251
|
Uranga J, Mikulskis P, Genheden S, Ryde U. Can the protonation state of histidine residues be determined from molecular dynamics simulations? COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.09.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
252
|
|
253
|
Wang H, Wu G, Park HJ, Jiang PP, Sit WH, van Griensven LJ, Wan JMF. Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: a proteomics analysis. Chin Med 2012; 7:23. [PMID: 23075396 PMCID: PMC3536605 DOI: 10.1186/1749-8546-7-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Background The hepatoprotective potential of Phellinus linteus polysaccharide (PLP) extracts has been described. However, the molecular mechanism of PLP for the inhibition of liver fibrosis is unclear. This study aims to investigate the molecular protein signatures involved in the hepatoprotective mechanisms of PLP via a proteomics approach using a thioacetamide (TAA)-induced liver fibrosis rat model. Methods Male Sprague–Dawley rats were divided into three groups of six as follows: Normal group; TAA group, in which rats received TAA only; and PLP group, in which rats received PLP and TAA. Liver fibrosis was induced in the rats by repeated intraperitoneal injections of TAA at a dose of 200 mg/kg body weight twice a week for 4 weeks. PLP was given orally at a dose of 50 mg/kg body weight twice a day from the beginning of the TAA treatment until the end of the experiment. The development of liver cirrhosis was verified by histological examination. Liver proteomes were established by two-dimensional gel electrophoresis. Proteins with significantly altered expression levels were identified by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry and the differentially expressed proteins were validated by immunohistochemical staining and reverse transcription polymerase chain reaction. Results Histological staining showed a remarkable reduction in liver fibrosis in the rats with PLP treatment. A total of 13 differentially expressed proteins including actin, tubulin alpha-1C chain, preprohaptoglobin, hemopexin, galectin-5, glutathione S-transferase alpha-4 (GSTA4), branched chain keto acid dehydrogenase hterotetrameric E1 subunit alpha (BCKDHA), glutathione S-transferase mu (GSTmu); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thiosulfate sulfurtransferase (TFT); betaine-homocysteine S-methyltransferase 1 (BHMT1); quinoid dihydropteridine reductase (QDPR); ribonuclease UK114 were observed between the TAA and PLP groups. These proteins are involved in oxidative stress, heme and iron metabolism, cysteine metabolism, and branched-chain amino acid catabolism. Conclusion The proteomics data indicate that P. linteus may be protective against TAA-induced liver fibrosis via regulation of oxidative stress pathways, heat shock pathways, and metabolic pathways for amino acids and nucleic acids.
Collapse
Affiliation(s)
- Hualin Wang
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | | | | | | | | | | | | |
Collapse
|
254
|
Than NG. PP13, decidual zones of necrosis, and spiral artery remodeling--preeclampsia revisited? Reprod Sci 2012; 19:14-5. [PMID: 22228738 DOI: 10.1177/1933719111431678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA.
| |
Collapse
|
255
|
Mathieu V, de Lassalle EM, Toelen J, Mohr T, Bellahcène A, Van Goietsenoven G, Verschuere T, Bouzin C, Debyser Z, De Vleeschouwer S, Van Gool S, Poirier F, Castronovo V, Kiss R, Feron O. Galectin-1 in Melanoma Biology and Related Neo-Angiogenesis Processes. J Invest Dermatol 2012; 132:2245-54. [DOI: 10.1038/jid.2012.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
256
|
Galectin-3 expression in response to LPS, immunomodulatory drugs and exogenously added galectin-3 in monocyte-like THP-1 cells. In Vitro Cell Dev Biol Anim 2012; 48:518-27. [PMID: 22893213 DOI: 10.1007/s11626-012-9540-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 07/26/2012] [Indexed: 12/26/2022]
Abstract
Galectin-3, a structurally unique beta-galactoside-binding lectin, through the specific protein-protein and protein-carbohydrate interactions participates in numerous biological processes, such as cell proliferation and apoptosis, adhesion and activation. Its expression and secretion by until now an unknown mechanism are modulated by diverse molecules and are dependent on different physiological and pathophysiological conditions. By autocrine and paracrine actions, galectin-3 modulates many immune reactions and affects various immune cells, particularly those of monocyte-macrophage lineage. This is why galectin-3 has recently become an attractive therapeutic target. However, molecular mechanisms of its actions as well as regulatory mechanism of its expression and activation are still largely unknown. In this study, we show that lipopolysaccharide (LPS) provokes upregulation of galectin-3 expression on both gene and protein level in monocyte-like THP-1 cells, which can be inhibited by dexamethasone, but not with non-steroidal anti-inflammatory drugs aspirin and indomethacin. Resting and LPS-challenged monocyte-like THP-1 cells do not have detectable amount of surface-bound galectin-3, but are able to bind exogenously added galectin-3 with the same capacity. Although galectin-3 is generally considered to be a pro-inflammatory molecule, here we show that the exogenously added galectin-3 does not affect interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70 and TNF-α production in resting and LPS-activated monocyte-like THP-1 cells nor influences its own gene expression level in those cells.
Collapse
|
257
|
Gensel J, Kigerl K, Mandrekar-Colucci S, Gaudet A, Popovich P. Achieving CNS axon regeneration by manipulating convergent neuro-immune signaling. Cell Tissue Res 2012; 349:201-13. [PMID: 22592625 PMCID: PMC10881271 DOI: 10.1007/s00441-012-1425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Abstract
After central nervous system (CNS) trauma, axons have a low capacity for regeneration. Regeneration failure is associated with a muted regenerative response of the neuron itself, combined with a growth-inhibitory and cytotoxic post-injury environment. After spinal cord injury (SCI), resident and infiltrating immune cells (especially microglia/macrophages) contribute significantly to the growth-refractory milieu near the lesion. By targeting both the regenerative potential of the axon and the cytotoxic phenotype of microglia/macrophages, we may be able to improve CNS repair after SCI. In this review, we discuss molecules shown to impact CNS repair by affecting both immune cells and neurons. Specifically, we provide examples of pattern recognition receptors, integrins, cytokines/chemokines, nuclear receptors and galectins that could improve CNS repair. In many cases, signaling by these molecules is complex and may have contradictory effects on recovery depending on the cell types involved or the model studied. Despite this caveat, deciphering convergent signaling pathways on immune cells (which affect axon growth indirectly) and neurons (direct effects on axon growth) could improve repair and recovery after SCI. Future studies must continue to consider how regenerative therapies targeting neurons impact other cells in the pathological CNS. By identifying molecules that simultaneously improve axon regenerative capacity and drive the protective, growth-promoting phenotype of immune cells, we may discover SCI therapies that act synergistically to improve CNS repair and functional recovery.
