251
|
Safari S, Movafagh A, Zare-Adollahi D, Ghadiani M, Riazi-Isfahani S, Safavi-Naini N, Omrani MD. MST1/2 and YAP1 gene expression in acute myeloid leukemia. Leuk Lymphoma 2014; 55:2189-91. [PMID: 24303784 DOI: 10.3109/10428194.2013.867493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shamsi Safari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Islamic Republic of Iran
| | | | | | | | | | | | | |
Collapse
|
252
|
Menicanin D, Mrozik KM, Wada N, Marino V, Shi S, Bartold PM, Gronthos S. Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 2014; 23:1001-11. [PMID: 24351050 DOI: 10.1089/scd.2013.0490] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Primary periodontal ligament stem cells (PDLSCs) are known to possess multidifferentiation potential and exhibit an immunophenotype similar to that described for bone-marrow-derived mesenchymal stem cells. In the present study, bromo-deoxyuridine (BrdU)-labeled ovine PDLSCs implanted into immunodeficient mice survived after 8 weeks post-transplantation and exhibited the capacity to form bone/cementum-like mineralized tissue, ligament structures similar to Sharpey's fibers with an associated vasculature. To evaluate self-renewal potential, PDLSCs were recovered from harvested primary transplants 8 weeks post-transplantation that exhibit an immunophenotype and multipotential capacity comparable to primary PDLSCs. The re-derived PDLSCs isolated from primary transplants were implanted into secondary ectopic xenogeneic transplants. Histomorphological analysis demonstrated that four out of six donor re-derived PDLSC populations displayed a capacity to survive and form fibrous ligament structures and mineralized tissues associated with vasculature in vivo, although at diminished levels in comparison to primary PDLSCs. Further, the capacity for long-term survival and the potential role of PDLSCs in dental tissue regeneration were determined using an ovine preclinical periodontal defect model. Autologous ex vivo-expanded PDLSCs that were prelabeled with BrdU were seeded onto Gelfoam(®) scaffolds and then transplanted into fenestration defects surgically created in the periodontium of the second premolars. Histological assessment at 8 weeks post-implantation revealed surviving BrdU-positive PDLSCs associated with regenerated periodontium-related tissues, including cementum and bone-like structures. This is the first report to demonstrate the self-renewal capacity of PDLSCs using serial xenogeneic transplants and provides evidence of the long-term survival and tissue contribution of autologous PDLSCs in a preclinical periodontal defect model.
Collapse
Affiliation(s)
- Danijela Menicanin
- 1 Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide , Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
253
|
Stapelberg M, Zobalova R, Nguyen MN, Walker T, Stantic M, Goodwin J, Pasdar EA, Thai T, Prokopova K, Yan B, Hall S, de Pennington N, Thomas SR, Grant G, Stursa J, Bajzikova M, Meedeniya ACB, Truksa J, Ralph SJ, Ansorge O, Dong LF, Neuzil J. Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans. Free Radic Biol Med 2014; 67:41-50. [PMID: 24145120 DOI: 10.1016/j.freeradbiomed.2013.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 01/07/2023]
Abstract
Tumor-initiating cells (TICs) often survive therapy and give rise to second-line tumors. We tested the plausibility of sphere cultures as models of TICs. Microarray data and microRNA data analysis confirmed the validity of spheres as models of TICs for breast and prostate cancer as well as mesothelioma cell lines. Microarray data analysis revealed the Trp pathway as the only pathway upregulated significantly in all types of studied TICs, with increased levels of indoleamine-2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme of Trp metabolism along the kynurenine pathway. All types of TICs also expressed higher levels of the Trp uptake system consisting of CD98 and LAT1 with functional consequences. IDO1 expression was regulated via both transcriptional and posttranscriptional mechanisms, depending on the cancer type. Serial transplantation of TICs in mice resulted in gradually increased IDO1. Mitocans, represented by α-tocopheryl succinate and mitochondrially targeted vitamin E succinate (MitoVES), suppressed IDO1 in TICs. MitoVES suppressed IDO1 in TICs with functional mitochondrial complex II, involving transcriptional and posttranscriptional mechanisms. IDO1 increase and its suppression by VE analogues were replicated in TICs from primary human glioblastomas. Our work indicates that IDO1 is increased in TICs and that mitocans suppress the protein.
Collapse
Affiliation(s)
- Michael Stapelberg
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia.
| | - Renata Zobalova
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia; Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Maria Nga Nguyen
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Tom Walker
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia; Department of Neurosurgery, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marina Stantic
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Jacob Goodwin
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Elham Alizadeh Pasdar
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Thuan Thai
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Katerina Prokopova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic; Faculty of Science, Charles University, 11000 Prague 1, Czech Republic
| | - Bing Yan
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Susan Hall
- School of Pharmacy, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | | | - Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, 2052 NSW, Australia
| | - Gary Grant
- School of Pharmacy, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Jan Stursa
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague 160 00, Czech Republic
| | - Martina Bajzikova
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Adrian C B Meedeniya
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Jaroslav Truksa
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Stephen J Ralph
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Olaf Ansorge
- Department of Neurosurgery, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Lan-Feng Dong
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia
| | - Jiri Neuzil
- School of Medical Science, Griffith Health Institute, Griffith University, Southport, 4222 QLD, Australia; Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic.
| |
Collapse
|
254
|
Gonzalez S, Binato R, Guida L, Mencalha AL, Abdelhay E. Conserved transcription factor binding sites suggest an activator basal promoter and a distal inhibitor in the galanin gene promoter in mouse ES cells. Gene 2014; 538:228-34. [PMID: 24487089 DOI: 10.1016/j.gene.2014.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
Abstract
Galanin and its receptors have been shown to be expressed in undifferentiated mouse embryonic stem (ES) cells through transcriptome and proteomic analyses. Although transcriptional regulation of galanin has been extensively studied, the regulatory proteins that mediate galanin expression in mouse ES cells have not yet been determined. Through sequence alignments, we have found a high degree of similarity between mouse and human galanin upstream sequences at -146 bp/+69 bp (proximal region) and -2,408 bp/-2,186 bp (distal region). These regions could be recognized by ES cell nuclear proteins, and EMSA analysis suggests a specific functionality. Analysis of the proximal region (PR) using EMSA and ChIP assays showed that the CREB protein interacts with the galanin promoter both in vitro and in vivo. Additional EMSA analysis revealed that an SP1 consensus site mediated protein-DNA complex formation. Reporter assays showed that CREB is an activator of galanin expression and works cooperatively with SP1. Furthermore, analysis of the distal region (DR) using EMSA assays demonstrated that both HOX-F and PAX 4/6 consensus sites mediated protein-DNA complex formation, and both sites inhibited luciferase activity in reporter assays. These data together suggest that CRE and SP1 act as activators at the basal promoter, while HOX-F and PAX 4/6 act as silencers of transcription. The interplay of these transcription factors (TF) may drive regulated galanin expression in mouse ES cells.
