251
|
Jacob-Dubuisson F, Guérin J, Baelen S, Clantin B. Two-partner secretion: as simple as it sounds? Res Microbiol 2013; 164:583-95. [PMID: 23542425 DOI: 10.1016/j.resmic.2013.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
The two-partner secretion (TPS) pathway is a branch of type V secretion. TPS systems are dedicated to the secretion across the outer membrane of long proteins that form extended β-helices. They are composed of a 'TpsA' cargo protein and a 'TpsB' transporter, which belongs to the Omp85 superfamily. This basic design can be supplemented by additional components in some TPS systems. X-ray structures are available for the conserved TPS domain of several TpsA proteins and for one TpsB transporter. However, the molecular mechanisms of two-partner secretion remain to be deciphered, and in particular, the specific role(s) of the TPS domain and the conformational dynamics of the TpsB transporter. Deciphering the TPS pathway may reveal functional features of other transporters of the Omp85 superfamily.
Collapse
|
252
|
Loss of culturability of Salmonella enterica subsp. enterica serovar Typhimurium upon cell-cell contact with human fecal bacteria. Appl Environ Microbiol 2013; 79:3257-63. [PMID: 23503308 DOI: 10.1128/aem.00092-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss of culturability of Salmonella enterica subsp. enterica serovar Typhimurium has been observed in mixed cultures with anaerobic fecal bacteria under conditions that allow local interaction between cells, such as cell contact. A reduction of a population of culturable S. Typhimurium on the order of ∼10(4) to 10(5) CFU/ml was observed in batch anaerobic mixed cultures with fecal samples from different human donors. Culturability was not affected either in supernatants collected at several times from fecal cultures, when separated from fecal bacteria by a membrane of 0.45-μm pore size, or when in contact with inactivated fecal bacterial cells. Loss of culturability kinetics was characterized by a sharp reduction of several logarithmic units followed by a pronounced tail. A mathematical model was developed to describe the rate of loss of culturability as a function of the frequency of encounters between populations and the probability of inactivation after encounter. The model term F(S · F)(1/2) quantifies the effect of the concentration of both populations, fecal bacteria (F) and S. Typhimurium (S), on the loss of culturability of S. Typhimurium by cell contact with fecal bacteria. When the value of F(S · F)(1/2) decreased below ca. 10(15) (CFU/ml)(2), the frequency of encounters sharply decreased, leading to the deceleration of the inactivation rate and to the tailing off of the S. Typhimurium population. The probability of inactivation after encounter, P, was constant, with an estimated value of ∼10(-5) for all data sets. P might be characteristic of the mechanism of growth inhibition after a cell encounter.
Collapse
|
253
|
Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent growth inhibition. Trends Microbiol 2013; 21:230-7. [PMID: 23473845 DOI: 10.1016/j.tim.2013.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 01/31/2023]
Abstract
Bacteria cooperate to form multicellular communities and compete against one another for environmental resources. Here, we review recent advances in the understanding of bacterial competition mediated by contact-dependent growth inhibition (CDI) systems. Different CDI+ bacteria deploy a variety of toxins to inhibit neighboring cells and protect themselves from autoinhibition by producing specific immunity proteins. The genes encoding CDI toxin-immunity protein pairs appear to be exchanged between cdi loci and are often associated with other toxin-delivery systems in diverse bacterial species. CDI also appears to facilitate cooperative behavior between kin, suggesting that these systems may have other roles beyond competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | | | | |
Collapse
|
254
|
Affiliation(s)
- Melissa Ivey
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mara Massel
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Trevor G. Phister
- Division of Food Science, Brewing Science Program, School of Biological Sciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom;
| |
Collapse
|
255
|
Webb JS, Nikolakakis KC, Willett JLE, Aoki SK, Hayes CS, Low DA. Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition. PLoS One 2013; 8:e57609. [PMID: 23469034 PMCID: PMC3585180 DOI: 10.1371/journal.pone.0057609] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 12/26/2022] Open
Abstract
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell cytoplasm to interact with their substrates. To analyze CdiA transfer to target bacteria, we used the CDI system of uropathogenic Escherichia coli 536 (UPEC536) as a model. Antibodies recognizing the amino- and carboxyl-termini of CdiAUPEC536 were used to visualize transfer of CdiA from CDIUPEC536+ inhibitor cells to target cells using fluorescence microscopy. The results indicate that the entire CdiAUPEC536 protein is deposited onto the surface of target bacteria. CdiAUPEC536 transfer to bamA101 mutants is reduced, consistent with low expression of the CDI receptor BamA on these cells. Notably, our results indicate that the C-terminal CdiA-CT toxin region of CdiAUPEC536 is translocated into target cells, but the N-terminal region remains at the cell surface based on protease sensitivity. These results suggest that the CdiA-CT toxin domain is cleaved from CdiAUPEC536 prior to translocation. Delivery of a heterologous Dickeya dadantii CdiA-CT toxin, which has DNase activity, was also visualized. Following incubation with CDI+ inhibitor cells targets became anucleate, showing that the D.dadantii CdiA-CT was delivered intracellularly. Together, these results demonstrate that diverse CDI toxins are efficiently translocated across target cell envelopes.
Collapse
Affiliation(s)
- Julia S. Webb
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Kiel C. Nikolakakis
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Julia L. E. Willett
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Stephanie K. Aoki
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, United States of America
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
256
|
Pradhan S, Mallick SK, Chowdhury R. Vibrio cholerae classical biotype is converted to the viable non-culturable state when cultured with the El Tor biotype. PLoS One 2013; 8:e53504. [PMID: 23326443 PMCID: PMC3541145 DOI: 10.1371/journal.pone.0053504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/30/2012] [Indexed: 12/18/2022] Open
Abstract
A unique event in bacterial epidemiology was the emergence of the El Tor biotype of Vibrio cholerae O1 and the subsequent rapid displacement of the existing classical biotype as the predominant cause of epidemic cholera. We demonstrate that when the El Tor and classical biotypes were cocultured in standard laboratory medium a precipitous decline in colony forming units (CFU) of the classical biotype occurred in a contact dependent manner. Several lines of evidence including DNA release, microscopy and flow cytometric analysis indicated that the drastic reduction in CFU of the classical biotype in cocultures was not accompanied by lysis, although when the classical biotype was grown individually in monocultures, lysis of the cells occurred concomitant with decrease in CFU starting from late stationary phase. Furthermore, uptake of a membrane potential sensitive dye and protection of genomic DNA from extracellular DNase strongly suggested that the classical biotype cells in cocultures retained viability in spite of loss of culturability. These results suggest that coculturing the classical biotype with the El Tor biotype protects the former from lysis allowing the cells to remain viable in spite of the loss of culturability. The stationary phase sigma factor RpoS may have a role in the loss of culturability of the classical biotype in cocultures. Although competitive exclusion of closely related strains has been reported for several bacterial species, conversion of the target bacterial population to the viable non-culturable state has not been demonstrated previously and may have important implications in the evolution of bacterial strains.
