251
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
252
|
Dinarello CA. An Interleukin-1 Signature in Breast Cancer Treated with Interleukin-1 Receptor Blockade: Implications for Treating Cytokine Release Syndrome of Checkpoint Inhibitors. Cancer Res 2019; 78:5200-5202. [PMID: 30217872 DOI: 10.1158/0008-5472.can-18-2225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 01/30/2023]
Abstract
In this issue of Cancer Research, Wu and colleagues show that IL1b orchestrates tumor-promoting inflammation in breast cancer and can be targeted in patients using an IL1 receptor antagonist. Cancer Res; 78(18); 5200-2. ©2018 AACRSee related article by Wu et al., p. 5243.
Collapse
Affiliation(s)
- Charles Anthony Dinarello
- Department of Medicine, University of Colorado, Aurora, Colorado. .,Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
253
|
Wang Y, Huang H, Yao S, Li G, Xu C, Ye Y, Gui S. A lipid-soluble extract of Pinellia pedatisecta Schott enhances antitumor T cell responses by restoring tumor-associated dendritic cell activation and maturation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111980. [PMID: 31146000 DOI: 10.1016/j.jep.2019.111980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott (PPS)is a traditional Chinese medicine functioning as reducing swelling and drying dampness. Pinellia pedatisecta Schott extract (PE) has been confirmed to suppress cervical tumor growth and modulate the antitumor CD4+T helper immunity towards Th1. AIMS To explore the roles of PE in modulating tumor-associated dendritic cell (TADC) activation and function. METHODS For in vivo studies, HPV+TC-1 mouse tumor models were conducted and treated with PE for 3 weeks (10 mg/kg/d or 20 mg/kg/day). The immune profiles of spleen, tumor-draining lymph nodes (TDLNs), tumor and serum were analyzed by flow cytometry and multiplexed bead-based immunoassay. For in vitro studies, TADCs were generated by tumor-conditioned medium and treated with PE solution. The maturation and function of TADCs were evaluated by flow cytometry, ELISA, mixed lymphocyte reaction (MLR) and cytotoxic T lymphocyte (CTL) assay. Furthermore, the effect of PE on SOCS1 pathway was examined by western blotting and real time PCR. RESULTS PE upregulated the expression of major histocompatibility complex class II (MHCII) and costimulatory molecules CD80 and CD86 on TADCs and promoted IL-12 secretion from TADCs. In addition, PE-treated TADCs promoted the proliferation of CD4+ and CD8+ T cells and induced the differentiation of IFN-γ+CD4+ and GZMB+CD8+ T cells. PE-treated TADCs also elicited a more powerful antigen-specific cytotoxic T lymphocyte (CTL) response. Furthermore, PE treatment in vivo enhanced the proliferation, activated the functional ability (increased Ki67, CD137, GZMB or IFN-γ, TNF-α expression) and reversed the exhaustion (impaired CD95 or PD-1 expression) of antitumor T cells. Mechanistically, PE inhibited SOCS1-restrained JAK2 activation in TADCs. CONCLUSIONS PE efficiently restored the immature status of TADCs and enhanced their function as antigen-presenting cells to further elicit antitumor Th1 and CTL responses, suggesting that PE may be a potential immunomodulatory drug for cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| |
Collapse
|
254
|
Abstract
PURPOSE OF REVIEW Cachexia is defined as ongoing loss of skeletal muscle mass, with or without depletion of adipose tissue and is a common syndrome in cancer patients, affecting 50% of those diagnosed. Cachexia, which cannot be fully reversed and causes significant functional impairment is caused by various mechanisms such as an altered energy balance and disruption of homeostatic control by the central nervous system. This central nervous system deregulation involves hypothalamic pituitary adrenal (HPA) axis stimulation, which can be triggered by IL-1R1 engagement on neuronal processes and endothelium in the microvasculature of the hypothalamus. This review will explore current evidence regarding both the importance of IL-1α in the various components of cancer cachexia and its potential as a therapeutic target. RECENT FINDINGS IL-1α, which signals through IL-1R1, has been identified as a key agonist in the IL-1 pathway. As such, IL-1α has been explored as a therapeutic target in cancer cachexia, leading to the development of bermekimab, a mAb which neutralizes IL-1α. With a limited array of medication currently available to treat cancer cachexia, bermekimab represents a possible therapy. SUMMARY IL-1α is a key mediator in cachexia development and targeting this may be a viable therapeutic target.
