251
|
Montgomery RA, Macdonald DW, Hayward MW. The inducible defences of large mammals to human lethality. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Robert A. Montgomery
- Research on the Ecology of Carnivores and their Prey (RECaP) Laboratory Department of Fisheries and Wildlife Michigan State University East Lansing MI USA
- Wildlife Conservation Research Unit Department of Zoology University of OxfordThe Recanati‐Kaplan CentreTubney House Tubney Oxon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of OxfordThe Recanati‐Kaplan CentreTubney House Tubney Oxon UK
| | - Matthew W. Hayward
- School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
- Centre for African Conservation Ecology Nelson Mandela University Port Elizabeth South Africa
- Centre for Wildlife Management University of Pretoria Pretoria South Africa
| |
Collapse
|
252
|
Sbragaglia V, López-Olmeda JF, Frigato E, Bertolucci C, Arlinghaus R. Size-selective mortality induces evolutionary changes in group risk-taking behaviour and the circadian system in a fish. J Anim Ecol 2020; 90:387-403. [PMID: 33064849 DOI: 10.1111/1365-2656.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Intensive and trait-selective mortality of fish and wildlife can cause evolutionary changes in a range of life-history and behavioural traits. These changes might in turn alter the circadian system due to co-evolutionary mechanisms or correlated selection responses both at behavioural and molecular levels, with knock-on effects on daily physiological processes and behavioural outputs. We examined the evolutionary impact of size-selective mortality on group risk-taking behaviour and the circadian system in a model fish species. We exposed zebrafish Danio rerio to either large or small size-selective harvesting relative to a control over five generations, followed by eight generations during which harvesting was halted to remove maternal effects. Size-selective mortality affected fine-scale timing of behaviours. In particular, small size-selective mortality, typical of specialized fisheries and gape-limited predators targeting smaller size classes, increased group risk-taking behaviuor during feeding and after simulated predator attacks. Moreover, small size-selective mortality increased early peaks of daily activity as well as extended self-feeding daily activity to the photophase compared to controls. By contrast large size-selective mortality, typical of most wild capture fisheries, only showed an almost significant effect of decreasing group risk-taking behaviour during the habituation phase and no clear changes in fine-scale timing of daily behavioural rhythms compared to controls. We also found changes in the molecular circadian core clockwork in response to both size-selective mortality treatments. These changes disappeared in the clock output pathway because both size-selected lines showed similar transcription profiles. This switch downstream to the molecular circadian core clockwork also resulted in similar overall behavioural rhythms (diurnal swimming and self-feeding in the last hours of darkness) independent of the underlying molecular clock. To conclude, our experimental harvest left an asymmetrical evolutionary legacy in group risk-taking behaviour and in fine-scale daily behavioural rhythms. Yet, the overall timing of activity showed evolutionary resistance probably maintained by a molecular switch. Our experimental findings suggest that size-selective mortality can have consequences for behaviour and physiological processes.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Faculty of Life Sciences & Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
253
|
Gailly R, Cousseau L, Paquet JY, Titeux N, Dufrêne M. Flexible habitat use in a migratory songbird expanding across a human-modified landscape: is it adaptive? Oecologia 2020; 194:75-86. [PMID: 33025265 DOI: 10.1007/s00442-020-04765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 09/19/2020] [Indexed: 11/25/2022]
Abstract
Behavioural plasticity during habitat selection plays a key role in determining whether organisms may thrive under human-induced rapid environmental changes. As organisms rely on environmental cues to make decisions, these behavioural responses may be maladaptive. We studied the European stonechat Saxicola torquatus as a model open-habitat bird species breeding in three structurally different land-use types generated by agriculture and forestry activities. In this mosaic landscape, we compared the relative attractiveness and the breeding habitat quality of intensive grassland, Christmas tree plantations and clear-cut patches in plantation forests to test whether habitat selection was adaptive. We examined the settlement pattern of territorial males to evaluate habitat preference. We recorded key parameters reflecting reproductive performances, adult and first-year survival to estimate the individual fitness of the birds and assess the quality of the different land-use types for breeding. Stonechats preferentially settled in clear-cut patches, but their fitness was not found to be markedly different in comparison with the other occupied habitats. Although they produced slightly lower-quality offspring in clear-cut patches, we did not find a negative consequence on first-year survival probabilities or any among-habitat differences in adult survival. With our analysis integrating multiple components of individual fitness, we show that all occupied land-use types are similarly rewarding for the breeding stonechats. Our study shows that some species can benefit from novel land-use types emerging in the landscape as a result of human activities. Flexible habitat selection in the stonechat has most probably contributed to its recent population increase in Western Europe.
Collapse
Affiliation(s)
- Robin Gailly
- Biodiversity and Landscape, Department of Biosystems Engineering (BIOSE), University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Laurence Cousseau
- Terrestrial Ecology Unit, Department of Biology, University of Ghent, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Jean-Yves Paquet
- Département Études, Natagora, Traverse des Muses 1, 5000, Namur, Belgium
| | - Nicolas Titeux
- Department of Community Ecology, UFZ, Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Observatory for Climate, Environment and Biodiversity, Luxembourg Institute of Science and Technology, Rue du Brill 41, 4422, Belvaux, Luxembourg
| | - Marc Dufrêne
- Biodiversity and Landscape, Department of Biosystems Engineering (BIOSE), University of Liège, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
254
|
Holyoak M, Caspi T, Redosh LW. Integrating Disturbance, Seasonality, Multi-Year Temporal Dynamics, and Dormancy Into the Dynamics and Conservation of Metacommunities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
255
|
Dhawale AK, Kumar MA, Sinha A. Changing ecologies, shifting behaviours: Behavioural responses of a rainforest primate, the lion-tailed macaque Macaca silenus, to a matrix of anthropogenic habitats in southern India. PLoS One 2020; 15:e0238695. [PMID: 32966281 PMCID: PMC7511024 DOI: 10.1371/journal.pone.0238695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 08/22/2020] [Indexed: 11/18/2022] Open
Abstract
With the uncontrolled expansion of anthropogenic modifications of the environment, wildlife species are forced to interact with humans, often leading to conflict situations that have detrimental effects for both wildlife and humans. Such interactions are escalating globally, making it crucial for us to devise strategies for both, the management of conflict and the conservation of these often-threatened species. We studied a case of potentially detrimental human-wildlife interactions between an endemic, habitat-specialist primate, the lion-tailed macaque Macaca silenus and resident human communities that has developed in recent years in the Western Ghats mountains of southern India. Primates provide useful model systems to understand the extent and nature of behavioural changes exhibited by wildlife in response to anthropogenic habitats with varying degrees of human influence. We documented behaviours, including foraging and intra-species social interactions, to examine the decisions made by the macaques as they exploited four human-modified habitats, which, for the purpose of this study, have been qualitatively characterised to include structural features of the habitat, type of food resources available and the presence of humans. Access to human-origin food, either cooked or packaged, acquired directly from homes or garbage pits, in the human-dominated habitat appeared to significantly reduce active foraging and searching for food, allowing them to engage in other behavioural activities, such as resting. Furthermore, patterns of reciprocated affiliation dissipated in certain human-dominated habitats, with individuals seeming to have adopted novel behavioural strategies, leading to altered social dynamics in the troop, possibly in response to provisioning. This study thus highlights the importance of understanding behavioural changes displayed by animals in response to human interactions; such knowledge could be crucial for the planning and implementation of management and conservation strategies for endangered species such as the lion-tailed macaque and possibly other wildlife in the increasingly anthropogenic landscapes of the tropical world.
Collapse
Affiliation(s)
- Ashni Kumar Dhawale
- Wildlife Biology and Conservation, WCS-NCBS Programme, National Centre for Biological Sciences, Bangalore, India
- School of Natural and Engineering Sciences, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore, India
- University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
| | | | - Anindya Sinha
- School of Natural and Engineering Sciences, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore, India
- Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Cotton University, Guwahati, India
| |
Collapse
|
256
|
Improve Production of Pullulanase of Bacillus subtilis in Batch and Fed-Batch Cultures. Appl Biochem Biotechnol 2020; 193:296-306. [PMID: 32954482 DOI: 10.1007/s12010-020-03419-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Pullulanase is a debranching enzyme that cleaves explicitly α-1,6 glycosidic bonds, which is widely used in starch saccharification, production of glucose, maltose, and bioethanol. The thermal-resistant pullulanase is isolated from a variety of microorganisms; however, the lack of industrial production of pullulanase has hindered the transformation of the laboratory to industry. In this study, the expensive maltose syrup and soybean meal powder were replaced with cheap corn starch and corn steep liquor, exhibiting 440 U/mL of pullulanase in shake flasks by changing the C/N value and the total energy of the medium. Subsequently, the cultivation conditions were explored in a 50-L and 50-m3 bioreactor. In batch culture, the pullulanase activity reached 896 U/mL, while it increased to 1743 U/mL in fed-batch culture by controlling the dissolved oxygen, pH, reducing sugar content, and temperature. Remarkably, the cultivation volume was enlarged to 50 m3 based on the technical parameters of fed-batch culture. The industrial production of pullulanase was successful, and the activity achieved 1546 U/mL. When the product was stored at room temperature (25 °C) for 6 months, the pullulanase activity was over 90%. The half-lives at 60 and 80 °C were 119.45 h and 51.18 h, respectively, which satisfied the industrial application requirements of pullulanase.
