251
|
Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ, Waligora-Dupriet AJ. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow's milk allergy in mice. FEMS Microbiol Ecol 2011; 76:133-44. [PMID: 21223329 DOI: 10.1111/j.1574-6941.2010.01035.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies suggesting that the development of atopy is linked to gut microbiota composition are inconclusive on whether dysbiosis precedes or arises from allergic symptoms. Using a mouse model of cow's milk allergy, we aimed at investigating the link between the intestinal microbiota, allergic sensitization, and the severity of symptoms. Germ-free and conventional mice were orally sensitized with whey proteins and cholera toxin, and then orally challenged with β-lactoglobulin (BLG). Allergic responses were monitored with clinical symptoms, plasma markers of sensitization, and the T-helper Th1/Th2/regulatory-T-cell balance. Microbiota compositions were analysed using denaturing gradient gel electrophoresis and culture methods. Germ-free mice were found to be more responsive than conventional mice to sensitization, displaying a greater reduction of rectal temperature upon challenge, higher levels of blood mouse mast cell protease-1 (mMCP-1) and BLG-specific immunoglobulin G1 (IgG1), and a systemic Th2-skewed response. This may be explained by a high susceptibility to release mMCP-1 even in the presence of low levels of IgE. Sensitization did not alter the microbiota composition. However, the absence of or low Staphylococcus colonization in the caecum was associated with high allergic manifestations. This work demonstrates that intestinal colonization protects against oral sensitization and allergic response. This is the first study to show a relationship between alterations within the subdominant microbiota and severity of food allergy.
Collapse
Affiliation(s)
- Bertrand Rodriguez
- EA 4065, Ecosystème intestinal, Probiotiques, Antibiotiques, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
252
|
Buddington RK, Sangild PT. Companion animals symposium: development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J Anim Sci 2011; 89:1506-19. [PMID: 21239667 DOI: 10.2527/jas.2010-3705] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian gastrointestinal (GI) development is guided by genetic determinants established during the evolution of mammals and matched to the natural diet and environment. Coevolution of the host GI tract (GIT) and the resident bacteria has resulted in commensal relationships that are species and even individual specific. The interactions between the host and the GI bacteria are 2-way and of particular importance during the neonatal period, when the GIT needs to adapt rapidly to the external environment, begin processing of oral foods, and acquire the ability to differentiate between and react appropriately to colonizing commensal and potentially pathogenic bacteria. During this crucial period of life, the patterns of gene expression that determine GI structural and functional development are modulated by the bacteria colonizing the previously sterile GIT of fetuses. The types and amounts of dietary inputs after birth influence GI development, species composition, and metabolic characteristics of the resident bacteria, and the interactions that occur between the bacteria and the host. This review provides overviews of the age-related changes in GIT functions, the resident bacteria, and diet, and describes how interactions among these 3 factors influence the health and nutrition of neonates and can have lifelong consequences. Necrotizing enterocolitis is a common GI inflammatory disorder in preterm infants and is provided as an example of interactions that go awry. Other enteric diseases are common in all newborn mammals, and an understanding of the above interactions will enhance efforts to support neonatal health for infants and for farm and companion animals.
Collapse
Affiliation(s)
- R K Buddington
- Department of Health and Sport Science, University of Memphis, Memphis, TN 38152, USA.
| | | |
Collapse
|
253
|
Abstract
This clinical report reviews the currently known health benefits of probiotic and prebiotic products, including those added to commercially available infant formula and other food products for use in children. Probiotics are supplements or foods that contain viable microorganisms that cause alterations of the microflora of the host. Use of probiotics has been shown to be modestly effective in randomized clinical trials (RCTs) in (1) treating acute viral gastroenteritis in healthy children; and (2) preventing antibiotic-associated diarrhea in healthy children. There is some evidence that probiotics prevent necrotizing enterocolitis in very low birth weight infants (birth weight between 1000 and 1500 g), but more studies are needed. The results of RCTs in which probiotics were used to treat childhood Helicobacter pylori gastritis, irritable bowel syndrome, chronic ulcerative colitis, and infantile colic, as well as in preventing childhood atopy, although encouraging, are preliminary and require further confirmation. Probiotics have not been proven to be beneficial in treating or preventing human cancers or in treating children with Crohn disease. There are also safety concerns with the use of probiotics in infants and children who are immunocompromised, chronically debilitated, or seriously ill with indwelling medical devices. Prebiotics are supplements or foods that contain a nondigestible food ingredient that selectively stimulates the favorable growth and/or activity of indigenous probiotic bacteria. Human milk contains substantial quantities of prebiotics. There is a paucity of RCTs examining prebiotics in children, although there may be some long-term benefit of prebiotics for the prevention of atopic eczema and common infections in healthy infants. Confirmatory well-designed clinical research studies are necessary.
Collapse
|
254
|
Adam E, Delbrassine L, Bouillot C, Reynders V, Mailleux AC, Muraille E, Jacquet A. Probiotic Escherichia coli Nissle 1917 activates DC and prevents house dust mite allergy through a TLR4-dependent pathway. Eur J Immunol 2010; 40:1995-2005. [PMID: 20432233 DOI: 10.1002/eji.200939913] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Experimental animal and human studies have demonstrated that probiotic strains have beneficial effects on allergy. Here we report that the probiotic Escherichia coli Nissle 1917 strain (EcN) is able to activate DC, as shown by important cytokine synthesis together with up-regulation of membrane expression of CD40, CD80 and CD86. This EcN-induced DC activation was strictly dependent on the TLR4 signaling pathway and was also associated with stimulation of NF-kappaB and MAPK. We next investigated the prophylactic potential of i.n. co-administration of EcN with a recombinant form of Der p 1 (ProDer p 1) in a murine model of mite allergy. I.n. vaccinations with EcN plus ProDer p 1 prevented the subsequent allergic response following Der p 1 sensitization and airway challenge with aerosolized mite extracts through the induction of an allergen-specific IgG2a response, the prevention of specific IgE production and a strong reduction of IL-5 secretion by allergen-restimulated splenocytes. EcN alone or in combination with ProDer p 1 inhibited the development of airway eosinophilia and neutrophilia. This in vivo protective effect of EcN was, in part, mediated by TLR4 signaling. Our results suggest that EcN represents an efficient adjuvant to prevent allergic responses.