Collapse
Affiliation(s)
- Subhra Pradhan
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Sanjaya K. Mallick
- CU-BD Center of Excellence for Nanobiotechnology, Center for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
- * E-mail:
| |
Collapse
|
257
|
Ruiz N. A bird's eye view of the bacterial landscape. Methods Mol Biol 2013; 966:1-14. [PMID: 23299725 DOI: 10.1007/978-1-62703-245-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bacteria interact with the environment through their cell surface. Activities as diverse as attaching to a catheter, crawling on a surface, swimming through a pond, or being preyed on by a bacteriophage depend on the composition and structure of the cell surface. The cell surface must also protect bacteria from harmful chemicals present in the environment while allowing the intake of nutrients and excretion of toxic molecules. Bacteria have evolved four main types of bacterial cell surfaces to accomplish these functions: those of the typical gram-negative and gram-positive bacteria, and those of the Actinobacteria and Mollicutes. So few types seems remarkable since bacteria are very diverse and abundant, and they can live in many different environments. However, each species has tweaked these stereotypical bacterial surfaces to best fit its needs. The result is an amazing diversity of the bacterial landscape, most of which remains unexplored. Here I give an overview of the main features of the bacterial cell surface and highlight how advances in methodology have moved forward this field of study.
Collapse
Affiliation(s)
- Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
258
|
Evidence for broad-spectrum biofilm inhibition by the bacterium Bacillus sp. strain SW9. Appl Environ Microbiol 2012; 79:1735-8. [PMID: 23263956 DOI: 10.1128/aem.02796-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a Bacillus sp. strain that could display broad-spectrum biofilm inhibition. The broad biofilm prevention could be achieved mainly by direct contact between inhibitor and target cells or was accompanied by an interaction with secreted inhibitory compounds. The repression of cell surface fimbria-like appendages of a biofilm producer was also observed; this was considered to contribute to the reduction in mixed biofilms.
Collapse
|
259
|
Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. Proc Natl Acad Sci U S A 2012; 109:21480-5. [PMID: 23236156 DOI: 10.1073/pnas.1216238110] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems encode polymorphic toxin/immunity proteins that mediate competition between neighboring bacterial cells. We present crystal structures of CDI toxin/immunity complexes from Escherichia coli EC869 and Burkholderia pseudomallei 1026b. Despite sharing little sequence identity, the toxin domains are structurally similar and have homology to endonucleases. The EC869 toxin is a Zn(2+)-dependent DNase capable of completely degrading the genomes of target cells, whereas the Bp1026b toxin cleaves the aminoacyl acceptor stems of tRNA molecules. Each immunity protein binds and inactivates its cognate toxin in a unique manner. The EC869 toxin/immunity complex is stabilized through an unusual β-augmentation interaction. In contrast, the Bp1026b immunity protein exploits shape and charge complementarity to occlude the toxin active site. These structures represent the initial glimpse into the CDI toxin/immunity network, illustrating how sequence-diverse toxins adopt convergent folds yet retain distinct binding interactions with cognate immunity proteins. Moreover, we present visual demonstration of CDI toxin delivery into a target cell.
Collapse
|
260
|
Noël CR, Mazar J, Melvin JA, Sexton JA, Cotter PA. The prodomain of the Bordetella two-partner secretion pathway protein FhaB remains intracellular yet affects the conformation of the mature C-terminal domain. Mol Microbiol 2012; 86:988-1006. [PMID: 23035892 DOI: 10.1111/mmi.12036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 12/26/2022]
Abstract
Two-partner secretion (TPS) systems use β-barrel proteins of the Omp85-TpsB superfamily to transport large exoproteins across the outer membranes of Gram-negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C-terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly located mature C-terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C-terminus of the prodomain is retained intracellularly and that sequences within the N-terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C-terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly located prodomain affects the final conformation of the extracellularly located MCD. We hypothesize that maturation triggers cleavage and degradation of the prodomain.
Collapse
Affiliation(s)
- Christopher R Noël
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
261
|
Anand A, Jaiswal SK, Dhar B, Vaishampayan A. Surviving and thriving in terms of symbiotic performance of antibiotic and phage-resistant mutants of Bradyrhizobium of soybean [Glycine max (L.) Merrill]. Curr Microbiol 2012; 65:390-7. [PMID: 22735983 DOI: 10.1007/s00284-012-0166-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
Rhizobial inoculation plays an important role in yielding enhancement of soybean, but it is frequently disturbed by competition with bacterial population present in the soil. Identification of potential indigenous rhizobia as competitive inoculants for efficient nodulation and N(2)-fixation of soybean was assessed under laboratory and field conditions. Two indigenous bradyrhizobial isolates (MPSR033 and MPSR220) and its derived different antibiotic (streptomycin and gentamicin) and phage (RT5 and RT6)-resistant mutant strains were used for competition study. Nodulation occupancy between parent and mutant strains was compared on soybean cultivar JS335 under exotic condition. Strain MPSR033 Sm(r) V(r) was found highly competitive for nodule occupancy in all treatment combinations. On the basis of laboratory experiments four indigenous strains (MPSR033, MPSR033 Sm(r), MPSR033 Sm(r) V(r), MPSR220) were selected for their symbiotic performance along with two exotic strains (USDA123 and USDA94) on two soybean cultivars under field conditions. A significant symbiotic interaction between Bradyrhizobium strains and soybean cultivar was observed. Strain MPSR033 Sm(r) V(r) was found superior among the rhizobial treatments in seed yield production with both cultivars. The 16S rRNA region sequence analysis of the indigenous strains showed close relationship with Bradyrhizobium yuanmingense strain. These findings widen out the usefulness of antibiotic-resistance marked phage-resistant bradyrhizobial strains in interactive mode for studying their symbiotic effectiveness with host plant, and open the way to study the mechanism of contact-dependent growth inhibition in rhizobia.