Collapse
Affiliation(s)
- J.C. Gensel
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - K.A. Kigerl
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - S. Mandrekar-Colucci
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - A.D. Gaudet
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - P.G. Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
258
|
Elahi S, Niki T, Hirashima M, Horton H. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood 2012; 119:4192-204. [PMID: 22438246 PMCID: PMC3359739 DOI: 10.1182/blood-2011-11-389585] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/16/2012] [Indexed: 01/19/2023] Open
Abstract
Galectin-9 (Gal-9) is a tandem repeat-type member of the galectin family and is a ligand for T-cell immunoglobulin mucin domain 3 (Tim-3), a type-I glycoprotein that is persistently expressed on dysfunctional T cells during chronic infection. Studies in autoimmune diseases and chronic viral infections show that Tim-3 is a regulatory molecule that inhibits Th1 type immune responses. Here we show that soluble Gal-9 interacts with Tim-3 expressed on the surface of activated CD4(+) T cells and renders them less susceptible to HIV-1 infection and replication. The Gal-9/Tim-3 interaction on activated CD4(+) T cells, leads to down-regulation of HIV-1 coreceptors and up-regulation of the cyclin-dependent kinase inhibitor p21 (also known as cip-1 and waf-1). We suggest that higher expression of Tim-3 during chronic infection has evolved to limit persistent immune activation and associated tissue damage. These data demonstrate a novel mechanism for Gal-9/Tim-3 interactions to induce resistance of activated CD4(+) T cells to HIV-1 infection and suggest that Gal-9 may play a role in HIV-1 pathogenesis and could be used as a novel microbicide to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Shokrollah Elahi
- Viral Vaccine Program, Seattle Biomedical Research Institute (Seattle Biomed), 307 Westlake Ave N, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
259
|
Negrete-Garcia MC, Jiménez-Torres CY, Alvarado-Vásquez N, Montes-Vizuet AR, Velázquez-Rodriguez JR, Jimenez-Martinez MC, Teran-Juárez LM. Galectin-10 is released in the nasal lavage fluid of patients with aspirin-sensitive respiratory disease. ScientificWorldJournal 2012; 2012:474020. [PMID: 22654612 PMCID: PMC3361262 DOI: 10.1100/2012/474020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/22/2012] [Indexed: 01/19/2023] Open
Abstract
The aim of this work was to determine the presence of galectin-10 in nasal lavage fluid (NLF) of patients with aspirin-sensitive respiratory disease (ASRD) before and after challenge with L-ASA (aspirin) by ELISA. Fifteen ASRD patients, ten aspirin-tolerant asthmatics (ATA), and fifteen healthy controls (HC) were studied. The baseline presence of Galectin-10 in PBMC was determined using real time PCR. Galectin-10 was evaluated in tissue of nasal polyps by western blot. Our results showed a lower expression in PBMC of ASRD patients than in ATA and healthy controls. However, a higher concentration of galectin-10 in NLF was found in ASRD patients before and after L-ASA challenge; western blot confirmed a high expression of galectin-10 in tissue from nasal polyps obtained from ASRD patients. Our results suggest a probable role of galectin-10 in the inflammatory response observed in ASRD patients; however, confirmatory studies are needed.
Collapse
Affiliation(s)
- Ma Cristina Negrete-Garcia
- Department of Immunogenetics and Allergy, Instituto Nacional de Enfermedades Respiratorias, Calzada Tlalpan 4502, 14080 Mexico, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
260
|
Sato S, Ouellet M, St-Pierre C, Tremblay MJ. Glycans, galectins, and HIV-1 infection. Ann N Y Acad Sci 2012; 1253:133-48. [DOI: 10.1111/j.1749-6632.2012.06475.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
261
|
Kreisman LS, Cobb BA. Infection, inflammation and host carbohydrates: a Glyco-Evasion Hypothesis. Glycobiology 2012; 22:1019-30. [PMID: 22492234 DOI: 10.1093/glycob/cws070] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microbial immune evasion can be achieved through the expression, or mimicry, of host-like carbohydrates on the microbial cell surface to hide from detection. However, disparate reports collectively suggest that evasion could also be accomplished through the modulation of the host glycosylation pathways, a mechanism that we call the "Glyco-Evasion Hypothesis". Here, we will summarize the evidence in support of this paradigm by reviewing three separate bodies of work present in the literature. We review how infection and inflammation can lead to host glycosylation changes, how host glycosylation changes can increase susceptibility to infection and inflammation and how glycosylation impacts molecular and cellular function. Then, using these data as a foundation, we propose a unifying hypothesis in which microbial products can hijack host glycosylation to manipulate the immune response to the advantage of the pathogen. This model reveals areas of research that we believe could significantly improve our fight against infectious disease.
Collapse
Affiliation(s)
- Lori Sc Kreisman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
262
|
Abstract
Unlike their protein "roommates" and their nucleic acid "cousins," carbohydrates remain an enigmatic arm of biology. The central reason for the difficulty in fully understanding how carbohydrate structure and biological function are tied is the nontemplate nature of their synthesis and the resulting heterogeneity. The goal of this collection of expert reviews is to highlight what is known about how carbohydrates and their binding partners-the microbial (non-self), tumor (altered-self), and host (self)-cooperate within the immune system, while also identifying areas of opportunity to those willing to take up the challenge of understanding more about how carbohydrates influence immune responses. In the end, these reviews will serve as specific examples of how carbohydrates are as integral to biology as are proteins, nucleic acids, and lipids. Here, we attempt to summarize general concepts on glycans and glycan-binding proteins (mainly C-type lectins, siglecs, and galectins) and their contributions to the biology of immune responses in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Laboratorio de Glicómica Funcional, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, the Netherlands
| | - Brian A. Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
263
|
Oomizu S, Arikawa T, Niki T, Kadowaki T, Ueno M, Nishi N, Yamauchi A, Hirashima M. Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner. Clin Immunol 2012; 143:51-8. [DOI: 10.1016/j.clim.2012.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
|
264
|
Miyazaki K, Sakuma K, Kawamura YI, Izawa M, Ohmori K, Mitsuki M, Yamaji T, Hashimoto Y, Suzuki A, Saito Y, Dohi T, Kannagi R. Colonic epithelial cells express specific ligands for mucosal macrophage immunosuppressive receptors siglec-7 and -9. THE JOURNAL OF IMMUNOLOGY 2012; 188:4690-700. [PMID: 22467657 DOI: 10.4049/jimmunol.1100605] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune cells are known to express specific recognition molecules for cell surface glycans. However, mechanisms involved in glycan-mediated cell-cell interactions in mucosal immunity have largely been left unaccounted for. We found that several glycans preferentially expressed in nonmalignant colonic epithelial cells serve as ligands for sialic acid-binding Ig-like lectins (siglecs), the immunosuppressive carbohydrate-recognition receptors carried by immune cells. The siglec ligand glycans in normal colonic epithelial cells included disialyl Lewis(a), which was found to have binding activity to both siglec-7 and -9, and sialyl 6-sulfo Lewis(x), which exhibited significant binding to siglec-7. Expression of these siglec-7/-9 ligands was impaired upon carcinogenesis, and they were replaced by cancer-associated glycans sialyl Lewis(a) and sialyl Lewis(x), which have no siglec ligand activity. When we characterized immune cells expressing siglecs in colonic lamina propriae by flow cytometry and confocal microscopy, the majority of colonic stromal immune cells expressing siglec-7/-9 turned out to be resident macrophages characterized by low expression of CD14/CD89 and high expression of CD68/CD163. A minor subpopulation of CD8(+) T lymphocytes also expressed siglec-7/-9. Siglec-7/-9 ligation suppressed LPS-induced cyclooxygenase-2 expression and PGE(2) production by macrophages. These results suggest that normal glycans of epithelial cells exert a suppressive effect on cyclooxygenase-2 expression by resident macrophages, thus maintaining immunological homeostasis in colonic mucosal membranes. Our results also imply that loss of immunosuppressive glycans by impaired glycosylation during colonic carcinogenesis enhances inflammatory mediator production.
