251
|
Geppert T, Bauer S, Hiss JA, Conrad E, Reutlinger M, Schneider P, Weisel M, Pfeiffer B, Altmann KH, Waibler Z, Schneider G. Immunosuppressive small molecule discovered by structure-based virtual screening for inhibitors of protein-protein interactions. Angew Chem Int Ed Engl 2011; 51:258-61. [PMID: 22095772 DOI: 10.1002/anie.201105901] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Indexed: 01/30/2023]
Affiliation(s)
- Tim Geppert
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Chemistry and Applied Biosciences, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Geppert T, Bauer S, Hiss JA, Conrad E, Reutlinger M, Schneider P, Weisel M, Pfeiffer B, Altmann KH, Waibler Z, Schneider G. Identifizierung eines immunsuppressiven Wirkstoffmoleküls durch strukturbasiertes virtuelles Screening nach Inhibitoren von Protein-Protein-Wechselwirkungen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201105901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
253
|
Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood. Mucosal Immunol 2011; 4:682-94. [PMID: 21881572 DOI: 10.1038/mi.2011.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c+ CD11b+ inflammatory dendritic cell and CD8α+ plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.
Collapse
|
254
|
Hickman HD, Li L, Reynoso GV, Rubin EJ, Skon CN, Mays JW, Gibbs J, Schwartz O, Bennink JR, Yewdell JW. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. ACTA ACUST UNITED AC 2011; 208:2511-24. [PMID: 22042976 PMCID: PMC3256957 DOI: 10.1084/jem.20102545] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CCR5-binding chemokines produced in the draining lymph node after vaccinia virus infection guide naive CD8+ T cells toward DCs and away from the macrophage-rich zone, thereby facilitating optimal CD8+ T cell activation and cytokine production. Naive antiviral CD8+ T cells are activated in the draining LN (DLN) by dendritic cells (DCs) presenting viral antigens. However, many viruses infect LN macrophages, which participate in initiation of innate immunity and B cell activation. To better understand how and why T cells select infected DCs rather than macrophages, we performed intravital microscopy and ex vivo analyses after infecting mice with vaccinia virus (VV), a large DNA virus that infects both LN macrophages and DCs. Although CD8+ T cells interact with both infected macrophages and DCs in the LN peripheral interfollicular region (PIR), DCs generate more frequent and stable interactions with T cells. VV infection induces rapid release of CCR5-binding chemokines in the LN, and administration of chemokine-neutralizing antibodies diminishes T cell activation by increasing T cell localization to macrophages in the macrophage-rich region (MRR) at the expense of PIR DCs. Similarly, DC ablation increases both T cell localization to the MRR and the duration of T cell–macrophage contacts, resulting in suboptimal T cell activation. Thus, virus-induced chemokines in DLNs enable antiviral CD8+ T cells to distinguish DCs from macrophages to optimize T cell priming.
Collapse
Affiliation(s)
- Heather D Hickman
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Daissormont ITMN, Christ A, Temmerman L, Sampedro Millares S, Seijkens T, Manca M, Rousch M, Poggi M, Boon L, van der Loos C, Daemen M, Lutgens E, Halvorsen B, Aukrust P, Janssen E, Biessen EAL. Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ Res 2011; 109:1387-95. [PMID: 22021930 DOI: 10.1161/circresaha.111.256529] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Unlike conventional dendritic cells, plasmacytoid DCs (PDC) are poor in antigen presentation and critical for type I interferon response. Though proposed to be present in human atherosclerotic lesions, their role in atherosclerosis remains elusive. OBJECTIVE To investigate the role of PDC in atherosclerosis. METHODS AND RESULTS We show that PDC are scarcely present in human atherosclerotic lesions and almost absent in mouse plaques. Surprisingly, PDC depletion by 120G8 mAb administration was seen to promote plaque T-cell accumulation and exacerbate lesion development and progression in LDLr⁻/⁻ mice. PDC depletion was accompanied by increased CD4⁺ T-cell proliferation, interferon-γ expression by splenic T cells, and plasma interferon-γ levels. Lymphoid tissue PDC from atherosclerotic mice showed increased indoleamine 2,3-dioxygenase (IDO) expression and IDO blockage abrogated the PDC suppressive effect on T-cell proliferation. CONCLUSIONS Our data reveal a protective role for PDC in atherosclerosis, possibly by dampening T-cell proliferation and activity in peripheral lymphoid tissue, rendering PDC an interesting target for future therapeutic interventions.
Collapse
Affiliation(s)
- Isabelle T M N Daissormont
- Department of Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Yajima T. Viral myocarditis: potential defense mechanisms within the cardiomyocyte against virus infection. Future Microbiol 2011; 6:551-66. [PMID: 21585262 DOI: 10.2217/fmb.11.40] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Virus infection can inflict significant damage on cardiomyocytes through direct injury and secondary immune reactions, leading to myocarditis and dilated cardiomyopathy. While viral myocarditis or cardiomyopathy is a complication of systemic infection of cardiotropic viruses, most individuals infected with the viruses do not develop significant cardiac disease. However, some individuals proceed to develop severe virus-mediated heart disease. Recent studies have shown that viral infection of cardiomyocytes is required for the development of myocarditis and subsequent cardiomyopathy. This suggests that viral infection of cardiomyocytes can be an important step that determines the pathogenesis of viral myocarditis during systemic infection. Accordingly, this article focuses on potential defense mechanisms within the cardiomyocyte against virus infection. Understanding of the cardiomyocyte defense against invading viruses may give us novel insights into the pathophysiology of viral myocarditis, and enable us to develop innovative strategies of diagnosis and treatment for this challenging clinical entity.
Collapse
Affiliation(s)
- Toshitaka Yajima
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, 92093-0613K, USA.
| |
Collapse
|
257
|
CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood 2011; 118:5130-40. [PMID: 21937703 DOI: 10.1182/blood-2010-07-295626] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Absent in peripheral tissues during homeostasis, human plasmacytoid dendritic cells (pDCs) are described in inflamed skin or mucosa. Here, we report that, unlike blood pDCs, a subset of tonsil pDCs express functional CCR6 and CCR10, and their respective ligands CCL20 and CCL27are detected in inflamed epithelia contacting blood dendritic cell antigen 2(+) pDCs. Moreover, pDCs are recruited to imiquimod-treated skin tumors in WT but not CCR6-deficient mice, and competitive adoptive transfers reveal that CCR6-deficient pDCs are impaired in homing to inflamed skin tumors after intravenous transfer. On IL-3 culture, CCR6 and CCR10 expression is induced on human blood pDCs that become responsive to CCL20 and CCL27/CCL28, respectively. Interestingly, unlike myeloid DC, blood pDCs initially up-regulate CCR7 expression and CCL19 responsiveness on IL-3 ± CpG-B and then acquire functional CCR6 and CCR10. Finally, IL-3-differentiated CCR6(+) CCR10(+) pDCs secrete high levels of IFN-α in response to virus. Overall, we propose an unexpected pDCs migratory model that may best apply for mucosal-associated lymphoid tissues. After CCR7-mediated extravasation into lymphoid tissues draining inflamed epithelia, blood pDCs may be instructed to up-regulate CCR6 and/or CCR10 allowing their homing into inflamed epithelia (in mucosae or skin). At this site, pDCs can then produce IFN-α contributing to pathogen clearance and/or local inflammation.