Collapse
Affiliation(s)
- Emmanuelle Adam
- Laboratoire d'Allergologie Expérimentale, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
255
|
Picaud JC, Chapalain V, Paineau D, Zourabichvili O, Bornet FRJ, Duhamel JF. Incidence of infectious diseases in infants fed follow-on formula containing synbiotics: an observational study. Acta Paediatr 2010; 99:1695-700. [PMID: 20560895 PMCID: PMC3034191 DOI: 10.1111/j.1651-2227.2010.01896.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aim Infectious diseases in infants are a major public health issue. Synbiotic-enriched formulas (EF) are intended to mimic the beneficial effects of human milk on infectious diseases. We performed an observational study in infants switching to follow-on formula to determine the effects of synbiotic-enriched formula compared to standard formula (SF). Methods We recorded family characteristics, medical history and growth data, as well as the symptoms, severity and treatment of infectious diseases. Main outcome measures were compared after adjustments for baseline characteristics. Results Between January and June 2007, 771 healthy infants were included in the study; 35.4% experienced at least one infectious disease during the 3-month study period. The most common were upper respiratory tract (24.1%), otitis (6.6%) and gastrointestinal infectious diseases (5.0%). Infants fed synbiotic-enriched formula had fewer infectious diseases overall (EF: 31.0%; SF: 40.6%; p = 0.005) and significantly fewer gastrointestinal infectious diseases (EF: 3.5%; SF: 6.8%; p = 0.03). During follow-up, weight gain was significantly higher (p = 0.0467) in infants fed synbiotic-enriched formula (18.3 ± 8.7 g/day) versus SF (16.9 ± 7.5 g/day). Conclusions Supplementation with synbiotics may have beneficial effects on the incidence of infectious disease and growth in infants. Further studies are needed determine optimal doses and composition of synbiotics in infant formula.
Collapse
Affiliation(s)
- Jean-Charles Picaud
- Department of Neonatology, Croix-Rousse University Hospital, Claude Bernard University Lyon1, Lyon, France.
| | | | | | | | | | | |
Collapse
|
256
|
Penders J, Thijs C, Mommers M, Stobberingh EE, Dompeling E, Reijmerink NE, van den Brandt PA, Kerkhof M, Koppelman GH, Postma DS. Intestinal lactobacilli and the DC-SIGN gene for their recognition by dendritic cells play a role in the aetiology of allergic manifestations. Microbiology (Reading) 2010; 156:3298-3305. [DOI: 10.1099/mic.0.042069-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diminished exposure to harmless micro-organisms, such as lactobacilli, has been suggested to play a role in the increased prevalence of allergic disorders in Westernized communities. The development of allergies depends on both environmental factors and genetic variations, including polymorphisms in genes encoding pattern recognition receptors. The present study examines the effects of both colonization with specific Lactobacillus species and genetic variations in DC-SIGN, a pattern recognition receptor on dendritic cells that recognizes lactobacilli, on the development of atopic dermatitis (AD) and sensitization in infancy. Within the KOALA Birth Cohort Study, faecal samples of 681 one-month-old infants were collected and quantitatively screened for five Lactobacillus species: L. casei, L. paracasei, L. rhamnosus, L. acidophilus and L. reuteri. Eleven haplotype-tagging polymorphisms in the DC-SIGN gene were genotyped in these children. Allergic outcomes were a clinical diagnosis of AD and sensitization (specific IgE) at age 2 years. L. rhamnosus (31.5 %), L. paracasei (31.3 %) and L. acidophilus (14.4 %) were frequently detected in the faecal samples of one-month-old infants, whereas L. casei (2.5 %) and L. reuteri (<1 %) were rare. Colonization with L. paracasei decreased the risk of AD significantly (odds ratio 0.57, 95 % confidence interval 0.32–0.99), whereas effects of L. acidophilus were of borderline statistical significance (0.46, 0.20–1.04). Two DC-SIGN polymorphisms, rs11465413 and rs8112555, were statistically significantly associated with atopic sensitization. The present study supports the ‘old friends’ hypothesis suggesting that certain health-beneficial micro-organisms protect us from developing allergies and that these protective effects are species-dependent. Firm conclusions on the potential interaction between lactobacillus colonization and genetic variations in DC-SIGN in association with the development of allergic disorders cannot be drawn, given the limited power of our study. Therefore, incorporation of consecutive faecal sampling in newly started (birth) cohort studies would be a first requisite to further increase our understanding of host–microbial interactions in health and disease.
Collapse
Affiliation(s)
- John Penders
- Department of Epidemiology, Care and Public Health Research Institute (Caphri), Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Care and Public Health Research Institute (Caphri) Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Carel Thijs
- Department of Epidemiology, Care and Public Health Research Institute (Caphri), Maastricht University, Maastricht, The Netherlands
| | - Monique Mommers
- Department of Epidemiology, Care and Public Health Research Institute (Caphri), Maastricht University, Maastricht, The Netherlands
| | - Ellen E. Stobberingh
- Department of Medical Microbiology, Care and Public Health Research Institute (Caphri) Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Edward Dompeling
- Department of Pediatric Pulmonology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naomi E. Reijmerink
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Piet A. van den Brandt
- Department of Epidemiology, Research Institute Growth and Development (GROW), Maastricht University, Maastricht, The Netherlands
| | - Marjan Kerkhof
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Groningen, The Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirkje S. Postma
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
257
|
Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 2010; 92:1023-30. [PMID: 20844065 DOI: 10.3945/ajcn.2010.29877] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It has been reported that deviations in gut microbiota composition may predispose toward obesity, and specific groups of commensal gut bacteria may harvest energy from food more efficiently than others. Alterations in microbiota compositions of mothers may be transferred to infants and lead to an increased risk of overweight. OBJECTIVE We analyzed the fecal microbiota composition of infants of overweight and normal-weight mothers and assessed the relations of weight and excessive weight gain of mothers during pregnancy on the microbiota of infants. DESIGN Mothers (n = 16) whose prepregnancy body mass index (BMI; in kg/m²) was ≥25 were selected with their infants from a prospective follow-up study of 256 women. Women with a BMI <25 (n = 26) and their infants served as control subjects. At the ages of 1 and 6 mo, infant stool samples were available for the analysis of microbiota composition by fluorescence in situ hybridization combined with flow cytometry and quantitative real-time polymerase chain reaction. RESULTS Infants' fecal microbial composition was related to the weight and weight gain of their mothers during pregnancy. Fecal Bacteroides and Staphylococcus concentrations were significantly higher in infants of overweight mothers during the first 6 mo. Higher weights and BMIs of mothers were related to higher concentrations of Bacteroides, Clostridium, and Staphylococcus and lower concentrations of the Bifidobacterium group. Prevalences of Akkermansia muciniphila, Staphylococcus, and Clostridium difficile groups were lower in infants of normal-weight mothers and of mothers with normal weight gains during pregnancy. CONCLUSION The composition and development of infant gut microbiota are influenced by BMI, weight, and weight gain of mothers during pregnancy.
Collapse
|
258
|
Abstract
The mammalian intestine is home to a complex community of trillions of bacteria that are engaged in a dynamic interaction with the host immune system. Determining the principles that govern host-microbiota relationships is the focus of intense research. Here, we describe how the intestinal microbiota is able to influence the balance between pro-inflammatory and regulatory responses and shape the host's immune system. We suggest that improving our understanding of the intestinal microbiota has therapeutic implications, not only for intestinal immunopathologies but also for systemic immune diseases.