Collapse
Affiliation(s)
- Keiko Miyazaki
- Department of Molecular Pathology, Aichi Cancer Center, Research Institute, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Lepur A, Carlsson MC, Novak R, Dumić J, Nilsson UJ, Leffler H. Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim Biophys Acta Gen Subj 2012; 1820:804-18. [PMID: 22450157 DOI: 10.1016/j.bbagen.2012.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/27/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 (the Mac-2 antigen) is abundantly expressed in both macrophage like cells and certain non-macrophage cells. We have studied endocytosis of galectin-3 as one important step relevant for its function, and compared it between variants of a macrophage like cell line, and non-macrophage cells. METHODS Endocytosis of galectin-3 was observed by fluorescence microscopy and measured by flow cytometry. The endocytosis mechanism was analysed using galectin-3 mutants, galectin-3 inhibitors and endocytic pathways inhibitors in the human leukaemia THP-1 cell line differentiated into naïve (M0), classical (M1) or alternatively activated (M2) macrophage like cells, and the non-macrophage cell lines HFL-1 fibroblasts and SKBR3 breast carcinoma. RESULTS Galectin-3 endocytosis in non-macrophage cells and M2 cells was blocked by lactose and a potent galectin-3 inhibitor TD139, and also by the R186S mutation in the galectin-3 carbohydrate recognition domain (CRD). In M1 cells galectin-3 endocytosis could be inhibited only by chlorpromazine and by interference with the non-CRD N-terminal part of galectin-3. In all the cell types galectin-3 entered early endosomes within 5-10 min, to be subsequently targeted mainly to non-degradative vesicles, where it remained even after 24 h. CONCLUSIONS Galectin-3 endocytosis in M1 cells is receptor mediated and carbohydrate independent, while in M2 cells it is CRD mediated, although the non-CRD galectin-3 domain is also involved. General significance The demonstration that galectin-3 endocytosis in M1 macrophages is carbohydrate independent and different from M2 macrophages and non-macrophage cells, suggests novel, immunologically significant interactions between phagocytic cells, galectin-3 and its ligands.
Collapse
Affiliation(s)
- Adriana Lepur
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
266
|
Affiliation(s)
| | | | - Angela Haczku
- Pulmonary, Allergy and Critical Care Division; School of Medicine; University of Pennsylvania; Philadelphia; PA; USA
| |
Collapse
|
267
|
Tribulatti MV, Figini MG, Carabelli J, Cattaneo V, Campetella O. Redundant and Antagonistic Functions of Galectin-1, -3, and -8 in the Elicitation of T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2012; 188:2991-9. [DOI: 10.4049/jimmunol.1102182] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
268
|
Abstract
Galectins are animal lectins that bind to β-galactosides, such as lactose and N-acetyllactosamine, in free form or contained in glycoproteins or glycolipids. They are located intracellularly or extracellularly. In the latter they exhibit bivalent or multivalent interactions with glycans on cell surfaces and induce various cellular responses, including production of cytokines and other inflammatory mediators, cell adhesion, migration, and apoptosis. Furthermore, they can form lattices with membrane glycoprotein receptors and modulate receptor properties. Intracellular galectins can participate in signaling pathways and alter biological responses, including apoptosis, cell differentiation, and cell motility. Current evidence indicates that galectins play important roles in acute and chronic inflammatory responses, as well as other diverse pathological processes. Galectin involvement in some processes in vivo has been discovered, or confirmed, through studies of genetically engineered mouse strains, each deficient in a given galectin. Current evidence also suggests that galectins may be therapeutic targets or employed as therapeutic agents for these inflammatory responses.
Collapse
Affiliation(s)
- Fu-Tong Liu
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, 95816, USA.
| | | | | |
Collapse
|
269
|
Cooper D, Iqbal AJ, Gittens BR, Cervone C, Perretti M. The effect of galectins on leukocyte trafficking in inflammation: sweet or sour? Ann N Y Acad Sci 2012; 1253:181-92. [PMID: 22256855 DOI: 10.1111/j.1749-6632.2011.06291.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The trafficking of leukocytes from the blood stream to the surrounding tissue is a fundamental feature of an inflammatory response. Although many of the adhesion molecules and chemokines that direct leukocyte trafficking have been identified, there is still much to be discovered, particularly with regard to the persistence of leukocyte infiltrates in chronic inflammation. Elucidating the molecular mechanisms involved in this process is critical to understanding and treating inflammatory pathologies. Recent studies have identified members of the galectin family as immunoregulatory proteins. Included among the actions of galectins are modulatory effects, both positive and negative, on leukocyte recruitment. The focus of this review is to summarize current knowledge on the role of galectins in leukocyte trafficking during inflammation. A better understanding of the function of this family of endogenous lectins will open new avenues for innovative drug discovery.
Collapse
Affiliation(s)
- Dianne Cooper
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, United Kingdom.
| | | | | | | | | |
Collapse
|
270
|
Carlsson MC, Balog CIA, Kilsgård O, Hellmark T, Bakoush O, Segelmark M, Fernö M, Olsson H, Malmström J, Wuhrer M, Leffler H. Different fractions of human serum glycoproteins bind galectin-1 or galectin-8, and their ratio may provide a refined biomarker for pathophysiological conditions in cancer and inflammatory disease. Biochim Biophys Acta Gen Subj 2012; 1820:1366-72. [PMID: 22285770 DOI: 10.1016/j.bbagen.2012.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
BACKGROUND Changes in glycosylation of serum proteins are common, and various glycoforms are being explored as biomarkers in cancer and inflammation. We recently showed that glycoforms detected by endogenous galectins not only provide potential biomarkers, but also have different functions when they encounter galectins in tissue cells. Now we have explored the use of a combination of two galectins with different specificities, to further increase biomarker sensitivity and specificity. METHODS Sera from 14 women with metastatic breast cancer, 12 healthy controls, 14 patients with IgA-nephritis (IgAN), and 12 patients with other glomerulonephritis were fractionated by affinity chromatography on immobilized human galectin-1 or galectin-8N, and the protein amounts of the bound and unbound fractions for each galectin were determined. RESULTS Each galectin bound largely different fractions of the serum glycoproteins, including different glycoforms of haptoglobin. In the cancer sera, the level of galectin-1 bound glycoproteins was higher and galectin-8N bound glycoproteins lower compared to the other patients groups, whereas in IgAN sera the level of galectin-8N bound glycoproteins were higher. CONCLUSION The ratio of galectin-1 bound/galectin-8N bound glycoproteins showed high discriminatory power between cancer patients and healthy, with AUC of 0.98 in ROC analysis, and thus provides an interesting novel cancer biomarker candidate. GENERAL SIGNIFICANCE The galectin-binding ability of a glycoprotein is not only a promising biomarker candidate but may also have a specific function when the glycoprotein encounters the galectin in tissue cells, and thus be related to the pathophysiological state of the patient. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Michael C Carlsson
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Cederfur C, Malmström J, Nihlberg K, Block M, Breimer ME, Bjermer L, Westergren-Thorsson G, Leffler H. Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim Biophys Acta Gen Subj 2012; 1820:1429-36. [PMID: 22240167 DOI: 10.1016/j.bbagen.2011.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Galectins, a family of small carbohydrate binding proteins, have been implicated in regulation of inflammatory reactions, including asthma and fibrosis in the lungs. Galectins are found in cells of the airways and in airway secretions, but their glycoprotein ligands there have only been studied to a very limited extent. METHODS Bronchoalveolar lavage (BAL) fluid from mild asthmatics and healthy volunteers were fractionated by affinity chromatography on the immobilized galectins. Total (10-30 μg) and galectin bound (~1-10 μg) protein fractions were identified, quantified and compared using shot-gun proteomics and spectral counts. RESULTS About 175 proteins were identified in unfractionated BAL-fluid, and about 100 bound galectin-3 and 60 bound galectin-8. These included plasma glycoproteins, and typical airway proteins such as SP-A2, PIGR and SP-B. The concentration of galectin-binding proteins was 100-300 times higher than the concentration of galectins in BAL. CONCLUSION The low relative concentration of galectins in BAL makes it likely that functional interactions with glycoproteins occur at sites rich in galectin, such as cells of the airways, rather than the extracellular fluid itself. The profile of galectin bound proteins differed between samples from asthma patients and healthy subjects and correlated with the presence of fibroblasts or eosinophils. This included appearance of a specific galectin-8-binding glycoform of haptoglobin, previously shown to be increased in serum in other inflammatory conditions. GENERAL SIGNIFICANCE It is technically feasible to identify galectin-binding glycoproteins in low concentration patient samples such as BAL-fluid, to generate biomedically interesting results. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Cecilia Cederfur
- MIG (Microbiology, Immunology, Glycobiology), Dept. of Laboratory Medicine Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
PURPOSE OF REVIEW Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling, development, angiogenesis and cellular growth) and diseases (e.g. chronic inflammation, autoimmunity, cancer, infection). We discuss here how galectins contribute to the development of specialized microenvironmental niches during hematopoiesis. RECENT FINDINGS An expanding set of data strengthens a role of galectins in hematopoietic differentiation, particularly by setting specific interactions between hematopoietic and stromal cells: galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development. Moreover, expression of galectins-1 and 10 are differentially expressed during T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be regulated during myelopoiesis and traffic into intracellular compartments, dictating the cellular distribution of specific glycoproteins and glycosphingolipids. SUMMARY The abundance of galectins in both extracellular and intracellular compartments, their multifunctional properties and ability to form supramolecular signaling complexes with specific glycoconjugates, make these glycan-binding proteins excellent candidates to mediate interactions between hematopoietic cells and the stromal microenvironment. Their secretion by one of the cellular partners can modulate adhesive properties by cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by favoring the formation of synapses or by creating glycoprotein lattices on the surface of different cell types. Their divergent specificities and affinities for various glycoproteins contribute to the multiplicity of their cellular interactions.