Collapse
|
258
|
Satpathy AT, Murphy KM, KC W. Transcription factor networks in dendritic cell development. Semin Immunol 2011; 23:388-97. [PMID: 21924924 PMCID: PMC4010935 DOI: 10.1016/j.smim.2011.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 08/19/2011] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population within the mononuclear phagocyte system (MPS) that derive from bone marrow precursors. Commitment and specification of hematopoietic progenitors to the DC lineage is critical for the proper induction of both immunity and tolerance. This review summarizes the important cytokines and transcription factors required for differentiation of the DC lineage as well as further diversification into specific DC subsets. We highlight recent advances in the characterization of immediate DC precursors arising from the common myeloid progenitor (CMP). Particular emphasis is placed on the corresponding temporal expression of relevant factors involved in regulating developmental options.
Collapse
Affiliation(s)
- Ansuman T Satpathy
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
259
|
Riboldi E, Daniele R, Parola C, Inforzato A, Arnold PL, Bosisio D, Fremont DH, Bastone A, Colonna M, Sozzani S. Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides. J Biol Chem 2011; 286:35329-35333. [PMID: 21880719 DOI: 10.1074/jbc.c111.290494] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoid dendritic cells are specialized in the production of type I interferon (type I IFN), which promotes antiviral and antitumor responses, as well as autoimmune disorders. Activation of type I IFN secretion depends on the pattern recognition receptors TLR7 and TLR9, which sense microbial RNA and DNA, respectively. Type I IFN production is modulated by several receptors, including the type II C-type lectin domain family 4, member C (CLEC4C). The natural ligand of CLEC4C is unknown. To identify it, here we probed a glycan array with a soluble form of the CLEC4C ectodomain. We found that CLEC4C recognizes complex type sugars with terminal galactose. Importantly, soluble CLEC4C bound peripheral blood leukocytes and tumor cells that express glycans with galactose residues at the non-reducing ends. The positive and negative modulation of galactose residues on cell membranes was paralleled by the regulation of type I IFN secretion by plasmacytoid dendritic cells in co-culture experiments in vitro. These results suggest that the modulation in the expression of non-sialylated oligosaccharides by invading pathogens or transformed cells may affect type I IFN response and immune surveillance.
Collapse
Affiliation(s)
- Elena Riboldi
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Roberta Daniele
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Carmen Parola
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Inforzato
- Istituto Clinico Humanitas IRCCS, Via Manzoni 113, 20089 Rozzano (MI), Italy
| | - Phoebe L Arnold
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniela Bosisio
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Antonio Bastone
- Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156 Milano, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Silvano Sozzani
- Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy; Istituto Clinico Humanitas IRCCS, Via Manzoni 113, 20089 Rozzano (MI), Italy.
| |
Collapse
|
260
|
Elkon KB, Stone VV. Type I interferon and systemic lupus erythematosus. J Interferon Cytokine Res 2011; 31:803-12. [PMID: 21859344 DOI: 10.1089/jir.2011.0045] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease associated with multiple immunologic abnormalities. Prominent among these is upregulation of type I interferon (IFN)?a powerful immune adjuvant. IFN is, in part, produced in SLE in response to autoantigens in the form of self-nucleic acids and their associated nuclear proteins. Sources of these autoantigens include apoptotic and necrotic cells as well as neutrophils undergoing a specific form of cell death called NETosis. Although plasmacytoid dendritic cells are the main producers of IFN-a, other cells are important regulators of this process. Both genetic and environmental risk factors play a role in the development and pathogenesis of SLE. Further highlighting the importance of IFN, candidate gene and genome-wide association studies have identified a number of genes involved in type I IFN pathways associated with SLE. In this review, 3 monogenic deficiencies that result in lupus-like phenotypes and several polygenic variants that have been consistently associated with SLE are highlighted, and the relationship of these genes to IFN-a production is discussed. Clinical associations of the type I IFN pathway and the use of IFN-blocking agents as therapeutic agents in SLE are also reviewed.
Collapse
Affiliation(s)
- Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, USA.
| | | |
Collapse
|
261
|
Bond E, Liang F, Sandgren KJ, Smed-Sörensen A, Bergman P, Brighenti S, Adams WC, Betemariam SA, Rangaka MX, Lange C, Wilkinson RJ, Andersson J, Loré K. Plasmacytoid dendritic cells infiltrate the skin in positive tuberculin skin test indurations. J Invest Dermatol 2011; 132:114-23. [PMID: 21850028 DOI: 10.1038/jid.2011.246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are rarely present in normal skin but have been shown to infiltrate lesions of infections or autoimmune disorders. Here, we report that several DC subsets including CD123(+) BDCA-2/CD303(+) pDCs accumulate in the dermis in indurations induced by the tuberculin skin test (TST), used to screen immune sensitization by Mycobacterium tuberculosis. Although the purified protein derivate (PPD) used in the TST did not itself induce pDC recruitment or IFN-α production, the positive skin reactions showed high expression of the IFN-α-inducible protein MxA. In contrast, the local immune response to PPD was associated with substantial cell death and high expression of the cationic antimicrobial peptide LL37, which together can provide a means for pDC activation and IFN-α production. In vitro, pDCs showed low uptake of PPD compared with CD11c(+) and BDCA-3/CD141(+) myeloid DC subsets. Furthermore, supernatants from pDCs activated with LL37-DNA complexes reduced the high PPD uptake in myeloid DCs, as well as decreased their capacity to activate T-cell proliferation. Infiltrating pDCs in the TST reaction site may thus have a regulatory effect upon the antigen processing and presentation functions of surrounding potent myeloid DC subsets to limit potentially detrimental and excessive immune stimulation.
Collapse
Affiliation(s)
- Emily Bond
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans. Proc Natl Acad Sci U S A 2011; 108:13688-93. [PMID: 21808013 DOI: 10.1073/pnas.1101684108] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human CD317 is an intrinsic immunity factor that restricts the release of enveloped viruses, including the major pathogens HIV and Lassa virus, from infected cells in culture. Its importance for infection control in humans is unclear, due in part to its incompletely defined in vivo expression pattern. CD317 also has been proposed as a selective target for immunotherapy of multiple myeloma. To provide a framework for studies of the biological functions, regulation, and therapeutic potential of CD317, we performed microarray-based expression profiling in 468 tissue samples from 25 healthy organs from more than 210 patients. We found that CD317 protein was expressed to varying degrees in all organs tested and detected in a number of specialized cell types, including hepatocytes, pneumocytes, ducts of major salivary glands, pancreas and kidney, Paneth cells, epithelia, Leydig cells, plasma cells, bone marrow stromal cells, monocytes, and vascular endothelium. Although many of these cell types are in vivo targets for pathogenic viruses, restriction by CD317 or virus-encoded antagonists has been documented in only some of them. Limited cell type-dependent coexpression of CD317 with the IFN biomarker MxA in vivo and lack of responsive stimulation in organ explants suggest that interferons may only partially regulate CD317. This in vivo expression profiling sheds light on the biology and species-specificity of CD317, identifies multiple thus far unknown interaction sites of viruses with this restriction factor, and refutes the concept of its restricted constitutive expression and primary IFN inducibility. CD317's widespread expression calls into question its suitability as a target for immunotherapy.