Collapse
|
259
|
In vitro screening of probiotic lactic acid bacteria and prebiotic glucooligosaccharides to select effective synbiotics. Anaerobe 2010; 16:493-500. [DOI: 10.1016/j.anaerobe.2010.07.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/07/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022]
|
260
|
Chiba Y, Shida K, Nagata S, Wada M, Bian L, Wang C, Shimizu T, Yamashiro Y, Kiyoshima-Shibata J, Nanno M, Nomoto K. Well-controlled proinflammatory cytokine responses of Peyer's patch cells to probiotic Lactobacillus casei. Immunology 2010; 130:352-62. [PMID: 20636824 DOI: 10.1111/j.1365-2567.2009.03204.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SUMMARY In order to clarify the probiotic features of immunomodulation, cytokine production by murine spleen and Peyer's patch (PP) cells was examined in response to probiotic and pathogenic bacteria. In spleen cells, probiotic Lactobacillus casei induced interleukin (IL)-12 production by CD11b(+) cells more strongly than pathogenic Gram-positive and Gram-negative bacteria and effectively promoted the development of T helper (Th) type 1 cells followed by high levels of secretion of interferon (IFN)-gamma. Although the levels of IL-12 secreted by PP cells in response to L. casei were lower in comparison with spleen cells, Th1 cells developed as a result of this low-level induction of IL-12. However, IFN-gamma secretion by the L. casei-induced Th1 cells stimulated with a specific antigen was down-regulated in PP cells. Development of IL-17-producing Th17 cells was efficiently induced in PP cells by antigen stimulation. Lactobacillus casei slightly, but significantly, inhibited the antigen-induced secretion of IL-17 without a decrease in the proportion of Th17 cells. No bacteria tested induced the development of IL-10-producing, transforming growth factor-beta-producing or Foxp3-expressing regulatory T cells, thus suggesting that certain probiotics might regulate proinflammatory responses through as yet unidentified mechanisms in PP cells. These data show probiotic L. casei to have considerable potential to induce IL-12 production and promote Th1 cell development, but the secretion of proinflammatory cytokines such as IL-12 and IL-17 may be well controlled in PP cells.
Collapse
Affiliation(s)
- Yukihide Chiba
- Department of Pediatrics, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Coudeyras S, Forestier C. Microbiote et probiotiques : impact en santé humaine. Can J Microbiol 2010; 56:611-50. [DOI: 10.1139/w10-052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All accessible mucous membranes of the human body are colonized by an abundant and diversified microbial flora called microbiota. Recent studies have shown that these microorganisms, long regarded as purely commensal, have essential beneficial effects on human health. Thus, numerous human ailments are linked to dysbiosis; that is, imbalances in the microflora composition. The administration of probiotic microorganisms could, in some situations, provide substantial relief from such disorders. These live microorganisms, which, according to the definition, confer a health benefit to the host when administered in adequate amounts, are often derived from human flora and belong mostly to lactic acid bacteria, in particular to the genus Lactobacillus . The constant improvement of knowledge of the role of human microbiota and the growing popularity of probiotics are now opening the door to new prophylactic and therapeutic strategies in human health.
Collapse
Affiliation(s)
- Sophie Coudeyras
- Université Clermont 1, UFR Pharmacie, Laboratoire de Bactériologie, Clermont Ferrand, France
| | - Christiane Forestier
- Université Clermont 1, UFR Pharmacie, Laboratoire de Bactériologie, Clermont Ferrand, France
| |
Collapse
|
262
|
Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 2010; 7:265-276. [PMID: 20413095 DOI: 10.1016/j.chom.2010.03.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 02/02/2010] [Accepted: 03/01/2010] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract harbors a diverse microbiota that has coevolved with mammalian hosts. Though most associations are symbiotic or commensal, some resident bacteria (termed pathobionts) have the potential to cause disease. Bacterial type VI secretion systems (T6SSs) are one mechanism for forging host-microbial interactions. Here we reveal a protective role for the T6SS of Helicobacter hepaticus, a Gram-negative bacterium of the intestinal microbiota. H. hepaticus mutants with a defective T6SS display increased numbers within intestinal epithelial cells (IECs) and during intestinal colonization. Remarkably, the T6SS directs an anti-inflammatory gene expression profile in IECs, and CD4+ T cells from mice colonized with T6SS mutants produce increased interleukin-17 in response to IECs presenting H. hepaticus antigens. Thus, the H. hepaticus T6SS limits colonization and intestinal inflammation, promoting a balanced relationship with the host. We propose that disruption of such balances contributes to human disorders such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Janet Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarkis K Mazmanian
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
263
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this “organ” has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
264
|
Fujimura KE, Slusher NA, Cabana MD, Lynch SV. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther 2010; 8:435-54. [PMID: 20377338 DOI: 10.1586/eri.10.14] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human superorganism is a conglomerate of mammalian and microbial cells, with the latter estimated to outnumber the former by ten to one and the microbial genetic repertoire (microbiome) to be approximately 100-times greater than that of the human host. Given the ability of the immune response to rapidly counter infectious agents, it is striking that such a large density of microbes can exist in a state of synergy within the human host. This is particularly true of the distal gastrointestinal (GI) tract, which houses up to 1000 distinct bacterial species and an estimated excess of 1 x 10(14) microorganisms. An ever-increasing body of evidence implicates the GI microbiota in defining states of health and disease. Here, we review the literature in adult and pediatric GI microbiome studies, the emerging links between microbial community structure, function, infection and disease, and the approaches to manipulate this crucial ecosystem to improve host health.
Collapse
Affiliation(s)
- Kei E Fujimura
- Colitis and Crohn's Disease Center, Gastroenterology Division, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
265
|
Subbarao P, Becker A, Brook JR, Daley D, Mandhane PJ, Miller GE, Turvey SE, Sears MR. Epidemiology of asthma: risk factors for development. Expert Rev Clin Immunol 2010; 5:77-95. [PMID: 20476901 DOI: 10.1586/1744666x.5.1.77] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This comprehensive review of the recent literature was undertaken to determine the current state of knowledge of the risk factors involved in the development of asthma in order to focus investigations in a proposed new longitudinal birth cohort study. The origins of asthma appear to lie in the prenatal and early postnatal period, and renewed investigations in this period with long-term close follow-up and objective phenotypic characterization will help to unravel the role of the multiple putative environmental factors in the development of asthma. It is only after understanding these effects that one can hope to design rational prevention studies for asthma.
Collapse
Affiliation(s)
- Padmaja Subbarao
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
266
|
Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, Posovszky C, Hoy L, Hornef MW. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 2010; 125:e1433-40. [PMID: 20478942 DOI: 10.1542/peds.2009-2260] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The aim of this study was to analyze a possible association between cesarean delivery and enteric inflammatory diseases in children. METHODS A retrospective, multicenter, case-control study that included 1950 children was performed in cooperation with 26 university and 16 nonacademic children's hospitals. Information on intestinal disease manifestation, together with mode of delivery and gestational age at birth, postnatal complications, and breastfeeding, was collected by the attending physician from children and their parents who were visiting a gastrointestinal outpatient clinic for Crohn disease (CD; 516 cases), ulcerative colitis (250 cases), celiac disease (157 cases), and other gastrointestinal diseases (165 cases) and control subjects who were visiting ophthalmologic, orthodontic, and dental outpatient clinics (862 cases). RESULTS Whereas the rate of cesarean delivery of children with Crohn disease or ulcerative colitis was similar to that of control subjects, a significantly enhanced likelihood of being born by cesarean delivery was found in children with celiac disease compared with control subjects (odds ratio: 1.8 [95% confidence interval: 1.13-2.88]; P = .014). CONCLUSIONS The mode of delivery and associated alterations in the development of the enteric homeostasis during the neonatal period might influence the incidence of celiac disease.