Collapse
Affiliation(s)
- Sayonara Gonzalez
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil; Departamento de Genética Médica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, RJ, Brazil.
| | - Renata Binato
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil.
| | - Letícia Guida
- Departamento de Genética Médica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, RJ, Brazil
| | - André Luiz Mencalha
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil
| | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, RJ, Brazil
| |
Collapse
|
255
|
Schwarz BA, Bar-Nur O, Silva JCR, Hochedlinger K. Nanog is dispensable for the generation of induced pluripotent stem cells. Curr Biol 2014; 24:347-50. [PMID: 24461999 DOI: 10.1016/j.cub.2013.12.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
Abstract
Cellular reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) can be achieved through forced expression of the transcription factors Oct4, Klf4, Sox2, and c-Myc (OKSM) [1-4]. These factors, in combination with environmental cues, induce a stable intrinsic pluripotency network that confers indefinite self-renewal capacity on iPSCs. In addition to Oct4 and Sox2, the homeodomain-containing transcription factor Nanog is an integral part of the pluripotency network [5-11]. Although Nanog expression is not required for the maintenance of pluripotent stem cells, it has been reported to be essential for the establishment of both embryonic stem cells (ESCs) from blastocysts and iPSCs from somatic cells [10, 12]. Here we revisit the role of Nanog in direct reprogramming. Surprisingly, we find that Nanog is dispensable for iPSC formation under optimized culture conditions. We further document that Nanog-deficient iPSCs are transcriptionally highly similar to wild-type iPSCs and support the generation of teratomas and chimeric mice. Lastly, we provide evidence that the presence of ascorbic acid in the culture media is critical for overcoming the previously observed reprogramming block of Nanog knockout cells.
Collapse
Affiliation(s)
- Benjamin A Schwarz
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Ori Bar-Nur
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - José C R Silva
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Konrad Hochedlinger
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA; Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, 7 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
256
|
Abstract
Human embryonic stem cells potentially represent an unlimited source of cells and tissues for regenerative medicine. Understanding signaling events that drive proliferation and specialization of these cells into various differentiated derivatives is of utmost importance for controlling their behavior in vitro. Major progress has been made in unraveling these signaling events with large-scale studies at the transcriptional level, but analysis of protein expression, interaction and modification has been more limited, since it requires different strategies. Recent advances in mass spectrometry-based proteomics indicate that proteome characterization can contribute significantly to our understanding of embryonic stem cell biology. In this article, we review mass spectrometry-based studies of human and mouse embryonic stem cells and their differentiated progeny, as well as studies of conditioned media that have been reported to support self-renewal of the undifferentiated cells in the absence of the more commonly used feeder cells. In addition, we make concise comparisons with related transcriptome profiling reports.
Collapse
Affiliation(s)
- Dennis Van Hoof
- Netherlands Institute of Developmental Biology, Hubrecht Laboratory, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
257
|
Calautti E. Akt modes of stem cell regulation: more than meets the eye? Discoveries (Craiova) 2013; 1:e8. [PMID: 32309540 PMCID: PMC6941558 DOI: 10.15190/d.2013.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Akt signaling regulates many cellular functions that are essential for the proper balance between self-renewal and differentiation of tissue-specific and embryonic stem cells (SCs). However, the roles of Akt and its downstream signaling in SC regulation are rather complex, as Akt activation can either promote SC self-renewal or depletion in a context-dependent manner. In this review we have evidenced three "modes" of Akt-dependent SC regulation, which can be exemplified by three different SC types. In particular, we will discuss: 1) the integration of Akt signaling within the "core" SC signaling circuitry in the maintenance of SC self-renewal and pluripotency (embryonic SCs); 2) quantitative changes in Akt signaling in SC metabolic activity and exit from quiescence (hematopoietic SCs); 3) qualitative changes of Akt signaling in SC regulation: signaling compartment-talization and isoform-specific functions of Akt proteins in SC self-renewal and differentiation (limbal-corneal keratinocyte SCs). These diverse modes of action are not to be intended as mutually exclusive. Rather, it is likely that Akt proteins participate with multiple parallel mechanisms to regulation of the same SC type. We propose that under specific circumstances dictated by distinct developmental stages, differentiation programs or tissue culture conditions, one mode of Akt action prevails over the others in determining SC fates.
Collapse
Affiliation(s)
- Enzo Calautti
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| |
Collapse
|
258
|
Hsiao ST, Dilley RJ, Dusting GJ, Lim SY. Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 2013; 142:141-53. [PMID: 24321597 DOI: 10.1016/j.pharmthera.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/02/2013] [Indexed: 01/07/2023]
Abstract
Cell- and tissue-based therapies are innovative strategies to repair and regenerate injured hearts. Despite major advances achieved in optimizing these strategies in terms of cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. The non-genetic approach of ischemic/hypoxic preconditioning to enhance cell- and tissue-based therapies has received much attention in recent years due to its non-invasive drug-free application. Here we discuss the current development of hypoxic/ischemic preconditioning to enhance stem cell-based cardiac repair and regeneration.
Collapse
Affiliation(s)
- Sarah T Hsiao
- Department of Cardiovascular Science, University of Sheffield, United Kingdom
| | - Rodney J Dilley
- Ear Science Institute Australia and Ear Sciences Centre, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia.
| |
Collapse
|
259
|
Chen H, Qian K, Tang ZP, Xing B, Chen H, Liu N, Huang X, Zhang S. Bioinformatics and microarray analysis of microRNA expression profiles of murine embryonic stem cells, neural stem cells induced from ESCs and isolated from E8·5 mouse neural tube. Neurol Res 2013; 32:603-13. [DOI: 10.1179/174313209x455691] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
260
|
Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR, Kuscu C, Hricik T, Ndiaye-Lobry D, Lafave LM, Koche R, Shih AH, Guryanova OA, Kim E, Li S, Pandey S, Shin JY, Telis L, Liu J, Bhatt PK, Monette S, Zhao X, Mason CE, Park CY, Bernstein BE, Aifantis I, Levine RL. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. ACTA ACUST UNITED AC 2013; 210:2641-59. [PMID: 24218140 PMCID: PMC3832937 DOI: 10.1084/jem.20131141] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Loss of Asxl1 results in myelodysplastic syndrome, whereas concomitant deletion of Tet2 restores HSC self-renewal and triggers a more severe disease phenotype distinct from that seen in single-gene knockout mice. Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10–30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesis.