Collapse
|
255
|
Dolan RD, Laird BJ, Klepstad P, Kaasa S, Horgan PG, Paulsen Ø, McMillan DC. An exploratory study examining the relationship between performance status and systemic inflammation frameworks and cytokine profiles in patients with advanced cancer. Medicine (Baltimore) 2019; 98:e17019. [PMID: 31517821 PMCID: PMC6750290 DOI: 10.1097/md.0000000000017019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of cytokines in the systemic inflammatory response (SIR) is now well established. This is in keeping with the role of the SIR in tumorigenesis, malignant spread, and the development of cachexia. However, the relationship between performance status/systemic inflammation frameworks and cytokine profiles is not clear. The aim of the present study was to examine the relationship between the Eastern cooperative oncology group performance status/modified Glasgow prognostic score (ECOG-PS/mGPS) and cooperative oncology group performance status/neutrophil platelet score (ECOG-PS/NPS) frameworks and their cytokine profile in patients with advanced cancer.This was a retrospective interrogation of data already collected as part of a recent clinical trial (NCT00676936). The relationship between the independent variables (ECOG-PS/mGPS and ECOG-PS/NPS frameworks), and dependent variables (cytokine levels) was examined using independent Mann-Whitney U and Kruskal Wallis tests where appropriate.Of the 40 patients included in final analysis the majority had evidence of an SIR assessed by mGPS (78%) or NPS (53%). All patients died on follow-up and the median survival was 91 days (4-933 days). With increasing ECOG-PS there was a higher median value of Interleukin 6 (IL-6, P = .016) and C-reactive protein (CRP, P < .01) and lower albumin (P < .01) and poorer survival (P < .001). With increasing mGPS there was a higher median value of IL-6 (P = .016), Macrophage migration inhibitory factor (MIF, P = .010), erythrocyte sedimentation rate (ESR, P < .01) and poorer survival (P < .01). With increasing NPS there was a higher median value of TGF-β (P < .001) and C-reactive protein (P = .020) and poor survival (P = .001). When those patients with an ECOG-PS 0/1 and mGPS0 were compared with those patients with an ECOG-PS 2 and mGPS2 there was a higher median value of IL-6 (P = .017) and poorer survival (P < .001). When those patients with an ECOG-PS 0/1 and NPS0 were compared with those patients with an ECOG-PS 2 and NPS1/2 there was a higher median value of IL-6 (P = .002), TGF-β (P < .001) and poorer survival (P < .01).In patients with advanced cancer IL-6 was associated with the ECOG-PS/mGPS and ECOG-PS/NPS frameworks and survival in patients with advanced cancer. Therefore, the present work provides supporting evidence that agents targeting IL-6 are worthy of further exploration.
Collapse
Affiliation(s)
- Ross D. Dolan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow
| | - Barry J.A. Laird
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Pål Klepstad
- Department Intensive Care Medicine, St Olavs University Hospital, 7006 Trondheim and European Palliative Care Research Centre (PRC), Oslo University Hospital and Institute of Clinical Medicine, Oslo
| | - Stein Kaasa
- European Palliative Care Research Centre (PRC), Oslo University Hospital and Institute of Clinical Medicine, Oslo
| | - Paul G. Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow
| | - Ørnulf Paulsen
- European Palliative Care Research Centre (PRC), Oslo University Hospital and Institute of Clinical Medicine and Palliative Care Unit, Telemark Hospital Trust, Skien, Norway
| | - Donald C. McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow
| |
Collapse
|
256
|
Wei L, Zhang X, Wang J, Ye Q, Zheng X, Peng Q, Zheng Y, Liu P, Zhang X, Li Z, Liu C, Yan Q, Li G, Ma J. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice. Oncogene 2019; 39:122-135. [PMID: 31462711 DOI: 10.1038/s41388-019-0970-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Lactoferrin, an innate immunity molecule, is involved in anti-inflammatory, anti-microbial, and anti-tumor activities. We previously reported that lactoferrin is downregulated in specimens of nasopharyngeal carcinoma and negatively associated with tumor progression and metastasis of patients with nasopharyngeal carcinoma. However, the relationship between lactoferrin and the pro-metastatic microenvironment has not been reported yet. Here, by using the lactoferrin knockout mouse, we found that lactoferrin deficiency facilitated melanoma cells metastasizing to lungs, through recruiting myeloid-derived suppressor cells (MDSCs) in the lungs. Mechanistic studies showed that in the lung microenvironment of the lactoferrin knockout mice, the TLR9 signaling was the most repressed signaling. Lactoferrin can induce MDSCs differentiation and apoptosis, as well as upregulate TLR9 expression. TLR9 agonist or lactoferrin treatment can rescue this phenotype in the tumor metastasis mouse model. Our results suggest a protective role of lactoferrin in cancer metastasis, along with a deficiency in certain components of the innate immune system, may lead to a pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Lingyu Wei
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemei Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiurong Ye
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiang Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Zheng
- Center for Medical Research, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peishan Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoyue Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Can Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China. .,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China. .,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