Collapse
Affiliation(s)
- Evalotte Decker
- Department of Pediatrics, Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Pan SJ, Kuo CH, Lam KP, Chu YT, Wang WL, Hung CH. Probiotics and allergy in children--an update review. Pediatr Allergy Immunol 2010; 21:e659-66. [PMID: 20659267 DOI: 10.1111/j.1399-3038.2010.01061.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hygiene hypothesis suggests that the increased prevalence of allergic diseases has resulted from a relative lack of microbial stimuli during infancy and early childhood. Children with atopic diseases have different commensal bacterial groups in the gut compared to non-atopic children, and differences are also found between countries with high and low incidence of atopic diseases. Probiotics are defined as live microorganisms that provide benefits to the health of a host by altering the host's microflora when they are administered in adequate amounts. They are being investigated for possible roles in managing allergic diseases. To date, the evidence that probiotics can be used to treat or prevent allergic diseases of children remains controversial. We reviewed recent randomized, double-blinded, placebo-controlled clinical trials using probiotics for allergic diseases of children and evaluated their clinical efficacy, possible mechanisms, dosage, and safety for managing allergic diseases of children. The current data are insufficient to strongly recommend probiotics as a standard treatment or preventative measure for pediatric allergic disease. More studies are needed to standardize study designs, bacterial strains, dosages, and durations for different allergic diseases of children.
Collapse
Affiliation(s)
- Shih-Jin Pan
- Department of Pediatrics, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
268
|
Abstract
Epidemiological data provide strong evidence for a relationship between undernutrition and life-threatening infection in infants and children. However, the mechanisms that underlie this relationship are poorly understood. Through foetal life, infancy and childhood, the immune system undergoes a process of functional maturation. The adequacy of this process is dependent on environmental factors, and there is accumulating evidence of the impact of pre- and post-natal nutrition in this regard. This review outlines the impact of nutrition during foetal and infant development on the capacity to mount immune responses to infection. It provides an overview of the epidemiologic evidence for such a role and discusses the possible mechanisms involved.
Collapse
Affiliation(s)
- Kelsey D J Jones
- Department of Paediatrics, Imperial College, and Imperial College Healthcare NHS Trust, London, UK.
| | | | | |
Collapse
|
269
|
Kubota A, He F, Kawase M, Harata G, Hiramatsu M, Iino H. Diversity of intestinal bifidobacteria in patients with Japanese cedar pollinosis and possible influence of probiotic intervention. Curr Microbiol 2010; 62:71-7. [PMID: 20512497 DOI: 10.1007/s00284-010-9667-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 04/28/2010] [Indexed: 10/19/2022]
Abstract
This study was conducted to evaluate the potential association between intestinal bifidobacteria and Japanese cedar pollinosis (JCPsis) and possible influences of probiotic intervention. In this study, fecal samples were the collected from 29 JCPsis patients. The qualitative and quantitative analyses of fecal bifidobacteria were conducted by quantitative real-time PCR with 16S rRNA-gene-targeted species-specific primers before cedar pollen spread and after a 10-week intervention with fermented milk prepared with Lactobacillus GG and L. gasseri TMC0356 during pollen spread. Each JCPsis patient had a unique diversity of bifidobacteria, which varied qualitatively and quantitatively in an individual-dependent manner during pollen spread. The serum IgE concentration of JCPsis patients with more than 3 detectable Bifidobacterium species was significantly lower than that of patients with less than 2 detected species. The prevalence of B. adolescentis, B. longum, and B. catenulatum increased after probiotic intervention, although the changes were not statistically significant. These results suggest that lower diversity of intestinal Bifidobacterium species might be a pathological aspect of JCPsis. The diversity of intestinal bifidobacteria could be a prospective target for using probiotics in the management of IgE-mediated allergic disorders including JCPsis.
Collapse
Affiliation(s)
- Akira Kubota
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd, Yokohama, Kanagawa, 241-0023, Japan
| | | | | | | | | | | |
Collapse
|
270
|
Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 2010; 23:23-36. [PMID: 20450531 DOI: 10.1017/s0954422410000065] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The health benefits of breast-feeding have been recognised for a long time. In particular, breast-feeding is associated with lower incidence of necrotising enterocolitis and diarrhoea during the early period of life and with lower incidence of inflammatory bowel diseases, type 2 diabetes and obesity later in life. The higher nutritional and protective degree of human milk is related to its nutritional composition that changes over the lactation period and to the biological activities of specific components while lower growth rate of breast-fed infants may be attributed to their self-regulation of milk intake at a lower level than formula-fed infants. Many results now suggest that the developmental changes in intestinal and pancreatic function that occur postnatally are modulated by the diet. Indeed, formula-feeding induces intestinal hypertrophy and accelerates maturation of hydrolysis capacities; it increases intestinal permeability and bacterial translocation, but does not induce evident differences in microbiota composition. Whether these changes would be beneficial for enhancing absorptive capacities and for educating the gut-associated immune system remains to be further studied. Moreover, it is evident that formula-feeding increases basal blood glucose and decreases plasma ketone body concentrations, while discrepancies on postprandial glycaemia, insulin and incretin responses in both human studies and experimental studies are inconclusive. Manipulating the composition of formula, by reducing protein content, adding prebiotics, growth factors or secretory IgA can modulate intestinal and pancreatic function development, and thereby may reduce the differential responses between breast-fed and formula-fed neonates. However, the developmental responses of the digestive tract to different feeding strategies must be elucidated in terms of sensitivity to developing diseases, taking into account the major role of the intestinal microbiota.
Collapse
|
271
|
Koropatkin NM, Smith TJ. SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 2010; 18:200-15. [PMID: 20159465 DOI: 10.1016/j.str.2009.12.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/19/2022]
Abstract
SusG is an alpha-amylase and part of a large protein complex on the outer surface of the bacterial cell and plays a major role in carbohydrate acquisition by the animal gut microbiota. Presented here, the atomic structure of SusG has an unusual extended, bilobed structure composed of amylase at one end and an unprecedented internal carbohydrate-binding motif at the other. Structural studies further demonstrate that the carbohydrate-binding motif binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site. SusG has an additional starch-binding site on the amylase domain immediately adjacent to the active cleft. Mutagenesis analysis demonstrates that these two additional starch-binding sites appear to play a role in catabolism of insoluble starch. However, elimination of these sites has only a limited effect, suggesting that they may have a more important role in product exchange with other Sus components.