Collapse
Affiliation(s)
- Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, 2 Leukemia Service, 3 Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, and 4 Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Kok CH, Leclercq T, Watkins DB, Saunders V, Wang J, Hughes TP, White DL. Elevated PTPN2 expression is associated with inferior molecular response in de-novo chronic myeloid leukaemia patients. Leukemia 2013; 28:702-5. [PMID: 24192813 DOI: 10.1038/leu.2013.329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C H Kok
- 1] Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia [2] Department of Medicine, Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia
| | - T Leclercq
- Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - D B Watkins
- 1] Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia [2] Department of Medicine, Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia
| | - V Saunders
- Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - J Wang
- 1] Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia [2] Department of Medicine, Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia
| | - T P Hughes
- 1] Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia [2] Department of Medicine, Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia [3] Department of Haematology, SA Pathology, Adelaide, SA, Australia [4] Centre for Cancer Biology, Adelaide, SA, Australia
| | - D L White
- 1] Cancer Theme, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia [2] Department of Medicine, Centre for Personalized Cancer Medicine, University of Adelaide, Adelaide, SA, Australia [3] Centre for Cancer Biology, Adelaide, SA, Australia
| |
Collapse
|
262
|
Melo-Braga MN, Schulz M, Liu Q, Swistowski A, Palmisano G, Engholm-Keller K, Jakobsen L, Zeng X, Larsen MR. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol Cell Proteomics 2013; 13:311-28. [PMID: 24173317 DOI: 10.1074/mcp.m112.026898] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important in cellular signaling and recognition, and their function and activity are frequently regulated by post-translational modifications such as phosphorylation and glycosylation. To obtain information about membrane-associated proteins and their modified amino acids potentially involved in changes of hESCs and NSCs as well as to investigate potential new markers for these two cell stages, we performed large-scale quantitative membrane-proteomic of hESCs and NSCs. This approach employed membrane purification followed by peptide dimethyl labeling and peptide enrichment to study the membrane subproteome as well as changes in phosphorylation and sialylation between hESCs and NSCs. Combining proteomics and modification specific proteomics we identified a total of 5105 proteins whereof 57% contained transmembrane domains or signal peptides. The enrichment strategy yielded a total of 10,087 phosphorylated peptides in which 78% of phosphopeptides were identified with ≥99% confidence in site assignment and 1810 unique formerly sialylated N-linked glycopeptides. Several proteins were identified as significantly regulated in hESCs and NSC, including proteins involved in the early embryonic and neural development. In the latter group of proteins, we could identify potential NSC markers as Crumbs 2 and several novel proteins. A motif analysis of the altered phosphosites showed a sequence consensus motif (R-X-XpS/T) significantly up-regulated in NSC. This motif is among other kinases recognized by the calmodulin-dependent protein kinase-2, emphasizing a possible importance of this kinase for this cell stage. Collectively, this data represent the most diverse set of post-translational modifications reported for hESCs and NSCs. This study revealed potential markers to distinguish NSCs from hESCs and will contribute to improve our understanding on the differentiation process.
Collapse
|
263
|
Charafe-Jauffret E, Ginestier C, Bertucci F, Cabaud O, Wicinski J, Finetti P, Josselin E, Adelaide J, Nguyen TT, Monville F, Jacquemier J, Thomassin-Piana J, Pinna G, Jalaguier A, Lambaudie E, Houvenaeghel G, Xerri L, Harel-Bellan A, Chaffanet M, Viens P, Birnbaum D. ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. Cancer Res 2013; 73:7290-300. [PMID: 24142344 DOI: 10.1158/0008-5472.can-12-4704] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer stem-like cells (CSC) have been widely studied, but their clinical relevance has yet to be established in breast cancer. Here, we report the establishment of primary breast tumor-derived xenografts (PDX) that encompass the main diversity of human breast cancer and retain the major clinicopathologic features of primary tumors. Successful engraftment was correlated with the presence of ALDH1-positive CSCs, which predicted prognosis in patients. The xenografts we developed showed a hierarchical cell organization of breast cancer with the ALDH1-positive CSCs constituting the tumorigenic cell population. Analysis of gene expression from functionally validated CSCs yielded a breast CSC signature and identified a core transcriptional program of 19 genes shared with murine embryonic, hematopoietic, and neural stem cells. This generalized stem cell program allowed the identification of potential CSC regulators, which were related mainly to metabolic processes. Using an siRNA genetic screen designed to target the 19 genes, we validated the functional role of this stem cell program in the regulation of breast CSC biology. Our work offers a proof of the functional importance of CSCs in breast cancer, and it establishes the reliability of PDXs for use in developing personalized CSC therapies for patients with breast cancer.