Collapse
|
263
|
Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, Servillo G, Brunacci C, Calvitti M, Bicciato S, Mazza EMC, Boon L, Grassi F, Fioretti MC, Fallarino F, Puccetti P, Grohmann U. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 2011; 12:870-8. [PMID: 21804557 DOI: 10.1038/ni.2077] [Citation(s) in RCA: 540] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/22/2011] [Indexed: 02/07/2023]
Abstract
Regulation of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile modulator of immunity. In inflammation, interferon-γ is the main inducer of IDO for the prevention of hyperinflammatory responses, yet IDO is also responsible for self-tolerance effects in the longer term. Here we show that treatment of mouse plasmacytoid DCs (pDCs) with transforming growth factor-β (TGF-β) conferred regulatory effects on IDO that were mechanistically separable from its enzymic activity. We found that IDO was involved in intracellular signaling events responsible for the self-amplification and maintenance of a stably regulatory phenotype in pDCs. Thus, IDO has a tonic, nonenzymic function that contributes to TGF-β-driven tolerance in noninflammatory contexts.
Collapse
Affiliation(s)
- Maria T Pallotta
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Baumgart DC, Metzke D, Guckelberger O, Pascher A, Grötzinger C, Przesdzing I, Dörffel Y, Schmitz J, Thomas S. Aberrant plasmacytoid dendritic cell distribution and function in patients with Crohn's disease and ulcerative colitis. Clin Exp Immunol 2011; 166:46-54. [PMID: 21762123 DOI: 10.1111/j.1365-2249.2011.04439.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dendritic cell (DC) function is believed to be of critical importance for the pathogenesis of inflammatory bowel disease (IBD). To date, most research in animal models and the few human data available is restricted to myeloid DC, while plasmacytoid DC (pDC) capable of controlling both innate and adaptive immune responses have not yet been investigated systematically in human Crohn's disease (CD) or ulcerative colitis (UC). CD11c(-) , CD303(+) /CD304(+) and CD123(+) pDC from peripheral blood (n = 90), mucosal tissue (n = 28) or mesenteric lymph nodes (n = 40) (MLNs) of patients with UC and CD or controls were purified and cultured. Thereafter, pDC were enumerated, phenotyped and cytokine secretion measured by flow cytometry (FACS), immunohistochemistry and/or cytometric bead array, respectively. Interferon (IFN)-α secretion following cytosine phosphatidyl guanine (CpG) A oligodeoxynucleotide (ODN) 2216 (5'-GGGGGACGATCGTCGGGGGG-3') stimulation was assessed by enzyme-linked immunosorbent assay (ELISA). We found a significantly higher frequency of pDC in the inflamed colonic mucosa and MLN of IBD patients. Moreover, the fraction of CD40 and CD86 expressing cultured peripheral blood pDC was significantly higher in flaring UC and CD patients and their secretion of tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 were increased significantly compared with controls. In contrast, the IFN-α secretion of peripheral blood pDC isolated from flaring IBD, particularly in UC patients, was reduced significantly compared with controls. Our data suggest an aberrant distribution and function of pDC in IBD, contrary to their generally implicated role as inducers of tolerance. We speculate that the impaired IFN-α secretion may relate to the hypothesized defect in innate immunity in IBD and could also impact upon the generation of regulatory T cells (T(reg) ).
Collapse
Affiliation(s)
- D C Baumgart
- Department of Medicine, Division of Gastroenterology and Hepatology Department of Surgery General Internal Medicine Outpatient Clinic, Charité Medical Center - Virchow Hospital, Medical School of the Humboldt-University of Berlin, 13344 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Vermi W, Soncini M, Melocchi L, Sozzani S, Facchetti F. Plasmacytoid dendritic cells and cancer. J Leukoc Biol 2011; 90:681-90. [PMID: 21730085 DOI: 10.1189/jlb.0411190] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cancer develops in a complex microenvironment comprising cancer cells, stromal cells, and host immune cells with their soluble products. The counteracting host-protective and tumor-promoting roles of different immune cell populations have been elegantly clarified in the last decade by pertinent genetically modified mouse models. Among cells with a potential role in cancer immunity, PDCs might represent important players as a result of their capacity to bring together innate and adaptive immunity. This review summarizes current knowledge about the role of PDCs in cancer immunity. PDCs have been documented in primary and metastatic human neoplasms; however, the clinical significance of this finding is still unknown. Once into the tumor bed, PDCs can be hijacked by the tumor microenvironment and lose their propensity to produce the required amount of endogenous I-IFN. However, when properly reprogrammed (i.e., by TLR agonists), PDCs might mediate tumor rejection in a clinical setting. Tumor rejection, at least partially, is driven by I-IFN and seems to require a cross-talk with other innate immune cells, including IFN DCs. The latter evidence, although still limited to skin cancers, can provide a leading model for developing adjuvant immune therapy for other neoplasms. To this end, the generation of appropriate mouse models to modulate the frequency and activation state of murine PDCs will also be of remarkable importance.
Collapse
Affiliation(s)
- William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy.
| | | | | | | | | |
Collapse
|
266
|
Chiu YE, Co DO. Juvenile dermatomyositis: immunopathogenesis, role of myositis-specific autoantibodies, and review of rituximab use. Pediatr Dermatol 2011; 28:357-67. [PMID: 21793879 DOI: 10.1111/j.1525-1470.2011.01501.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Juvenile dermatomyositis (JDM) is an autoimmune disease of the skin and muscle that affects children. The etiology is poorly understood, but genetic susceptibility, environmental triggers, and abnormal immune responses are each thought to play a part. T cells have traditionally been implicated in the immunopathogenesis of JDM, but dendritic cells, B cells, and microchimerism are increasingly associated. Additionally, myositis-specific autoantibodies (MSA) can be present in the sera of affected patients and may correlate with distinct clinical phenotypes. Given the role of humoral immunity and MSA, there has been recent interest in the use of rituximab to treat JDM. Early results are mixed, but it is hoped that a prospective clinical trial will shed light on the issue in the near future.