Collapse
|
257
|
Monk CT, Chéret B, Czapla P, Hühn D, Klefoth T, Eschbach E, Hagemann R, Arlinghaus R. Behavioural and fitness effects of translocation to a novel environment: Whole‐lake experiments in two aquatic top predators. J Anim Ecol 2020; 89:2325-2344. [DOI: 10.1111/1365-2656.13298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Christopher T. Monk
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Bernard Chéret
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Philipp Czapla
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Daniel Hühn
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | | | - Erik Eschbach
- Thünen Institute of Fisheries Ecology Bremerhaven Germany
| | - Robert Hagemann
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Robert Arlinghaus
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
- Faculty of Life Sciences and Integrative Research Institute for the Transformation of Human‐Environmental Systems Humboldt‐Universität zu Berlin Berlin Germany
- Division of Integrative Fisheries Management Department of Crop and Animal Sciences Faculty of Life Science Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
258
|
Dammhahn M, Mazza V, Schirmer A, Göttsche C, Eccard JA. Of city and village mice: behavioural adjustments of striped field mice to urban environments. Sci Rep 2020; 10:13056. [PMID: 32747632 PMCID: PMC7400609 DOI: 10.1038/s41598-020-69998-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/10/2020] [Indexed: 12/03/2022] Open
Abstract
A fundamental question of current ecological research concerns the drives and limits of species responses to human-induced rapid environmental change (HIREC). Behavioural responses to HIREC are a key component because behaviour links individual responses to population and community changes. Ongoing fast urbanization provides an ideal setting to test the functional role of behaviour for responses to HIREC. Consistent behavioural differences between conspecifics (animal personality) may be important determinants or constraints of animals' adaptation to urban habitats. We tested whether urban and rural populations of small mammals differ in mean trait expression, flexibility and repeatability of behaviours associated to risk-taking and exploratory tendencies. Using a standardized behavioural test in the field, we quantified spatial exploration and boldness of striped field mice (Apodemus agrarius, n = 96) from nine sub-populations, presenting different levels of urbanisation and anthropogenic disturbance. The level of urbanisation positively correlated with boldness, spatial exploration and behavioural flexibility, with urban dwellers being bolder, more explorative and more flexible in some traits than rural conspecifics. Thus, individuals seem to distribute in a non-random way in response to human disturbance based on their behavioural characteristics. Animal personality might therefore play a key role in successful coping with the challenges of HIREC.
Collapse
Affiliation(s)
- Melanie Dammhahn
- Department of Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Valeria Mazza
- Department of Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Annika Schirmer
- Department of Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Claudia Göttsche
- Department of Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jana A Eccard
- Department of Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
259
|
Wilson MW, Ridlon AD, Gaynor KM, Gaines SD, Stier AC, Halpern BS. Ecological impacts of human-induced animal behaviour change. Ecol Lett 2020; 23:1522-1536. [PMID: 32705769 DOI: 10.1111/ele.13571] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022]
Abstract
A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human-induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human-induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology.
Collapse
Affiliation(s)
- Margaret W Wilson
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - April D Ridlon
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Kaitlyn M Gaynor
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Benjamin S Halpern
- Bren School of Environmental Science & Management, University of California, Santa Barbara, CA, 93106, USA.,National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA, 93101, USA
| |
Collapse
|
260
|
Uusi-Heikkilä S. Implications of size-selective fisheries on sexual selection. Evol Appl 2020; 13:1487-1500. [PMID: 32684971 PMCID: PMC7359828 DOI: 10.1111/eva.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/26/2023] Open
Abstract
Fisheries often combine high mortality with intensive size selectivity and can, thus, be expected to reduce body size and size variability in exploited populations. In many fish species, body size is a sexually selected trait and plays an important role in mate choice and mate competition. Large individuals are often preferred as mates due to the high fecundity and resources they can provide to developing offspring. Large fish are also successful in competition for mates. Fisheries‐induced reductions in size and size variability can potentially disrupt mating systems and lower average reproductive success by decreasing opportunities for sexual selection. By reducing population sizes, fisheries can also lead to an increased level of inbreeding. Some fish species avoid reproducing with kin, and a high level of relatedness in a population can further disrupt mating systems. Reduced body size and size variability can force fish to change their mate preferences or reduce their choosiness. If mate preference is genetically determined, the adaptive response to fisheries‐induced changes in size and size variability might not occur rapidly. However, much evidence exists for plastic adjustments of mate choice, suggesting that fish might respond flexibly to changes in their social environment. Here, I first discuss how reduced average body size and size variability in exploited populations might affect mate choice and mate competition. I then consider the effects of sex‐biased fisheries on mating systems. Finally, I contemplate the possible effects of inbreeding on mate choice and reproductive success and discuss how mate choice might evolve in exploited populations. Currently, little is known about the mating systems of nonmodel species and about the interplay between size‐selective fisheries and sexual selection. Future studies should focus on how reduced size and size variability and increased inbreeding affect fish mating systems, how persistent these effects are, and how this might in turn affect population demography.
Collapse
Affiliation(s)
- Silva Uusi-Heikkilä
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
261
|
Elgert C, Hopkins J, Kaitala A, Candolin U. Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm. Proc Biol Sci 2020; 287:20200806. [PMID: 32673556 PMCID: PMC7423653 DOI: 10.1098/rspb.2020.0806] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The amount of artificial light at night is growing worldwide, impacting the behaviour of nocturnal organisms. Yet, we know little about the consequences of these behavioural responses for individual fitness and population viability. We investigated if females of the common glow-worm Lampyris noctiluca—which glow in the night to attract males—mitigate negative effects of artificial light on mate attraction by adjusting the timing and location of glowing to spatial variation in light conditions. We found females do not move away from light when exposed to a gradient of artificial light, but delay or even refrain from glowing. Further, we demonstrate that this response is maladaptive, as our field study showed that staying still when exposed to artificial light from a simulated streetlight decreases mate attraction success, while moving only a short distance from the light source can markedly improve mate attraction. These results indicate that glow-worms are unable to respond to spatial variation in artificial light, which may be a factor in their global decline. Consequently, our results support the hypothesis that animals often lack adaptive behavioural responses to anthropogenic environmental changes and underlines the importance of considering behavioural responses when investigating the effects of human activities on wildlife.
Collapse
Affiliation(s)
- Christina Elgert
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Juhani Hopkins
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Arja Kaitala
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| | - Ulrika Candolin
- Organismal and Evolutionary Biology, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palméns väg 260, 10900 Hanko, Finland
| |
Collapse
|
262
|
Callaghan CT, Benedetti Y, Wilshire JH, Morelli F. Avian trait specialization is negatively associated with urban tolerance. OIKOS 2020. [DOI: 10.1111/oik.07356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Corey T. Callaghan
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences; UNSW Sydney Sydney NSW 2052 Australia
- Community Ecology & Conservation Research Group, Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - Yanina Benedetti
- Dept of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
| | - John H. Wilshire
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences; UNSW Sydney Sydney NSW 2052 Australia
- Centre for Biodiversity and Global Change, Ecology and Evolutionary Biology Dept, Yale Univ. New Haven CT USA
| | - Federico Morelli
- Dept of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech Univ. of Life Sciences Prague Prague Czech Republic
- Faculty of Biological Sciences, Univ. of Zielona Góra Zielona Góra Poland
| |
Collapse
|
263
|
White DP, Nannini MA, Wahl DH. Examining the effects of chronic, lake-wide elevated temperatures on behavioural expression in largemouth bass, Micropterus salmoides. JOURNAL OF FISH BIOLOGY 2020; 97:39-50. [PMID: 32154914 DOI: 10.1111/jfb.14313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Many behaviours have differential fitness consequences across thermal and ecological contexts, indicating that both ecological shifts and warming temperatures induced by climatic change may alter how organisms behave. However, empirical evidence of temperature-driven behavioural selection in natural systems is lacking. We compared behaviours and behavioural syndromes related to activity, exploration, boldness and aggression in populations of largemouth bass (Micropterus salmoides) from ambient lakes to the those from artificially warmed, power plant cooling lakes to investigate changes in behaviours associated with warmer environments. Activity, exploration, boldness and aggression of juvenile largemouth bass were assessed in laboratory conditions using a novel environment assay and a risky situation assay. We found that activity and exploratory behaviours were higher and decreased through first year ontogeny in populations from heated lakes, whereas these behaviours were lower and showed no relationship through ontogeny in populations from ambient lakes. We attribute these differences to the changes in food source availability in heated lakes associated with temperature-driven ecological effects. Bold and aggressive behaviours tended to differ between populations, as did correlations between behaviours, but did not differ between ambient and heated lakes. The findings of this work identify that large ecological changes associated with warming environments, such as food availability, may drive changes in some aspects of behavioural expression in largemouth bass but that other aspects of behavioural expression may be driven by lake-specific factors not related to warming.