Collapse
|
272
|
Miniello VL, Brunetti L, Tesse R, Natile M, Armenio L, Francavilla R. Lactobacillus reuteri modulates cytokines production in exhaled breath condensate of children with atopic dermatitis. J Pediatr Gastroenterol Nutr 2010; 50:573-576. [PMID: 20639717 DOI: 10.1097/mpg.0b013e3181bb343f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We measured the concentration of interferon-gamma and interleukin-4 in the exhaled breath condensate of children with atopic and nonallergic dermatitis receiving a probiotic supplementation (Lactobacillus reuteri ATCC 55730) or placebo for 8 weeks. We demonstrated that the levels of these cytokines increased and decreased respectively only in atopic subjects receiving active treatment. Our data suggest that the oral administration of a specific probiotic strain in patients with atopic dermatitis can modulate in vivo the cytokine pattern at a different site from intestine.
Collapse
Affiliation(s)
- Vito Leonardo Miniello
- Department of Biomedicine of the Developmental Age, Pediatric Unit Salvatore Maggiore, University of Bari, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
273
|
Jankovic I, Sybesma W, Phothirath P, Ananta E, Mercenier A. Application of probiotics in food products—challenges and new approaches. Curr Opin Biotechnol 2010; 21:175-81. [DOI: 10.1016/j.copbio.2010.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/10/2010] [Indexed: 12/18/2022]
|
274
|
Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl Environ Microbiol 2010; 76:2846-55. [PMID: 20208019 DOI: 10.1128/aem.01714-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The beneficial effects of Bifidobacterium are partly due to its immunostimulatory properties. These immunostimulatory properties may be linked to the presence of unmethylated CpG motifs specific to bacterial DNA, which may induce a TH1 response by activating Toll-like receptors (TLR). Using in silico analyses, PCR amplification, and dot blotting, we characterized the CpG content of various bifidobacterial strains and evaluated the immunostimulatory properties and genomic heterogeneity of these motifs in the genus. Our in silico study, based on entire genome sequences from five bifidobacterial strains, showed that Bifidobacterium genomes contain numerous CpG motifs, including 5'-purine-purine-CG-pyrimidine-pyrimidine-3' and 5'-purine-TCG-pyrimidine-pyrimidine-3' motifs, and biologically active sequences previously identified in lactic acid bacteria. We identified four CpG-rich sequences with Bifidobacterium longum NCC2705. Two sequences with a percent G+C of about 68% included 14 and 16 CpG motifs. Two sequences with a percent G+C of about 60% included 16 and 6 CpG motifs. These sequences induce the production of monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor alpha (TNF-alpha) through a pattern of TLR9 stimulation on RAW 264.7 macrophages. No link could be established between their immunostimulatory properties, the number of CpG motifs, and percent G+C. We investigated inter- and intraspecies heterogeneity in 71 strains of various origins. These sequences were highly conserved in the genus. No link was found between the presence of the CpG-rich sequence and the origin of the strains (healthy, allergic, or preterm infants). The high frequency of CpG motifs in the DNA of Bifidobacterium may play an important role in the immunostimulatory properties of commensal or probiotic bifidobacterial strains.
Collapse
|
275
|
Kukkonen K, Kuitunen M, Haahtela T, Korpela R, Poussa T, Savilahti E. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr Allergy Immunol 2010; 21:67-73. [PMID: 19566584 DOI: 10.1111/j.1399-3038.2009.00907.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of oral tolerance and its stimulation by probiotics are still incomprehensible. Microbial stimulation of the gut may induce a subtle inflammation and induce secretion of mucosal IgA, which participates in antigen elimination. In a cohort of allergy-prone infants receiving probiotics and prebiotics or placebo we studied intestinal IgA and inflammation in the development of eczema, food allergy, asthma, and rhinitis (allergic diseases). We performed a nested unmatched case-control study of 237 infants participating in a randomized double-blind placebo-controlled allergy-prevention trial using a combination of four probiotic strains pre-natally and during 6 months form birth. We measured faecal IgA, alpha1-antitrypsin (alpha1-AT), tumour necrosis factor-alpha (TNF-alpha), and calprotectin at the age of 3 and 6 months. By age 2 yr, 124 infants had developed allergic disease or IgE-sensitization (cases) and 113 had not (controls). In infants with high faecal IgA concentration at the age of 6 months, the risk of having any allergic disease before the age of 2 yr tended to reduce [odds ratio (OR: 0.52)] and the risk for any IgE-associated (atopic) disease reduced significantly (OR: 0.49). High faecal calprotectin at the age of 6 months associated also with lower risk for IgE-associated diseases up to age 2 yr (OR: 0.49). All faecal inflammation markers (alpha1-AT, TNF-alpha, and calprotectin) correlated positively with faecal IgA (p < 0.001). Probiotics tended to augment faecal IgA (p = 0.085) and significantly increased faecal alpha1-AT (p = 0.001). High intestinal IgA in early life associates with minimal intestinal inflammation and indicates reduced risk for IgE-associated allergic diseases.
Collapse
Affiliation(s)
- Kaarina Kukkonen
- The Skin and Allergy Hospital, Department of Pediatric Allergology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
276
|
Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Vergès MC, Butel MJ. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiol 2010; 10:29. [PMID: 20113481 PMCID: PMC2824696 DOI: 10.1186/1471-2180-10-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/29/2010] [Indexed: 11/16/2022] Open
Abstract
Background Bifidobacteria are natural inhabitants of the human gastrointestinal tract. In full-term newborns, these bacteria are acquired from the mother during delivery and rapidly become the predominant organisms in the intestinal microbiota. Bifidobacteria contribute to the establishment of healthy intestinal ecology and can confer health benefits to their host. Consequently, there is growing interest in bifidobacteria, and various strains are currently used as probiotic components in functional food products. However, the probiotic effects have been reported to be strain-specific. There is thus a need to better understand the determinants of the observed benefits provided by these probiotics. Our objective was to compare three human B. longum isolates with the sequenced model strain B. longum NCC2705 at the chromosome and proteome levels. Results Pulsed field electrophoresis genotyping revealed genetic heterogeneity with low intraspecies strain relatedness among the four strains tested. Using two-dimensional gel electrophoresis, we analyzed qualitative differences in the cytosolic protein patterns. There were 45 spots that were present in some strains and absent in others. Spots were excised from the gels and subjected to peptide mass fingerprint analysis for identification. The 45 spots represented 37 proteins, most of which were involved in carbohydrate metabolism and cell wall or cell membrane synthesis. Notably, the protein patterns were correlated with differences in cell membrane properties like surface hydrophobicity and cell agglutination. Conclusion These results showed that proteomic analysis can be valuable for investigating differences in bifidobacterial species and may provide a better understanding of the diversity of bifidobacteria and their potential use as probiotics.
Collapse
Affiliation(s)
- Julio Aires
- Université Paris Descartes, EA 4065, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.
| | | | | | | | | | | |
Collapse
|
277
|
Cox MJ, Huang YJ, Fujimura KE, Liu JT, McKean M, Boushey HA, Segal MR, Brodie EL, Cabana MD, Lynch SV. Lactobacillus casei abundance is associated with profound shifts in the infant gut microbiome. PLoS One 2010; 5:e8745. [PMID: 20090909 PMCID: PMC2807455 DOI: 10.1371/journal.pone.0008745] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 12/17/2009] [Indexed: 02/07/2023] Open
Abstract
Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community.