257
|
Tannenbaum CS, Rayman PA, Pavicic PG, Kim JS, Wei W, Polefko A, Wallace W, Rini BI, Morris-Stiff G, Allende DS, Hamilton T, Finke JH, Diaz-Montero CM. Mediators of Inflammation-Driven Expansion, Trafficking, and Function of Tumor-Infiltrating MDSCs. Cancer Immunol Res 2019; 7:1687-1699. [PMID: 31439615 DOI: 10.1158/2326-6066.cir-18-0578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are induced by and accumulate within many histologically distinct solid tumors, where they promote disease by secreting angiogenic and immunosuppressive molecules. Although IL1β can drive the generation, accumulation, and functional capacity of MDSCs, the specific IL1β-induced inflammatory mediators contributing to these activities remain incompletely defined. Here, we identified IL1β-induced molecules that expand, mobilize, and modulate the accumulation and angiogenic and immunosuppressive potencies of polymorphonuclear (PMN)-MDSCs. Unlike parental CT26 tumors, which recruited primarily monocytic (M)-MDSCs by constitutively expressing GM-CSF- and CCR2-directed chemokines, IL1β-transfected CT26 produced higher G-CSF, multiple CXC chemokines, and vascular adhesion molecules required for mediating infiltration of PMN-MDSCs with increased angiogenic and immunosuppressive properties. Conversely, CT26 tumors transfected with IL1β-inducible molecules could mobilize PMN-MDSCs, but because they lacked the ability to upregulate IL1β-inducible CXCR2-directed chemokines or vascular adhesion molecules, additional PMN-MDSCs could not infiltrate tumors. IL1β-expressing CT26 increased angiogenic and immunosuppressive factors of tumor-infiltrating MDSCs, as did CT26 tumors individually transfected with G-CSF, Bv8, CXCL1, or CXCL5, demonstrating that mediators downstream of IL1β could also modulate MDSC functional activity. Translational relevance was indicated by the finding that the same growth factors, cytokines, chemokines, and adhesion molecules responsible for the mobilization and recruitment of PMN-MDSCs into inflammatory CT26 murine tumors were also coordinately upregulated with increasing IL1β expression in human renal cell carcinoma tumors. These studies demonstrated that IL1β stimulated the components of a multifaceted inflammatory program that produces, mobilizes, chemoattracts, activates, and mediates the infiltration of PMN-MDSCs into inflammatory tumors to promote tumor progression.
Collapse
Affiliation(s)
- Charles S Tannenbaum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Patricia A Rayman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul G Pavicic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jin Sub Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wei Wei
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Alexandra Polefko
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wesley Wallace
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brian I Rini
- Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | | | | | - Thomas Hamilton
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - James H Finke
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - C Marcela Diaz-Montero
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
258
|
Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics Targeting the Tumor Microenvironment. Front Bioeng Biotechnol 2019; 7:197. [PMID: 31475143 PMCID: PMC6703081 DOI: 10.3389/fbioe.2019.00197] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular "evolution" within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
| |
Collapse
|
259
|
Shiba S, Ikeda K, Suzuki T, Shintani D, Okamoto K, Horie-Inoue K, Hasegawa K, Inoue S. Hormonal Regulation of Patient-Derived Endometrial Cancer Stem-like Cells Generated by Three-Dimensional Culture. Endocrinology 2019; 160:1895-1906. [PMID: 31265065 DOI: 10.1210/en.2019-00362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Low-grade and early-stage endometrial cancer usually has a favorable prognosis, whereas recurrent or metastatic disease is often difficult to cure. Thus, the molecular mechanisms underlying advanced pathophysiology remain to be elucidated. From the perspective of the origin of advanced endometrial cancer, the characterization of cancer stem-like cells (CSCs) will be the first step toward the development of clinical management. We established long-term culturable patient-derived cancer cells (PDCs) from patient endometrial tumors by spheroid cell culture, which is favorable for the enrichment of CSCs. PDC-derived xenograft tumors were generated in immunodeficient NOD/Shi-scid, IL-2RγKO Jic mice. Morphologically, PDCs derived from three distinct patient samples and their xenograft tumors recapitulated the corresponding original patient tumors. Of note, CSC-related genes including ALDH1A1 were upregulated in all of these PDCs, and the therapeutic potentiality of aldehyde dehydrogenase inhibitors was demonstrated. In addition, these PDCs and their patient-derived xenograft (PDX) models exhibited distinct characteristics on the basis of their hormone responsiveness and metastatic features. Interestingly, genes associated with inflammation and tumor immunity were upregulated by 17β-estradiol in PDC lines with high estrogen receptor expression and were also overexpressed in secondary PDCs obtained from metastatic tumor models. These results suggest that PDC and PDX models from endometrial cancer specimens would be useful to elucidate CSC traits and to develop alternative diagnostic and therapeutic options for advanced disease.