Collapse
Affiliation(s)
- Yvonne E Chiu
- Division of Pediatric Dermatology, Department of Dermatology, Medical College of Wisconsin Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
267
|
Demberg T, Ettinger AC, Aladi S, McKinnon K, Kuddo T, Venzon D, Patterson LJ, Phillips TM, Robert-Guroff M. Strong viremia control in vaccinated macaques does not prevent gradual Th17 cell loss from central memory. Vaccine 2011; 29:6017-28. [PMID: 21708207 DOI: 10.1016/j.vaccine.2011.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 12/22/2022]
Abstract
It has been proposed that microbial translocation might play a role in chronic immune activation during HIV/SIV infection. Key roles in fighting bacterial and fungal infections have been attributed to Th17 and Tc17 cells. Th17 cells can be infected with HIV/SIV, however whether effective vaccination leads to their maintenance following viral challenge has not been addressed. Here we retrospectively investigated if a vaccine regimen that potently reduced viremia post-challenge preserved Th17 and Tc17 cells, thus adding benefit in the absence of sterilizing protection. Rhesus macaques were previously vaccinated with replication-competent Adenovirus recombinants expressing HIVtat and HIVenv followed by Tat and gp140 protein boosting. Upon SHIV(89.6P) challenge, the vaccines exhibited a significant 4 log reduction in chronic viremia compared to sham vaccinated controls which rapidly progressed to AIDS [39]. Plasma and cryopreserved PBMC samples were examined pre-challenge and during acute and chronic infection. Control macaques exhibited a rapid loss of CD4(+) cells, including Th17 cells. Tc17 cells tended to decline over the course of infection although significance was not reached. Immune activation, assessed by Ki-67 expression, was associated with elevated chronic viremia of the controls. Significantly increased plasma IFN-γ levels were also observed. No increase in plasma LPS levels were observed suggesting a lack of microbial translocation. In contrast, vaccinated macaques had no evidence of immune activation within the chronic phase and preserved both CD4(+) T-cells and Tc17 cells in PBMC. Nevertheless, they exhibited a gradual, significant loss of Th17 cells which concomitantly displayed significantly higher CCR6 expression over time. The gradual Th17 cell decline may reflect mucosal homing to inflammatory sites and/or slow depletion due to ongoing low levels of SHIV replication. Our results suggest that potent viremia reduction during chronic SHIV infection will delay but not prevent the loss of Th17 cells.
Collapse
Affiliation(s)
- Thorsten Demberg
- National Cancer Institute, Vaccine Branch, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Posttranscriptional control of type I interferon genes by KSRP in the innate immune response against viral infection. Mol Cell Biol 2011; 31:3196-207. [PMID: 21690298 DOI: 10.1128/mcb.05073-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions. Expression of ARE-containing type I interferon transcripts is robustly induced upon viral infection and rapidly shut off thereafter. Their transient accumulation is partly mediated through posttranscriptional regulation. Here we show that mouse embryonic fibroblasts derived from knockout mice deficient in KH-type splicing regulatory protein (KSRP), an RNA-binding protein required for ARE-mediated mRNA decay, produce higher levels of Ifna and Ifnb mRNAs in response to viral infection as a result of decreased mRNA decay. Functional analysis showed that KSRP is required for the decay of Ifna4 and Ifnb mRNAs by interaction with AREs. The increased IFN expression renders Ksrp(-)(/)(-) cells refractory to herpes simplex virus type 1 and vesicular stomatitis virus infection. These findings support a role of a posttranscriptional mechanism in the control of type I IFN expression and highlight the function of KSRP in innate immunity by negatively regulating IFN production.
Collapse
|
269
|
Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011; 29:163-83. [PMID: 21219184 DOI: 10.1146/annurev-immunol-031210-101345] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon (IFN-α/β) in response to foreign nucleic acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. pDCs combine features of both lymphocytes and classical dendritic cells and display unique molecular adaptations to nucleic acid sensing and IFN production. In the decade since the identification of the pDC as a distinct immune cell type, our understanding of its molecular underpinnings and role in immunity has progressed rapidly. Here we review select aspects of pDC biology including cell fate establishment and plasticity, specific molecular mechanisms of pDC function, and the role of pDCs in T cell responses, antiviral immunity, and autoimmune diseases. Important unresolved questions remain in these areas, promising exciting times in pDC research for years to come.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
270
|
Marek LR, Kagan JC. Deciphering the function of nucleic acid sensing TLRs one regulatory step at a time. Front Biosci (Landmark Ed) 2011; 16:2060-8. [PMID: 21622162 DOI: 10.2741/3839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
While initial studies of Toll-like Receptor (TLR) signaling mainly focused on genetic analysis of signal transduction, recent work has highlighted the importance of understanding the basic cell biology underlying receptor function. Nowhere is this issue more important than in the study of the nucleic acid-sensing TLRs. These receptors face the unique challenge of distinguishing microbial nucleic acids from similar host-derived molecules. The physiological cost of not making this distinction can be readily observed in studies of autoimmunity, a cause of which is often the inappropriate detection of self nucleic acids. In this review, we highlight recent research that has revealed myriad ways in which mammalian cells control the function of nucleic acid-sensing TLRs. A theme is now emerging whereby these receptors are subject to sequential regulatory mechanisms that control protein transport to their sites of signal transduction, as well as their access microbial nucleic acids.
Collapse
Affiliation(s)
- Lorri R Marek
- Children's Hospital Boston, 61 Binney Street, Enders 730.2, Boston, MA 02115, USA
| | | |
Collapse
|
271
|
Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol 2011; 41:1517-27. [PMID: 21574164 DOI: 10.1002/eji.201041253] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 12/16/2023]
Abstract
Much has been learnt about the mechanisms of thymic self-tolerance induction from work on both the rare autosomal recessive disease autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) and the autoimmune regulator (AIRE) protein mutated in this disease. Normally, AIRE drives low-level expression of huge numbers of peripheral tissue-specific antigens (TSAgs) in medullary thymic epithelial cells (mTECs), leading to the deletion of TSAg-reactive thymocytes maturing nearby. The very recently discovered neutralizing autoantibodies (autoAbs) against Th17-related cells and cytokines in two autoimmunity-related syndromes associated with AIRE-mutant thymi or AIRE-deficient thymomas help to explain the chronic mucocutaneous candidiasis (CMC) seen in both syndromes. The surprising parallels between these syndromes also demand new hypotheses and research into the consequences of AIRE deficiency and the ensuing autoimmunizing pathways, and suggest more appropriate treatment regimens as discussed in this review.