Collapse
Affiliation(s)
- Michael J. Cox
- Division of Gastroenterology, University of California San Francisco, San Francisco, California, United States of America
| | - Yvonne J. Huang
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kei E. Fujimura
- Division of Gastroenterology, University of California San Francisco, San Francisco, California, United States of America
| | - Jane T. Liu
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Michelle McKean
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Homer A. Boushey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Mark R. Segal
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Eoin L. Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michael D. Cabana
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Susan V. Lynch
- Division of Gastroenterology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
278
|
Abstract
The human intestine is colonized by an estimated 100 trillion bacteria. Some of these bacteria are essential for normal physiology, whereas others have been implicated in the pathogenesis of multiple inflammatory diseases including IBD and asthma. This review examines the influence of signals from intestinal bacteria on the homeostasis of the mammalian immune system in the context of health and disease. We review the bacterial composition of the mammalian intestine, known bacterial-derived immunoregulatory molecules, and the mammalian innate immune receptors that recognize them. We discuss the influence of bacterial-derived signals on immune cell function and the mechanisms by which these signals modulate the development and progression of inflammatory disease. We conclude with an examination of successes and future challenges in using bacterial communities or their products in the prevention or treatment of human disease.
Collapse
Affiliation(s)
- David A Hill
- University of Pennsylvania School of Veterinary Medicine, Department of Pathobiology, Philadelphia, 19104-4539, USA
| | | |
Collapse
|
279
|
Abstract
PURPOSE OF REVIEW The development of the intestinal microbiota occurs primarily during infancy, and a distortion could potentially contribute to a wide range of diseases. This review summarizes the current understanding of the intestinal microbiota in infants. The potential consequences of different colonization patterns on child health and possible preventive interventions are discussed. RECENT FINDINGS Recent studies and the use of culture-independent techniques have shown that Bifidobacterium is only a minor component of the infant gut microbiota. These techniques have also introduced the concept of a core microbiome in which metabolic function is more important than the presence of a particular bacterial species. A less diverse gut microbiota with high counts of Bacteroides, Clostridium, Enterobacteriaceae and Staphylococcus early in life has been associated with an increased risk for atopic disease. Changes in infant gut colonization were also found in relation to childhood obesity. Probiotics have no proven preventive effect on the development of asthma and an unconfirmed effect on atopic dermatitis. A prebiotic trial could show a preventive effect on the development of both atopic diseases. SUMMARY Molecular techniques have improved our understanding of the infant gut ecosystem. The available probiotics for prevention of atopic disease are disappointing, and the results with prebiotics need further confirmation. New studies on the relation between gut microbiota and disease should consider asthma and atopic dermatitis separately. Future trials should focus on high-risk groups, determine their long-term effect and also investigate the effect on Bacteroides and Clostridium.
Collapse
|
280
|
|
281
|
The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 2009; 25:496-502. [PMID: 19770652 PMCID: PMC4737592 DOI: 10.1097/mog.0b013e328331b6b4] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW A vast and diverse array of microbes colonizes the mammalian gastrointestinal tract. These microorganisms are integral in shaping the development and function of the immune system. Metagenomic sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from chronic inflammatory diseases, including inflammatory bowel disease and asthma. This review will discuss the mechanisms through which the innate immune system recognizes and responds to the intestinal microbiota as well as the effect of specific microbiota-derived signals on immune cell homeostasis. RECENT FINDINGS Recent studies in murine model systems have demonstrated that manipulation of the intestinal microbiota can alter mammalian immune cell homeostasis. Specific microbial signals have been identified that can impact immune cell function both within the intestinal tract and in peripheral tissues. These microbiota-derived signals can either have an immunoregulatory effect, creating an immune state that is refractory to inflammation, or conversely, act as an adjuvant, aiding in the propagation of an immune response. SUMMARY Associations between alterations in the microbiota and human disease implicate intestinal microbial signals in shaping immune responses. These signals are recognized by innate immune cells and influence the ability of these cells to modulate both the local and systemic immune response.
Collapse
|
282
|
Kubota A, He F, Kawase M, Harata G, Hiramatsu M, Salminen S, Iino H. Lactobacillus strains stabilize intestinal microbiota in Japanese cedar pollinosis patients. Microbiol Immunol 2009; 53:198-205. [PMID: 19714856 DOI: 10.1111/j.1348-0421.2009.00113.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A randomized double-blind, placebo-controlled trial was conducted to ascertain the intestinal microbiota-altering properties of LGG and L. gasseri TMC0356 (TMC0356) in Japanese cedar Cryptomeria japonica pollinosis patients. Fecal bacteria communities were examined before and after fermented milk administration using culture, FISH and T-RFLPmethods. Test group subjects showed the presence of LGG and TMC0356 along with a significant increase in fecal lactobacilli (P < 0.001) after giving LGG and TMC0356 fermented milk. Culture and FISH analysis revealed no significant changes in other intestinal bacterial groups. Each subject exhibited a characteristic T-RFLP profile pattern that varied quantitatively and qualitatively with JCP shedding. Profile changes were observed in 53% of placebo group subjects and in 21% of test group subject's post-administration, indicating that LGG and TMC0356 suppressed intestinal microbiota changes in JCPsis patients. The results suggest that intestinal microbiota might be more sensitive to exposure to environmental allergens than expected from the results of general culture method studies. Stabilization of intestinal microbiota by selected probiotic strains such as LGG and TMC0356 could be beneficial to homeostasis of the intestinal microbiota and useful in the management of JCPsis.
Collapse
Affiliation(s)
- Akira Kubota
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd, Yokohama, Kanagawa 241-0023, Japan
| | | | | | | | | | | | | |
Collapse
|
283
|
Kim JH, Ellwood PE, Asher MI. Diet and asthma: looking back, moving forward. Respir Res 2009; 10:49. [PMID: 19519921 PMCID: PMC2703624 DOI: 10.1186/1465-9921-10-49] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/12/2009] [Indexed: 01/15/2023] Open
Abstract
Asthma is an increasing global health burden, especially in the western world. Public health interventions are sought to lessen its prevalence or severity, and diet and nutrition have been identified as potential factors. With rapid changes in diet being one of the hallmarks of westernization, nutrition may play a key role in affecting the complex genetics and developmental pathophysiology of asthma. The present review investigates hypotheses about hygiene, antioxidants, lipids and other nutrients, food types and dietary patterns, breastfeeding, probiotics and intestinal microbiota, vitamin D, maternal diet, and genetics. Early hypotheses analyzed population level trends and focused on major dietary factors such as antioxidants and lipids. More recently, larger dietary patterns beyond individual nutrients have been investigated such as obesity, fast foods, and the Mediterranean diet. Despite some promising hypotheses and findings, there has been no conclusive evidence about the role of specific nutrients, food types, or dietary patterns past early childhood on asthma prevalence. However, diet has been linked to the development of the fetus and child. Breastfeeding provides immunological protection when the infant's immune system is immature and a modest protective effect against wheeze in early childhood. Moreover, maternal diet may be a significant factor in the development of the fetal airway and immune system. As asthma is a complex disease of gene-environment interactions, maternal diet may play an epigenetic role in sensitizing fetal airways to respond abnormally to environmental insults. Recent hypotheses show promise in a biological approach in which the effects of dietary factors on individual physiology and immunology are analyzed before expansion into larger population studies. Thus, collaboration is required by various groups in studying this enigma from epidemiologists to geneticists to immunologists. It is now apparent that this multidisciplinary approach is required to move forward and understand the complexity of the interaction of dietary factors and asthma.