Collapse
Affiliation(s)
- Dalon P White
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, Illinois, USA
| | - Michael A Nannini
- Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, Illinois, USA
| | - David H Wahl
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, Illinois, USA
| |
Collapse
|
264
|
Marasinghe S, Simpson GD, Newsome D, Perera P. Scoping Recreational Disturbance of Shorebirds to Inform the Agenda for Research and Management in Tropical Asia. Trop Life Sci Res 2020; 31:51-78. [PMID: 32922669 PMCID: PMC7470479 DOI: 10.21315/tlsr2020.31.2.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In addition to scoping the impacts of the four most reported sources of recreational disturbance on shorebirds, this study also advances the concept of Tropical Asia (TA) to collectively describe tourist destinations in the ecologically and geopolitically diverse part of the planet that incorporates the tourism megaregion of South and Southeast Asia. At a time of growing global concern about the rapid decline of shorebird populations, many governments in TA are embracing and capitalising on the exponential growth in demand for coastal recreation and tourism across the region. This political response is partly driven by efforts to deliver economic development, aligned to the United Nations Sustainable Development Goals, in order to secure the livelihoods of people living in less developed coastal areas. However, the rapid increase in visitor numbers and the development of infrastructure to support the booming demand for coastal tourism destinations in TA are further exacerbating the pressures on shorebird populations across the region. Despite these growing pressures and the wealth of research reporting on shorebird populations across the Asian flyways, this scoping study identified surprisingly little research that reports on the recreational disturbance (RD) of shorebirds in TA. While undertaken to inform future research, this study also provides a synthesis of management strategies reported in the global literature into a set of management recommendations for coastal destinations in TA.
Collapse
Affiliation(s)
- Sumudu Marasinghe
- Department of Forestry and Environmental Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Greg D. Simpson
- Harry Butler Institute Murdoch University: Centre for Sustainable Aquatic Ecosystems, Murdoch University, Perth, WA 6150, Australia
- Sukau Ecotourism Research Center (SERC), BEST Society, Lot 1, Pusat Perindustrian Kolombong Jaya, Jalan Kolombong, 88450 Kota Kinabalu, Sabah, Malaysia
| | - David Newsome
- Sukau Ecotourism Research Center (SERC), BEST Society, Lot 1, Pusat Perindustrian Kolombong Jaya, Jalan Kolombong, 88450 Kota Kinabalu, Sabah, Malaysia
- College of Science, Health, Engineering and Education: Environmental and Conservation Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Priyan Perera
- Department of Forestry and Environmental Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| |
Collapse
|
265
|
Moatswi T, Maude G, Reading R, Selebatso M, Bennitt E. Factors Contributing to the Springbok Population Decline in the Kalahari, Botswana. AFRICAN JOURNAL OF WILDLIFE RESEARCH 2020. [DOI: 10.3957/056.050.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Tshepo Moatswi
- Okavango Research Institute, University of Botswana, Maun, Botswana
| | - Glyn Maude
- Kalahari Research and Conservation, P.O. Box 25650, Gaborone, Botswana
| | - Richard Reading
- Kalahari Research and Conservation, P.O. Box 25650, Gaborone, Botswana
| | - Moses Selebatso
- Kalahari Research and Conservation, P.O. Box 25650, Gaborone, Botswana
| | - Emily Bennitt
- Okavango Research Institute, University of Botswana, Maun, Botswana
| |
Collapse
|
266
|
Henriques GJB, Osmond MM. Cooperation can promote rescue or lead to evolutionary suicide during environmental change. Evolution 2020; 74:1255-1273. [PMID: 32614158 DOI: 10.1111/evo.14028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
Abstract
The adaptation of populations to changing conditions may be affected by interactions between individuals. For example, when cooperative interactions increase fecundity, they may allow populations to maintain high densities and thus keep track of moving environmental optima. Simultaneously, changes in population density alter the marginal benefits of cooperative investments, creating a feedback loop between population dynamics and the evolution of cooperation. Here we model how the evolution of cooperation interacts with adaptation to changing environments. We hypothesize that environmental change lowers population size and thus promotes the evolution of cooperation, and that this, in turn, helps the population keep up with the moving optimum. However, we find that the evolution of cooperation can have qualitatively different effects, depending on which fitness component is reduced by the costs of cooperation. If the costs decrease fecundity, cooperation indeed speeds adaptation by increasing population density; if, in contrast, the costs decrease viability, cooperation may instead slow adaptation by lowering the effective population size, leading to evolutionary suicide. Thus, cooperation can either promote or-counterintuitively-hinder adaptation to a changing environment. Finally, we show that our model can also be generalized to other social interactions by discussing the evolution of competition during environmental change.
Collapse
Affiliation(s)
- Gil J B Henriques
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Matthew M Osmond
- Center for Population Biology, University of California, Davis, Davis, California, 95616
| |
Collapse
|
267
|
Predictors of individual variation in reversal learning performance in three-spined sticklebacks. Anim Cogn 2020; 23:925-938. [PMID: 32514661 DOI: 10.1007/s10071-020-01399-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Behavioral flexibility is a type of phenotypic plasticity that can influence how animals cope with environmental change and is often measured with a reversal learning paradigm. The goal of this study was to understand why individuals differ in behavioral flexibility, and whether individual differences in behavioral flexibility fit the predictions of coping styles theory. We tested whether individual variation in flexibility correlates with response to novelty (response to a novel object), boldness (emergence into a novel environment), and behavioral persistence (response to a barrier), and tested for trade-offs between how quickly individuals learn an initial discrimination and flexibility. We compare results when reversal learning performance is measured during an early step of reversal learning (e.g. the number of errors during the first reversal session) to when reversal learning performance is measured by time to criterion. Individuals that made fewer mistakes during an early step of reversal learning spent more time away from the novel object, were less bold, less persistent, and performed worse during initial discrimination learning. In contrast, time to criterion was not correlated with any of the behaviors measured. This result highlights the utility of dissecting the steps of reversal learning to better understand variation in behavioral flexibility. Altogether, this study suggests that individuals differ in flexibility because flexibility is a key ingredient to their overall integrated strategy for coping with environmental challenges.
Collapse
|
268
|
The propensity for re-triggered predation fear in a prey fish. Sci Rep 2020; 10:9253. [PMID: 32518253 PMCID: PMC7283299 DOI: 10.1038/s41598-020-65735-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 11/09/2022] Open
Abstract
Variation in predation risk can drive variation in fear intensity, the length of fear retention, and whether fear returns after waning. Using Trinidadian guppies, we assessed whether a low-level predation threat could easily re-trigger fear after waning. First, we show that background risk induced neophobia after either multiple exposures to a low-level threat or a single exposure to a high-level threat. However, a single exposure to the low-level threat had no such effect. The individuals that received multiple background exposures to the low-level threat retained their neophobic phenotype over an 8-day post-risk period, and this response was intensified by a single re-exposure to the low-level threat on day 7. In contrast, the neophobia following the single high-level threat waned over the 8-day period, but the single re-exposure to the low-level threat on day 7 re-triggered the neophobic phenotype. Thus, despite the single low-level exposure being insufficient to induce neophobia, it significantly elevated existing fear and re-triggered fear that had waned. We highlight how such patterns of fear acquisition, retention, and rapid re-triggering play an important role in animal ecology and evolution and outline parallels between the neophobic phenotype in fishes and dimensions of post-traumatic stress in humans.