Collapse
Affiliation(s)
- Kai Kisand
- Molecular Pathology Group, Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
272
|
Bonnefoy F, Couturier M, Clauzon A, Rémy-Martin JP, Gaugler B, Tiberghien P, Chen W, Saas P, Perruche S. TGF-beta-exposed plasmacytoid dendritic cells participate in Th17 commitment. THE JOURNAL OF IMMUNOLOGY 2011; 186:6157-64. [PMID: 21518970 DOI: 10.4049/jimmunol.1002497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TGF-β is required for both Foxp3(+) regulatory T cell (Treg) and Th17 commitment. Plasmacytoid DCs (pDC) have been shown to participate to both Treg and Th17 commitment as well. However, few studies have evaluated the direct effect of TGF-β on pDC, and to our knowledge, no study has assessed the capacity of TGF-β-exposed pDC to polarize naive CD4(+) T cells. In this paper, we show that TGF-β-treated pDC favor Th17 but not Treg commitment. This process involves a TGF-β/Smad signal, because TGF-β treatment induced Smad2 phosphorylation in pDC and blockade of TGF-β signaling with the SD208 TGF-βRI kinase inhibitor abrogated Th17 commitment induced by TGF-β-treated pDC. Moreover, TGF-β mRNA synthesis and active TGF-β release were induced in TGF-β-treated pDC and anti-TGF-β Ab blocked Th17 commitment. Unexpectedly, TGF-β treatment also induced increased IL-6 production by pDC, which serves as the other arm for Th17 commitment driven by TGF-β-exposed pDC, because elimination of IL-6-mediated signal with either IL-6- or IL-6Rα-specific Abs prevented Th17 commitment. The in vivo pathogenic role of TGF-β-treated pDC was further confirmed in the Th17-dependent collagen-induced arthritis model in which TGF-β-treated pDC injection significantly increased arthritis severity and pathogenic Th17 cell accumulation in the draining lymph nodes. Thus, our data reveal a previously unrecognized effect of TGF-β-rich environment on pDC ability to trigger Th17 commitment. Such findings have implications in the pathogenesis of autoimmune diseases or immune responses against mucosal extracellular pathogens.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM, Unité Mixte de Recherche 645, F-25020 Besançon Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Pollpeter D, Komuro A, Barber GN, Horvath CM. Impaired cellular responses to cytosolic DNA or infection with Listeria monocytogenes and vaccinia virus in the absence of the murine LGP2 protein. PLoS One 2011; 6:e18842. [PMID: 21533147 PMCID: PMC3077416 DOI: 10.1371/journal.pone.0018842] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/21/2011] [Indexed: 11/22/2022] Open
Abstract
Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA). Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity.
Collapse
Affiliation(s)
- Darja Pollpeter
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Akihiko Komuro
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Glen N. Barber
- Department of Medicine and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, United States of America
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
274
|
Feline tetherin efficiently restricts release of feline immunodeficiency virus but not spreading of infection. J Virol 2011; 85:5840-52. [PMID: 21490095 DOI: 10.1128/jvi.00071-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.
Collapse
|
275
|
Bonnefoy F, Perruche S, Couturier M, Sedrati A, Sun Y, Tiberghien P, Gaugler B, Saas P. Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation. THE JOURNAL OF IMMUNOLOGY 2011; 186:5696-705. [PMID: 21460208 DOI: 10.4049/jimmunol.1001523] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM Unité Mixte de Recherche 645, F-25020 Besançon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
276
|
The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections. Adv Virol 2011; 2011:679271. [PMID: 22312349 PMCID: PMC3265311 DOI: 10.1155/2011/679271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/02/2011] [Indexed: 12/18/2022] Open
Abstract
In 1999, two independent groups identified plasmacytoid dendritic cells (PDC) as major type I interferon- (IFN-) producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a "spider web", in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.
Collapse
|
277
|
Pereira LF, de Souza APD, Borges TJ, Bonorino C. Impaired in vivo CD4+ T cell expansion and differentiation in aged mice is not solely due to T cell defects: decreased stimulation by aged dendritic cells. Mech Ageing Dev 2011; 132:187-94. [PMID: 21453718 DOI: 10.1016/j.mad.2011.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
CD4+ T cells regulate humoral and cell-mediated immune responses, which are progressively impaired in aging, resulting in susceptibility to infections and cancer. Dendritic cells (DCs) are major activators of T cells, providing signals that drive their expansion and differentiation. In this study, we asked if decreased CD4+ T cell responses were influenced by the age of DCs rather than being exclusively due to T cell defects. Old T cells transferred to young recipients expanded and differentiated similarly to young T cells. However, aged recipients were poor stimulators of both old and young T cells, which failed to acquire CD44 expression and produce interferon gamma (IFN-γ). DCs in aged hosts expressed fewer MHC-peptide complexes. The CD86 expression in the DCs of both hosts was similar; however, CD40 levels were reduced in old DCs. Finally, old DCs failed to produce inflammatory cytokines in response to LPS. Our results indicate that the impairment of aged CD4+ T cell function is intimately related to multiple alterations in aged DCs, rather than being caused solely by intrinsic T cell defects, suggesting that the function of aged T cells may be partially rescued in vivo when appropriate stimulation is applied. These findings are relevant to vaccination design for elderly populations.
Collapse
Affiliation(s)
- Luciana F Pereira
- Departamento de Biologia Celular e Molecular (FABIO) and Instituto de Pesquisas Biomédicas, PUCRS, Av. Ipiranga, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
278
|
Delamarre L, Mellman I. Harnessing dendritic cells for immunotherapy. Semin Immunol 2011; 23:2-11. [PMID: 21377379 DOI: 10.1016/j.smim.2011.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DC) are the antigen presenting cells that initiate and direct adaptive immune responses, capable of inducing protective adaptive immune responses and tolerance. They sample their surroundings, internalizing, processing and presenting antigens to T cells. They distinguish between self and foreign antigens with a wide array of microbial sensors, and induce immunity when antigen is captured in the presence of microbial products or inflammatory stimuli, but tolerance in the absence of these signals. However, not all DCs are identical. There are distinct DC subsets spread throughout the body, and although they share common features, they also have specialized functions. As a consequence, the outcome of the immune response is determined by the context in which the antigen is acquired, and also by the DC subset(s) involved. Here we discuss the features of the DC subsets, their handling of antigens for MHCI- and MHCII-restricted presentation, how their functions are regulated by foreign and endogenous signals, the consequences on the type of immune response induced, and how they provide insights on the design of immunotherapy.
Collapse
Affiliation(s)
- Lélia Delamarre
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States.