Collapse
Affiliation(s)
- Emmanuelle Charafe-Jauffret
- Authors' Affiliations: INSERM, U1068, CRCM, Molecular Oncology, Institut Paoli-Calmettes, Biopathology, Aix-Marseille Univ, UM 105, F-13284, Départements d'Oncologie Médicale, Chirugie oncologique, and Radiologie, Institut Paoli-Calmettes, Marseille; and Plateforme ARN interference PArI, CEA SACLAY, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Jiang K, Ren C, Nair VD. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res 2013; 11:1299-313. [PMID: 24084696 DOI: 10.1016/j.scr.2013.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 02/01/2023] Open
Abstract
MicroRNA-137 (miR-137) has been shown to play an important role in the differentiation of neural stem cells. Embryonic stem (ES) cells have the potential to differentiate into different cell types including neurons; however, the contribution of miR-137 in the maintenance and differentiation of ES cells remains unknown. Here, we show that miR-137 is mainly expressed in ES cells at the mitotic phase of the cell cycle and highly upregulated during differentiation. We identify that ES cell transcription factors, Klf4 and Tbx3, are downstream targets of miR-137, and we show that endogenous miR-137 represses the 3' untranslated regions of Klf4 and Tbx3. Transfection of ES cells with mature miR-137 RNA duplexes led to a significant reduction in cell proliferation and the expression of Klf4, Tbx3, and other self-renewal genes. Furthermore, we demonstrate that increased miR-137 expression accelerates differentiation of ES cells in vitro. Loss of miR-137 during ES cell differentiation significantly impeded neuronal gene expression and morphogenesis. Taken together, our results suggest that miR-137 regulates ES cell proliferation and differentiation by repressing the expression of downstream targets, including Klf4 and Tbx3.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
265
|
Yeo H, Lyssiotis CA, Zhang Y, Ying H, Asara JM, Cantley LC, Paik JH. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J 2013; 32:2589-602. [PMID: 24013118 DOI: 10.1038/emboj.2013.186] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
Forkhead Box O (FoxO) transcription factors act in adult stem cells to preserve their regenerative potential. Previously, we reported that FoxO maintains the long-term proliferative capacity of neural stem/progenitor cells (NPCs), and that this occurs, in part, through the maintenance of redox homeostasis. Herein, we demonstrate that among the FoxO3-regulated genes in NPCs are a host of enzymes in central carbon metabolism that act to combat reactive oxygen species (ROS) by directing the flow of glucose and glutamine carbon into defined metabolic pathways. Characterization of the metabolic circuit observed upon loss of FoxO3 revealed a drop in glutaminolysis and filling of the tricarboxylic acid (TCA) cycle. Additionally, we found that glucose uptake, glucose metabolism and oxidative pentose phosphate pathway activity were similarly repressed in the absence of FoxO3. Finally, we demonstrate that impaired glucose and glutamine metabolism compromises the proliferative potential of NPCs and that this is exacerbated following FoxO3 loss. Collectively, our findings show that a FoxO3-dependent metabolic programme supports redox balance and the neurogenic potential of NPCs.
Collapse
Affiliation(s)
- Hyeonju Yeo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, NY, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Abstract
Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.
Collapse
Affiliation(s)
- Gina Zini
- Catholic University of Sacred Heart, Hematology, Laboratory, Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
267
|
Goto Y, Kaneko K. Minimal model for stem-cell differentiation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032718. [PMID: 24125305 DOI: 10.1103/physreve.88.032718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/13/2013] [Indexed: 06/02/2023]
Abstract
To explain the differentiation of stem cells in terms of dynamical systems theory, models of interacting cells with intracellular protein expression dynamics are analyzed and simulated. Simulations were carried out for all possible protein expression networks consisting of two genes under cell-cell interactions mediated by the diffusion of a protein. Networks that show cell differentiation are extracted and two forms of symmetric differentiation based on Turing's mechanism and asymmetric differentiation are identified. In the latter network, the intracellular protein levels show oscillatory dynamics at a single-cell level, while cell-to-cell synchronicity of the oscillation is lost with an increase in the number of cells. Differentiation to a fixed-point-type behavior follows with a further increase in the number of cells. The cell type with oscillatory dynamics corresponds to a stem cell that can both proliferate and differentiate, while the latter fixed-point type only proliferates. This differentiation is analyzed as a saddle-node bifurcation on an invariant circle, while the number ratio of each cell type is shown to be robust against perturbations due to self-consistent determination of the effective bifurcation parameter as a result of the cell-cell interaction. Complex cell differentiation is designed by combing these simple two-gene networks. The generality of the present differentiation mechanism, as well as its biological relevance, is discussed.
Collapse
Affiliation(s)
- Yusuke Goto
- Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
268
|
Rafalski VA, Mancini E, Brunet A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 2013; 125:5597-608. [PMID: 23420198 DOI: 10.1242/jcs.114827] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases.
Collapse
|
269
|
Talwar S, Kumar A, Rao M, Menon GI, Shivashankar GV. Correlated spatio-temporal fluctuations in chromatin compaction states characterize stem cells. Biophys J 2013; 104:553-64. [PMID: 23442906 DOI: 10.1016/j.bpj.2012.12.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/12/2012] [Indexed: 01/02/2023] Open
Abstract
Stem cells integrate signals from the microenvironment to generate lineage-specific gene expression programs upon differentiation. Undifferentiated cell nuclei are easily deformable, with an active transcriptome, whereas differentiated cells have stiffer nuclei and condensed chromatin. Chromatin organization in the stem cell state is known to be highly dynamic but quantitative characterizations of its plasticity are lacking. Using fluorescence imaging, we study the spatio-temporal dynamics of nuclear architecture and chromatin compaction in mouse embryonic stem (ES) cells and differentiated states. Individual ES cells exhibit a relatively narrow variation in chromatin compaction, whereas primary mouse embryonic fibroblasts (PMEF) show broad distributions. However, spatial correlations in chromatin compaction exhibit an emergent length scale in PMEFs, although they are unstructured and longer ranged in ES cells. We provide evidence for correlated fluctuations with large amplitude and long intrinsic timescales, including an oscillatory component, in both chromatin compaction and nuclear area in ES cells. Such fluctuations are largely frozen in PMEF. The role of actin and Lamin A/C in modulating these fluctuations is described. A simple theoretical formulation reproduces the observed dynamics. Our results suggest that, in addition to nuclear plasticity, correlated spatio-temporal structural fluctuations of chromatin in undifferentiated cells characterize the stem cell state.