Collapse
|
269
|
Zhou B, Liang W. Avian escape responses to observers wearing clothing of different colors: A comparison of urban and rural populations. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
270
|
Effect of early exposure to predation on risk perception and survival of fish exposed to a non-native predator. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
271
|
Fisher DN, Pruitt JN. Insights from the study of complex systems for the ecology and evolution of animal populations. Curr Zool 2020; 66:1-14. [PMID: 32467699 PMCID: PMC7245006 DOI: 10.1093/cz/zoz016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/01/2022] Open
Abstract
Populations of animals comprise many individuals, interacting in multiple contexts, and displaying heterogeneous behaviors. The interactions among individuals can often create population dynamics that are fundamentally deterministic yet display unpredictable dynamics. Animal populations can, therefore, be thought of as complex systems. Complex systems display properties such as nonlinearity and uncertainty and show emergent properties that cannot be explained by a simple sum of the interacting components. Any system where entities compete, cooperate, or interfere with one another may possess such qualities, making animal populations similar on many levels to complex systems. Some fields are already embracing elements of complexity to help understand the dynamics of animal populations, but a wider application of complexity science in ecology and evolution has not occurred. We review here how approaches from complexity science could be applied to the study of the interactions and behavior of individuals within animal populations and highlight how this way of thinking can enhance our understanding of population dynamics in animals. We focus on 8 key characteristics of complex systems: hierarchy, heterogeneity, self-organization, openness, adaptation, memory, nonlinearity, and uncertainty. For each topic we discuss how concepts from complexity theory are applicable in animal populations and emphasize the unique insights they provide. We finish by outlining outstanding questions or predictions to be evaluated using behavioral and ecological data. Our goal throughout this article is to familiarize animal ecologists with the basics of each of these concepts and highlight the new perspectives that they could bring to variety of subfields.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
272
|
Fisher AM, Cornell SJ, Holwell GI, Price TAR. Mate‐finding Allee effects can be exacerbated or relieved by sexual cannibalism. J Anim Ecol 2020; 89:1581-1592. [DOI: 10.1111/1365-2656.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Adam M. Fisher
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | | | | | - Tom A. R. Price
- Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
273
|
Suriyampola PS, Lopez M, Ellsworth BE, Martins EP. Reversibility of Multimodal Shift: Zebrafish Shift to Olfactory Cues When the Visual Environment Changes. Integr Comp Biol 2020; 60:33-42. [DOI: 10.1093/icb/icaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synopsis
Animals can shift their reliance on different sensory modalities in response to environmental conditions, and knowing the degree to which traits are reversible may help us to predict their chances of survival in a changing environment. Here, using adult zebrafish (Danio rerio), we found that 6 weeks in different light environments alone were sufficient to shift whether fish approached visual or chemical cues first, and that a subsequent reversal of lighting conditions also reversed their sensory preferences. In addition, we measured simple behavioral responses to sensory stimuli presented alone, and found that zebrafish housed in dim light for 6 weeks responded weakly to an optomotor assay, but strongly to an olfactory cue, whereas fish experiencing bright light for 6 weeks responded strongly to the visual optomotor stimulus and weakly in an olfactory assay. Visual and olfactory responses were equally reversible, and shifted to the opposite pattern when we reversed lighting conditions for 6 weeks. In contrast, we did not find a change in activity level, suggesting that changes in multiple sensory modalities can buffer animals from changes in more complex forms of behavior. This reversal of sensory response provides insight into how animals may use sensory shifts to keep up with environmental change.
Collapse
Affiliation(s)
| | - Melissa Lopez
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
274
|
Steward RA, Boggs CL. Experience may outweigh cue similarity in maintaining a persistent host‐plant‐based evolutionary trap. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rachel A. Steward
- Department of Biological Sciences University of South Carolina 715 Sumter Street Columbia South Carolina 29208 USA
- Rocky Mountain Biological Laboratory PO Box 519 Crested Butte Colorado 81224 USA
| | - Carol L. Boggs
- Department of Biological Sciences University of South Carolina 715 Sumter Street Columbia South Carolina 29208 USA
- Rocky Mountain Biological Laboratory PO Box 519 Crested Butte Colorado 81224 USA
- School of the Earth, Ocean, & Environment University of South Carolina 701 Sumter Street Columbia South Carolina 29208 USA
| |
Collapse
|
275
|
Johnson HE, Lewis DL, Breck SW. Individual and population fitness consequences associated with large carnivore use of residential development. Ecosphere 2020. [DOI: 10.1002/ecs2.3098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Heather E. Johnson
- Alaska Science Center U.S. Geological Survey 4210 University Drive Anchorage Alaska 99508 USA
| | - David L. Lewis
- Colorado Parks and Wildlife 415 Turner Drive Durango Colorado 81303 USA
| | - Stewart W. Breck
- USDA National Wildlife Research Center 4101 La Porte Ave Fort Collins Colorado 80521 USA
| |
Collapse
|
276
|
Home range and core area utilisation of three co-existing mongoose species: large grey, water and white-tailed in the fragmented landscape of the KwaZulu-Natal Midlands, South Africa. Mamm Biol 2020. [DOI: 10.1007/s42991-020-00028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
277
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
278
|
Biondi L, Fuentes G, Córdoba R, Bó M, Cavalli M, Paterlini C, Castano M, García G. Variation in boldness and novelty response between rural and urban predatory birds: The Chimango Caracara, Milvago chimango as study case. Behav Processes 2020; 173:104064. [DOI: 10.1016/j.beproc.2020.104064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
279
|
Grunst ML, Raap T, Grunst AS, Pinxten R, Parenteau C, Angelier F, Eens M. Early-life exposure to artificial light at night elevates physiological stress in free-living songbirds ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113895. [PMID: 31926393 DOI: 10.1016/j.envpol.2019.113895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Artificial light at night (ALAN) can disrupt adaptive patterns of physiology and behavior that promote high fitness, resulting in physiological stress and elevation of steroid glucocorticoids (corticosterone, CORT in birds). Elevated CORT may have particularly profound effects early in life, with the potential for enduring effects that persist into adulthood. Research on the consequences of early-life exposure to ALAN remains limited, especially outside of the laboratory, and whether light exposure affects CORT concentrations in wild nestling birds particularly remains to be elucidated. We used an experimental setup to test the hypothesis that ALAN elevates CORT concentrations in developing free-living birds, by exposing nestling great tits (Parus major) to ALAN inside nest boxes. We measured CORT in feathers grown over the timeframe of the experiment (7 nights), such that CORT concentrations represent an integrative metric of hormone release over the period of nocturnal light exposure, and of development. We also assessed the relationships between feather CORT concentrations, body condition, nestling size rank and fledging success. In addition, we evaluated the relationship between feather CORT concentrations and telomere length. Nestlings exposed to ALAN had higher feather CORT concentrations than control nestlings, and nestlings in poorer body condition and smaller brood members also had higher CORT. On the other hand, telomere length, fledging success, and recruitment rate were not significantly associated with light exposure or feather CORT concentrations. Results indicate that exposure to ALAN elevates CORT concentrations in nestlings, which may reflect physiological stress. In addition, the organizational effects of CORT are known to be substantial. Thus, despite the lack of an effect on telomere length and survivorship, elevated CORT concentrations in nestlings exposed to ALAN may have subsequent impacts on later-life fitness and stress sensitivity.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Didactica Research Group, University of Antwerp, 2000, Antwerp, Belgium
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
280
|
Lois NA, Campagna L, Balza U, Polito MJ, Pütz K, Vianna JA, Morgenthaler A, Frere E, Sáenz-Samaniego R, Raya Rey A, Mahler B. Metapopulation dynamics and foraging plasticity in a highly vagile seabird, the southern rockhopper penguin. Ecol Evol 2020; 10:3346-3355. [PMID: 32273992 PMCID: PMC7141044 DOI: 10.1002/ece3.6127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Population connectivity is driven by individual dispersal potential and modulated by natal philopatry. In seabirds, high vagility facilitates dispersal yet philopatry is also common, with foraging area overlap often correlated with population connectivity. We assess the interplay between these processes by studying past and current connectivity and foraging niche overlap among southern rockhopper penguin colonies of the coast of southern South America using genomic and stable isotope analyses. We found two distinct genetic clusters and detected low admixture between northern and southern colonies. Stable isotope analysis indicated niche variability between colonies, with Malvinas/Falklands colonies encompassing the species entire isotopic foraging niche, while the remaining colonies had smaller, nonoverlapping niches. A recently founded colony in continental Patagonia differed in isotopic niche width and position with Malvinas/Falklands colonies, its genetically identified founder population, suggesting the exploitation of novel foraging areas and/or prey items. Additionally, dispersing individuals found dead across the Patagonian shore in an unusual mortality event were also assigned to the northern cluster, suggesting northern individuals reach southern localities, but do not breed in these colonies. Facilitated by variability in foraging strategies, and especially during unfavorable conditions, the number of dispersing individuals may increase and enhance the probability of founding new colonies. Metapopulation demographic dynamics in seabirds should account for interannual variability in dispersal behavior and pay special attention to extreme climatic events, classically related to negative effects on population trends.