Collapse
|
273
|
Leffler H, Nilsson UJ. Low-Molecular Weight Inhibitors of Galectins. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62, Lund, Sweden
- Center for Analysis and Synthesis, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Section MIG, Department of Laboratory Medicine, Lund University, Sölvegatan 23, SE-223 62, Lund, Sweden
- Center for Analysis and Synthesis, Lund University, POB 124, SE-221 00 Lund, Sweden
| |
Collapse
|
274
|
Glycomics: An Overview of the Complex Glycocode. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:1-13. [DOI: 10.1007/978-1-4614-3381-1_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
275
|
Than NG, Romero R, Kim CJ, McGowen MR, Papp Z, Wildman DE. Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends Endocrinol Metab 2012; 23:23-31. [PMID: 22036528 PMCID: PMC3640805 DOI: 10.1016/j.tem.2011.09.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/21/2011] [Accepted: 09/13/2011] [Indexed: 01/03/2023]
Abstract
Galectins are multifunctional regulators of fundamental cellular processes. They are also involved in innate and adaptive immune responses, and play a functional role in immune-endocrine crosstalk. Some galectins have attracted attention in the reproductive sciences because they are highly expressed at the maternal-fetal interface, their functional significance in eutherian pregnancies has been documented, and their dysregulated expression is observed in the 'great obstetrical syndromes'. The evolution of these galectins has been linked to the emergence of eutherian mammals. Based on published evidence, galectins expressed at the maternal-fetal interface may serve as important proteins involved in maternal-fetal interactions, and the study of these galectins may facilitate the prediction, prevention, diagnosis, and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Detroit, MI, USA.
| | | | | | | | | | | |
Collapse
|
276
|
Carlsson MC, Bakoush O, Tengroth L, Kilsgård O, Malmström J, Hellmark T, Segelmark M, Leffler H. Galectin-8 in IgA nephritis: decreased binding of IgA by galectin-8 affinity chromatography and associated increased binding in non-IgA serum glycoproteins. J Clin Immunol 2011; 32:246-55. [PMID: 22173878 PMCID: PMC3305883 DOI: 10.1007/s10875-011-9618-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/11/2011] [Indexed: 12/18/2022]
Abstract
Background Immunoglobulin A nephritis (IgAN) is the most common primary glomerulonephritis worldwide. It is caused by accumulation of IgA1-containing immune complexes in the kidney resulting in renal failure, which is thought to be due to altered glycosylation of IgA with a decrease of 2–3-sialylated galactosides (NeuAcα2-3Gal). Purpose The purpose of this study was to analyze whether altered glycosylation of IgA would lead to an altered binding to galectin-8, an endogenous lectin with strong affinity for 2–3-sialylated galactosides. Galectins are a family of β-galactoside-binding proteins; by binding various glycoproteins, they play important roles in the regulation of cellular functions in inflammation and immunity. Hence, an altered binding of IgA to galectin-8 could lead to pathologic immune functions, such as glomerulonephritis. Methods Affinity chromatography of serum glycoproteins on the human sialogalactoside-binding lectin galectin-8N permitted quantitation of bound and unbound fractions, including IgA. Results Analysis of ∼100 IgA nephritis sera showed that the galectin-8N unbound fraction of IgA increased compared to ∼100 controls, consistent with the known loss of galactosylation. A subgroup of ∼15% of the IgAN patients had a ratio of galectin-8 bound/unbound IgA <0.09, not found for any of the controls. Unexpectedly, the galectin-8N-binding fraction of serum glycoproteins other than IgA increased in the sera of IgAN patients but not in controls, suggesting a previously unrecognized change in this disease. Conclusion This is the first study that relates a galectin, an endogenous lectin family, to IgA nephritis and thus should stimulate new avenues of research into the pathophysiology of the disease. Electronic supplementary material The online version of this article (doi:10.1007/s10875-011-9618-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael C. Carlsson
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
| | - Omran Bakoush
- Department of Nephrology, Lund University Hospital, Lund, Sweden
| | - Lotta Tengroth
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
| | - Ola Kilsgård
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Johan Malmström
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Nephrology, Lund University Hospital, Lund, Sweden
| | - Mårten Segelmark
- Department of Nephrology, Lund University Hospital, Lund, Sweden
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Skåne University Hospital SUS., Lund, Sweden
| |
Collapse
|
277
|
Saraboji K, Håkansson M, Genheden S, Diehl C, Qvist J, Weininger U, Nilsson UJ, Leffler H, Ryde U, Akke M, Logan DT. The carbohydrate-binding site in galectin-3 is preorganized to recognize a sugarlike framework of oxygens: ultra-high-resolution structures and water dynamics. Biochemistry 2011; 51:296-306. [PMID: 22111949 PMCID: PMC3255464 DOI: 10.1021/bi201459p] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The recognition of carbohydrates by proteins is a fundamental aspect of communication within and between living cells. Understanding the molecular basis of carbohydrate–protein interactions is a prerequisite for the rational design of synthetic ligands. Here we report the high- to ultra-high-resolution crystal structures of the carbohydrate recognition domain of galectin-3 (Gal3C) in the ligand-free state (1.08 Å at 100 K, 1.25 Å at 298 K) and in complex with lactose (0.86 Å) or glycerol (0.9 Å). These structures reveal striking similarities in the positions of water and carbohydrate oxygen atoms in all three states, indicating that the binding site of Gal3C is preorganized to coordinate oxygen atoms in an arrangement that is nearly optimal for the recognition of β-galactosides. Deuterium nuclear magnetic resonance (NMR) relaxation dispersion experiments and molecular dynamics simulations demonstrate that all water molecules in the lactose-binding site exchange with bulk water on a time scale of nanoseconds or shorter. Nevertheless, molecular dynamics simulations identify transient water binding at sites that agree well with those observed by crystallography, indicating that the energy landscape of the binding site is maintained in solution. All heavy atoms of glycerol are positioned like the corresponding atoms of lactose in the Gal3C complexes. However, binding of glycerol to Gal3C is insignificant in solution at room temperature, as monitored by NMR spectroscopy or isothermal titration calorimetry under conditions where lactose binding is readily detected. These observations make a case for protein cryo-crystallography as a valuable screening method in fragment-based drug discovery and further suggest that identification of water sites might inform inhibitor design.