Collapse
Affiliation(s)
- June-Ho Kim
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
284
|
|
285
|
Fletcher CM, Coyne MJ, Villa OF, Chatzidaki-Livanis M, Comstock LE. A general O-glycosylation system important to the physiology of a major human intestinal symbiont. Cell 2009; 137:321-31. [PMID: 19379697 DOI: 10.1016/j.cell.2009.02.041] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/31/2008] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The Bacteroides are a numerically dominant genus of the human intestinal microbiota. These organisms harbor a rare bacterial pathway for incorporation of exogenous fucose into capsular polysaccharides and glycoproteins. The infrequency of glycoprotein synthesis by bacteria prompted a more detailed analysis of this process. Here, we demonstrate that Bacteroides fragilis has a general O-glycosylation system. The proteins targeted for glycosylation include those predicted to be involved in protein folding, protein-protein interactions, peptide degradation as well as surface lipoproteins. Protein glycosylation is central to the physiology of B. fragilis and is necessary for the organism to competitively colonize the mammalian intestine. We provide evidence that general O-glycosylation systems are conserved among intestinal Bacteroides species and likely contribute to the predominance of Bacteroides in the human intestine.
Collapse
Affiliation(s)
- C Mark Fletcher
- Channing Laboratory, Brigham & Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
286
|
Abstract
AIM To investigate whether functional changes of the gut flora over time were related to sensitization and allergic symptoms at four years of age. METHODS The levels of short chain fatty acids (SCFAs) in faecal samples at one (n = 139) and four (n = 53) years of age were related to the development of positive skin prick tests (SPT) and allergic symptoms during the first four years of life. RESULTS Faecal acetic (p < 0.01) and propionic (p < 0.01) acids decreased from one to four years of age, while valeric acid (p < 0.001) increased. Low levels of i-butyric (p = 0.01), i-valeric (p = 0.03) and valeric acids (p = 0.02) at one year were associated with questionnaire-reported symptoms of food allergy at four years. Positive SPTs and allergic symptoms at four years were associated with low faecal levels of i-butyric, i-valeric and valeric acids. At one year of age, infants with, as compared to without older siblings had higher median levels of valeric acid. CONCLUSION A slow functional maturation of the gut microflora, as measured by faecal levels of SCFAs is associated with allergy both at one and four years. The findings lend further support to an association between allergy and the development of microbial diversity.
Collapse
Affiliation(s)
- Anna Sandin
- Department of Clinical Science, Pediatrics, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
287
|
Current World Literature. Curr Opin Allergy Clin Immunol 2009; 9:177-84. [DOI: 10.1097/aci.0b013e328329f9ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
288
|
Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME. Probiotics and immunity. J Gastroenterol 2009; 44:26-46. [PMID: 19159071 DOI: 10.1007/s00535-008-2296-0] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 02/04/2023]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, including the gastrointestinal tract. While this beneficial effect was originally thought to stem from improvements in the intestinal microbial balance, there is now substantial evidence that probiotics can also provide benefits by modulating immune functions. In animal models, probiotic supplementation is able to provide protection from spontaneous and chemically induced colitis by downregulating inflammatory cytokines or inducing regulatory mechanisms in a strain-specific manner. In animal models of allergen sensitization and murine models of asthma and allergic rhinitis, orally administered probiotics can strain-dependently decrease allergen-specific IgE production, in part by modulating systemic cytokine production. Certain probiotics have been shown to decrease airway hyperresponsiveness and inflammation by inducing regulatory mechanisms. Promising results have been obtained with probiotics in the treatment of human inflammatory diseases of the intestine and in the prevention and treatment of atopic eczema in neonates and infants. However, the findings are too variable to allow firm conclusions as to the effectiveness of specific probiotics in these conditions.
Collapse
Affiliation(s)
- Andrea T Borchers
- Department of Nutrition, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | | | | | | | | |
Collapse
|
289
|
Rigaux P, Daniel C, Hisbergues M, Muraille E, Hols P, Pot B, Pestel J, Jacquet A. Immunomodulatory properties of Lactobacillus plantarum and its use as a recombinant vaccine against mite allergy. Allergy 2009; 64:406-14. [PMID: 19120072 DOI: 10.1111/j.1398-9995.2008.01825.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Selected lactic acid bacteria were reported to prevent atopic dermatitis and experimental asthma but the mechanisms of their immunomodulatory effects are not fully elucidated. In this study, the signaling pathways triggered by Lactobacillus plantarum NCIMB8826 were investigated and the potential use of this strain producing a variant of the mite allergen Der p 1 as live vaccine vehicle was evaluated. METHODS Mouse bone marrow-derived dendritic cells were stimulated with wild-type or a L. plantarum teichoic acid mutant to evaluate the secretion of cytokines. A recombinant L. plantarum expressing Der p 1 was engineered, its in vitro immunomodulatory properties were characterized and its prophylactic potential was evaluated in a Der p 1-sensitization murine model. RESULTS Mouse dendritic cells stimulated by L. plantarum triggered the release of interleukin-10 (IL-10), IL-12 p40, IL-12 p70 and tumor necrosis factor-alpha (TNF-alpha). IL-12 p40 secretion was dependent on nuclear factor-kappaB (NF-kappaB), mitogen-activated protein (MAP) kinases, Toll-like receptor 2 (TLR2), TLR9 and on the bacterial teichoic acid composition. Recombinant L. plantarum producing Der p 1 exhibited similar immunostimulatory properties as wild-type. Prophylactic intranasal pretreatment of mice with this recombinant strain prevented the development of the typical Th2-biased allergic response by a drastic reduction of specific IgE and the induction of protective allergen-specific IgG2a antibodies. Moreover, both wild-type or recombinant L. plantarum reduced airway eosinophilia following aerosolized allergen exposure and IL-5 secretion upon allergen restimulation. CONCLUSION By combining both Th1-type immunostimulatory properties and an efficient allergen delivery capacity, recombinant L. plantarum producing Der p 1 represents a promising vaccine against house dust mite allergy.