Collapse
Affiliation(s)
- Shefali Talwar
- Mechanobiology Institute and Department of Biological Sciences, NUS, Singapore
| | | | | | | | | |
Collapse
|
270
|
Yamauchi A, Kawabe JI, Kabara M, Matsuki M, Asanome A, Aonuma T, Ohta H, Takehara N, Kitagawa T, Hasebe N. Apurinic/apyrimidinic endonucelase 1 maintains adhesion of endothelial progenitor cells and reduces neointima formation. Am J Physiol Heart Circ Physiol 2013; 305:H1158-67. [PMID: 23934858 DOI: 10.1152/ajpheart.00965.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein that processes DNA-repair function and controls cellular response to oxidative stress. Endothelial progenitor cells (EPCs) are recruited to oxidative stress-rich injured vascular walls and positively contribute to vascular repair and endothelialization. We hypothesized that APE1 functions for EPCs-mediated inhibition of neointima formation in injured vasculature. EPCs isolated from bone marrow cells of C57BL6 mice (12-16 wk old) were able to survive in the presence of hydrogen peroxide (H2O2; up to 1,000 μM) due to the highly expressed reactive oxygen species (ROS) scavengers. However, adhesion capacity of EPCs was significantly inhibited by H2O2 (100 μM) even though an intracellular ROS was retained at small level. An APE1-selective inhibitor or RNA interference-mediated knockdown of endogenous APE1 in EPCs aggravated the H2O2-mediated inhibition of EPCs-adhesion. In contrast, when APE1 was overexpressed in EPCs using an adenovirus harboring the APE1 gene (APE-EPCs), adhesion was significantly improved during oxidative stress. To examine in vivo effects of APE1 in EPCs, APE-EPCs were transplanted via the tail vein after wire-mediated injury of the mouse femoral artery. The number of adherent EPCs at injured vascular walls and the vascular repair effect of EPCs were enhanced in APE-EPCs compared with control EPCs. Among the cellular functions of EPCs, adhesion is especially sensitive to oxidative stress. APE1 enhances in vivo vascular repair effects of EPCs in part through the maintenance of adhesion properties of EPCs. APE1 may be a novel and useful target gene for effective cellular transplantation therapy.
Collapse
Affiliation(s)
- Atsushi Yamauchi
- Department of Cardiovascular Regeneration and Innovation, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
|
272
|
Zheng X, Naiditch J, Czurylo M, Jie C, Lautz T, Clark S, Jafari N, Qiu Y, Chu F, Madonna MB. Differential effect of long-term drug selection with doxorubicin and vorinostat on neuroblastoma cells with cancer stem cell characteristics. Cell Death Dis 2013; 4:e740. [PMID: 23887631 PMCID: PMC3730434 DOI: 10.1038/cddis.2013.264] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients.
Collapse
Affiliation(s)
- X Zheng
- Cancer Biology, Children's Hospital of Chicago Research Center, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Grafi G. Stress cycles in stem cells/iPSCs development: implications for tissue repair. Biogerontology 2013; 14:603-8. [PMID: 23852045 DOI: 10.1007/s10522-013-9445-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/07/2013] [Indexed: 12/12/2022]
Abstract
Stem cells have become a major topic, both publicly and scientifically, owing to their potential to cure diseases and repair damaged tissues. Particular attention has been given to the so-called "induced pluripotent stem cells" (iPSCs) in which somatic cells are induced by the expression of transcription factor encoding transgenes-a methodology first established by Takahashi and Yamanaka (Cell 126:663-676, 2006)-to acquire pluripotent state. This methodology has captured researchers' imagination as a potential procedure to obtain patient-specific therapies while also solving both the problem of transplant rejection and the ethical concerns often raised regarding the use of embryonic stem cells in regenerative medicine. The study of the biology of stem cells/iPSCs, in recent years, has uncovered some fundamental weaknesses that undermine their potential use in transplantation therapies.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Midreshet Ben-Gurion, Israel,
| |
Collapse
|
274
|
Rajagopalan P, Kasif S, Murali T. Systems Biology Characterization of Engineered Tissues. Annu Rev Biomed Eng 2013; 15:55-70. [DOI: 10.1146/annurev-bioeng-071811-150120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24060;
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24060
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, Virginia 24060
| | - Simon Kasif
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
| | - T.M. Murali
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24060
- ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, Virginia 24060
| |
Collapse
|
275
|
A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell 2013; 25:81-92. [PMID: 23597483 DOI: 10.1016/j.devcel.2013.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 01/29/2013] [Accepted: 03/06/2013] [Indexed: 01/08/2023]
Abstract
The mitochondrial disulfide relay system of Mia40 and Erv1/ALR facilitates import of the small translocase of the inner membrane (Tim) proteins and cysteine-rich proteins. A chemical screen identified small molecules that inhibit Erv1 oxidase activity, thereby facilitating dissection of the disulfide relay system in yeast and vertebrate mitochondria. One molecule, mitochondrial protein import blockers from the Carla Koehler laboratory (MitoBloCK-6), attenuated the import of Erv1 substrates into yeast mitochondria and inhibited oxidation of Tim13 and Cmc1 in in vitro reconstitution assays. In addition, MitoBloCK-6 revealed an unexpected role for Erv1 in the carrier import pathway, namely transferring substrates from the translocase of the outer membrane complex onto the small Tim complexes. Cardiac development was impaired in MitoBloCK-6-exposed zebrafish embryos. Finally, MitoBloCK-6 induced apoptosis via cytochrome c release in human embryonic stem cells (hESCs) but not in differentiated cells, suggesting an important role for ALR in hESC homeostasis.
Collapse
|
276
|
Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Mol Cell Biol 2013; 33:3064-76. [PMID: 23732910 DOI: 10.1128/mcb.00296-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ikaros (Ik) is a critical regulator of hematopoietic gene expression. Here, we established that the Ik interactions with GATA transcription factors and cyclin-dependent kinase 9 (Cdk9), a component of the positive transcription elongation factor b (P-TEFb), are required for transcriptional activation of Ik target genes. A detailed dissection of Ik-GATA and Ik-Cdk9 protein interactions indicated that the C-terminal zinc finger domain of Ik interacts directly with the C-terminal zinc fingers of GATA1, GATA2, and GATA3, whereas the N-terminal zinc finger domain of Ik is required for interaction with the kinase and T-loop domains of Cdk9. The relevance of these interactions was demonstrated in vivo in COS-7 and primary hematopoietic cells, in which Ik facilitated Cdk9 and GATA protein recruitment to gene promoters and transcriptional activation. Moreover, the oncogenic isoform Ik6 did not efficiently interact with Cdk9 or GATA proteins in vivo and perturbed Cdk9/P-TEFb recruitment to Ik target genes, thereby affecting transcription elongation. Finally, characterization of a novel nuclear Ik isoform revealed that Ik exon 6 is dispensable for interactions with Mi2 and GATA proteins but is essential for the Cdk9 interaction. Thus, Ik is central to the Ik-GATA-Cdk9 regulatory network, which is broadly utilized for gene regulation in hematopoietic cells.
Collapse
|
277
|
BMI1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor. Nat Cell Biol 2013; 15:846-52. [PMID: 23728424 PMCID: PMC3735916 DOI: 10.1038/ncb2766] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell-cycle inhibitors p16(Ink4a) and p19(Arf). However, deletion of Ink4a/Arf only partially rescues Bmi1-null phenotypes, indicating that other important targets of BMI1 exist. Here, using the continuously growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.