Collapse
Affiliation(s)
- Kadhirvel Saraboji
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Box 124, Lund University, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Novak R, Dabelic S, Dumic J. Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim Biophys Acta Gen Subj 2011; 1820:1383-90. [PMID: 22155450 DOI: 10.1016/j.bbagen.2011.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Galectins have been identified as modulators of many monocyte/macrophage functions. In the response to a wide range of environmental cues macrophages may exhibit different biochemical and biological characteristics, but two main subtypes, classically (M1) and alternatively (M2) activated macrophages have been recognized. To contribute to elucidation of role and regulation of galectin-1 and galectin-3 in differently activated macrophages we explored their expression profiles in these cells. METHODS Human monocytes obtained from blood donors were differentiated into classically (M1) and alternatively (M2a/M2c) activated macrophages. Gene and protein expression levels of intra- and extracellular galectins were investigated by qRT-PCR, Western-blot, flow cytometry, and ELISA while cytokine and surface receptor expression profiling was performed by flow cytometry. RESULTS Differentiation/polarization of human monocytes into classically (M1) and alternatively (M2a/M2c) activated macrophages was followed by profound changes of galectin-3 expression and its proteolytic cleavage. Expression and secretion of Gal-3 was tightly regulated and significantly differed among classically (M1) and alternatively (M2a/M2c) activated macrophages, while the differences of galectin-1 expression profiles were not as pronounced. Human monocytes exhibited high amount of free galectin-3 receptors, while on both types of activated macrophages were fully saturated. CONCLUSIONS Galectin-3 is more distinctive descriptor of macrophages differentiation/activation than galectin-1. Its specific expression and secretion pattern in M1 vs. M2a/M2c macrophages contributes to better understanding of its role and regulation in these cells. GENERAL SIGNIFICANCE Recognition of distinct galectin-1 and galectin-3 expression profiles in differently activated macrophages provides a new insight on biological characteristics of these cells and sheds a new light of galectin-3 as a modulator of individual macrophage subset. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Ruder Novak
- University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, Zagreb, Croatia
| | | | | |
Collapse
|
279
|
Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments. Int J Cancer 2011; 131:1131-41. [PMID: 22020795 DOI: 10.1002/ijc.26498] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/07/2011] [Indexed: 02/03/2023]
|
280
|
Vasta GR, Nita-Lazar M, Giomarelli B, Ahmed H, Du S, Cammarata M, Parrinello N, Bianchet MA, Amzel LM. Structural and functional diversity of the lectin repertoire in teleost fish: relevance to innate and adaptive immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1388-99. [PMID: 21896283 PMCID: PMC3429948 DOI: 10.1016/j.dci.2011.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 07/28/2011] [Accepted: 08/23/2011] [Indexed: 05/11/2023]
Abstract
Protein-carbohydrate interactions mediated by lectins have been recognized as key components of innate immunity in vertebrates and invertebrates, not only for recognition of potential pathogens, but also for participating in downstream effector functions, such as their agglutination, immobilization, and complement-mediated opsonization and killing. More recently, lectins have been identified as critical regulators of mammalian adaptive immune responses. Fish are endowed with virtually all components of the mammalian adaptive immunity, and are equipped with a complex lectin repertoire. In this review, we discuss evidence suggesting that: (a) lectin repertoires in teleost fish are highly diversified, and include not only representatives of the lectin families described in mammals, but also members of lectin families described for the first time in fish species; (b) the tissue-specific expression and localization of the diverse lectin repertoires and their molecular partners is consistent with their distinct biological roles in innate and adaptive immunity; (c) although some lectins may bind endogenous ligands, others bind sugars on the surface of potential pathogens; (d) in addition to pathogen recognition and opsonization, some lectins display additional effector roles, such as complement activation and regulation of immune functions; (e) some lectins that recognize exogenous ligands mediate processes unrelated to immunity: they may act as anti-freeze proteins or prevent polyspermia during fertilization.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Program in the Biology of Model Systems, Baltimore, MD 21202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
281
|
HOORENS P, RINALDI M, MIHI B, DREESEN L, GRIT G, MEEUSEN E, LI RW, GELDHOF P. Galectin-11 induction in the gastrointestinal tract of cattle following nematode and protozoan infections. Parasite Immunol 2011; 33:669-78. [DOI: 10.1111/j.1365-3024.2011.01336.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
282
|
Öberg CT, Noresson AL, Leffler H, Nilsson UJ. Synthesis of 3-amido-3-deoxy-β-d-talopyranosides: all-cis-substituted pyranosides as lectin inhibitors. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
283
|
Larsen L, Chen HY, Saegusa J, Liu FT. Galectin-3 and the skin. J Dermatol Sci 2011; 64:85-91. [PMID: 21889881 PMCID: PMC3192432 DOI: 10.1016/j.jdermsci.2011.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 12/17/2022]
Abstract
Galectin-3 is highly expressed in epithelial cells including keratinocytes and is involved in the pathogenesis of inflammatory skin diseases by affecting the functions of immune cells. For example, galectin-3 can contribute to atopic dermatitis (AD) by promoting polarization toward a Th2 immune response by regulating dendritic cell (DC) and T cell functions. In addition, galectin-3 may be involved in the development of contact hypersensitivity by regulating the migratory capacity of antigen presenting cells. Galectin-3 may act as a regulator of epithelial tumor progression and development through various signaling pathways, such as inhibiting keratinocyte apoptosis through regulation of the activation status of extracellular signal-regulated kinase (ERK) and activated protein kinase B (AKT). Galectin-3 is detected at different stages of melanoma development. In contrast, a marked decrease in the expression of galectin-3 is observed in non-melanoma skin cancers, such as squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Galectin-3 may play an important role in tumor cell growth, apoptosis, cell motility, invasion, and metastasis. Galectin-3 may be a novel therapeutic target for a variety of skin diseases.
Collapse
Affiliation(s)
- Larissa Larsen
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA 95816, United States
| | | | | | | |
Collapse
|
284
|
Carlsson MC, Cederfur C, Schaar V, Balog CIA, Lepur A, Touret F, Salomonsson E, Deelder AM, Fernö M, Olsson H, Wuhrer M, Leffler H. Galectin-1-binding glycoforms of haptoglobin with altered intracellular trafficking, and increase in metastatic breast cancer patients. PLoS One 2011; 6:e26560. [PMID: 22028908 PMCID: PMC3196588 DOI: 10.1371/journal.pone.0026560] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/28/2011] [Indexed: 01/22/2023] Open
Abstract
Sera from 25 metastatic breast cancer patients and 25 healthy controls were subjected to affinity chromatography using immobilized galectin-1. Serum from the healthy subjects contained on average 1.2 mg per ml (range 0.7-2.2) galectin-1 binding glycoproteins, whereas serum from the breast cancer patients contained on average 2.2 mg/ml (range 0.8-3.9), with a higher average for large primary tumours. The major bound glycoproteins were α-2-macroglobulin, IgM and haptoglobin. Both the IgM and haptoglobin concentrations were similar in cancer compared to control sera, but the percentage bound to galectin-1 was lower for IgM and higher for haptoglobin: about 50% (range 20-80) in cancer sera and about 30% (range 25-50) in healthy sera. Galectin-1 binding and non-binding fractions were separated by affinity chromatography from pooled haptoglobin from healthy sera. The N-glycans of each fraction were analyzed by mass spectrometry, and the structural differences and galectin-1 mutants were used to identify possible galectin-1 binding sites. Galectin-1 binding and non-binding fractions were also analyzed regarding their haptoglobin function. Both were similar in forming complex with haemoglobin and mediate its uptake into alternatively activated macrophages. However, after uptake there was a dramatic difference in intracellular targeting, with the galectin-1 non-binding fraction going to a LAMP-2 positive compartment (lysosomes), while the galectin-1 binding fraction went to larger galectin-1 positive granules. In conclusion, galectin-1 detects a new type of functional biomarker for cancer: a specific type of glycoform of haptoglobin, and possibly other serum glycoproteins, with a different function after uptake into tissue cells.
