.) Heynh. and playing important roles in development and defence responses in many plant species (Diévart and Clark 2003, 2004; Shiu and Bleecker 2001a, b). To dissect the mechanisms of receptor function, we assessed the ability of chimeric proteins containing regions from two different receptors to function in vivo. Using domains from the receptor-kinases CLAVATA1 and BRASSINOSTEROID INSENSITIVE1, we tested the ability of the resulting chimeric receptors to replace CLV1 function. Receptors with the BRI1 extracellular domain and CLV1 kinase domain were able to partially replace CLV1 function. Both loss-of-function and gain-of-function mutations within the BRI1 leucine-rich repeats (LRRs) altered the extent of rescue. Chimeric receptor function was unaffected by addition of either exogenous brassinosteroids (BR) or BR biosynthesis inhibitors, suggesting that the chimeric receptors function in a ligand-independent fashion. We propose that the BRI1 LRR domain drives chimeric receptor homodimerisation, and that the BRI1 LRR domain mutations influence homodimerisation efficiency independent of ligand binding.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Matthew J Hymes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Jianming Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Steven E Clark
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|