Collapse
Affiliation(s)
- Sachiko Shiba
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
260
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
261
|
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39:12. [PMID: 31182982 PMCID: PMC6551897 DOI: 10.1186/s41232-019-0101-5] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1, an inflammatory cytokine, is considered to have diverse physiological functions and pathological significances and play an important role in health and disease. In this decade, interleukin-1 family members have been expanding and evidence is accumulating that highlights the importance of interleukin-1 in linking innate immunity with a broad spectrum of diseases beyond inflammatory diseases. In this review, we look back on the definition of "inflammation" in traditional general pathology and discuss new insights into interleukin-1 in view of its history and the molecular bases of diseases, as well as current progress in therapeutics.
Collapse
Affiliation(s)
- Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|
262
|
Miarka L, Hauser C, Helm O, Holdhof D, Beckinger S, Egberts JH, Gundlach JP, Lenk L, Rahn S, Mikulits W, Trauzold A, Sebens S. The Hepatic Microenvironment and TRAIL-R2 Impact Outgrowth of Liver Metastases in Pancreatic Cancer after Surgical Resection. Cancers (Basel) 2019; 11:cancers11060745. [PMID: 31146405 PMCID: PMC6627672 DOI: 10.3390/cancers11060745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022] Open
Abstract
Most patients with pancreatic ductal adenocarcinoma (PDAC) undergoing curative resection relapse within months, often with liver metastases. The hepatic microenvironment determines induction and reversal of dormancy during metastasis. Both tumor growth and metastasis depend on the Tumor necrosis factor (TNF)-related apoptosis-inducing ligand-receptor 2 (TRAIL-R2). This study investigated the interplay of TRAIL-R2 and the hepatic microenvironment in liver metastases formation and the impact of surgical resection. Although TRAIL-R2-knockdown (PancTu-I shTR2) decreased local relapses and number of macroscopic liver metastases after primary tumor resection in an orthotopic PDAC model, the number of micrometastases was increased. Moreover, abdominal surgery induced liver inflammation involving activation of hepatic stellate cells (HSCs) into hepatic myofibroblasts (HMFs). In coculture with HSCs, proliferation of PancTu-I shTR2 cells was significantly lower compared to PancTu-I shCtrl cells, an effect still observed after switching coculture from HSC to HMF, mimicking surgery-mediated liver inflammation and enhancing cell proliferation. CXCL-8/IL-8 blockade diminished HSC-mediated growth inhibition in PancTu-I shTR2 cells, while Vascular Endothelial Growth Factor (VEGF) neutralization decreased HMF-mediated proliferation. Overall, this study points to an important role of TRAIL-R2 in PDAC cells in the interplay with the hepatic microenvironment during metastasis. Resection of primary PDAC seems to induce liver inflammation, which might contribute to outgrowth of liver metastases.
Collapse
Affiliation(s)
- Lauritz Miarka
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
| | - Charlotte Hauser
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany.
| | - Ole Helm
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
- Department, Research Institute Children's Cancer Center Hamburg, 20251 Hamburg, Germany.
| | - Silje Beckinger
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany.
| | - Jan-Paul Gundlach
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany.
| | - Lennart Lenk
- Department of Pediatrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Schwanenweg 20, 24105 Kiel, Germany.
| | - Sascha Rahn
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, 24105 Kiel, Germany.
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Arnold-Heller-Str. 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|
263
|
Immunosuppressive Tumor Microenvironment Status and Histological Grading of Endometrial Carcinoma. CANCER MICROENVIRONMENT 2019; 12:169-179. [PMID: 31134527 DOI: 10.1007/s12307-019-00225-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
The recent successes of new cancer immunotherapy approaches have led to investigate their relevance in the context of the Endometrial Carcinoma (EC). These therapies, that take the tumor-induced immunosuppressive microenvironment into account, target the tumor immune escape, in particular the inhibitory receptors involved in the regulation of the effector T cells' activity (immune checkpoints). The aim of this study was to identify, in ECs, differences in intergrades immune status that could contribute to the differences in tumor aggressiveness, and could also be used as theranostic tools. The immune status of tumors was assessed by quantitative real-time PCR. We analyzed the expression of specific genes associated to specific leukocytes subpopulations and the expression of reporting genes associated with the tumor escape/resistance. This study highlights significant differences in the EC intergrades immune status especially the tumor-infiltrating cell types and their activation status as well as in the molecular factors produced by the environment. The immune microenvironment of grade 1 ECs hints at a robust tumoricidal milieu while that of higher grades is more evocative of a tolerogenic milieu. This genes-based immunological monitoring of tumors that easily highlights significant intergrade differences relating to the density, composition and functional state of the leukocyte infiltrate, could give solid arguments for choosing the best therapeutic options, especially those targeting immune checkpoints. Moreover it could enable an easy adaptation of individual treatment approaches for each patient.