Collapse
|
278
|
Tweedie D, Rachmany L, Rubovitch V, Zhang Y, Becker KG, Perez E, Hoffer BJ, Pick CG, Greig NH. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis 2013; 54:1-11. [PMID: 23454194 PMCID: PMC3628969 DOI: 10.1016/j.nbd.2013.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022] Open
Abstract
Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimer's disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.
Collapse
Affiliation(s)
- David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Evelyn Perez
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
279
|
Nigam A. Breast cancer stem cells, pathways and therapeutic perspectives 2011. Indian J Surg 2013; 75:170-80. [PMID: 24426422 PMCID: PMC3689383 DOI: 10.1007/s12262-012-0616-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 06/06/2012] [Indexed: 01/16/2023] Open
Abstract
The evidence for the existence of a heterogeneous population of cancer stem cells (CSCs) responsible for the initiation and maintenance of cancer has been characterized for several tumors recently. Purification and molecular characterization of normal human mammary stem cells from cultured mammospheres has been achieved, providing evidence supporting a model in which breast tumor heterogeneity is a reflection of a number of CSC-like cells in the tumor. A number of experimental methodologies have been developed to characterize epithelial stem cells, including the expression of cell surface or intracellular markers, mammosphere formation, exclusion of fluorescent dye by a side population, retention of the radionucleotide label, etc. Methodologies have also been successfully employed to identify tumorigenic cells within breast cancers. The most important characteristics of stem cells are the capacity for self-renewal and the regulation of the balance between self-renewal and differentiation. In the mammary gland, signaling pathways, such as Hedgehog (Hh), Wnt/β-catenin, and Notch, play a role in embryogenesis and organogenesis and maintenance of tissues in the adult through regulation of the balance between self-renewal and differentiation of stem cells. Breast TAAs include epitopes from proteins, such as carcinoembryonic antigen and NYBR-1, which are involved in tissue differentiation. Targeting BCSCs may be achieved by a number of approaches such as chemotherapy sensitization of BCSCs, differentiating therapy, targeting stem cell elimination, targeting signaling pathways and drug transporters, and inhibition of regulatory pathways involved in self-renewal. Targeting cells which have the potential to metastasize will be an important aspect of the BCSC field as these are the cells that cause the majority of morbidity and mortality from breast cancer.
Collapse
Affiliation(s)
- Anjana Nigam
- Department of Surgery, Pt.J.N.M.Medical College, Raipur, 492001 CG India
| |
Collapse
|
280
|
Epidermal stem cells in orthopaedic regenerative medicine. Int J Mol Sci 2013; 14:11626-42. [PMID: 23727934 PMCID: PMC3709750 DOI: 10.3390/ijms140611626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 01/01/2023] Open
Abstract
In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling.
Collapse
|
281
|
Zhang X, Zhang C, Li Z, Zhong J, Weiner LP, Zhong JF. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis. CHINESE JOURNAL OF CANCER 2013; 32:636-9. [PMID: 23706768 PMCID: PMC3870846 DOI: 10.5732/cjc.012.10291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cell population contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-cell transcriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA; 2Z-Genetic Medicine LLC, Temple City, CA 91780, USA.
| | | | | | | | | | | |
Collapse
|
282
|
Cahan P, Daley GQ. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 2013; 14:357-68. [PMID: 23673969 DOI: 10.1038/nrm3584] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could 'lock' the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field.
Collapse
Affiliation(s)
- Patrick Cahan
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital and Dana Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
283
|
Laskowski AI, Knoepfler PS. Myc binds the pluripotency factor Utf1 through the basic-helix-loop-helix leucine zipper domain. Biochem Biophys Res Commun 2013; 435:551-6. [PMID: 23665319 DOI: 10.1016/j.bbrc.2013.04.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 04/29/2013] [Indexed: 01/10/2023]
Abstract
In order to elucidate the function of Myc in the maintenance of pluripotency and self-renewal in mouse embryonic stem cells (mESCs), we screened for novel ESC-specific interactors of Myc by mass spectrometry. Undifferentiated embryonic cell transcription factor 1 (Utf1) was identified in the screen as a putative Myc binding protein in mESCs. We found that Myc and Utf1 directly interact. Utf1 is a chromatin-associated factor required for maintaining pluripotency and self-renewal in mESCs. It can also replace c-myc during induced pluripotent stem cell (iPSC) generation with relatively high efficiency, and shares target genes with Myc in mESCs highlighting a potentially redundant functional role between Myc and Utf1. A large region of Utf1 was found to be necessary for direct interaction with N-Myc, while the basic helix-loop-helix leucine zipper domain of N-Myc is necessary for direct interaction with Utf1.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|
284
|
Wang J, O'Bara MA, Pol SU, Sim FJ. CD133/CD140a-based isolation of distinct human multipotent neural progenitor cells and oligodendrocyte progenitor cells. Stem Cells Dev 2013; 22:2121-31. [PMID: 23488628 DOI: 10.1089/scd.2013.0003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFαR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133-positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133(+)CD140a(-) cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133(+)CD140a(-) NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133(+)CD140a(+) cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133(+)CD140a(-) cells. As human CD133(+) cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
285
|
Tian DM, Liang L, Zhao XC, Zheng MH, Cao XL, Qin HY, Wang CM, Liang YM, Han H. Endothelium-targeted Delta-like 1 promotes hematopoietic stem cell expansion ex vivo and engraftment in hematopoietic tissues in vivo. Stem Cell Res 2013; 11:693-706. [PMID: 23727445 DOI: 10.1016/j.scr.2013.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Notch ligands enhance ex vivo expansion of hematopoietic stem cells (HSCs). But to use Notch ligands in HSC therapies of human diseases, efforts are required to improve ex vivo expansion efficiency and in vivo transplant engraftment. DESIGN AND METHODS We designed and produced an endothelium-targeted soluble Notch ligand, the DSL domain of Delta-like 1 fused with a RGD motif (D1R), and examined the effects of this protein on HSCs ex vivo and in vivo. RESULTS D1R efficiently promoted ex vivo expansion of both mouse bone marrow (BM) and human umbilical cord blood HSCs. HSCs expanded with D1R up-regulated many of the stemness-related genes, and showed high BM engraftment efficacy with long-term repopulation capacity after transplantation. Moreover, in vivo administration of D1R increased the number of BM HSCs in mice, and facilitated BM recovery of mice after irradiation. Injection of D1R significantly improved HSC engraftment and myeloid recovery after BM transplantation in irradiated mice. D1R enhanced HSC engraftment not only in BM, but also in the liver and spleen after BM transplantation in mice. D1R induced the formation of compact cell clusters containing the transplanted HSCs in close contact with endothelial cells, reminiscent of HSC niches, in the liver and spleen. CONCLUSIONS D1R might be applied in improving both HSC expansion ex vivo and HSC engraftment in vivo in transplantation.