Collapse
Affiliation(s)
- Michael C. Carlsson
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Cecilia Cederfur
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Viveka Schaar
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Crina I. A. Balog
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Adriana Lepur
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Franck Touret
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emma Salomonsson
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - André M. Deelder
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mårten Fernö
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Manfred Wuhrer
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
285
|
Kliman HJ, Sammar M, Grimpel YI, Lynch SK, Milano KM, Pick E, Bejar J, Arad A, Lee JJ, Meiri H, Gonen R. Placental protein 13 and decidual zones of necrosis: an immunologic diversion that may be linked to preeclampsia. Reprod Sci 2011; 19:16-30. [PMID: 21989657 DOI: 10.1177/1933719111424445] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We evaluated the role of placental protein 13 (PP13; galectin 13) in the process of trophoblast invasion and decidual necrosis. Immunohistochemical analysis for PP13, immune cells, human placental lactogen, cytokeratin, and apoptosis markers was performed on 20 elective pregnancy termination specimens between 6 and 15 weeks of gestation. Placental protein 13 was localized to syncytiotrophoblasts in the chorionic villi and to occasional multinucleated luminal trophoblasts within converted decidual spiral arterioles. Cytotrophoblasts, anchoring trophoblasts, and invasive trophoblasts did not stain for PP13. Extracellular PP13 aggregates were found around decidual veins associated with T-cell-, neutrophil- and macrophage-containing decidual zones of necrosis (ZONEs). We hypothesize that PP13 is secreted into the intervillus space, drains through the decidua basalis veins, and forms perivenous PP13 aggregates which attract and activate maternal immune cells. Thus, syncytiotrophoblast-derived PP13 may create a ZONE that facilitates trophoblast invasion and conversion of the maternal spiral arterioles.
Collapse
Affiliation(s)
- Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Platzer B, Ruiter F, van der Mee J, Fiebiger E. Soluble IgE receptors--elements of the IgE network. Immunol Lett 2011; 141:36-44. [PMID: 21920387 DOI: 10.1016/j.imlet.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/15/2011] [Accepted: 08/27/2011] [Indexed: 12/22/2022]
Abstract
Soluble isoforms of three human IgE Fc receptors, namely FcεRI, FcεRII, and galectin-3, can be found in serum. These soluble IgE receptors are a diverse family of proteins unified by the characteristic of interacting with IgE in the extracellular matrix. A truncated form of the alpha-chain of FcεRI, the high affinity IgE receptor, has recently been described as a soluble isoform (sFcεRI). Multiple soluble isoforms of CD23 (sCD23), the low affinity IgE receptor also known as FcεRII, are generated via different mechanisms of extracellular and intracellular proteolysis. The second low affinity IgE receptor, galectin-3, only exists as a secretory protein. We here discuss the physiological roles of these three soluble IgE receptors as elements of the human IgE network. Additionally, we review the potential and current use of sFcεRI, sCD23, and galectin-3 as biomarkers in human disease.
Collapse
Affiliation(s)
- Barbara Platzer
- Division of Gastroenterology and Nutrition, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | | | | | | |
Collapse
|
287
|
Nuclear factor (NF)-κB controls expression of the immunoregulatory glycan-binding protein galectin-1. Mol Immunol 2011; 48:1940-9. [DOI: 10.1016/j.molimm.2011.05.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/17/2022]
|
288
|
Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 2011; 50:7842-57. [PMID: 21848324 DOI: 10.1021/bi201121m] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings.
Collapse
Affiliation(s)
- Santiago Di Lella
- Laboratorio de Inmunopatologı́a, Instituto de Biologı́a y Medicina Experimental, CONICET, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
289
|
Than NG, Romero R, Meiri H, Erez O, Xu Y, Tarquini F, Barna L, Szilagyi A, Ackerman R, Sammar M, Fule T, Karaszi K, Kovalszky I, Dong Z, Kim CJ, Zavodszky P, Papp Z, Gonen R. PP13, maternal ABO blood groups and the risk assessment of pregnancy complications. PLoS One 2011; 6:e21564. [PMID: 21799738 PMCID: PMC3143125 DOI: 10.1371/journal.pone.0021564] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/01/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Placental Protein 13 (PP13), an early biomarker of preeclampsia, is a placenta-specific galectin that binds beta-galactosides, building-blocks of ABO blood-group antigens, possibly affecting its bioavailability in blood. METHODS AND FINDINGS We studied PP13-binding to erythrocytes, maternal blood-group effect on serum PP13 and its performance as a predictor of preeclampsia and intrauterine growth restriction (IUGR). Datasets of maternal serum PP13 in Caucasian (n = 1078) and Hispanic (n = 242) women were analyzed according to blood groups. In vivo, in vitro and in silico PP13-binding to ABO blood-group antigens and erythrocytes were studied by PP13-immunostainings of placental tissue-microarrays, flow-cytometry of erythrocyte-bound PP13, and model-building of PP13--blood-group H antigen complex, respectively. Women with blood group AB had the lowest serum PP13 in the first trimester, while those with blood group B had the highest PP13 throughout pregnancy. In accordance, PP13-binding was the strongest to blood-group AB erythrocytes and weakest to blood-group B erythrocytes. PP13-staining of maternal and fetal erythrocytes was revealed, and a plausible molecular model of PP13 complexed with blood-group H antigen was built. Adjustment of PP13 MoMs to maternal ABO blood group improved the prediction accuracy of first trimester maternal serum PP13 MoMs for preeclampsia and IUGR. CONCLUSIONS ABO blood group can alter PP13-bioavailability in blood, and it may also be a key determinant for other lectins' bioavailability in the circulation. The adjustment of PP13 MoMs to ABO blood group improves the predictive accuracy of this test.