Collapse
|
264
|
Tong L, Xie C, Wei Y, Qu Y, Liang H, Zhang Y, Xu T, Qian X, Qiu H, Deng H. Antitumor Effects of Berberine on Gliomas via Inactivation of Caspase-1-Mediated IL-1β and IL-18 Release. Front Oncol 2019; 9:364. [PMID: 31139563 PMCID: PMC6527738 DOI: 10.3389/fonc.2019.00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Gliomas arise in the glial cells of the brain or spine and are the most prevalent and devastating type of brain tumors. Studies of tumor immunology have established the importance of the tumor micro-environment as a driver of oncogenesis. Inflammatory mediators such as IL-1β and IL-18 released by monocytes regulate transcriptional networks that are required for malignant cell growth. Berberine is a natural botanical alkaloid that is widely found in the Berberis species. Although it has been widely used as an anti-diarrheal treatment in North America for several decades, our study is the first to investigate berberine as an anti-tumor agent in glioma cells. In this study, we demonstrate that berberine significantly inhibits inflammatory cytokine Caspase-1 activation via ERK1/2 signaling and subsequent production of IL-1β and IL-18 by glioma cells. Moreover, we found that berberine treatment led to decreased motility and subsequently cell death in U251 and U87 cells. In addition, our study is the first to indicate that berberine can reverse the process of epithelial-mesenchymal transition, a marker of tumor invasion. Taken together, our work supports berberine as a putative anti-tumor agent targeting glioma cells.
Collapse
Affiliation(s)
- Lei Tong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafen Wei
- Department of Neurology, The Provincal Hospital of Heilongjiang Province, Harbin, China
| | - Yunyue Qu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianye Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Qian
- Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huijia Qiu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyu Deng
- Department of Vascular Surgery, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
265
|
Ouyang P, An W, Chen R, Zhang H, Chen D, Jiang E, Zhu W, Li P, Guo H, Chen Z, Wang S. IL-37 promotes cell apoptosis in cervical cancer involving Bim upregulation. Onco Targets Ther 2019; 12:2703-2712. [PMID: 31114224 PMCID: PMC6497894 DOI: 10.2147/ott.s201664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Growing evidence has indicated that interleukin-37 (IL-37) is a potential anticancer molecule that mainly plays an inhibiting role in different kinds of cancers, but data for the role of IL-37 on cell apoptosis in cancers remains rare. The present study aimed to explore the role of IL-37 in cell apoptosis in cervical cancer, and the involved apoptosis-related molecules. Methods: IL-37 was overexpressed by transfecting the pIRES2-EGFP-IL-37 plasmid in HeLa and C33A cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the mRNA expression of IL-37, Bcl-2, Bax and Bim. Western blotting was performed to detect the protein expression of IL-37 and Bim. Cell apoptosis was detected by flow cytometry. Results: IL-37 upregulated the mRNA expression levels of Bim by 138.40% for HeLa (P<0.05) and 58.95% for C33A (P<0.05), and increased the protein expression levels of BimL by 69.10% (P<0.05) and 56.66% (P<0.05) in HeLa and C33A, respectively. Overexpression of IL-37 increased the apoptosis rates by 152.86% for HeLa (P<0.01) and 25.4% for C33A (P<0.05). Knockdown of Bim by specific siRNA interference fragments (SiBim) reduced the apoptosis rates by 36.00% for HeLa (P<0.05) and 14.66% for C33A (P<0.05). Compared with the IL-37 overexpression group, the apoptosis rate in cotransfecting the IL-37 overexpression plasmid and SiBim group decreased by approximately 31% (P<0.05) and 24.35% (P<0.05) in HeLa and C33A, respectively. Conclusion: IL-37 upregulated Bim in cervical cancer cells. Furthermore, IL-37 can promote cervical cancer cell apoptosis, but Bim knockdown decreased this promotion through IL-37. Thus, IL-37 can promote cervical cancer cell apoptosis, which involve the upregulation of Bim.
Collapse
Affiliation(s)
- Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Weifang An
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Pathology Department , Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, 518110, People's Republic of China
| | - Renhuai Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Pathology Department, Dongguan Tungwah Hospital, Dongguan, Guangdong Province, 523110, People's Republic of China
| | - He Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Danrui Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Enping Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Wei Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Peng Li
- Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Hongsheng Guo
- Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Zhangquan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| | - Sen Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China.,Basic Medicine Department, Guangdong Medical University, Dongguan, Guangdong Province 523808, People's Republic of China
| |
Collapse
|
266
|
Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2019; 20:ijms20040840. [PMID: 30781344 PMCID: PMC6413095 DOI: 10.3390/ijms20040840] [Citation(s) in RCA: 826] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, “tumor on a chip” or multicellular tumor-spheroids.