Collapse
Affiliation(s)
- Deng-Mei Tian
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Zhang Y, Duc ACE, Rao S, Sun XL, Bilbee AN, Rhodes M, Li Q, Kappes DJ, Rhodes J, Wiest DL. Control of hematopoietic stem cell emergence by antagonistic functions of ribosomal protein paralogs. Dev Cell 2013; 24:411-25. [PMID: 23449473 DOI: 10.1016/j.devcel.2013.01.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/15/2012] [Accepted: 01/20/2013] [Indexed: 01/14/2023]
Abstract
It remains controversial whether the highly homologous ribosomal protein (RP) paralogs found in lower eukaryotes have distinct functions and this has not been explored in vertebrates. Here we demonstrate that despite ubiquitous expression, the RP paralogs, Rpl22 and Rpl22-like1 (Rpl22l1) play essential, distinct, and antagonistic roles in hematopoietic development. Knockdown of Rpl22 in zebrafish embryos selectively blocks the development of T lineage progenitors after they have seeded the thymus. In contrast, knockdown of the Rpl22 paralog, Rpl22l1, impairs the emergence of hematopoietic stem cells (HSC) in the aorta-gonad-mesonephros by abrogating Smad1 expression and the consequent induction of essential transcriptional regulator, Runx1. Indeed, despite the ability of both paralogs to bind smad1 RNA, Rpl22 and Rpl22l1 have opposing effects on Smad1 expression. Accordingly, circumstances that tip the balance of these paralogs in favor of Rpl22 (e.g., Rpl22l1 knockdown or Rpl22 overexpression) result in repression of Smad1 and blockade of HSC emergence.
Collapse
Affiliation(s)
- Yong Zhang
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Schaffner F, Yokota N, Carneiro-Lobo T, Kitano M, Schaffer M, Anderson GM, Mueller BM, Esmon CT, Ruf W. Endothelial protein C receptor function in murine and human breast cancer development. PLoS One 2013; 8:e61071. [PMID: 23593394 PMCID: PMC3621887 DOI: 10.1371/journal.pone.0061071] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/05/2013] [Indexed: 01/07/2023] Open
Abstract
Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR+ cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR+ cells or the heterogenous mixture of EPCR+ and EPCR- cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cluster Analysis
- Disease Models, Animal
- Endothelial Protein C Receptor
- Female
- Gene Expression Profiling
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Mammary Glands, Animal/metabolism
- Mice
- Neoplastic Stem Cells/metabolism
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Transplantation, Heterologous
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Florence Schaffner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Naho Yokota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Carneiro-Lobo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Maki Kitano
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael Schaffer
- Biologics Research, Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - G. Mark Anderson
- Biologics Research, Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - Barbara M. Mueller
- Cancer Research, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Howard Hughes Medical Institute, Oklahoma City, Oklahoma, United States of America
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
288
|
Materna SC, Swartz SZ, Smith J. Notch and Nodal control forkhead factor expression in the specification of multipotent progenitors in sea urchin. Development 2013; 140:1796-806. [PMID: 23533178 PMCID: PMC3621494 DOI: 10.1242/dev.091157] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2013] [Indexed: 01/23/2023]
Abstract
Indirect development, in which embryogenesis gives rise to a larval form, requires that some cells retain developmental potency until they contribute to the different tissues in the adult, including the germ line, in a later, post-embryonic phase. In sea urchins, the coelomic pouches are the major contributor to the adult, but how coelomic pouch cells (CPCs) are specified during embryogenesis is unknown. Here we identify the key signaling inputs into the CPC specification network and show that the forkhead factor foxY is the first transcription factor specifically expressed in CPC progenitors. Through dissection of its cis-regulatory apparatus we determine that the foxY expression pattern is the result of two signaling inputs: first, Delta/Notch signaling activates foxY in CPC progenitors; second, Nodal signaling restricts its expression to the left side, where the adult rudiment will form, through direct repression by the Nodal target pitx2. A third signal, Hedgehog, is required for coelomic pouch morphogenesis and institution of laterality, but does not directly affect foxY transcription. Knockdown of foxY results in a failure to form coelomic pouches and disrupts the expression of virtually all transcription factors known to be expressed in this cell type. Our experiments place foxY at the top of the regulatory hierarchy underlying the specification of a cell type that maintains developmental potency.
Collapse
Affiliation(s)
- Stefan C. Materna
- California Institute of Technology, Division of Biology, m/c 156-29, Pasadena, CA 91125, USA
| | - S. Zachary Swartz
- Brown University, Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Providence, RI 02912, USA
| | - Joel Smith
- California Institute of Technology, Division of Biology, m/c 156-29, Pasadena, CA 91125, USA
- Brown University, Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Providence, RI 02912, USA
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| |
Collapse
|
289
|
Abstract
The Hippo pathway controls organ size in diverse species, whereas pathway deregulation can induce tumours in model organisms and occurs in a broad range of human carcinomas, including lung, colorectal, ovarian and liver cancer. Despite this, somatic or germline mutations in Hippo pathway genes are uncommon, with only the upstream pathway gene neurofibromin 2 (NF2) recognized as a bona fide tumour suppressor gene. In this Review, we appraise the evidence for the Hippo pathway as a cancer signalling network, and discuss cancer-relevant biological functions, potential mechanisms by which Hippo pathway activity is altered in cancer and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Kieran F Harvey
- Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
290
|
Hitting Them Where They Live: Targeting the Glioblastoma Perivascular Stem Cell Niche. CURRENT PATHOBIOLOGY REPORTS 2013; 1:101-110. [PMID: 23766946 DOI: 10.1007/s40139-013-0012-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glioblastoma growth potential and resistance to therapy is currently largely attributed to a subset of tumor cells with stem-like properties. If correct, this means that cure will not be possible without eradication of the stem cell fraction and abrogation of those mechanisms through which stem cell activity is induced and maintained. Glioblastoma stem cell functions appear to be non-cell autonomous and the consequence of tumor cell residence within specialized domains such as the perivascular stem cell niche. In this review we consider the multiple cellular constituents of the perivascular niche, the molecular mechanisms that support niche structure and function and the implications of the perivascular localization of stem cells for anti-angiogenic approaches to cure.