Collapse
Affiliation(s)
- Nicolás A Lois
- Instituto de Ecología, Genética y Evolución de Buenos Aires Consejo Nacional de Investigaciones Científicas y Técnicas (IEGEBA-CONICET) Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (DEGE-FCEyN-UBA) Buenos Aires Argentina
- Centro Austral de Investigaciones Científicas Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET) Ushuaia Argentina
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program Cornell Lab of Ornithology Cornell University Ithaca NY USA
- Department of Ecology and Evolutionary Biology Cornell University Ithaca NY USA
| | - Ulises Balza
- Departamento de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (DEGE-FCEyN-UBA) Buenos Aires Argentina
- Centro Austral de Investigaciones Científicas Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET) Ushuaia Argentina
| | - Michael J Polito
- Department of Oceanography and Coastal Sciences Louisiana State University Baton Rouge LA USA
| | | | - Juliana A Vianna
- Departamento de Ecosistemas y Medio Ambiente Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago Chile
| | - Annick Morgenthaler
- Centro de Investigaciones Puerto Deseado UACO Universidad Nacional de la Patagonia Austral Puerto Deseado, Santa Cruz Argentina
| | - Esteban Frere
- Centro de Investigaciones Puerto Deseado UACO Universidad Nacional de la Patagonia Austral Puerto Deseado, Santa Cruz Argentina
- Wildlife Conservation Society Buenos Aires Argentina
| | - Ricardo Sáenz-Samaniego
- Centro Austral de Investigaciones Científicas Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET) Ushuaia Argentina
| | - Andrea Raya Rey
- Centro Austral de Investigaciones Científicas Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET) Ushuaia Argentina
- Instituto de Ciencias Polares Ambiente y Recursos Naturales Universidad Nacional de Tierra del Fuego (ICPA-UNTdF) Ushuaia Argentina
- Wildlife Conservation Society Buenos Aires Argentina
| | - Bettina Mahler
- Instituto de Ecología, Genética y Evolución de Buenos Aires Consejo Nacional de Investigaciones Científicas y Técnicas (IEGEBA-CONICET) Buenos Aires Argentina
- Departamento de Ecología, Genética y Evolución Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (DEGE-FCEyN-UBA) Buenos Aires Argentina
| |
Collapse
|
281
|
Feng C, Liang W. Behavioral responses of black-headed gulls (Chroicocephalus ridibundus) to artificial provisioning in China. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
282
|
|
283
|
Goldson SL, Barker GM, Chapman HM, Popay AJ, Stewart AV, Caradus JR, Barratt BIP. Severe Insect Pest Impacts on New Zealand Pasture: The Plight of an Ecological Outlier. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:17. [PMID: 32322881 PMCID: PMC7177163 DOI: 10.1093/jisesa/ieaa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Indexed: 06/11/2023]
Abstract
New Zealand's intensive pastures, comprised almost entirely introduced Lolium L. and Trifolium L. species, are arguably the most productive grazing-lands in the world. However, these areas are vulnerable to destructive invasive pest species. Of these, three of the most damaging pests are weevils (Coleoptera: Curculionidae) that have relatively recently been controlled by three different introduced parasitoids, all belonging to the genus Microctonus Wesmael (Hymenoptera: Braconidae). Arguably that these introduced parasitoids have been highly effective is probably because they, like many of the exotic pest species, have benefited from enemy release. Parasitism has been so intense that, very unusually, one of the weevils has now evolved resistance to its parthenogenetic parasitoid. This review argues that New Zealand's high exotic pasture pest burden is attributable to a lack of pasture plant and natural enemy diversity that presents little biotic resistance to invasive species. There is a native natural enemy fauna in New Zealand that has evolved over millions of years of geographical isolation. However, these species remain in their indigenous ecosystems and, therefore, play a minimal role in creating biotic resistance in the country's exotic ecosystems. For clear ecological reasons relating to the nature of New Zealand pastures, importation biological control can work extremely well. Conversely, conservation biological control is less likely to be effective than elsewhere.
Collapse
Affiliation(s)
- Stephen L Goldson
- AgResearch, Christchurch, New Zealand
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | | | - Hazel M Chapman
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | - John R Caradus
- Grasslanz Technology Ltd., Palmerston North, New Zealand
| | | |
Collapse
|
284
|
Warriner TR, Semeniuk CAD, Pitcher TE, Love OP. Exposure to exogenous egg cortisol does not rescue juvenile Chinook salmon body size, condition, or survival from the effects of elevated water temperatures. Ecol Evol 2020; 10:2466-2477. [PMID: 32184994 PMCID: PMC7069292 DOI: 10.1002/ece3.6073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Climate change is leading to altered temperature regimes which are impacting aquatic life, particularly for ectothermic fish. The impacts of environmental stress can be translated across generations through maternally derived glucocorticoids, leading to altered offspring phenotypes. Although these maternal stress effects are often considered negative, recent studies suggest this maternal stress signal may prepare offspring for a similarly stressful environment (environmental match). We applied the environmental match hypothesis to examine whether a prenatal stress signal can dampen the effects of elevated water temperatures on body size, condition, and survival during early development in Chinook salmon Oncorhynchus tshawytscha from Lake Ontario, Canada. We exposed fertilized eggs to prenatal exogenous egg cortisol (1,000 ng/ml cortisol or 0 ng/ml control) and then reared these dosed groups at temperatures indicative of current (+0°C) and future (+3°C) temperature conditions. Offspring reared in elevated temperatures were smaller and had a lower survival at the hatchling developmental stage. Overall, we found that our exogenous cortisol dose did not dampen effects of elevated rearing temperatures (environmental match) on body size or early survival. Instead, our eyed stage survival indicates that our prenatal cortisol dose may be detrimental, as cortisol-dosed offspring raised in elevated temperatures had lower survival than cortisol-dosed and control reared in current temperatures. Our results suggest that a maternal stress signal may not be able to ameliorate the effects of thermal stress during early development. However, we highlight the importance of interpreting the fitness impacts of maternal stress within an environmentally relevant context.
Collapse
Affiliation(s)
- Theresa R. Warriner
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Christina A. D. Semeniuk
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Trevor E. Pitcher
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Oliver P. Love
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
285
|
Phillips ME, Chio G, Hall CL, ter Hofstede HM, Howard DR. Seismic noise influences brood size dynamics in a subterranean insect with biparental care. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
286
|
Cukor J, Linda R, Václavek P, Šatrán P, Mahlerová K, Vacek Z, Kunca T, Havránek F. Wild boar deathbed choice in relation to ASF: Are there any differences between positive and negative carcasses? Prev Vet Med 2020; 177:104943. [PMID: 32172021 DOI: 10.1016/j.prevetmed.2020.104943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Abstract
African swine fever (ASF) is a fatal, infectious disease affecting wild boars and domestic pigs, mostly resulting in their deaths. Previous studies showed that carcasses of infected wild boars pose a serious threat for ASF virus transmission and leaving of dead bodies in the environment enables persistence of the disease in the given affected area. Therefore, the prompt finding and removal of the carcasses is crucial for effective ASF control. This study reveals habitat preferences of ASF-positive wild boars for their deathbeds, which could greatly improve the effectivity in the search for infected carcasses. The vast majority (71%) of carcasses were found in forests (although forests occupy only 26.6% of the high-risk area - Zlin region, Czech Republic), especially in young forest stands; 91.3% of infected wild boar carcasses, which were found in forests, were in stands of up to 40 years of age, where infected individuals search for calm and quiet places. The preference of younger forest stands is significantly higher for infected individuals (p < 0.001). On meadows, infected individuals preferred a higher herb layer (p = 0.002) compared to non-infected individuals. A higher preference of places more distant from roads and forest edges was observed for the infected individuals as well (p < 0.001 in both cases). No differences in deathbed habitat preference were observed between selected sex-age categories. The distance between carcasses and water source was observed to be dependent on current mean temperature. Carcasses were found closer to the water sources at higher mean temperature. Because of the comparable character of the landscape, presented models are applicable across Central Europe and have the potential to greatly facilitate the search for infected carcasses.