Collapse
Affiliation(s)
- P Rigaux
- Laboratoire d'Allergologie Expérimentale, Université Libre de Bruxelles, Charleroi, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Sherman PW, Holland E, Sherman JS. Allergies: their role in cancer prevention. QUARTERLY REVIEW OF BIOLOGY 2009; 83:339-62. [PMID: 19143335 DOI: 10.1086/592850] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nature of the biological relationships between cancers and allergies has intrigued researchers and health care providers for five decades. Three hypotheses have been proposed: antigenic stimulation predicts positive associations between cancers and allergies (i.e., allergy sufferers are more likely to get cancer), whereas immunosurveillance and prophylaxis predict inverse associations (i.e., allergy sufferers are less likely to get cancer). Immunosurveillance predicts inverse associations for cancers of all tissues and organ systems, and prophylaxis predicts inverse associations specifically for cancers of tissues and organ systems that interface with the external environment. To comparatively evaluate these hypotheses, we comprehensively reviewed the literature on cancer and allergies. We located 148 papers published from 1955 through 2006 that reported results of 463 studies of relationships between patients' histories of 11 specific allergies and cancers of 19 tissues and organ systems, and 183 studies of patients' histories of multiple allergies in relation to various types/sites of cancers. Analyses of these studies revealed that (1) frequencies of positive, inverse, and null allergy-cancer associations differed considerably among cancers of different tissues and organ systems; (2) more than twice as many studies reported inverse allergy-cancer associations as reported positive associations; (3) inverse associations were particularly common for cancers of the mouth and throat, brain glia, colon and rectum, pancreas, skin, and cervix but (4) particularly rare for cancers of the breast, prostate, and brain meninges, and for myeloma, non-Hodgkin's lymphoma, and myelocytic leukemia; (5) lung cancer was positively associated with asthma but inversely associated with other allergies; (6) inverse associations with allergies were more than twice as common for cancers of nine tissues and organ systems that interface with the external environment compared to cancers of nine tissues and organ systems that do not interface with the external environment; and (7) eczema, hives, and allergies to animal dander and food were most frequently inversely associated with cancers of tissues that interface with the external environment. Taken together, these results are more consistent with the prophylaxis hypothesis than the two alternatives. IgE is a widespread and ancient immunoglobulin isotype in mammals, occurring among all known marsupials, monotremes, and eutherians. The IgE system and its associated allergy symptoms may serve a common protective function: the rapid expulsion of pathogens, dangerous natural toxins, and other carcinogenic antigens before they can trigger malignant neoplasia in exposed tissues.
Collapse
Affiliation(s)
- Paul W Sherman
- Department of Neurobiology and Behavior, Cornell University Ithaca, New York 14853-2702, USA.
| | | | | |
Collapse
|
291
|
Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res 2009; 16:1-12. [PMID: 19147530 PMCID: PMC2646358 DOI: 10.1093/dnares/dsn033] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/03/2008] [Indexed: 02/07/2023] Open
Abstract
To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health.
Collapse
Affiliation(s)
- Masahira Hattori
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kasiwanoha, Kashiwa, Chiba 277-8561, Japan.
| | | |
Collapse
|
292
|
Vliagoftis H, Kouranos VD, Betsi GI, Falagas ME. Probiotics for the treatment of allergic rhinitis and asthma: systematic review of randomized controlled trials. Ann Allergy Asthma Immunol 2009; 101:570-9. [PMID: 19119700 DOI: 10.1016/s1081-1206(10)60219-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To evaluate the clinical evidence for the use of probiotics as a therapeutic modality for allergic rhinitis (AR) and asthma. DATA SOURCES PubMed was searched to identify randomized controlled trials (RCTs) that studied the effects of probiotics on AR (n = 12) and asthma (n = 4). STUDY SELECTION RCTs that studied the effects of probiotics administration on the treatment but not the prevention of AR and asthma were selected for inclusion in this review. RESULTS Nine of the 12 RCTs that evaluated clinical outcomes in AR showed an improvement due to the use of probiotics. All the RCTs that studied perennial AR showed lower symptom scoring and medication use with the use of probiotics compared with placebo. Also, 5 of the 8 RCTs that referred to seasonal AR suggested an improvement in clinical outcomes. Nine RCTs that reported various immunologic measurements of allergy found no significant probiotic effects. The RCTs that studied the effect of probiotic administration on the treatment of asthma showed no positive effects. CONCLUSIONS Probiotics may have a beneficial effect in AR by reducing symptom severity and medication use. Many more good-quality studies are needed to resolve this issue.
Collapse
|
293
|
Opinion article. ACTAS DERMO-SIFILIOGRAFICAS 2009. [DOI: 10.1016/s1578-2190(09)70082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
294
|
Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11533-9. [PMID: 19007233 DOI: 10.1021/jf802059w] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study evaluated the gut and peripheral immune response to genetically modified (GM) maize in mice in vulnerable conditions. Weaning and old mice were fed a diet containing MON810 or its parental control maize or a pellet diet containing a GM-free maize for 30 and 90 days. The immunophenotype of intestinal intraepithelial, spleen, and blood lymphocytes of control maize fed mice was similar to that of pellet fed mice. As compared to control maize, MON810 maize induced alterations in the percentage of T and B cells and of CD4(+), CD8(+), gammadeltaT, and alphabetaT subpopulations of weaning and old mice fed for 30 or 90 days, respectively, at the gut and peripheral sites. An increase of serum IL-6, IL-13, IL-12p70, and MIP-1beta after MON810 feeding was also found. These results suggest the importance of the gut and peripheral immune response to GM crop ingestion as well as the age of the consumer in the GMO safety evaluation.
Collapse
Affiliation(s)
- Alberto Finamore
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
295
|
Lactic acid bacteria as novel adjuvant systems for prevention and treatment of atopic diseases. Curr Opin Allergy Clin Immunol 2008; 8:557-64. [DOI: 10.1097/aci.0b013e328317b88b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
296
|
Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 2008; 76:4726-36. [PMID: 18678663 DOI: 10.1128/iai.00319-08] [Citation(s) in RCA: 370] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intestinal microbiota comprises microbial communities that reside in the gastrointestinal tract and are critical to normal host physiology. Understanding the microbiota's role in host response to invading pathogens will further advance our knowledge of host-microbe interactions. Salmonella enterica serovar Typhimurium was used as a model enteric pathogen to investigate the effect of intestinal microbiota perturbation on host susceptibility to infection. Antibiotics were used to perturb the intestinal microbiota. C57BL/6 mice were treated with clinically relevant doses of streptomycin and vancomycin in drinking water for 2 days, followed by oral infection with Salmonella enterica serovar Typhimurium. Alterations in microbiota composition and numbers were evaluated by fluorescent in situ hybridization, differential plating, and Sybr green staining. Antibiotics had a dose-dependent effect on intestinal microbiota composition. The chosen antibiotic regimen did not significantly alter the total numbers of intestinal bacteria but altered the microbiota composition. Greater preinfection perturbations in the microbiota resulted in increased mouse susceptibility to Salmonella serovar Typhimurium intestinal colonization, greater postinfection alterations in the microbiota, and more severe intestinal pathology. These results suggest that antibiotic treatment alters the balance of the microbial community, which predisposes the host to Salmonella serovar Typhimurium infection, demonstrating the importance of a healthy microbiota in host response to enteric pathogens.
Collapse
|