Collapse
|
291
|
Gene expression profiling of granulosa cells from PCOS patients following varying doses of human chorionic gonadotropin. J Assist Reprod Genet 2013; 30:341-52. [PMID: 23381551 DOI: 10.1007/s10815-013-9935-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/15/2013] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Human chorionic gonadotrophin (hCG) has been used to induce ovulation and oocyte maturation. Although the most common dose of hCG used in IVF is 10,000 IU, there are reports that suggest 5,000 IU is sufficient to yield similar results. The objective of this study is to evaluate the dose dependent differences in gene expression of granulosa cells following various doses of hCG treatment. METHODS Patients with polycystic ovarian syndrome (PCOS) were stimulated for IVF treatment. The hCG injection was either withheld or given at 5,000 or 10,000 IU. Granulosa cells from the follicular fluids have been collected for RNA isolation and analyzed using Affymetrix genechip arrays. RESULTS Unsupervised hierarchical clustering based on whole gene expression revealed two distinct groups of patients in this experiment. All untreated patients were clustered together whereas hCG-treated patients separated to a different group regardless of the dose. A large number of the transcripts were similarly up- or down-regulated across both hCG doses (2229 and 1945 transcripts, respectively). However, we observed dose-dependent statistically significant differences in gene expression in only 15 transcripts. CONCLUSIONS Although hCG injection caused a major change in the gene expression profile of granulosa cells, 10,000 IU hCG resulted in minimal changes in the gene expression profiles of granulosa cells as compared with 5,000 IU. Thus, based on our results, we suggest the use of 10,000 IU hCG should be reconsidered in PCOS patients.
Collapse
|
292
|
Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. Monoamine oxidases in development. Cell Mol Life Sci 2013; 70:599-630. [PMID: 22782111 PMCID: PMC11113580 DOI: 10.1007/s00018-012-1065-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 12/29/2022]
Abstract
Monoamine oxidases (MAOs) are flavoproteins of the outer mitochondrial membrane that catalyze the oxidative deamination of biogenic and xenobiotic amines. In mammals there are two isoforms (MAO-A and MAO-B) that can be distinguished on the basis of their substrate specificity and their sensitivity towards specific inhibitors. Both isoforms are expressed in most tissues, but their expression in the central nervous system and their ability to metabolize monoaminergic neurotransmitters have focused MAO research on the functionality of the mature brain. MAO activities have been related to neurodegenerative diseases as well as to neurological and psychiatric disorders. More recently evidence has been accumulating indicating that MAO isoforms are expressed not only in adult mammals, but also before birth, and that defective MAO expression induces developmental abnormalities in particular of the brain. This review is aimed at summarizing and critically evaluating the new findings on the developmental functions of MAO isoforms during embryogenesis.
Collapse
Affiliation(s)
- Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Li Ka Shing Institute of Health Sciences, Shatin, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Billett
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS UK
| | - Astrid Borchert
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| | - Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Oudenarder Str. 16, 13347 Berlin, Germany
| |
Collapse
|
293
|
Zhu Z, Li K, Xu D, Liu Y, Tang H, Xie Q, Xie L, Liu J, Wang H, Gong Y, Hu Z, Zheng J. ZFX regulates glioma cell proliferation and survival in vitro and in vivo. J Neurooncol 2013; 112:17-25. [PMID: 23322077 DOI: 10.1007/s11060-012-1032-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/26/2012] [Indexed: 12/15/2022]
Abstract
The zinc finger transcription factor ZFX functions as an important regulator of self-renewal in multiple stem cell types, as well as a sex determinant of mammals. Moreover, ZFX expression is abnormally elevated in several cancers, and correlates with malignancy grade. To investigate its role in the pathogenesis of gliomas, we used lentivirus-mediated RNA interference (RNAi) to knockdown ZFX expression in human glioma cell lines. Our results demonstrate that ZFX plays a crucial role in glioma proliferation and survival, confirming recent reports. We also show for the first time that ZFX knockdown decreases the in vivo growth potential of U87 glioma xenografts in both subcutaneous and intracranial models in nude mice. We conclude that lentivirus-mediated RNAi targeting of ZFX may serve as a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Zhichuan Zhu
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Intrinsic properties and external factors determine the differentiation bias of human embryonic stem cell lines. Cell Biol Int 2013; 34:1021-31. [DOI: 10.1042/cbi20100283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
295
|
|
296
|
Jongkamonwiwat N, Rivolta MN. The Development of a Stem Cell Therapy for Deafness. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
297
|
|
298
|
Kidney. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
299
|
Stine RR, Matunis EL. JAK-STAT signaling in stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:247-67. [PMID: 23696361 DOI: 10.1007/978-94-007-6621-1_14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adult stem cells are essential for the regeneration and repair of tissues in an organism. Signals from many different pathways converge to regulate stem cell maintenance and differentiation while preventing overproliferation. Although each population of adult stem cells is unique, common themes arise by comparing the regulation of various stem cell types in an organism or by comparing similar stem cell types across species. The JAK-STAT signaling pathway, identified nearly two decades ago, is now known to be involved in many biological processes including the regulation of stem cells. Studies in Drosophila first implicated JAK-STAT signaling in the control of stem cell maintenance in the male germline stem cell microenvironment, or niche; subsequently it has been shown play a role in other niches in both Drosophila and mammals. In this chapter, we will address the role of JAK-STAT signaling in stem cells in the germline, intestinal, hematopoietic and neuronal niches in Drosophila as well as the hematopoietic and neuronal niches in mammals. We will comment on how the study of JAK-STAT signaling in invertebrate systems has helped to advance our understanding of signaling in vertebrates. In addition to the role of JAK- STAT signaling in stem cell niche homeostasis, we will also discuss the diseases, including cancers, that can arise when this pathway is misregulated.
Collapse
Affiliation(s)
- Rachel R Stine
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205 USA
| | | |
Collapse
|
300
|
Okita K, Takahashi K, Yamanaka S. Induced Pluripotent Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|