Collapse
Affiliation(s)
- Nandor Gabor Than
- First Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Tsai CM, Guan CH, Hsieh HW, Hsu TL, Tu Z, Wu KJ, Lin CH, Lin KI. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. THE JOURNAL OF IMMUNOLOGY 2011; 187:1643-52. [PMID: 21753146 DOI: 10.4049/jimmunol.1100297] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Galectin (Gal) family members are a type of soluble lectin, and they play important roles in immunomodulation. Their redundant roles have been proposed. We previously found that Gal-1 promotes the formation of Ab-secreting plasma cells, but B cells from Gal-1-deficient and control animals produce comparable amounts of Abs. In the current study, we used synthetic sulfomodified N-acetyllactosamine (LacNAc) analogs and short hairpin RNAs for Gal-8 to demonstrate a redundancy in the effects of Gal-1 and Gal-8 on plasma cell formation. Gal-1 and Gal-8 were both expressed during plasma cell differentiation, and both Gals promoted the formation of plasma cells. Gal-1 and Gal-8 bound better to mature B cells than to plasma cells, and the expression of glycosyltransferase enzymes changed during differentiation, with a decrease in mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetyl-glucosaminyltransferase and N-acetylglucosaminyltransferase-1 mRNAs in plasma cells. Synthetic sulfomodified Galβ1-3GlcNAc disaccharides (type 1 LacNAcs) selectively prevented Gal-8 binding, leading to a blockade of Ab production in Gal-1-deficient B cells. Furthermore, synthetic type 1 LacNAcs that were able to block the binding of both Gals greatly reduced the effect of exogenously added recombinant Gal-1 and Gal-8 on promoting Ab production. These results reveal a novel role for Gal-8 in collaboration with Gal-1 in plasma cell formation, and suggest the possibility of using distinct LacNAc ligands to modulate the function of Gals.
Collapse
Affiliation(s)
- Chih-Ming Tsai
- Institute and Department of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
291
|
Bi S, Hong PW, Lee B, Baum LG. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. Proc Natl Acad Sci U S A 2011; 108:10650-5. [PMID: 21670307 PMCID: PMC3127870 DOI: 10.1073/pnas.1017954108] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interaction of cell surface glycoproteins with endogenous lectins on the cell surface regulates formation and maintenance of plasma membrane domains, clusters signaling complexes, and controls the residency time of glycoproteins on the plasma membrane. Galectin-9 is a soluble, secreted lectin that binds to glycoprotein receptors to form galectin-glycoprotein lattices on the cell surface. Whereas galectin-9 binding to specific glycoprotein receptors induces death of CD4 Th1 cells, CD4 Th2 cells are resistant to galectin-9 death due to alternative glycosylation. On Th2 cells, galectin-9 binds cell surface protein disulfide isomerase (PDI), increasing retention of PDI on the cell surface and altering the redox status at the plasma membrane. Cell surface PDI regulates integrin function on platelets and also enhances susceptibility of T cells to infection with HIV. We find that galectin-9 binding to PDI on Th2 cells results in increased cell migration through extracellular matrix via β3 integrins, identifying a unique mechanism to regulate T-cell migration. In addition, galectin-9 binding to PDI on T cells potentiates infection with HIV. We identify a mechanism for regulating cell surface redox status via a galectin-glycoprotein lattice, to regulate distinct T-cell functions.
Collapse
Affiliation(s)
- Shuguang Bi
- Departments of Pathology and Laboratory Medicine and
| | - Patrick W. Hong
- Microbiology, Immunology, and Molecular Genetics, University of California School of Medicine, Los Angeles, CA 90095
| | - Benhur Lee
- Departments of Pathology and Laboratory Medicine and
- Microbiology, Immunology, and Molecular Genetics, University of California School of Medicine, Los Angeles, CA 90095
| | - Linda G. Baum
- Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
292
|
Expression of galectin-9 by IFN-γ stimulated human nasal polyp fibroblasts through MAPK, PI3K, and JAK/STAT signaling pathways. Biochem Biophys Res Commun 2011; 411:259-64. [PMID: 21723260 DOI: 10.1016/j.bbrc.2011.06.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 12/30/2022]
Abstract
Galectin-9 exhibited potent and selective eosinophil chemoattractant activity and attracted eosinophils in vitro and in vivo. Nasal polyposis is a chronic inflammatory disease of the upper airway characterized by the marked presence of inflammatory cells, particularly eosinophils. Thus, galectin-9 may be implicated in the pathogenesis of nasal polyposis. The study was designed to investigate whether interferon-gamma (IFN-γ) can induce the augmentation of galectin-9 expression and induce the expression of galectin-9 in nasal polyps. We examined the correlation between galectin-9 expression and eosinophil infiltration in nasal polyps. In addition, we identified the signaling pathways involved in the elevation of galectin-9 expression in response to IFN-γ. Our data demonstrate that the involvement of mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3 phosphate kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) may play important roles in the selective recruitment of eosinophils in nasal polyp tissues through the production of galectin-9. These findings suggest that galectin-9 expression is associated with eosinophil infiltration in polyps of patients with nasal polyposis.
Collapse
|
293
|
Barthel SR, Antonopoulos A, Cedeno-Laurent F, Schaffer L, Hernandez G, Patil SA, North SJ, Dell A, Matta KL, Neelamegham S, Haslam SM, Dimitroff CJ. Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation. J Biol Chem 2011; 286:21717-31. [PMID: 21493714 PMCID: PMC3122228 DOI: 10.1074/jbc.m110.194597] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 04/12/2011] [Indexed: 12/21/2022] Open
Abstract
Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLe(X)), and related lectin ligands on effector leukocytes. Based on anti-sLe(X) antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLe(X) formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLe(X) (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLe(X) structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLe(X) on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis.
Collapse
Affiliation(s)
- Steven R. Barthel
- From the Harvard Skin Disease Research Center, Department of Dermatology, and
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Aristotelis Antonopoulos
- the Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Filiberto Cedeno-Laurent
- From the Harvard Skin Disease Research Center, Department of Dermatology, and
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Lana Schaffer
- Scripps Research Institute, La Jolla, California 92037
| | | | - Shilpa A. Patil
- the Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260, and
| | - Simon J. North
- the Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Khushi L. Matta
- the Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Sriram Neelamegham
- the Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260, and
| | - Stuart M. Haslam
- the Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charles J. Dimitroff
- From the Harvard Skin Disease Research Center, Department of Dermatology, and
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
294
|
Iqbal AJ, Sampaio ALF, Maione F, Greco KV, Niki T, Hirashima M, Perretti M, Cooper D. Endogenous galectin-1 and acute inflammation: emerging notion of a galectin-9 pro-resolving effect. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1201-9. [PMID: 21356371 DOI: 10.1016/j.ajpath.2010.11.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/05/2010] [Accepted: 11/23/2010] [Indexed: 01/24/2023]
Abstract
The role of endogenous galectin-1 (Gal-1) in acute inflammation has been poorly investigated. We therefore performed the carrageenan-induced paw edema model in wild-type and Gal-1(-/-) mice. On subplantar injection of carrageenan, Gal-1(-/-) mice displayed a similar first phase of edema (≤24 hours) to wild-type mice; however, a much less pronounced second phase (48 to 96 hours) was evident in this genotype. This reduced inflammation was associated with lower paw expression of inflammatory genes and cell infiltrates. Analysis of galectin protein and mRNA expression revealed high expression of Gal-1 in wild-type paws during resolution (≥48 hours), with some expression of galectin-9 (Gal-9). Administration of stable Gal-1 to wild-type mice completely ablated the first phase of edema but was ineffective when administered therapeutically at the 24-hour time point. Conversely, Gal-9 administration did not alter the first phase of edema but significantly reduced the second phase when administered therapeutically. This suggests anti-inflammatory actions for both proteins in this model albeit at different phases of the inflammatory response. Collectively, these data indicate that the absence of endogenous Gal-1 results in an abrogated response during the second phase of the edema reaction.