Collapse
|
267
|
Lindahl G, Abrahamsson A, Dabrosin C. Dietary flaxseed and tamoxifen affect the inflammatory microenvironment in vivo in normal human breast tissue of postmenopausal women. Eur J Clin Nutr 2019; 73:1250-1259. [DOI: 10.1038/s41430-019-0396-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
|
268
|
Kong F, Lee BH, Wei K. 5-Hydroxymethylfurfural Mitigates Lipopolysaccharide-Stimulated Inflammation via Suppression of MAPK, NF-κB and mTOR Activation in RAW 264.7 Cells. Molecules 2019; 24:molecules24020275. [PMID: 30642099 PMCID: PMC6359491 DOI: 10.3390/molecules24020275] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) is found in many food products including honey, dried fruits, coffee and black garlic extracts. Here, we investigated the anti-inflammatory activity of 5-HMF and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. 5-HMF pretreatment ranging from 31.5 to 126.0 μg/mL reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a concentration-dependent manner in LPS-stimulated cells. Moreover, 5-HMF-pretreated cells significantly down-regulated the mRNA expression of two major inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and suppressed the production of pro-inflammatory cytokines, as compared with the only LPS-stimulated cells. 5-HMF suppressed the phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), IκBα, NF-κB p65, the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). Besides, 5-HMF was proved to inhibit NF-κB p65 translocation into nucleus to activate inflammatory gene transcription. These results suggest that 5-HMF could exert the anti-inflammatory activity in the LPS-induced inflammatory response by inhibiting the MAPK, NF-κB and Akt/mTOR pathways. Thus, 5-HMF could be considered as a therapeutic ingredient in functional foods.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Bae Hoon Lee
- Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, Zhejiang, China.
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Kun Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
- Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, Zhejiang, China.
| |
Collapse
|
269
|
Wang W, Liu Y, Guo J, He H, Mi X, Chen C, Xie J, Wang S, Wu P, Cao F, Bai L, Si Q, Xiang R, Luo Y. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis 2018; 7:97. [PMID: 30563983 PMCID: PMC6299090 DOI: 10.1038/s41389-018-0106-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Tumor-associated macrophages (TAMs), the main part of immune cells in tumor microenvironment (TME), play a potent role in promoting tumorigenesis through mechanisms such as stimulating angiogenesis, enhancing tumor migration and suppressing antitumor immunity. MicroRNAs (miRNAs) are considered as crucial regulators in multiple biological processes. The relationship between miRNAs and macrophages function has been extensively reported, but the roles that miRNAs play in regulating TAMs phenotype remain unclear. In this study, we screened highly expressed microRNAs in TAMs, and first identified that miR-100 represented a TAMs-high expression pattern and maintained TAMs phenotype by targeting mTOR signaling pathway. Moreover, miR-100 expression level in TAMs was positively related to IL-1ra secretion, a traditional immune-suppressive cytokine, which was determined to promote tumor cells stemness via stimulating Hedgehog pathway. Mechanism study suggested that mTOR/Stat5a pathway was involved in IL-1ra transcriptional regulation process mediated by miR-100. More importantly, tumor metastasis and invasion capacity were significantly decreased in a 4T1 mouse breast cancer model injected intratumorally with miR-100 antagomir, and combination therapy with cisplatin showed much better benefit. In this study, we confirm that highly expressed miR-100 maintains the phenotype of TAMs and promotes tumor metastasis via enhancing IL-1ra secretion. Interfering miR-100 expression of TAMs in mouse breast cancer model could inhibit TAMs pro-tumor function and reduce tumor metastasis, which suggests that miR-100 could serve as a potential therapy target to remodel tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Yan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Huiwen He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Xue Mi
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Junling Xie
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Shengnan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Peng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Fengqi Cao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Lipeng Bai
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China
| | - Rong Xiang
- Department of Immunology, Medical School of Nankai University, 300071, Tianjin, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China. .,Collaborative Innovation Center for Biotherapy, School of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005, Beijing, China.