| | | |
Collapse
|
279
|
Abstract
Chronic immune activation is a hallmark of HIV infection, yet the underlying triggers of immune activation remain unclear. Persistent antigenic stimulation during HIV infection may also lead to immune exhaustion, a phenomenon in which effector T cells become dysfunctional and lose effector functions and proliferative capacity. Several markers of immune exhaustion, such as PD-1, LAG-3, Tim-3, and CTLA-4, which are also negative regulators of immune activation, are preferentially upregulated on T cells during HIV infection. It is not yet clear whether accumulation of T cells expressing activation inhibitory molecules is a consequence of general immune or chronic HIV-specific immune activation. Importantly, however, in vitro blockade of PD-1 and Tim-3 restores HIV-specific T-cell responses, indicating potential for immunotherapies. In this review we discuss the evolution of our understanding of immune exhaustion during HIV infection, highlighting novel markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Alka Khaitan
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| | - Derya Unutmaz
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; New York University Langone Medical Center, 522 First Avenue, Smilow Research Center, Room 1011, New York, NY 10016, USA
| |
Collapse
|
280
|
|
281
|
The early interferon response to rotavirus is regulated by PKR and depends on MAVS/IPS-1, RIG-I, MDA-5, and IRF3. J Virol 2011; 85:3717-32. [PMID: 21307186 DOI: 10.1128/jvi.02634-10] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In mouse embryonic fibroblasts (MEFs), the bovine rotavirus (UK strain) but not the simian rhesus rotavirus (RRV) robustly triggers beta interferon (IFN-β) secretion, resulting in an IFN-dependent restriction of replication. We now find that both rotavirus strains trigger antiviral transcriptional responses early during infection and that both transcriptional responses and IFN-β secretion are completely abrogated in MAVS/IPS-1(-/-) MEFs. Replication of UK virus could be rescued in MAVS/IPS-1(-/-) MEFs, and synthesis of viral RNA significantly increased early during virus infection. UK virus induced IFN-β secretion and transcription of IFN-stimulated genes (ISGs) in both RIG-I(-/-) and MDA-5(-/-) MEFs, and neither receptor was essential by itself for the antiviral response to UK rotavirus. However, when receptors RIG-I and MDA-5 were depleted using RNA interference, we found that both contribute to the magnitude of the IFN response. IRF3 was found to be essential for MAVS/IPS-1-directed ISG transcription and IFN-β secretion during rotavirus infection. Interestingly, absence of the double-stranded RNA-dependent protein kinase PKR led to a profound defect in the capacity of host cells to secrete IFN-β in response to virus. Both PKR and IRF3 restricted the early replication of UK as indicated by significant increases in viral RNA in fibroblasts lacking either gene. Despite the loss in IFN-β secretion in PKR(-/-) MEFs, we did not observe decreased IRF3- or NF-κB-dependent early ISG transcription in these cells. Levels of transcripts encoding IFN-α4, IFN-α5, and IFN-β were high in infected PKR(-/-) MEFs, indicating that during rotavirus infection, PKR functions at a stage between IFN gene transcription and subsequent IFN-β secretion. These findings reveal that activation of the antiviral response by rotavirus is dependent on MAVS/IPS-1 and IRF3 and involves both RIG-I and MDA-5 and that IFN-β secretion during rotavirus infection is regulated by PKR.
Collapse
|
282
|
Rönnblom L, Alm GV, Eloranta ML. The type I interferon system in the development of lupus. Semin Immunol 2011; 23:113-21. [PMID: 21292501 DOI: 10.1016/j.smim.2011.01.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 02/07/2023]
Abstract
The type I interferon (IFN) system induces inhibition of viral replication, but can also activate the innate and adaptive immune system. An important role of the type I IFN system in autoimmune diseases, including lupus, is suggested by the observation that these disorders display a prominent over-expression of type I IFN regulated genes. The development of autoimmune diseases in some individuals treated with IFN-α directly supports a pivotal role for this cytokine in breaking tolerance and inducing autoimmune reactions. A genetic setup that promotes type I IFN production and/or response and the presence of endogenous inducers of IFN-α production have been described in patients with lupus. Several known environmental risk factors for development of lupus or disease flares may contribute to the ongoing type I IFN production. In the present review we will describe the possible role of the type I IFN system in the lupus disease process. The possible connection between the type I IFN system and some environmental and genetic risk factors for lupus is also discussed.
Collapse
Affiliation(s)
- Lars Rönnblom
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
283
|
Antigen-specific T-cell responses to a recombinant fowlpox virus are dependent on MyD88 and interleukin-18 and independent of Toll-like receptor 7 (TLR7)- and TLR9-mediated innate immune recognition. J Virol 2011; 85:3385-96. [PMID: 21248035 DOI: 10.1128/jvi.02000-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fowlpox virus (FWPV) is a double-stranded DNA virus long used as a live-attenuated vaccine against poultry diseases, but more recent interest has focused on its use as a mammalian vaccine vector. Here, in a mouse model system using FWPV encoding the nominal target antigen chicken ovalbumin (OVA) (FWPV(OVA)), we describe for the first time some of the fundamental processes by which FWPV engages both the innate and adaptive immune systems. We show that Toll-like receptor 7 (TLR7) and TLR9 are important for type I interferon secretion by dendritic cells, while TLR9 is solely required for proinflammatory cytokine secretion. Despite this functional role for TLR7 and TLR9 in vitro, only the adapter protein myeloid differentiation primary response gene 88 (MyD88) was shown to be essential for the formation of adaptive immunity to FWPV(OVA) in vivo. The dependence on MyD88 was confined only to the T-cell compartment and was not related to its contribution to TLR signaling, dendritic cell maturation, or the capture and presentation of FWPV-derived OVA antigen. We demonstrate that this is not by means of mediating T-cell-dependent interleukin-1 (IL-1) signaling, but rather, we suggest that MyD88 functions to support T-cell-specific IL-18 receptor signaling, which in turn is essential for the formation of adaptive immunity to FWPV-encoded OVA.
Collapse
|
284
|
Hennies CM, Reboulet RA, Garcia Z, Nierkens S, Wolkers MC, Janssen EM. Selective expansion of merocytic dendritic cells and CD8DCs confers anti-tumour effect of Fms-like tyrosine kinase 3-ligand treatment in vivo. Clin Exp Immunol 2011; 163:381-91. [PMID: 21235535 DOI: 10.1111/j.1365-2249.2010.04305.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vaccination with autologous cancer cells aims to enhance adaptive immune responses to tumour-associated antigens. The incorporation of Fms-like tyrosine kinase 3-ligand (FLT3L) treatment to the vaccination scheme has been shown previously to increase the immunogenicity of cancer vaccines, thereby enhancing their therapeutic potential. While evidence has been provided that FLT3L confers its effect through the increase of absolute dendritic cell (DC) numbers, it is currently unknown which DC populations are responsive to FLT3L and which effect FLT3L treatment has on DC functions. Here we show that the beneficial effects of FLT3L treatment resulted predominantly from a marked increase of two specific DC populations, the CD8 DCs and the recently identified merocytic DC (mcDC). These two DC populations (cross)-present cell-associated antigens to T cells in a natural killer (NK)-independent fashion. FLT3L treatment augmented the absolute numbers of these DCs, but did not change their activation status nor their capacity to prime antigen-specific T cells. While both DC populations effectively primed CD8(+) T cell responses to cell-associated antigens, only mcDC were capable to prime CD4(+) T cells to cell-associated antigens. Consequentially, the transfer of tumour vaccine-pulsed mcDC, but not of CD8 DCs, protected mice from subsequent tumour challenge in a vaccination model and resulted in eradication of established tumours in a therapeutic approach. These results show that the beneficial effect of FLT3L is associated with the induction of mcDC and suggests that selective targeting to mcDC or instilling mcDC 'characteristics' into conventional DC populations could significantly enhance the efficacy of tumour vaccines.
Collapse
Affiliation(s)
- C M Hennies
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
285
|
Blois SM, Klapp BF, Barrientos G. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells. J Reprod Immunol 2011; 88:86-92. [PMID: 21227511 DOI: 10.1016/j.jri.2010.11.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 11/28/2022]
Abstract
Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells.