Collapse
Affiliation(s)
- Asif J Iqbal
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
295
|
Davicino RC, Eliçabe RJ, Di Genaro MS, Rabinovich GA. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms. Int Immunopharmacol 2011; 11:1457-63. [PMID: 21600310 DOI: 10.1016/j.intimp.2011.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/02/2011] [Indexed: 12/21/2022]
Abstract
Innate immune cells have evolved to sense microbial pathogens through pattern recognition receptors (PRRs), which interact with conserved pathogen-associated molecular patterns (PAMPs) to convey microbial information into immune cell signaling and activation events. PRRs also recognize endogenous damage-associated molecular patterns (DAMPs), including alarmins released during microbial invasion, initiation of autoimmune inflammation or tumor growth. In spite of the well-established role of Toll-like receptors (TLRs) in mediating these recognition events, compelling evidence supports a central function for lectin-glycan interactions in promoting microbial sensing and evoking immune responses. Here we discuss the role of glycans and lectins (particularly galectins) in mediating microbial recognition and initiation of innate immune responses. Both microbes and host cells are sources of glycan-containing information which is, at least in part, decoded by endogenous glycan-binding proteins or lectins, including C-type lectins, siglecs and galectins. Although C-type lectins and siglecs can recognize microbial glycans when expressed on the cell surface of innate immune cells, galectins mainly function as soluble mediators that bridge microbial or host glycans to amplify or attenuate immune responses. Galectins are widely expressed in host cells and play important roles during different steps of infection such as pathogen recognition, invasion and resolution. In addition, recent studies report the presence of conserved 'galectin-like' domains in certain pathogens including helminths and protistan parasites, suggesting that they could also serve as potential virulence factors that influence the outcome and course of infection. Understanding the role of lectin-glycan interactions and the relevance of PRR or PAMP glycosylation in microbial recognition might contribute to the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Roberto C Davicino
- Division of Immunology, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, Laboratory of Immunopathology, Multidisciplinary Institute of Biological Investigations - San Luis, CONICET, San Luis, Argentina
| | | | | | | |
Collapse
|
296
|
Zhuo Y, Bellis SL. Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 2011; 286:5935-41. [PMID: 21173156 PMCID: PMC3057866 DOI: 10.1074/jbc.r110.191429] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectins are β-galactoside-binding lectins that regulate diverse cell behaviors, including adhesion, migration, proliferation, and apoptosis. Galectins can be expressed both intracellularly and extracellularly, and extracellular galectins mediate their effects by associating with cell-surface oligosaccharides. Despite intensive current interest in galectins, strikingly few studies have focused on a key enzyme that acts to inhibit galectin signaling, namely β-galactoside α2,6-sialyltransferase (ST6Gal-I). ST6Gal-I adds an α2,6-linked sialic acid to the terminal galactose of N-linked glycans, and this modification blocks galectin binding to β-galactosides. This minireview summarizes the evidence suggesting that ST6Gal-I activity serves as an "off switch" for galectin function.
Collapse
Affiliation(s)
- Ya Zhuo
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Susan L. Bellis
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
297
|
Galectin-8 tandem-repeat structure is essential for T-cell proliferation but not for co-stimulation. Biochem J 2011; 434:153-60. [DOI: 10.1042/bj20101691] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gal (galectin)-8 is a tandem-repeat Gal containing N-CRDs (Nterminal carbohydrate-recognition domains) and C-CRDs (C-terminal carbohydrate-recognition domains) with differential glycan-binding specificity fused by a linker peptide. Gal-8 has two distinct effects on CD4 T-cells: at high concentrations it induces antigen-independent proliferation, whereas at low concentrations it co-stimulates antigen-specific responses. Associated Gal-8 structural requirements were dissected in the present study. Recombinant homodimers N–N (two N-terminal CRD chimaera) and C–C (two C-terminal CRD chimaera), but not single C-CRDs or N-CRDs, induced proliferation; however, single domains induced co-stimulation. These results indicate that the tandem-repeat structure was essential only for the proliferative effect, suggesting the involvement of lattice formation, whereas co-stimulation could be mediated by agonistic interactions. In both cases, C–C chimaeras displayed higher activity than Gal-8, indicating that the C-CRD was mainly involved, as was further supported by the strong inhibition of proliferation and co-stimulation in the presence of blood group B antigen, specifically recognized by this domain. Classic Gal inhibitors (lactose and thiodigalactoside) prevented proliferation but not co-stimulatory activity, which was inhibited by 3-O-β-D-galactopyranosyl-D-arabinose. Interestingly, Gal-8 induced proliferation of naïve human CD4 T-cells, varying from non- to high-responder individuals, whereas it promoted cell death of phytohaemagglutinin or CD3/CD28 pre-activated cells. The findings of the present study delineate the differential molecular requirements for Gal-8 activities on T-cells, and suggest a dual activity relying on activation state.
Collapse
|
298
|
Su EW, Bi S, Kane LP. Galectin-9 regulates T helper cell function independently of Tim-3. Glycobiology 2010; 21:1258-65. [PMID: 21187321 DOI: 10.1093/glycob/cwq214] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
β-Galactoside-binding lectin 9 (galectin-9) is a tandem repeat-type member of the galectin family. It was initially characterized as an eosinophil chemoattractant and an inducer of apoptosis in thymocytes. Subsequently, galectin-9 was identified as a ligand for transmembrane immunoglobulin mucin domain 3 (Tim-3), a type I glycoprotein induced on T cells during chronic inflammation. Work in autoimmune diseases and chronic viral infections have led to the current hypothesis that the function of Tim-3 is to limit immune responses. However, it is still not known to what degree these effects are due to the galectin-9/Tim-3 interaction. In this study, we show that galectin-9 is not limited to the role of a pro-apoptotic agent, but that it can also induce the production of pro-inflammatory cytokines from T helper cells. This effect is dose-dependent and does not require Tim-3. These findings suggest that the effects of galectin-9 on T cells are more complex than previously thought and are mediated by additional receptors apart from Tim-3.
Collapse
Affiliation(s)
- Ee W Su
- Department of Immunology, University of Pittsburgh School of Medicine, BST E-1056, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
299
|
Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J Clin Immunol 2010; 31:10-21. [PMID: 21184154 DOI: 10.1007/s10875-010-9494-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
Abstract
Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.
Collapse
Affiliation(s)
- Juan P Cerliani
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
300
|
Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ. Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7037-46. [PMID: 20980634 DOI: 10.4049/jimmunol.1000154] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Galectin-3, a β-galactoside-binding lectin, has been proposed to have multifaceted functions in various pathophysiological conditions. However, the characteristics of galectin-3 and its molecular mechanisms of action are still largely unknown. In this study, we show that galectin-3 exerts cytokine-like regulatory actions in rat and mouse brain-resident immune cells. Both the expression of galectin-3 and its secretion into the extracellular compartment were significantly enhanced in glia under IFN-γ-stimulated, inflamed conditions. After exposure to galectin-3, glial cells produced high levels of proinflammatory mediators and exhibited activated properties. Notably, within minutes after exposure to galectin-3, JAK2 and STAT1, STAT3, and STAT5 showed considerable enhancement of tyrosine phosphorylation; thereafter, downstream events of STAT signaling were also significantly enhanced. Treatment of the cells with pharmacological inhibitors of JAK2 reduced the galectin-3-stimulated increases of inflammatory mediators. Using IFN-γ receptor 1-deficient mice, we further found that IFN-γR 1 might be required for galectin-3-dependent activation of the JAK-STAT cascade. However, galectin-3 significantly induced phosphorylation of STATs in glial cells from IFN-γ-deficient mice, suggesting that IFN-γ does not mediate activation of STATs. Collectively, our findings suggest that galectin-3 acts as an endogenous danger signaling molecule under pathological conditions in the brain, providing a potential explanation for the molecular basis of galectin-3-associated pathological events.
Collapse
Affiliation(s)
- Sae-Bom Jeon
- Immune and Cell Therapy Branch, National Cancer Center, Goyang, Korea
| | | | | | | | | | | |
Collapse
|