Collapse
Affiliation(s)
- Akhil Anand
- Microbiology Laboratory, Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | | | | | | |
Collapse
|
262
|
On-chip cellomics assay enabling algebraic and geometric understanding of epigenetic information in cellular networks of living systems. 1. Temporal aspects of epigenetic information in bacteria. SENSORS 2012; 12:7169-206. [PMID: 22969343 PMCID: PMC3435972 DOI: 10.3390/s120607169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 11/16/2022]
Abstract
A series of studies aimed at developing methods and systems of analyzing epigenetic information in cells and in cell networks, as well as that of genetic information, was examined to expand our understanding of how living systems are determined. Because cells are minimum units reflecting epigenetic information, which is considered to map the history of a parallel-processing recurrent network of biochemical reactions, their behaviors cannot be explained by considering only conventional DNA information-processing events. The role of epigenetic information on cells, which complements their genetic information, was inferred by comparing predictions from genetic information with cell behaviour observed under conditions chosen to reveal adaptation processes, population effects and community effects. A system of analyzing epigenetic information was developed starting from the twin complementary viewpoints of cell regulation as an “algebraic” system (emphasis on temporal aspects) and as a “geometric” system (emphasis on spatial aspects). Exploiting the combination of latest microfabrication technology and measurement technologies, which we call on-chip cellomics assay, we can control and re-construct the environments and interaction of cells from “algebraic” and “geometric” viewpoints. In this review, temporal viewpoint of epigenetic information, a part of the series of single-cell-based “algebraic” and “geometric” studies of celluler systems in our research groups, are summerized and reported. The knowlege acquired from this study may lead to the use of cells that fully control practical applications like cell-based drug screening and the regeneration of organs.
Collapse
|
263
|
Ryall B, Eydallin G, Ferenci T. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol Mol Biol Rev 2012; 76:597-625. [PMID: 22933562 PMCID: PMC3429624 DOI: 10.1128/mmbr.05028-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diversity in adaptive responses is common within species and populations, especially when the heterogeneity of the frequently large populations found in environments is considered. By focusing on events in a single clonal population undergoing a single transition, we discuss how environmental cues and changes in growth rate initiate a multiplicity of adaptive pathways. Adaptation is a comprehensive process, and stochastic, regulatory, epigenetic, and mutational changes can contribute to fitness and overlap in timing and frequency. We identify culture history as a major determinant of both regulatory adaptations and microevolutionary change. Population history before a transition determines heterogeneities due to errors in translation, stochastic differences in regulation, the presence of aged, damaged, cheating, or dormant cells, and variations in intracellular metabolite or regulator concentrations. It matters whether bacteria come from dense, slow-growing, stressed, or structured states. Genotypic adaptations are history dependent due to variations in mutation supply, contingency gene changes, phase variation, lateral gene transfer, and genome amplifications. Phenotypic adaptations underpin genotypic changes in situations such as stress-induced mutagenesis or prophage induction or in biofilms to give a continuum of adaptive possibilities. Evolutionary selection additionally provides diverse adaptive outcomes in a single transition and generally does not result in single fitter types. The totality of heterogeneities in an adapting population increases the chance that at least some individuals meet immediate or future challenges. However, heterogeneity complicates the adaptomics of single transitions, and we propose that subpopulations will need to be integrated into future population biology and systems biology predictions of bacterial behavior.
Collapse
Affiliation(s)
- Ben Ryall
- School of Molecular Bioscience, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
264
|
The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genet 2012; 8:e1002877. [PMID: 22912595 PMCID: PMC3415462 DOI: 10.1371/journal.pgen.1002877] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/15/2012] [Indexed: 11/19/2022] Open
Abstract
Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI). Identified in Escherichia coli, CDI is mediated by Two-Partner Secretion (TPS) pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI(-) bacteria. CDI(+) bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5' to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member) was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in sociomicrobiological community development.
Collapse
|
265
|
Proximity-dependent inhibition of growth of Mannheimia haemolytica by Pasteurella multocida. Appl Environ Microbiol 2012; 78:6683-8. [PMID: 22798357 DOI: 10.1128/aem.01119-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannheimia haemolytica, Pasteurella multocida, and Bibersteinia trehalosi have been identified in the lungs of pneumonic bighorn sheep (BHS; Ovis canadensis). Of these pathogens, M. haemolytica has been shown to consistently cause fatal pneumonia in BHS under experimental conditions. However, M. haemolytica has been isolated by culture less frequently than the other bacteria. We hypothesized that the growth of M. haemolytica is inhibited by other bacteria in the lungs of BHS. The objective of this study was to determine whether P. multocida inhibits the growth of M. haemolytica. Although in monoculture both bacteria exhibited similar growth characteristics, in coculture with P. multocida there was a clear inhibition of growth of M. haemolytica. The inhibition was detected at mid-log phase and continued through the stationary phase. When cultured in the same medium, the growth of M. haemolytica was inhibited when both bacteria were separated by a membrane that allowed contact (pore size, 8.0 μm) but not when they were separated by a membrane that limited contact (pore size, 0.4 μm). Lytic bacteriophages or bactericidal compounds could not be detected in the culture supernatant fluid from monocultures of P. multocida or from P. multocida-M. haemolytica cocultures. These results indicate that P. multocida inhibits the growth of M. haemolytica by a contact- or proximity-dependent mechanism. If the inhibition of growth of M. haemolytica by P. multocida occurs in vivo as well, it could explain the inconsistent isolation of M. haemolytica from the lungs of pneumonic BHS.
Collapse
|
266
|
Characterization of a novel microcin that kills enterohemorrhagic Escherichia coli O157:H7 and O26. Appl Environ Microbiol 2012; 78:6592-9. [PMID: 22773653 DOI: 10.1128/aem.01067-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel phenotype was recently identified in which specific strains of Escherichia coli inhibit competing E. coli strains via a mechanism that was designated "proximity-dependent inhibition" (PDI). PDI-expressing (PDI(+)) E. coli is known to inhibit susceptible (PDI(-)) E. coli strains, including several enterohemorrhagic (EHEC) and enterotoxigenic (ETEC) E. coli strains. In this study, every strain from a genetically diverse panel of E. coli O157:H7 (n = 25) and additional strains of E. coli serovar O26 were susceptible to the PDI phenotype. LIVE/DEAD staining was consistent with inhibition by killing of susceptible cells. Comparative genome analysis identified the genetic component of PDI, which is composed of a plasmid-borne (Incl1) operon encoding a putative microcin and associated genes for transport, immunity, and microcin activation. Transfer of the plasmid to a PDI(-) strain resulted in transfer of the phenotype, and deletion of the genes within the operon resulted in loss of the inhibition phenotype. Deletion of chromosomally encoded tolC also resulted in loss of the inhibitory phenotype, and this confirmed that the putative microcin is most likely secreted via a type I secretion pathway. Deletion of an unrelated plasmid gene did not affect the PDI phenotype. Quantitative reverse transcription (RT)-PCR demonstrated that microcin expression is correlated with logarithmic-phase growth. The ability to inhibit a diversity of E. coli strains indicates that this microcin may influence gut community composition and could be useful for control of important enteric pathogens.