Collapse
Affiliation(s)
- Sandra M Blois
- Charité Centrum 12 für Innere Medizin und Dermatologie, Reproductive Immunology Research Group, University Medicine of Berlin, Germany.
| | | | | |
Collapse
|
286
|
West JA, Gregory SM, Sivaraman V, Su L, Damania B. Activation of plasmacytoid dendritic cells by Kaposi's sarcoma-associated herpesvirus. J Virol 2011; 85:895-904. [PMID: 20980519 PMCID: PMC3020034 DOI: 10.1128/jvi.01007-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with multiple human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Following primary infection, KSHV typically goes through a brief period of lytic replication prior to the establishment of latency. Plasmacytoid dendritic cells (pDCs) are the major producers of type 1 interferon (IFN), primarily in response to virus infection. Toll-like receptors (TLRs) are key components of the innate immune system, and they serve as pathogen recognition receptors that stimulate the host antiviral response. pDCs express exclusively TLR7 and TLR9, and it is through these TLRs that the type 1 interferon response is activated in pDCs. Currently, it is not known whether KSHV is recognized by pDCs and whether activation of pDCs occurs in response to KSHV infection. We now report evidence that KSHV can infect human pDCs and that pDCs are activated upon KSHV infection, as measured by upregulation of CD83 and CD86 and by IFN-α secretion. We further show that induction of IFN-α occurs through activation of TLR9 signaling and that a TLR9 inhibitor diminishes the production and secretion of IFN-α by KSHV-infected pDCs.
Collapse
Affiliation(s)
- John A. West
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sean M. Gregory
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Vijay Sivaraman
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lishan Su
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center and Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
287
|
North American porcine reproductive and respiratory syndrome viruses inhibit type I interferon production by plasmacytoid dendritic cells. J Virol 2010; 85:2703-13. [PMID: 21191013 DOI: 10.1128/jvi.01616-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although enveloped viruses typically trigger the prodigious secretion of alpha interferon (IFN-α) by plasmacytoid dendritic cells (pDC), porcine pDC remain quiescent when exposed to porcine reproductive and respiratory syndrome virus (PRRSV). This inactivity is likely due to virus-mediated interference since the typical IFN-α response by either purified or nonsorted porcine pDC to transmissible gastroenteritis virus (TGEV) or the Toll-like receptor 9 agonist, oligodeoxynucleotide (ODN) D19, was markedly reduced in the presence of PRRSV. Suppression occurred independently of virus viability and acidification of pDC early endosomes but correlated with diminished levels of IFN-α mRNA. This change was attributed to an abrogation of transcription resulting from a decrease in the otherwise enhanced amounts of the requisite interferon regulatory factor 7 (IRF-7), whose gene expression in turn was limited as a consequence of a lessened availability of nuclear-localized signal transducer and activator of transcription 1 (STAT1). While PRRSV also inhibited tumor necrosis factor alpha (TNF-α) synthesis by pDC responding to either agent, only the interleukin-2 (IL-2) and IL-6 production instigated by ODN D19 exposure was blocked. Likewise, PRRSV did not impact a specific TGEV-associated enhancement of IL-8 expression. Moreover, an augmented phosphorylation of NF-κB seen in activated pDC was not only unaffected by PRRSV but actually occurred in its presence. Thus, as supported by a demonstrated resilience of pDC to PRRSV infection, this pathogen may interact with a cell surface protein(s) to selectively impede the completion of cascades involved in cytokine production by stimulated pDC.
Collapse
|
288
|
Abstract
Plasmacytoid DC (pDC) are type-I IFN-producing cells known for their capacity to promote anti-viral innate and adaptive immune responses. Despite their potent anti-viral function, when compared with conventional DC, pDC exhibit poor immunostimulatory ability and their interaction with T cells often favors the generation of Treg. pDC are activated primarily in response to ssRNA and ssDNA through TLR7 and TLR9, respectively, but also through TLR-independent mechanisms. Non-lymphoid tissue pDC, such as those residing in the airways, gut, and liver, play a significant role in regulating mucosal immunity and are critical for the development of tolerance to inhaled or ingested antigens. Herein we discuss properties that define tolerogenic pDC and how their unique characteristics translate into an ability to regulate immunity and promote the development of tolerance. We cover the importance of pDC during intrathymic Treg development and the maintenance of peripheral tolerance, as well as their regulatory role in transplantation, autoimmunity, and cancer. We highlight recent findings regarding danger-associated molecular pattern and PAMP signaling in the regulation of pDC function, and how the ability of pDC to promote tolerance translates into the potential clinical applications of these cells as therapeutic targets to regulate immune reactivity.
Collapse
Affiliation(s)
- Benjamin M Matta
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
289
|
Ghosh HS, Cisse B, Bunin A, Lewis KL, Reizis B. Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 2010; 33:905-16. [PMID: 21145760 PMCID: PMC3010277 DOI: 10.1016/j.immuni.2010.11.023] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/28/2010] [Accepted: 10/14/2010] [Indexed: 11/16/2022]
Abstract
The interferon-producing plasmacytoid dendritic cells (pDCs) share common progenitors with antigen-presenting classical dendritic cells (cDCs), yet they possess distinct morphology and molecular features resembling those of lymphocytes. It is unclear whether the unique cell fate of pDCs is actively maintained in the steady state. We report that the deletion of transcription factor E2-2 from mature peripheral pDCs caused their spontaneous differentiation into cells with cDC properties. This included the loss of pDC markers, increase in MHC class II expression and T cell priming capacity, acquisition of dendritic morphology, and induction of cDC signature genes. Genome-wide chromatin immunoprecipitation revealed direct binding of E2-2 to key pDC-specific and lymphoid genes, as well as to certain genes enriched in cDCs. Thus, E2-2 actively maintains the cell fate of mature pDCs and opposes the "default" cDC fate, in part through direct regulation of lineage-specific gene expression programs.
Collapse
Affiliation(s)
- Hiyaa S. Ghosh
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Babacar Cisse
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Anna Bunin
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kanako L. Lewis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
290
|
Abstract
The demands that are imposed on the liver as a result of its function as a metabolic organ that extracts nutrients and clears gut-derived microbial products from the blood are met by a unique microanatomical and immunological environment. The inherent tolerogenicity of the liver and its role in the regulation of innate and adaptive immunity are mediated by parenchymal and non-parenchymal antigen-presenting cells (APCs), cell-autonomous molecular pathways and locally produced factors. Here, we review the central role of liver APCs in the regulation of hepatic immune function and also consider how recent insights may be applied in strategies to target liver tolerance for disease therapy.