Collapse
Affiliation(s)
- Jan Cukor
- Forestry and Game Management Research Institute, v.v.i., Strnady 136, 252 02, Jíloviště, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6 Suchdol, Czech Republic
| | - Rostislav Linda
- Forestry and Game Management Research Institute, v.v.i., Strnady 136, 252 02, Jíloviště, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6 Suchdol, Czech Republic
| | - Petr Václavek
- State Veterinary Institute Jihlava, Rantířovská 93/20, 586 01, Jihlava, Czech Republic
| | - Petr Šatrán
- State Veterinary Administration, Slezská 7/100, 120 56, Prague 2, Czech Republic
| | - Karolina Mahlerová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6 Suchdol, Czech Republic
| | - Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague 6 Suchdol, Czech Republic.
| | - Tomáš Kunca
- Ministry of Agriculture of the Czech Republic, Department of Game Management, Těšnov 65/17, 11000, Praha 1, Czech Republic
| | - František Havránek
- Forestry and Game Management Research Institute, v.v.i., Strnady 136, 252 02, Jíloviště, Czech Republic
| |
Collapse
|
287
|
Teixeira-Santos J, Ribeiro ACDC, Wiig Ø, Pinto NS, Cantanhêde LG, Sena L, Mendes-Oliveira AC. Environmental factors influencing the abundance of four species of threatened mammals in degraded habitats in the eastern Brazilian Amazon. PLoS One 2020; 15:e0229459. [PMID: 32101578 PMCID: PMC7043734 DOI: 10.1371/journal.pone.0229459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
On the latest 60 years the degradation and fragmentation of native habitats have been modifying the landscape in the eastern Brazilian Amazon. The adaptive plasticity of an organism has been crucial for its long-term survival and success in these novel ecosystems. In this study, we investigated the response of four endangered species of large terrestrial mammals to the variations in the quality of their original habitats, in a context of high anthropogenic pressure. The distribution of the Myrmecophaga tridactyla (Giant anteater), Priodontes maximus (Giant armadillo), Tapirus terrestris (Lowland tapir) and Tayassu pecari (White-lipped peccary) in all sampled habitats suggests their tolerance to degradation. However, the survival ability of each species in the different habitats was not the same. Among the four species, T. pecari seems to be the one with the least ability to survive in more altered environments. The positive influence of the anthropogenically altered habitats on abundances of three of the four species studied, as observed at the regeneration areas, can be considered as a potential indication of the ecological trap phenomenon. This study reinforces the importance of the forest remnants for the survival of endangered mammal species, in regions of high anthropogenic pressure, as in the eastern Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Øystein Wiig
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | | - Leonardo Sena
- Institute of Biological Science, Federal University of Pará, Belém, Pará, Brazil
| | | |
Collapse
|
288
|
Abstract
Long-term memory is a crucial adaptation for long-lived species. However, there have been few tests of the long-term retention of learned behaviours in free living, wild animals. Here, we demonstrate that the North Island robin (Petroica longipes; hereafter toutouwai) can recall a learned foraging behaviour for close to 2 years, with no intervening reinforcement. Birds that had been trained to peck open lids to retrieve a concealed food reward spontaneously solved a lid opening task between 10 and 22 months since they had last encountered the lid opening apparatus. By contrast, naive individuals could not solve the task. This long-term retention of a learned skill with no reinforcement, spanning over a quarter of the median age for wild toutouwai in our population, suggests that this threatened species may be an ideal candidate for conservation management strategies aimed at teaching individuals about novel threats and resources.
Collapse
Affiliation(s)
- Rachael C. Shaw
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Annette Harvey
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| |
Collapse
|
289
|
Ecological changes with minor effect initiate evolution to delayed regime shifts. Nat Ecol Evol 2020; 4:412-418. [PMID: 32042123 PMCID: PMC7058421 DOI: 10.1038/s41559-020-1110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022]
Abstract
Regime shifts have been documented in a variety of natural and social systems. These abrupt transitions produce dramatic shifts in the composition and functioning of socioecological systems. Existing theory on ecosystem resilience has only considered regime shifts to be caused by changes in external conditions beyond a tipping point and therefore lacks an evolutionary perspective. In this study, we show how a change in external conditions has little ecological effect and does not push the system beyond a tipping point. The change therefore does not cause an immediate regime shift but instead triggers an evolutionary process that drives a phenotypic trait beyond a tipping point, thereby resulting (after a substantial delay) in a selection-induced regime shift. Our finding draws attention to the fact that regime shifts observed in the present may result from changes in the distant past, and highlights the need for integrating evolutionary dynamics into the theoretical foundation for ecosystem resilience.
Collapse
|
290
|
Effects of urbanization on resource use and individual specialization in coyotes (Canis latrans) in southern California. PLoS One 2020; 15:e0228881. [PMID: 32023321 PMCID: PMC7001990 DOI: 10.1371/journal.pone.0228881] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/24/2020] [Indexed: 11/30/2022] Open
Abstract
Urban environments are unique because fragments of natural or semi-natural habitat are embedded within a potentially permeable matrix of human-dominated areas, creating increased landscape and, potentially, habitat heterogeneity. In addition, urban areas can provide diet subsidies for wildlife species in the form of fruiting ornamental plants, trash, and domestic animals. Ecological opportunity in the forms of habitat and food heterogeneity are thought to be important mechanisms in maintaining individual specialization. Identifying which contexts, traits, and mechanisms determine the success or failure of individuals within an urban wildlife population could potentially provide predictions about which populations may succeed in human-dominated landscapes and which may experience local extinction. We used both scat and stable isotope analysis of whiskers to investigate the degree to which coyotes (Canis latrans) utilized anthropogenic subsidies and exhibited individual diet specialization across the urban-rural gradient in southern California. Land use surrounding scat and isotope sample locations was also evaluated to determine the effect of land cover on diet. Human food constituted a significant portion of urban coyote diet (22% of scats, 38% of diet estimated by stable isotope analysis). Domestic cats (Felis catus) and ornamental fruit and seeds were also important items in urban coyote diets. Consumption of anthropogenic items decreased with decreasing urbanization. In suburban areas, seasonality influenced the frequency of occurrence of anthropogenic subsidies with increased consumption in the dry season. The amount of altered open space (areas such as golf courses, cemeteries, and landscaped parks) nearby had a negative effect on the consumption of anthropogenic items in both urban and suburban areas. Contrary to our hypothesis, urban coyotes displayed reduced between-individual variation compared to suburban and rural coyotes. It is possible that the core urban areas of cities are so densely developed and subsidized that wildlife inhabiting these areas actually have reduced ecological opportunity. Suburban animals had the broadest isotopic niches and maintained similar individual specialization to rural coyotes. Wildlife in suburban areas still have access to relatively undisturbed natural areas while being able to take advantage of anthropogenic subsidies in neighboring residential areas. Therefore, areas with intermediate urban development may be associated with increased ecological opportunity and specialization.
Collapse
|
291
|
Crane AL, Brown GE, Chivers DP, Ferrari MCO. An ecological framework of neophobia: from cells to organisms to populations. Biol Rev Camb Philos Soc 2020; 95:218-231. [PMID: 31599483 DOI: 10.1111/brv.12560] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023]
Abstract
Neophobia is the fear of novel stimuli or situations. This phenotype has recently received much ecological attention, primarily in the context of decision making. Here, we explore neophobia across biological levels of organisation, first describing types of neophobia among animals and the underlying causes of neophobia, highlighting high levels of risk and uncertainty as key drivers. We place neophobia in the framework of Error Management Theory and Signal Detection Theory, showing how increases in overall risk and uncertainty can lead to costly non-responses towards novel threats unless individuals lower their response threshold and become neophobic. We then discuss how neophobic behaviour translates into population and evolutionary consequences before introducing neophobia-like processes at the cellular level, where some phenomena such as allergy and autoimmunity can parallel neophobic behaviour. Finally, we discuss neophobia attenuation, considering how a sudden change in the environment from dangerous to safe can lead to problematic over-responses (i.e. the 'maladaptive defensive carry-over' hypothesis), and discuss treatment methods for such over-responses. We anticipate that bridging the concept of neophobia with a process-centered perspective can facilitate a transfer of insight across organisational levels.
Collapse
Affiliation(s)
- Adam L Crane
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada.,Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Grant E Brown
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
292
|
Bonier F, Cox RM. Do hormone manipulations reduce fitness? A meta-analytic test of the Optimal Endocrine Phenotype Hypothesis. Mol Cell Endocrinol 2020; 500:110640. [PMID: 31715223 DOI: 10.1016/j.mce.2019.110640] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 11/21/2022]
Abstract
Endocrine traits (e.g., circulating hormone concentrations, receptor expression) can vary considerably among individuals within populations. Here, we develop two evolutionary hypotheses to explain this variation. Under the Optimal Endocrine Phenotype Hypothesis, adaptive plastic responses to environmental variation generate individual variation in endocrine traits and allow individuals to express near-optimal endocrine phenotypes. In contrast, under the Ongoing Selection Hypothesis, individual variation in endocrine traits reflects varying adaptive value, with some individuals expressing suboptimal phenotypes that are selected against. These two hypotheses generate distinct predictions for the effects of hormone manipulations on fitness. Under the Optimal Endocrine Phenotype Hypothesis, all hormone manipulations should incur fitness costs, whereas under the Ongoing Selection Hypothesis, manipulating endocrine phenotypes toward a putative optimum should increase fitness. Using a meta-analysis of findings from experimental field studies that involved manipulation of circulating glucocorticoids or androgens and measurement of fitness effects, we test and find some support for the Optimal Endocrine Phenotype Hypothesis. On average, fitness was reduced across 97 estimates of the effects of experimental hormone manipulations on fitness. However, the fitness effects of glucocorticoid manipulations varied with the sex of the individuals being studied. Fitness was more uniformly reduced by glucocorticoid manipulations in males and when both sexes were considered together. In females, effects on fitness varied from highly positive to highly negative. The effects of androgen manipulations varied across males and females, and depending upon whether fitness was estimated using measures of reproductive success or survival. Reproductive success was consistently decreased by androgen manipulation in females, but was increased almost as often as it was decreased across experiments in males. When survival was estimated as a component of fitness, it was fairly uniformly compromised by exogenous androgens in males. This variation in fitness effects of hormone manipulations across sexes and fitness metrics is consistent with the expectation that hormones differentially regulate life-history investment and that optimal endocrine phenotypes differ between males and females. Overall, our meta-analysis provides some support for the Optimal Endocrine Phenotype Hypothesis, but we await direct tests of the Ongoing Selection Hypothesis to determine the degree to which individual variation in endocrine traits continues to be shaped by natural selection.