Collapse
|
267
|
Structural basis for type VI secretion effector recognition by a cognate immunity protein. PLoS Pathog 2012; 8:e1002613. [PMID: 22511866 PMCID: PMC3325213 DOI: 10.1371/journal.ppat.1002613] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/14/2012] [Indexed: 11/29/2022] Open
Abstract
The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1–3 (Tse1–3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2–Tsi2 effector–immunity pair has features distinguishing it from previously characterized toxin–immunity and toxin–antitoxin systems. Bacterial species have been at war with each other for over a billion years. During this period they have evolved many pathways for besting the competition; one of the most recent of these to be described is the type VI secretion system (T6SS). The T6SS of Pseudomonas aeruginosa is a complex machine that the bacterium uses to intoxicate neighboring cells. Among the toxins this system delivers is type VI secretion exported 2 (Tse2). In addition to acting on competing organisms, this toxin can act on P. aeruginosa; thus, the organism synthesizes a protein, type VI secretion immunity 2 (Tsi2), which neutralizes the toxin. In this paper we dissect the function and structure of Tsi2. We show that although Tsi2 interacts with and stabilizes Tse2 inside the bacterium, the toxin does not require the immunity protein to reach the secretion apparatus. Our structure of Tsi2 shows that the protein adopts a dimeric configuration; however, we find that its dimerization is not required for Tse2 interaction. Instead, our findings indicate that Tse2 interacts with an acidic surface of Tsi2 that is opposite the homodimer interface. Our results provide key molecular insights into the process of T6 toxin secretion and immunity.
Collapse
|
268
|
Nikolakakis K, Amber S, Wilbur JS, Diner EJ, Aoki SK, Poole SJ, Tuanyok A, Keim PS, Peacock S, Hayes CS, Low DA. The toxin/immunity network of Burkholderia pseudomallei contact-dependent growth inhibition (CDI) systems. Mol Microbiol 2012; 84:516-29. [PMID: 22435733 DOI: 10.1111/j.1365-2958.2012.08039.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis--a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact-dependent growth inhibition (CDI) systems of γ-proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA-CT/cdiI coding regions, which are predicted to encode CdiA-CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA-CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA-CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA-CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.
Collapse
Affiliation(s)
- Kiel Nikolakakis
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Konovalova A, Löbach S, Søgaard-Andersen L. A RelA-dependent two-tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus. Mol Microbiol 2012; 84:260-75. [PMID: 22404381 DOI: 10.1111/j.1365-2958.2012.08020.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteolytic cleavage of precursor proteins to generate intercellular signals is a common mechanism in all cells. In Myxococcus xanthus the contact-dependent intercellular C-signal is a 17 kDa protein (p17) generated by proteolytic cleavage of the 25 kDa csgA protein (p25), and is essential for starvation-induced fruiting body formation. p25 accumulates in the outer membrane and PopC, the protease that cleaves p25, in the cytoplasm of vegetative cells. PopC is secreted in response to starvation, therefore, restricting p25 cleavage to starving cells. We focused on identifying proteins critical for PopC secretion in response to starvation. PopC secretion depends on the (p)ppGpp synthase RelA and the stringent response, and is regulated post-translationally. PopD, which is encoded in an operon with PopC, forms a soluble complex with PopC and inhibits PopC secretion whereas the integral membrane AAA+ protease FtsH(D) is required for PopC secretion. Biochemical and genetic evidence suggest that in response to starvation, RelA is activated and induces the degradation of PopD thereby releasing pre-formed PopC for secretion and that FtsH(D) is important for PopD degradation. Hence, regulated PopC secretion depends on regulated proteolysis. Accordingly, p17 synthesis depends on a proteolytic cascade including FtsH(D) -dependent degradation of PopD and PopC-dependent cleavage of p25.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | |
Collapse
|
270
|
Diner EJ, Beck CM, Webb JS, Low DA, Hayes CS. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev 2012; 26:515-25. [PMID: 22333533 PMCID: PMC3305988 DOI: 10.1101/gad.182345.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/20/2012] [Indexed: 11/25/2022]
Abstract
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effector proteins are exported onto the surface of CDI(+) inhibitor cells, where they interact with susceptible bacteria and deliver effectors/toxins derived from their C-terminal regions (CdiA-CT). CDI(+) cells also produce an immunity protein that binds the CdiA-CT and blocks its activity to prevent autoinhibition. Here, we show that the CdiA-CT from uropathogenic Escherichia coli strain 536 (UPEC536) is a latent tRNase that requires activation by the biosynthetic enzyme CysK (O-acetylserine sulfhydrylase A). UPEC536 CdiA-CT exhibits no nuclease activity in vitro, but cleaves within transfer RNA (tRNA) anti-codon loops when purified CysK is added. CysK and CdiA-CT form a stable complex, and their binding interaction appears to mimic that of the CysK/CysE cysteine synthase complex. CdiA-CT activation is also required for growth inhibition. Synthesis of CdiA-CT in E. coli cysK(+) cells arrests cell growth, whereas the growth of ΔcysK mutants is unaffected by the toxin. Moreover, E. coli ΔcysK cells are completely resistant to inhibitor cells expressing UPEC536 CdiA, indicating that CysK is required to activate the tRNase during CDI. Thus, CysK acts as a permissive factor for CDI, providing a potential mechanism to modulate growth inhibition in target cells.
Collapse
Affiliation(s)
- Elie J. Diner
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Christina M. Beck
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Julia S. Webb
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - David A. Low
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
271
|
Abstract
Recognition of relatives is important in microbes because they perform many behaviors that have costs to the actor while benefiting neighbors. Microbes cooperate for nourishment, movement, virulence, iron acquisition, protection, quorum sensing, and production of multicellular biofilms or fruiting bodies. Helping others is evolutionarily favored if it benefits others who share genes for helping, as specified by kin selection theory. If microbes generally find themselves in clonal patches, then no special means of discrimination is necessary. Much real discrimination is actually of kinds, not kin, as in poison-antidote systems, such as bacteriocins, in which cells benefit their own kind by poisoning others, and in adhesion systems, in which cells of the same kind bind together. These behaviors can elevate kinship generally and make cooperation easier to evolve and maintain.
Collapse
Affiliation(s)
- Joan E Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA.
| | | | | |
Collapse
|
272
|
Holberger LE, Garza-Sánchez F, Lamoureux J, Low DA, Hayes CS. A novel family of toxin/antitoxin proteins in Bacillus species. FEBS Lett 2011; 586:132-6. [PMID: 22200572 DOI: 10.1016/j.febslet.2011.12.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022]
Abstract
The C-terminal regions (CT) of Pfam PF04740 proteins share significant sequence identity with the toxic CdiA-CT effector domains of contact-dependent growth inhibition (CDI) systems. In accord with this homology, we find that several PF04740 CT domains inhibit cell growth when expressed in Escherichia coli. This growth inhibition is specifically blocked by antitoxin proteins encoded downstream of each PF04740 gene. The YobL-CT, YxiD-CT and YqcG-CT domains from Bacillus subtilis 168 have cytotoxic RNase activities, which are neutralized by the binding of cognate YobK, YxxD and YqcF antitoxin proteins, respectively. Our results show that PF04740 proteins represent a new family of toxin/antitoxin pairs that are widely distributed in Gram-positive bacteria.