Collapse
|
291
|
Speeckaert R, van Geel N, Vermaelen KV, Lambert J, Van Gele M, Speeckaert MM, Brochez L. Immune reactions in benign and malignant melanocytic lesions: lessons for immunotherapy. Pigment Cell Melanoma Res 2010; 24:334-44. [DOI: 10.1111/j.1755-148x.2010.00799.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
292
|
The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 2010; 10:813-25. [DOI: 10.1038/nri2886] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
293
|
Slc15a4, AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells. Proc Natl Acad Sci U S A 2010; 107:19973-8. [PMID: 21045126 DOI: 10.1073/pnas.1014051107] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite their low frequency, plasmacytoid dendritic cells (pDCs) produce most of the type I IFN that is detectable in the blood following viral infection. The endosomal Toll-like receptors (TLRs) TLR7 and TLR9 are required for pDCs, as well as other cell types, to sense viral nucleic acids, but the mechanism by which signaling through these shared receptors results in the prodigious production of type I IFN by pDCs is not understood. We designed a genetic screen to identify proteins required for the development and specialized function of pDCs. One phenovariant, which we named feeble, showed abrogation of both TLR-induced type I IFN and proinflammatory cytokine production by pDCs, while leaving TLR responses intact in other cells. The feeble phenotype was mapped to a mutation in Slc15a4, which encodes the peptide/histidine transporter 1 (PHT1) and has not previously been implicated in pDC function. The identification of the feeble mutation led to our subsequent observations that AP-3, as well as the BLOC-1 and BLOC-2 Hermansky-Pudlak syndrome proteins are essential for pDC signaling through TLR7 and TLR9. These proteins are not necessary for TLR7 or TLR9 signaling in conventional DCs and thus comprise a membrane trafficking pathway uniquely required for endosomal TLR signaling in pDCs.
Collapse
|
294
|
Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology 2010; 407:143-51. [DOI: 10.1016/j.virol.2010.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/08/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022]
|
295
|
Seo YJ, Hahm B. Type I interferon modulates the battle of host immune system against viruses. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:83-101. [PMID: 20800760 PMCID: PMC7112037 DOI: 10.1016/s0065-2164(10)73004-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type I interferon (IFN), as its name implies, 'interferes' with virus replication by activating numerous genes. Further, virus-induced type I IFN regulates the magnitude and functions of cells directing the host immune system. Importantly, recent exploration into how type I IFN operates following virus infection has advanced our understanding of its role with respect to modulation of host innate and adaptive immune responses. Such activities include the activation of antigen-presenting dendritic cells and the localization, expansion or differentiation of virus-specific T lymphocytes and antibody-producing B lymphocytes. However, type I IFN not only benefits the host but can also induce unnecessary or extremely pathogenic immune responses. This review focuses on such interactions and the manner in which type I IFN induces dynamic changes in the host immune network, particularly adaptive immune responses to viral invasion. Manipulating the type I IFN-mediated host immune response during virus infections could provide new immunotherapeutic interventions to remedy viral diseases and implement more effective and sustainable type I IFN therapy.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Surgery, Department of Molecular Microbiology and Immunology, Center for Cellular and Molecular Immunology, Virology Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
296
|
Bortezomib suppresses function and survival of plasmacytoid dendritic cells by targeting intracellular trafficking of Toll-like receptors and endoplasmic reticulum homeostasis. Blood 2010; 117:500-9. [PMID: 20956804 DOI: 10.1182/blood-2010-05-284737] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the pathogenesis of inflammatory disorders, so suppressing the activity of DCs is instrumental in treating such diseases. In the present study, we show that a proteasome inhibitor, bortezomib, suppresses the survival and immunostimulatory function of human plasmacytoid DCs (pDCs) by targeting 2 critical points, intracellular trafficking of nucleic acid-sensingToll-like receptors (TLRs) and endoplasmic reticulum (ER) homeostasis. Among the immune cells in blood, pDCs were the most susceptible to the killing effect of bortezomib. This correlates with a decrease in the spliced form of a transcription factor XBP1, which rescues cells from apoptosis by maintaining ER homeostasis. Bortezomib suppressed the production of interferon-α and interleukin-6 by pDCs activated with a TLR9-stimulating CpG DNA and a TLR7-stimulating influenza virus, which appears to be partially independent of apoptosis. Bortezomib inhibited translocation of TLR9 from the ER to endolysosomes but not of an ER membrane protein, Unc93B1, that delivers TLR9 to endolysosomes. Thus, bortezomib suppresses the activity of pDCs by inhibiting intracellular trafficking of TLRs through disrupting the coordinated translocation of TLRs and Unc93B1 and by disturbing ER homeostasis. This study suggests that proteasome inhibitors may alleviate inflammatory disorders such as lupus and psoriasis that involve pDCs.
Collapse
|
297
|
Thogoto virus infection induces sustained type I interferon responses that depend on RIG-I-like helicase signaling of conventional dendritic cells. J Virol 2010; 84:12344-50. [PMID: 20861272 DOI: 10.1128/jvi.00931-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferon (IFN-α/β) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.
Collapse
|
298
|
Hirsch I, Caux C, Hasan U, Bendriss-Vermare N, Olive D. Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer. Trends Immunol 2010; 31:391-7. [PMID: 20832362 DOI: 10.1016/j.it.2010.07.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/22/2010] [Accepted: 07/28/2010] [Indexed: 12/13/2022]
Abstract
HIV-1, hepatitis B virus, hepatitis C virus, and human papillomavirus type 16 cause persistent infections that frequently precede cancer development. Virions of these viruses are weak inducers of interferon-α and impair Toll-like receptor (TLR)9 function. Loss of TLR9 responsiveness also occurs in tumors without viral etiology such as breast, ovary, and head and neck carcinomas. Recent reports have suggested that viruses and components of the tumor microenviroment interact with regulatory receptors on plasmacytoid dendritic cells (pDCs) to impair TLR7 and TLR9 signaling, and to downregulate TLR9 gene expression. The limited responsiveness of pDCs might contribute to reduced innate immune responses during chronic viral infections and oncogenesis, and represent a target for new therapeutic approaches based on TLR agonists.
Collapse
Affiliation(s)
- Ivan Hirsch
- INSERM UMR891, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Université Méditerranée, 27 Boulevard Leï Roure, 13273 Marseille, France.
| | | | | | | | | |
Collapse
|
299
|
Induction of both cellular and humoral immunity following a rational prime-boost immunization regimen that incorporates recombinant ovine atadenovirus and fowlpox virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1679-86. [PMID: 20810681 DOI: 10.1128/cvi.00291-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant fowlpox viruses (rFPV) and ovine atadenoviruses (rOAdV) are being developed as safe, nonpathogenic, prophylactic and therapeutic vaccine vectors. There is scope, however, to improve the limited immune responses elicited by each of these vaccine vectors. Using previously determined and optimized routes of administration and viral doses, we characterized the primary adaptive immune responses elicited by recombinant variants of each virus. We demonstrate the contrasting nature of the response elicited by each recombinant virus. Whereas rFPV generates predominately cell-mediated immunity to our nominal target antigen, ovalbumin (OVA), rOAdV drives strong humoral responses. By defining the time taken to achieve maximal cytotoxic T cell responses and by studying the different patterns and kinetics of major histocompatibility complex class I-restricted OVA antigen expression postimmunization, we proposed a heterologous prime-boost regimen of immunization with rOAdV followed by rFPV. The subsequent experimental results showed that this approach produced robust cell-mediated and humoral immune responses against OVA that, importantly, were accompanied by weak anti-viral vector antibody responses. These results, therefore, represent a novel and potentially clinically applicable way to achieve broadly based and effective immunity to the antigens encoded by vectored vaccines.
Collapse
|
300
|
|