| |
Collapse
|
270
|
Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev 2018; 45:24-34. [PMID: 30587411 DOI: 10.1016/j.cytogfr.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
The IL-1 family comprises two anti-inflammatory cytokines (IL-37, IL-38), two receptor antagonists (IL-1ra, IL-36ra), and seven ligand agonists (IL-1α, IL-1β, IL-33, IL-36α, IL-36β, IL-36γ). The members of this family exert pleiotropic effects on intercellular signaling, leading to pro- or anti-inflammatory responses. They initiate potent inflammatory and immune responses by binding to specific receptors in the IL-1 receptor family, and their activities are repressed by naturally occurring inhibitors. Various immune cells produce and are regulated by these crucial molecules, which appear to be involved in the pathogenesis of diverse diseases including cancer as well as inflammatory and autoimmune disorders. Recent decades have seen substantial progress in understanding how the IL-1 family contributes to the development of sepsis. In this review, we will briefly introduce the IL-1 family and discuss its critical role in inflammatory and immune responses. The potential significance of IL-1 members in sepsis will also be explored, together with the clinical implications for treating this dangerous condition.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
271
|
Yu B, Li A, Zhang M, Li H, Tao C, Han B. High expression of IL-1β and NFκB in tumor tissue predicts a low recurrence rate of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:6002-6009. [PMID: 31949688 PMCID: PMC6963069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/26/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the relationship between interleukin (IL)-1β and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) expressions in tumor tissue and the recurrence of hepatocellular carcinoma (HCC) after hepatectomy. METHODS The expressions of IL-1β and NFκB in tumor tissues of 92 patients with HCC were measured using immunohistochemical staining. The correlations between IL-1β and NFκB expressions with clinical factors and postoperative recurrence were analyzed. RESULTS Compared with the low expression group, the disease-free survival (DFS) of HCC with high expression of IL-1β and NFκB was more significantly prolonged (P < 0.05). NFκB is a key molecule in the downstream signaling pathway of IL-1β, and the expression of IL-1β and NFκB is positively associated with serum total bilirubin (TBIL). IL-1β and NFκB levels and platelet (PLT) levels were independent risk factors for postoperative recurrence of HCC (P < 0.05). CONCLUSIONS The low expressions of IL-1β and NFκB in HCC tissues are an independent risk factor for the recurrence of HCC after hepatectomy, but a high expression can significantly prolong DFS.
Collapse
Affiliation(s)
- Bangxu Yu
- Department of Surgical Intensive Care Unit, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Aiqin Li
- Department of Out-patient and Emergency, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Mao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Cheng Tao
- Department of Scientific Research Management, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, Shandong, P. R. China
| |
Collapse
|
272
|
Litmanovich A, Khazim K, Cohen I. The Role of Interleukin-1 in the Pathogenesis of Cancer and its Potential as a Therapeutic Target in Clinical Practice. Oncol Ther 2018; 6:109-127. [PMID: 32700032 PMCID: PMC7359982 DOI: 10.1007/s40487-018-0089-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
Interleukin-1 (IL-1) has long been known to be a key mediator of immunity and inflammation. Its dysregulation has been implicated in recent years in tumorigenesis and tumor progression, and its upregulation is thought to be associated with many tumors. Overexpression of the IL-1 agonists IL-1α and IL-1β has been shown to promote tumor invasiveness and metastasis by inducing the expression of angiogenic genes and growth factors. IL-1 blockers such as anakinra and canakinumab are already approved and widely used for the treatment of some autoimmune and autoinflammatory diseases and are currently being tested in preclinical and human clinical trials for cancer therapy. In this paper we review the most recent discoveries regarding the association between IL-1 dysregulation and cancer and present the novel IL-1 blockers currently being tested in cancer therapy and their corresponding clinical trials.
Collapse
Affiliation(s)
- Adi Litmanovich
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Khaled Khazim
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
| | - Idan Cohen
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
- Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
273
|
Piobbico D, Bartoli D, Pieroni S, De Luca A, Castelli M, Romani L, Servillo G, Della-Fazia MA. Role of IL-17RA in the proliferative priming of hepatocytes in liver regeneration. Cell Cycle 2018; 17:2423-2435. [PMID: 30395772 PMCID: PMC6342078 DOI: 10.1080/15384101.2018.1542893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
A tight link has been established between inflammation and cancer. Liver regeneration is a widely used model to study the correlation between inflammation and proliferation. IL-6 is essentially involved in liver regeneration and in cancer. Recently, IL-17A has been shown to regulate not only inflammation, but also cell proliferation. Here, we analyze the role played by IL-17A signaling in liver regeneration by comparing cell proliferation in Wild Type and IL-17RA-/- mice. Partial hepatectomy experiments performed in IL-17RA-/- mice showed a delay in expression of early-genes to prime the residual hepatocyte to proliferate, with subsequent delay in G1/S-phase transition. We demonstrated that IL-17RA regulates, by recruitment of non-parenchymal cell, the expression of IL-6, which in turn triggers the proliferation of residual hepatocytes. Our data indicate an important role played by IL-17RA in liver proliferation via IL-6.