Collapse
Affiliation(s)
- Laura E Holberger
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | | | | | | | | |
Collapse
|
273
|
Javid B, Derbyshire KM. Nanotubes: shaking hands, talking, or sharing? Front Microbiol 2011; 2:95. [PMID: 21833333 PMCID: PMC3153053 DOI: 10.3389/fmicb.2011.00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 04/19/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Babak Javid
- Department of Immunology and Infectious Diseases, Harvard School of Public Health Boston, MA, USA
| | | |
Collapse
|
274
|
Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet 2011; 7:e1002217. [PMID: 21829394 PMCID: PMC3150448 DOI: 10.1371/journal.pgen.1002217] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/17/2011] [Indexed: 01/07/2023] Open
Abstract
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI(+) cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. Here we show that many CDI systems contain multiple cdiA gene fragments that encode CdiA-CT sequences. These "orphan" cdiA-CT genes are almost always associated with downstream cdiI genes to form cdiA-CT/cdiI modules. Comparative genome analyses suggest that cdiA-CT/cdiI modules are mobile and exchanged between the CDI systems of different bacteria. In many instances, orphan cdiA-CT/cdiI modules are fused to full-length cdiA genes in other bacterial species. Examination of cdiA-CT/cdiI modules from Escherichia coli EC93, E. coli EC869, and Dickeya dadantii 3937 confirmed that these genes encode functional toxin/immunity pairs. Moreover, the orphan module from EC93 was functional in cell-mediated CDI when fused to the N-terminal portion of the EC93 CdiA protein. Bioinformatic analyses revealed that the genetic organization of CDI systems shares features with rhs (rearrangement hotspot) loci. Rhs proteins also contain polymorphic C-terminal regions (Rhs-CTs), some of which share significant sequence identity with CdiA-CTs. All rhs genes are followed by small ORFs representing possible rhsI immunity genes, and several Rhs systems encode orphan rhs-CT/rhsI modules. Analysis of rhs-CT/rhsI modules from D. dadantii 3937 demonstrated that Rhs-CTs have growth inhibitory activity, which is specifically blocked by cognate RhsI immunity proteins. Together, these results suggest that Rhs plays a role in intercellular competition and that orphan gene modules expand the diversity of toxic activities deployed by both CDI and Rhs systems.
Collapse
|
275
|
Aoki SK, Poole SJ, Hayes CS, Low DA. Toxin on a stick: modular CDI toxin delivery systems play roles in bacterial competition. Virulence 2011; 2:356-9. [PMID: 21705856 DOI: 10.4161/viru.2.4.16463] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is the first contact-dependent competition system identified in bacteria. CDI is mediated by the CdiA/CdiB two-partner secretion system, and the BamA outer membrane protein serves as the CDI receptor on target cells. A small immunity protein, CdiI, is required to protect inhibitor cells from their own CDI system. Recent results from our group show that CDI systems are present in a number of important gram-negative plant and animal pathogens. The C-terminal region of CdiA (CdiA-CT) is polymorphic and contains growth inhibitory activity. The CdiA-CT from uropathogenic Esherichia coli 536 is a tRNase whereas a CdiA-CT from Dickeya dadantii 3937 has DNase activity. Accordingly, these bacteria contain distinct CdiI proteins, which specifically bind and inactivate cognate CdiA-CT. Remarkably, CdiA-CTs are modular: one CdiA "stick" can deliver different CdiA-CT toxins. We discuss these findings as well as results showing that CDI plays an important role in intra-strain bacterial competition in the natural world. A detailed mechanistic understanding of CDI could facilitate development of probiotics and antimicrobials that target specific pathogens.
Collapse
Affiliation(s)
- Stephanie K Aoki
- Molecular Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | | | | | | |
Collapse
|
276
|
Delattre A, Saint N, Clantin B, Willery E, Lippens G, Locht C, Villeret V, Jacob‐Dubuisson F. Substrate recognition by the POTRA domains of TpsB transporter FhaC. Mol Microbiol 2011; 81:99-112. [DOI: 10.1111/j.1365-2958.2011.07680.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anne‐Sophie Delattre
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| | - Nathalie Saint
- INSERM U1046, Université de Montpellier 1 et 2, F‐34090 Montpellier cedex, France
| | - Bernard Clantin
- CNRS USR3078, Institut de Recherche Interdisciplinaire – Université de Lille 1 – Université de Lille 2, F‐59658 Villeneuve d'Ascq, France
| | - Eve Willery
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| | - Guy Lippens
- CNRS UMR 8576 – Université de Lille I, F‐59655 Villeneuve d'Ascq – France
| | - Camille Locht
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| | - Vincent Villeret
- CNRS USR3078, Institut de Recherche Interdisciplinaire – Université de Lille 1 – Université de Lille 2, F‐59658 Villeneuve d'Ascq, France
| | - Françoise Jacob‐Dubuisson
- Inserm U1019, Center for Infection and Immunity of Lille, F‐59019 Lille, France
- Institut Pasteur de Lille, F‐59019 Lille, France
- Univ Lille Nord de France, F‐59000 Lille, France
- CNRS UMR8204, F‐59021 Lille, France
| |
Collapse
|
277
|
Konovalova A, Søgaard-Andersen L. Close encounters: contact-dependent interactions in bacteria. Mol Microbiol 2011; 81:297-301. [PMID: 21651624 DOI: 10.1111/j.1365-2958.2011.07711.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial cells interact extensively within and between species. These interactions can be divided into those that rely on diffusible factors and those that depend on direct cell-to-cell contacts. An example of a contact-dependent interaction is the transfer of lipoproteins between Myxococcus xanthus cells that leads to transient stimulation of motility in certain motility mutants. In this issue of Molecular Microbiology, Wei et al. (2011) provide mechanistic insights into this contact-dependent transfer of lipoproteins. Briefly, a heterologous protein fused to a type II (lipoprotein) signal sequence that targets the protein to the outer membrane is required and sufficient for transfer. Moreover, evidence is provided that transfer may depend on specific contacts between donor and recipient cells. The data demonstrate that lipoprotein transfer in M. xanthus is not restricted to a few odd motility proteins but could be a wide-spread phenomenon in M. xanthus and possibly other bacteria. Recent years have been fruitful in identifying contact-dependent interactions between bacterial cells. These interactions can be grouped into those that involve delivery of cargo to a recipient and those that seem to be involved in cell-to-cell signalling. Several contact-dependent interactions involve widely conserved proteins, suggesting that cell contact-dependent processes may be widespread among bacteria.