Collapse
Affiliation(s)
- Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
293
|
Cui J, Lei B, Newman C, Ji S, Su H, Buesching CD, Macdonald DW, Zhou Y. Functional adaptation rather than ecogeographical rules determine body-size metrics along a thermal cline with elevation in the Chinese pygmy dormouse (Typhlomys cinereus). J Therm Biol 2020; 88:102510. [PMID: 32125991 DOI: 10.1016/j.jtherbio.2020.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
Phenotypic plasticity is crucial for how organisms respond to variation in their environment, affecting their diversity and distribution, especially in the light of rapid environmental change. Ecogeographical rules predict an association between specific adaptive morphological and physiological traits with cooler conditions due to higher latitude, elevation, or climate change. Such ecogeographical effects are often most evident in ancient species due to continuous selective adaptation occurring over long periods of time. Here, we use the suitably ancient Chinese pygmy dormouse (Typhlomys cinereus) to test whether body-size, appendage length and heart size vary in accordance with Bergmann's, Allen's and Hesse's rule, respectively. Based on a sample of 67 adult individuals (female, n = 29; male n = 38) trapped at 37 sites transcending an elevational range from 414 to 1757 m, we tested for trait concordance with Bergmann's rule (body mass, length and SMI), Allen's rule (length of tail, foot, ear, snout), and Hesse's rule (wet and dry heart mass). Effects of elevation (and thus temperature lapse rate; calculated as 0.61 °C per 100 m) on body size, appendage length and heart size, were tested by fitting Standardized Major Axis (SMA) models. We observed substantial heterogeneity in morphometric traits allowing for the detection of ecogeographical clines. However, none conformed with Bergmann's, Allen's (except ear size), or Hesse's rule. However, our results indicate some support for Geist's rule of net primary productivity. We conclude that pervasive functional life-history adaptations in this blind, arboreal, echolocating ancient species exceeded selection for morphological energy efficiency constraints, with the notable exception of reduced ear pinnae size at colder, elevated sites. This is an important consideration for predicting how species, and populations in general, may adapt to human induced rapid environmental change, contrary to expectations of warming driving selection for smaller body-size.
Collapse
Affiliation(s)
- Jifa Cui
- College of Biological and Pharmaceutical, China Three Gorges University, No. 8, Daxue Road, Yichang, Hubei Province, 443002, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Boyu Lei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, OX13 5QL, UK
| | - Shengnan Ji
- State Environmental Protection Key Laboratory of Regional Ecological Processes and Functions Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huawei Su
- State-owned Longmenhe Forest Farm, Xingshan, Yichang, Hubei Province, China
| | - Christina D Buesching
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, OX13 5QL, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney, Abingdon, OX13 5QL, UK
| | - Youbing Zhou
- College of Biological and Pharmaceutical, China Three Gorges University, No. 8, Daxue Road, Yichang, Hubei Province, 443002, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
294
|
Grunst AS, Grunst ML, Bervoets L, Pinxten R, Eens M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113373. [PMID: 31672366 DOI: 10.1016/j.envpol.2019.113373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Comprehensively understanding the factors affecting physiology and fitness in urban wildlife requires concurrently considering multiple stressors. To this end, we simultaneously assessed how metal pollution and proximity to roads affect body condition and telomere shortening between days 8 and 15 of age in nestling great tits (Parus major), a common urban bird. We employed a repeated-measures sampling design to compare telomere shortening and body condition between nestlings from four urban study sites south of Antwerp, Belgium, which are located at different distances from a metal pollution point source. In addition, we explored associations between metal exposure and telomere dynamics on the individual level by measuring blood concentrations of five metals/metalloids, of which lead, copper and zinc were present at concentrations above the limit of detection. To assess whether roadway-associated stressors (e.g. noise and air pollution) might affect nestling condition and telomere shortening, we measured the proximity of nest boxes to roads. Metal exposure was not associated with nestling telomere length or body condition, despite elevated blood lead concentrations close to the metal pollution source (mean ± SE = 0.270 ± 0.095 μg/g wet weight at the most polluted study site), suggesting that nestlings may have some capacity to detoxify metals. However, nestlings from nest boxes near roads exhibited more telomere shortening between days 8 and 15 of age, and shorter telomeres at day 15. Nestlings in poorer condition also had shorter telomeres, but proximity to the road was unrelated to body condition. Thus, nutritional stress is unlikely to mediate the relationship between proximity to roads and telomere length. Rather, proximity to roads could have affected telomere shortening by exposing nestlings to air or noise pollution. Our study highlights that traffic-related pollution, which is implicated in human health problems, might also affect urban wildlife.
Collapse
Affiliation(s)
- A S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium.
| | - M L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| | - L Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research Group, University of Antwerp, 2020, Antwerp, Belgium
| | - R Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, 2000, Antwerp, Belgium
| | - M Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
295
|
LaBarge LR, Hill RA, Berman CM, Margulis SW, Allan ATL. Anthropogenic influences on primate antipredator behavior and implications for research and conservation. Am J Primatol 2020; 82:e23087. [PMID: 31894614 DOI: 10.1002/ajp.23087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/10/2022]
Abstract
Predation risk affects prey species' behavior, even in the absence of a direct threat, but human-induced environmental change may disturb ecologically significant predator-prey interactions. Here, we propose various ways in which knowledge of antipredator tactics, behavioral risk effects, and primate-predator interactions could assist in identifying human-caused disruption to natural systems. Using behavior to evaluate primate responses to the ongoing environmental change should be a potentially effective way to make species conservation more predictive by identifying issues before a more dramatic population declines. A key challenge here is that studies of predation on primates often use data collected via direct observations of habituated animals and human presence can deter carnivores and influence subjects' perception of risk. Hence, we also review various indirect data collection methods to evaluate their effectiveness in identifying where environmental change threatens wild species, while also minimizing observer bias.
Collapse
Affiliation(s)
- Laura R LaBarge
- Department of Environment and Sustainability, Program in Evolution, Ecology, and Behavior, The State University of New York at Buffalo, Amherst, New York.,Primate and Predator Project, Lajuma Research Centre, Louis Trichardt, South Africa
| | - Russell A Hill
- Primate and Predator Project, Lajuma Research Centre, Louis Trichardt, South Africa.,Department of Anthropology, Durham University, Durham, UK.,Department of Zoology, University of Venda, Thohoyandou, South Africa
| | - Carol M Berman
- Department of Environment and Sustainability, Program in Evolution, Ecology, and Behavior, The State University of New York at Buffalo, Amherst, New York.,Department of Anthropology, The State University of New York at Buffalo, Amherst, New York
| | - Susan W Margulis
- Department of Animal Behavior, Ecology, and Conservation, Canisius College, Buffalo, New York.,Department of Biology, Canisius College, Buffalo, New York
| | - Andrew T L Allan
- Primate and Predator Project, Lajuma Research Centre, Louis Trichardt, South Africa.,Department of Anthropology, Durham University, Durham, UK
| |
Collapse
|
296
|
Hunninck L, May R, Jackson CR, Palme R, Røskaft E, Sheriff MJ. Consequences of climate-induced vegetation changes exceed those of human disturbance for wild impala in the Serengeti ecosystem. CONSERVATION PHYSIOLOGY 2020; 8:coz117. [PMID: 32477568 PMCID: PMC7246078 DOI: 10.1093/conphys/coz117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 05/21/2023]
Abstract
In East Africa, climate change is predicted to reduce vegetation quality, and pervasive human disturbance has already resulted in significant declines in biodiversity. We studied the combined effects of reduced forage quality and human disturbance on faecal glucocorticoid metabolite (FGM) concentrations. We predicted that decreasing nutritional quality and increasing human disturbance would have an additive positive effect on FGM levels in wild impala (Aepyceros melampus). Employing a space-for-time approach, we used normalized difference vegetation index (NDVI) as a measure of forage quality, combined with spatially explicit proxies of human disturbance across areas of different protection management strategies in the Serengeti ecosystem. We collected 639 faecal samples, spread over 4 years, including both wet and dry seasons. Impala FGM levels increased significantly with declining NDVI and, to a lesser extent, with increasing proxies for human disturbance. However, we found no interaction between the two, such that impala had elevated FGM levels with low NDVI and low FGM levels with high NDVI regardless of human disturbance levels. This implies that impala will have high FGM levels if forage quality is poor, even with significant protection and reduced human disturbance. Understanding how animals respond to and cope with changes in forage quality and human land use across different protected areas is important for conservationists and managers to better protect species at risk and predict population viability.