Collapse
Affiliation(s)
- Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Daniela Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Antonella De Luca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
274
|
Zheng P, Zhang Y, Zhang B, Wang Y, Wang Y, Yang L. Synthetic human monoclonal antibody targets hIL1 receptor accessory protein chain with therapeutic potential in triple-negative breast cancer. Biomed Pharmacother 2018; 107:1064-1073. [DOI: 10.1016/j.biopha.2018.07.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023] Open
|
275
|
The Effect of Lutein on Eye and Extra-Eye Health. Nutrients 2018; 10:nu10091321. [PMID: 30231532 PMCID: PMC6164534 DOI: 10.3390/nu10091321] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023] Open
Abstract
Lutein is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health. In particular, lutein is known to improve or even prevent age-related macular disease which is the leading cause of blindness and vision impairment. Furthermore, many studies have reported that lutein may also have positive effects in different clinical conditions, thus ameliorating cognitive function, decreasing the risk of cancer, and improving measures of cardiovascular health. At present, the available data have been obtained from both observational studies investigating lutein intake with food, and a few intervention trials assessing the efficacy of lutein supplementation. In general, sustained lutein consumption, either through diet or supplementation, may contribute to reducing the burden of several chronic diseases. However, there are also conflicting data concerning lutein efficacy in inducing favorable effects on human health and there are no univocal data concerning the most appropriate dosage for daily lutein supplementation. Therefore, based on the most recent findings, this review will focus on lutein properties, dietary sources, usual intake, efficacy in human health, and toxicity.
Collapse
|
276
|
Luo XH, Meng Q, Rao M, Liu Z, Paraschoudi G, Dodoo E, Maeurer M. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology 2018; 155:294-308. [PMID: 30098205 DOI: 10.1111/imm.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous, persistent beta herpesvirus. CMV infection contributes to the accumulation of functional antigen-specific CD8+ T-cell pools with an effector-memory phenotype and enrichment of these immune cells in peripheral organs. We review here this 'memory T-cell inflation' phenomenon and associated factors including age and sex. 'Collateral damage' due to CMV-directed immune reactivity may occur in later stages of life - arising from CMV-specific immune responses that were beneficial in earlier life. CMV may be considered an age-dependent immunomodulator and a double-edged sword in editing anti-tumour immune responses. Emerging evidence suggests that CMV is highly prevalent in patients with a variety of cancers, particularly glioblastoma. A better understanding of CMV-associated immune responses and its implications for immune senescence, especially in patients with cancer, may aid in the design of more clinically relevant and tailored, personalized treatment regimens. 'Memory T-cell inflation' could be applied in vaccine development strategies to enrich for immune reactivity where long-term immunological memory is needed, e.g. in long-term immune memory formation directed against transformed cells.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
277
|
Regulation of IL-1 signaling by the decoy receptor IL-1R2. J Mol Med (Berl) 2018; 96:983-992. [PMID: 30109367 DOI: 10.1007/s00109-018-1684-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
The pleiotropic cytokine IL-1 mediates its biological functions via association with the signaling receptor IL-1R1. Despite an apparent simplicity in IL-1 signaling activation, multiple negative regulators have been identified. The decoy receptor IL-1R2 (also known as CD121b) can suppress IL-1 maturation, sequester its active forms or hinder the signaling complex assembly. IL-1R2 is differentially expressed among numerous cell types and displays cis- and trans- modes of action. In this review, we link different forms of IL-1R2 (membrane-bound (mIL-1R2), secreted (sIL-1R2), shedded (shIL-1R2), cytoplasmic, and intracellular domain (IL-1R2ICD) restricted) with their ability to interfere with IL-1, thereby regulating immune responses. We also discuss the intriguing possible function of IL-1R2 as a transcriptional regulator. Finally, we summarize the known impact of IL-1R2 in disease pathogenesis and discuss its potential role in treatment of inflammatory conditions.
Collapse
|
278
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
279
|
Gottschlich A, Endres S, Kobold S. Can we use interleukin-1β blockade for lung cancer treatment? Transl Lung Cancer Res 2018; 7:S160-S164. [PMID: 29780710 DOI: 10.21037/tlcr.2018.03.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Adrian Gottschlich
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Endres
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
280
|
García-Martínez E, Smith M, Buqué A, Aranda F, de la Peña FA, Ivars A, Cánovas MS, Conesa MAV, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy. Oncoimmunology 2018; 7:e1433982. [PMID: 29872569 PMCID: PMC5980390 DOI: 10.1080/2162402x.2018.1433982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022] Open
Abstract
Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.
Collapse
Affiliation(s)
- Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Melody Smith
- Department of Medicine and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System, IDIBAPS, Barcelona, Spain
| | | | - Alejandra Ivars
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Manuel Sanchez Cánovas
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | - Jitka Fucikova
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic
- Dept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, France
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
281
|
Dinarello CA. Introduction to the interleukin-1 family of cytokines and receptors: Drivers of innate inflammation and acquired immunity. Immunol Rev 2018; 281:5-7. [PMID: 29248001 PMCID: PMC5750395 DOI: 10.1111/imr.12624] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, University of Colorado, Aurora, CO, USA
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|