Collapse
Affiliation(s)
- Anna Konovalova
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | |
Collapse
|
278
|
Krieger JN, Dobrindt U, Riley DE, Oswald E. Acute Escherichia coli prostatitis in previously health young men: bacterial virulence factors, antimicrobial resistance, and clinical outcomes. Urology 2011; 77:1420-5. [PMID: 21459419 DOI: 10.1016/j.urology.2010.12.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/14/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To investigate clinical outcomes, bacterial virulence factors, and antimicrobial resistance in E. coli from young men presenting with acute bacterial prostatitis. METHODS Initial E. coli isolates from previously healthy young men with no factors compromising urinary tract anatomy or function were tested for virulence-associated genes by polymerase chain reaction (PCR) assays, phylogenetic grouping by triplex polymerase PCR, and antibiotic resistance. RESULTS All 18 patients responded to treatment, including 2 who required long-term therapy. E. coli were allocated to phylogenetic groups B2 (13 strains) and D (5 strains). Prostatitis isolates belonged to clones mainly represented by extraintestinal pathogenic E. coli (ExPEC) and preferentially uropathogenic E. coli and displayed marked accumulation of virulence genes (hly, cdt1, clb, pap, sfa/foc, fyuA, iroN, kpsMT(II), and traT) characteristic of highly virulent ExPEC. All phylogenetic group B2 strains coded for at least 1 toxin with carcinogenic potential (Colibactin, cytolethal distending toxins, or cytotoxic necrotizing factor). In contrast to their accumulation of virulence-associated traits, prostatitis strains were sensitive to standard antibiotics. CONCLUSIONS The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance was minimal in these E. coli strains from previously healthy, young outpatients.
Collapse
Affiliation(s)
- John N Krieger
- University of Washington School of Medicine, Seattle, WA 98108-1597, USA.
| | | | | | | |
Collapse
|
279
|
Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590-600. [PMID: 21335240 DOI: 10.1016/j.cell.2011.01.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022]
Abstract
Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.
Collapse
Affiliation(s)
- Gyanendra P Dubey
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
280
|
Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir. Appl Environ Microbiol 2011; 77:2916-25. [PMID: 21421787 DOI: 10.1128/aem.02554-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cattle comprise a main reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC). The significant differences in host prevalence, transmissibility, and virulence phenotypes among strains from bovine and human sources are of major interest to the public health community and livestock industry. Genomic analysis revealed divergence into three lineages: lineage I and lineage I/II strains are commonly associated with human disease, while lineage II strains are overrepresented in the asymptomatic bovine host reservoir. Growing evidence suggests that genotypic differences between these lineages, such as polymorphisms in Shiga toxin subtypes and synergistically acting virulence factors, are correlated with phenotypic differences in virulence, host ecology, and epidemiology. To assess the genomic plasticity on a genome-wide scale, we have sequenced the whole genome of strain EC869, a bovine-associated E. coli O157:H7 isolate. Comparative phylogenomic analysis of this key isolate enabled us to place accurately bovine lineage II strains within the genetically homogenous E. coli O157:H7 clade. Identification of polymorphic loci that are anchored both in the chromosomal backbone and horizontally acquired regions allowed us to associate bovine genotypes with altered virulence phenotypes and host prevalence. This study catalogued numerous novel lineage II-specific genome signatures, some of which appear to be associated intimately with the altered pathogenic potential and niche adaptation within the bovine rumen. The presented extended list of polymorphic markers is valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies of this emerging human pathogen.
Collapse
|
281
|
Zhang D, Iyer LM, Aravind L. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res 2011; 39:4532-52. [PMID: 21306995 PMCID: PMC3113570 DOI: 10.1093/nar/gkr036] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of nucleases as toxins for defense, offense or addiction of selfish elements is widely encountered across all life forms. Using sensitive sequence profile analysis methods, we characterize a novel superfamily (the SUKH superfamily) that unites a diverse group of proteins including Smi1/Knr4, PGs2, FBXO3, SKIP16, Syd, herpesviral US22, IRS1 and TRS1, and their bacterial homologs. Using contextual analysis we present evidence that the bacterial members of this superfamily are potential immunity proteins for a variety of toxin systems that also include the recently characterized contact-dependent inhibition (CDI) systems of proteobacteria. By analyzing the toxin proteins encoded in the neighborhood of the SUKH superfamily we predict that they possess domains belonging to diverse nuclease and nucleic acid deaminase families. These include at least eight distinct types of DNases belonging to HNH/EndoVII- and restriction endonuclease-fold, and RNases of the EndoU-like and colicin E3-like cytotoxic RNases-folds. The N-terminal domains of these toxins indicate that they are extruded by several distinct secretory mechanisms such as the two-partner system (shared with the CDI systems) in proteobacteria, ESAT-6/WXG-like ATP-dependent secretory systems in Gram-positive bacteria and the conventional Sec-dependent system in several bacterial lineages. The hedgehog-intein domain might also release a subset of toxic nuclease domains through auto-proteolytic action. Unlike classical colicin-like nuclease toxins, the overwhelming majority of toxin systems with the SUKH superfamily is chromosomally encoded and appears to have diversified through a recombination process combining different C-terminal nuclease domains to N-terminal secretion-related domains. Across the bacterial superkingdom these systems might participate in discriminating `self’ or kin from `non-self’ or non-kin strains. Using structural analysis we demonstrate that the SUKH domain possesses a versatile scaffold that can be used to bind a wide range of protein partners. In eukaryotes it appears to have been recruited as an adaptor to regulate modification of proteins by ubiquitination or polyglutamylation. Similarly, another widespread immunity protein from these toxin systems, namely the suppressor of fused (SuFu) superfamily has been recruited for comparable roles in eukaryotes. In animal DNA viruses, such as herpesviruses, poxviruses, iridoviruses and adenoviruses, the ability of the SUKH domain to bind diverse targets has been deployed to counter diverse anti-viral responses by interacting with specific host proteins.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
282
|
Proximity-dependent inhibition in Escherichia coli isolates from cattle. Appl Environ Microbiol 2011; 77:2345-51. [PMID: 21296941 DOI: 10.1128/aem.03150-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel proximity-dependent inhibition phenotype of Escherichia coli that is expressed when strains are cocultured in defined minimal media. When cocultures of "inhibitor" and "target" strains approached a transition between logarithmic and stationary growth, target strain populations rapidly declined >4 log CFU per ml over a 2-h period. Inhibited strains were not affected by exposure to conditioned media from inhibitor and target strain cocultures or when the inhibitor and target strains were incubated in shared media but physically separated by a 0.4-μm-pore-size membrane. There was no evidence of lytic phage or extracellular bacteriocin involvement, unless the latter was only present at effective concentrations within immediate proximity of the inhibited cells. The inhibitory activity observed in this study was effective against a diversity of E. coli strains, including enterohemorrhagic E. coli serotype O157:H7, enterotoxigenic E. coli expressing F5 (K99) and F4 (K88) fimbriae, multidrug-resistant E. coli, and commensal E. coli. The decline in counts of target strains in coculture averaged 4.8 log CFU/ml (95% confidence interval, 4.0 to 5.5) compared to their monoculture counts. Coculture of two inhibitor strains showed mutual immunity to inhibition. These results suggest that proximity-dependent inhibition can be used by bacteria to gain a numerical advantage when populations are entering stationary phase, thus setting the stage for a competitive advantage when growth conditions improve.