Collapse
Affiliation(s)
- L Hunninck
- Department of Biology, Norwegian University of Science and
Technology, Høgskoleringen 5, 7034 Trondheim, Norway
- Corresponding author: NTNU, Høgskoleringen 1, 7491 Trondheim, Norway.
Tel: +47 474 43 361.
| | - R May
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034
Trondheim, Norway
| | - C R Jackson
- Norwegian Institute for Nature Research, Høgskoleringen 9, 7034
Trondheim, Norway
| | - R Palme
- Department of Biomedical Sciences, University of Veterinary
Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - E Røskaft
- Department of Biology, Norwegian University of Science and
Technology, Høgskoleringen 5, 7034 Trondheim, Norway
| | - M J Sheriff
- Biology Department, University of Massachusetts, 285 Old Westport
Road, Dartmouth, MA 02747, USA
| |
Collapse
|
297
|
DeMars C, Nielsen S, Edwards M. Effects of linear features on resource selection and movement rates of wood bison (Bison bison athabascae). CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human-mediated disturbances can lead to novel environmental features that can affect native biota beyond simple habitat loss. In boreal forests of western Canada, linear features (LFs; e.g., pipelines, seismic lines, and roads) are known to alter behaviour, movements, and interactions among species. Understanding LF impacts on native species has therefore been a management priority. Here, we investigate how LFs affect the spatial behaviour of wood bison (Bison bison athabascae Rhoads, 1898), which are designated as “threatened” in Canada. Using data collected from the Ronald Lake population in northeastern Alberta, we assessed how LFs influenced habitat selection and movement of bison by testing support among three hypotheses explaining whether LFs (i) increased forage availability, (ii) enhanced movement efficiency, or (iii) increased predation risk. Results supported the movement efficiency hypothesis as bison were generally ambivalent toward LFs, showing weak selection or avoidance depending on land-cover type, but moved slightly faster when on them. These findings contrast with avoidance behaviours reported for sympatric woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)), which are also “threatened.” Our results should inform critical habitat decisions for wood bison, but we caution that further research is needed to understand the effects of LFs on bison demography.
Collapse
Affiliation(s)
- C.A. DeMars
- Caribou Monitoring Unit, Alberta Biodiversity Monitoring Institute, CW405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - S.E. Nielsen
- Applied Conservation Ecology (ACE) Lab, Department of Renewable Resources, 701 General Services Building, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - M.A. Edwards
- Department of Renewable Resources, University of Alberta, and Mammalogy Program, Royal Alberta Museum, 12845–102 Ave., Edmonton, AB T5N 0M6, Canada
| |
Collapse
|
298
|
Ames EM, Gade MR, Nieman CL, Wright JR, Tonra CM, Marroquin CM, Tutterow AM, Gray SM. Striving for population-level conservation: integrating physiology across the biological hierarchy. CONSERVATION PHYSIOLOGY 2020; 8:coaa019. [PMID: 32274066 PMCID: PMC7125044 DOI: 10.1093/conphys/coaa019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 05/05/2023]
Abstract
The field of conservation physiology strives to achieve conservation goals by revealing physiological mechanisms that drive population declines in the face of human-induced rapid environmental change (HIREC) and has informed many successful conservation actions. However, many studies still struggle to explicitly link individual physiological measures to impacts across the biological hierarchy (to population and ecosystem levels) and instead rely on a 'black box' of assumptions to scale up results for conservation implications. Here, we highlight some examples of studies that were successful in scaling beyond the individual level, including two case studies of well-researched species, and using other studies we highlight challenges and future opportunities to increase the impact of research by scaling up the biological hierarchy. We first examine studies that use individual physiological measures to scale up to population-level impacts and discuss several emerging fields that have made significant steps toward addressing the gap between individual-based and demographic studies, such as macrophysiology and landscape physiology. Next, we examine how future studies can scale from population or species-level to community- and ecosystem-level impacts and discuss avenues of research that can lead to conservation implications at the ecosystem level, such as abiotic gradients and interspecific interactions. In the process, we review methods that researchers can use to make links across the biological hierarchy, including crossing disciplinary boundaries, collaboration and data sharing, spatial modelling and incorporating multiple markers (e.g. physiological, behavioural or demographic) into their research. We recommend future studies incorporating tools that consider the diversity of 'landscapes' experienced by animals at higher levels of the biological hierarchy, will make more effective contributions to conservation and management decisions.
Collapse
Affiliation(s)
- Elizabeth M Ames
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Meaghan R Gade
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Chelsey L Nieman
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - James R Wright
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Christopher M Tonra
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Cynthia M Marroquin
- Departmant of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W. 12th Ave., Columbus, OH 43210, USA
| | - Annalee M Tutterow
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Suzanne M Gray
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
- Corresponding author: School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA. Tel: 614-292-4643.
| |
Collapse
|
299
|
Bonnot NC, Couriot O, Berger A, Cagnacci F, Ciuti S, De Groeve JE, Gehr B, Heurich M, Kjellander P, Kröschel M, Morellet N, Sönnichsen L, Hewison AJM. Fear of the dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across Europe. J Anim Ecol 2019; 89:132-145. [DOI: 10.1111/1365-2656.13161] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/01/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Nadège C. Bonnot
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
- UR EFNO Irstea Nogent‐sur‐Vernisson France
| | | | - Anne Berger
- Leibniz Institute for Zoo and Wildlife Research Berlin Germany
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre San Michele all’Adige Italy
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour School of Biology and Environmental Science University College Dublin Dublin Ireland
| | - Johannes E. De Groeve
- Department of Biodiversity and Molecular Ecology Research and Innovation Centre San Michele all’Adige Italy
- Department of Geography Ghent University Gent Belgium
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Marco Heurich
- Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
| | - Petter Kjellander
- Grimsö Wildlife Research Station Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - Max Kröschel
- Division of Wildlife Ecology Forest Research Institute of Baden‐Württemberg Freiburg Germany
- Chair of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg Germany
| | | | - Leif Sönnichsen
- Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | | |
Collapse
|
300
|
Fisher DN, Lichtenstein JLL, Costa-Pereira R, Yeager J, Pruitt JN. Assessing the repeatability, robustness to disturbance, and parent-offspring colony resemblance of collective behavior. J Evol Biol 2019; 33:410-421. [PMID: 31821669 DOI: 10.1111/jeb.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
Groups of animals possess phenotypes such as collective behaviour, which may determine the fitness of group members. However, the stability and robustness to perturbations of collective phenotypes in natural conditions is not established. Furthermore, whether group phenotypes are transmitted from parent to offspring groups with fidelity is required for understanding how selection on group phenotypes contributes to evolution, but parent-offspring resemblance at the group level is rarely estimated. We evaluated the repeatability, robustness to perturbation and parent-offspring resemblance of collective foraging aggressiveness in colonies of the social spider Anelosimus eximius. Among-colony differences in foraging aggressiveness were consistent over time but changed if the colony was perturbed through the removal of individuals or via individuals' removal and subsequent return. Offspring and parent colony behaviour were correlated at the phenotypic level, but only once the offspring colony had settled after being translocated, and the correlation overlapped with zero at the among-colony level. The parent-offspring resemblance was not driven by a shared elevation but could be due to other environmental factors. The behaviour of offspring colonies in a common garden laboratory setting was not correlated with the behaviour of the parent colony nor with the same colony's behaviour once it was returned to the field. The phenotypes of groups represent a potentially important tier of biological organization, and assessing the stability and heritability of such phenotypes helps us better understand their role in evolution.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - James L L Lichtenstein
- Department of Ecology, Evolution and Marine Biology, University of California - Santa Barbara, Santa Barbara, CA, USA
| | - Raul Costa-Pereira
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.,Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Justin Yeager
- Biodiversidad Medio Ambiente y Salud (BIOMAS), Direccion General de Investigacion, Universidad de las Américas, Quito, Ecuador
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada.,Department of Ecology, Evolution and Marine Biology, University of California - Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|