Collapse
|
283
|
Gene cluster conferring streptomycin, sulfonamide, and tetracycline resistance in Escherichia coli O157:H7 phage types 23, 45, and 67. Appl Environ Microbiol 2011; 77:1900-3. [PMID: 21239555 DOI: 10.1128/aem.01934-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Multidrug resistance to streptomycin, sulfonamide, and tetracycline (AMR-SSuT) was identified in 156 of 171 isolates of Escherichia coli O157:H7 of phage types 23, 45, and 67. In 154 AMR-SSuT isolates, resistance was encoded by strA, strB, sul2, and tet(B), which in 59 of 63 tested isolates were found clustered together on the chromosome within the cdiA locus.
Collapse
|
284
|
Abstract
Bacteria have developed remarkable systems that sense neighboring target cells upon contact and initiate a series of events that enhance their survival and growth at the expense of the target cells. Four main classes of bacterial cell surface structures have been identified that interact with prokaryotic or eukaryotic target cells to deliver DNA or protein effectors. Type III secretion systems (T3SS) use a flagellum-like tube to deliver protein effectors into eukaryotic host cells, whereas Type IV systems use a pilus-based system to mediate DNA or protein transfer into recipient cells. The contact-dependent growth inhibition system (CDI) is a Type V system, using a long β-helical cell surface protein to contact receptors in target cells and deliver a growth inhibitory signal. Type VI systems utilize a phage-like tube and cell puncturing device to secrete effector proteins into both eukaryotic and prokaryotic target cells.
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
285
|
Affiliation(s)
- Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
286
|
A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 2011; 468:439-42. [PMID: 21085179 PMCID: PMC3058911 DOI: 10.1038/nature09490] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 09/06/2010] [Indexed: 11/26/2022]
Abstract
Bacteria have developed mechanisms to communicate and compete with one another in diverse environments 1. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli2. CDI is mediated by the CdiB/CdiA two-partner secretion system. CdiB facilitates secretion of the CdiA ‘exoprotein’ onto the cell surface. An additional immunity protein (CdiI) protects CDI+ cells from autoinhibition 2, 3. The mechanisms by which CDI blocks cell growth and CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are utilized during CDI. Indeed, CdiA-CTs from uropathogenic E. coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI+ cells in both laboratory media and upon a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network that plays an important role in bacterial competition.
Collapse
|
287
|
Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. J DAIRY RES 2010; 78:136-43. [PMID: 21126381 DOI: 10.1017/s0022029910000877] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current work studied four types of binary antagonist/pathogen bacterial culture system, in order to determine the effect of interaction between two strains of Lactobacillus plantarum and two food-borne pathogens, Listeria monocytogenes and Escherichia coli, in whole UHT milk at 37°C. To determine the type of interaction between the two bacterial populations in co-cultures and to evaluate the antagonistic activity of the lactic acid bacteria (LAB) on the pathogenic bacteria, the growth curves, the kinetic parameters, and the pH profiles of mono- and co-cultures were compared. The Lb. plantarum strains showed different bacteriocin-like inhibitory substance (BLIS) production, auto- and co-inducible. The antibacterial effect of neutralized supernatants of mono and co-cultures harvested at different times of incubation was assessed in order to establish the presence of bacteriocin-like inhibitory-substances (BLIS) and their possible relation to the growth inhibition of the pathogen. The LAB reduced the growth of Esch. coli and of List. monocytogenes by 4 and ∼5 log cycles, respectively and influenced other growth kinetic parameters, such as μ(max) and lag phase, in the different binary combinations. The growth of the LAB was not relevantly altered by simultaneous growth with the pathogenic strains showing an interaction of amensalism. The pattern of inhibition exerted by the LAB on the pathogens was different; Lb. plantarum LB279 inhibited the growth of List. monocytogenes more effectively than that of Esch. coli. The behaviour of Esch. coli in co-culture with Lb. plantarum WS4174 suggested the presence of metabolic crowding in the mechanism of growth suppression. This exploratory study showed the complexity and specific particularities of the inhibition phenomena between bacterial communities.
Collapse
|
288
|
From undefined red smear cheese consortia to minimal model communities both exhibiting similar anti-listerial activity on a cheese-like matrix. Food Microbiol 2010; 27:1095-103. [DOI: 10.1016/j.fm.2010.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 11/17/2022]
|
289
|
AGUILAR CATALINA, KLOTZ BERNADETTE. EFFECT OF THE TEMPERATURE ON THE ANTAGONISTIC ACTIVITY OF LACTIC ACID BACTERIA AGAINST ESCHERICHIA COLI AND LISTERIA MONOCYTOGENES. J Food Saf 2010. [DOI: 10.1111/j.1745-4565.2010.00257.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
290
|
Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 2010; 6:e1000943. [PMID: 20485560 PMCID: PMC2869309 DOI: 10.1371/journal.pgen.1000943] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/08/2010] [Indexed: 11/19/2022] Open
Abstract
Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpaxdeltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents.
Collapse
|
291
|
Balázsi G. Network reconstruction reveals new links between aging and calorie restriction in yeast. HFSP JOURNAL 2010; 4:94-9. [PMID: 21119761 DOI: 10.2976/1.3366829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Indexed: 11/19/2022]
Abstract
Aging affects all known organisms and has been studied extensively. Yet, the underlying mechanisms are insufficiently understood, possibly due to the multiscale complexity involved in this process: the aging of multicellular organisms depends on the aging of their cells, which depends on molecular events occurring in each cell. However, the aging of unicellular populations seeded in new niches and the aging of metazoans are surprisingly similar, indicating that the multiscale aspects of aging may have been conserved since the beginnings of cellular life on Earth. This underlines the importance of aging research in unicellular organisms such as a recent study by Lorenz et al., [(2009) Proc. Natl. Acad. Sci. U.S.A. 106, 1145-1150]. In their paper, the authors combine computational network identification with extensive experimentation and literature mining to discover and validate numerous regulatory interactions among ten genes involved in the cellular response to glucose starvation. Since low levels of glucose (calorie restriction) have been known to extend the longevity of various eukaryotes, the authors test the effect of Snf1 kinase overexpression on chronological aging and discover that this key regulator of glucose repression and two of its newly discovered synergistic repressors significantly affect the chronological lifespan of baker's yeast.
Collapse
Affiliation(s)
- Gábor Balázsi
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Unit 950, Houston, Texas 77030, USA
| |
Collapse
|
292
|
Hood RD, Singh P, Hsu F, Güvener T, Carl MA, Trinidad RRS, Silverman JM, Ohlson BB, Hicks KG, Plemel RL, Li M, Schwarz S, Wang WY, Merz AJ, Goodlett DR, Mougous JD. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7:25-37. [PMID: 20114026 DOI: 10.1016/j.chom.2009.12.007] [Citation(s) in RCA: 690] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/06/2009] [Accepted: 12/18/2009] [Indexed: 12/20/2022]
Abstract
The functional spectrum of a secretion system is defined by its substrates. Here we analyzed the secretomes of Pseudomonas aeruginosa mutants altered in regulation of the Hcp Secretion Island-I-encoded type VI secretion system (H1-T6SS). We identified three substrates of this system, proteins Tse1-3 (type six exported 1-3), which are coregulated with the secretory apparatus and secreted under tight posttranslational control. The Tse2 protein was found to be the toxin component of a toxin-immunity system and to arrest the growth of prokaryotic and eukaryotic cells when expressed intracellularly. In contrast, secreted Tse2 had no effect on eukaryotic cells; however, it provided a major growth advantage for P. aeruginosa strains, relative to those lacking immunity, in a manner dependent on cell contact and the H1-T6SS. This demonstration that the T6SS targets a toxin to bacteria helps reconcile the structural and evolutionary relationship between the T6SS and the bacteriophage tail and spike.
Collapse
Affiliation(s)
- Rachel D Hood
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Kuwahara H, Myers CJ, Samoilov MS. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction. PLoS Comput Biol 2010; 6:e1000723. [PMID: 20361050 PMCID: PMC2845655 DOI: 10.1371/journal.pcbi.1000723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 02/25/2010] [Indexed: 02/06/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down-regulation mechanism could be particularly significant inside the host environment, thus potentially contributing further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.
Collapse
Affiliation(s)
- Hiroyuki Kuwahara
- Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Chris J. Myers
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael S. Samoilov
- QB3: California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
294
|
Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun 2010; 78:963-75. [PMID: 20086090 DOI: 10.1128/iai.00925-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharide capsule is a key constituent of the IBC matrix. Compared to prototypic E. coli K1 strain UTI89, a capsule assembly mutant had a fitness defect in functionally TLR4(+) and TLR4(-) mice, suggesting a protective role of capsule in inflamed and noninflamed hosts. K1 capsule assembly and synthesis mutants had dramatically reduced IBC formation, demonstrating the common requirement for K1 polysaccharide in IBC development. The capsule assembly mutant appeared dispersed in the cytoplasm of the bladder epithelial cells and failed to undergo high-density intracellular replication during later stages of infection, when the wild-type strain continued to form serial generations of IBC. Deletion of the sialic acid regulator gene nanR partially restored IBC formation in the capsule assembly mutant. These data suggest that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development. Together, these data demonstrate the complex but important roles of UPEC polysaccharide encapsulation and sialic acid signaling in multiple stages of UTI pathogenesis.
Collapse
|
295
|
Choi PS, Bernstein HD. Sequential translocation of an Escherchia coli two-partner secretion pathway exoprotein across the inner and outer membranes. Mol Microbiol 2010; 75:440-51. [PMID: 19968793 PMCID: PMC3107007 DOI: 10.1111/j.1365-2958.2009.06993.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Gram-negative bacteria, a variety of high molecular weight 'exoproteins' are translocated across the outer membrane (OM) via the two-partner secretion (TPS) pathway by interacting with a dedicated transporter. It is unclear, however, whether the translocation of exoproteins across the OM is coupled to their translocation across the inner membrane (IM). To address this question, we separated the production of an Escherichia coli O157:H7 exoprotein (OtpA) and its transporter (OtpB) temporally by placing otpA and otpB under the control of distinct regulatable promoters. We found that when both full-length and truncated forms of OtpA were expressed prior to OtpB, a significant fraction of the exoprotein was secreted. The results indicate that OtpA can be translocated into the periplasm and briefly remain secretion-competent. Furthermore, by engineering cysteine residues into OtpA and using disulphide bond formation as a reporter of periplasmic localization, we obtained additional evidence that the C-terminus of OtpA enters the periplasm before the N-terminus is translocated across the OM even when OtpA and OtpB are expressed simultaneously. Taken together, our results demonstrate that the translocation of a TPS exoprotein across the OM can occur independently from its translocation across the IM.
Collapse
Affiliation(s)
- Peter S. Choi
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0538, USA
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0538, USA
| |
Collapse
|
296
|
Bibersteinia trehalosi inhibits the growth of Mannheimia haemolytica by a proximity-dependent mechanism. Appl Environ Microbiol 2009; 76:1008-13. [PMID: 20038698 DOI: 10.1128/aem.02086-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mannheimia (Pasteurella) haemolytica is the only pathogen that consistently causes severe bronchopneumonia and rapid death of bighorn sheep (BHS; Ovis canadensis) under experimental conditions. Paradoxically, Bibersteinia (Pasteurella) trehalosi and Pasteurella multocida have been isolated from BHS pneumonic lungs much more frequently than M. haemolytica. These observations suggest that there may be an interaction between these bacteria, and we hypothesized that B. trehalosi overgrows or otherwise inhibits the growth of M. haemolytica. Growth curves (monoculture) demonstrated that B. trehalosi has a shorter doubling time ( approximately 10 min versus approximately 27 min) and consistently achieves 3-log higher cell density (CFU/ml) compared to M. haemolytica. During coculture M. haemolytica growth was inhibited when B. trehalosi entered stationary phase (6 h) resulting in a final cell density for M. haemolytica that was 6 to 9 logs lower than expected with growth in the absence of B. trehalosi. Coculture supernatant failed to inhibit M. haemolytica growth on agar or in broth, indicating no obvious involvement of lytic phages, bacteriocins, or quorum-sensing systems. This observation was confirmed by limited growth inhibition of M. haemolytica when both pathogens were cultured in the same media but separated by a filter (0.4-microm pore size) that limited contact between the two bacterial populations. There was significant growth inhibition of M. haemolytica when the populations were separated by membranes with a pore size of 8 mum that allowed free contact. These observations demonstrate that B. trehalosi can both outgrow and inhibit M. haemolytica growth with the latter related to a proximity- or contact-dependent mechanism.
Collapse
|
297
|
Abstract
A recent study reports that Bacillus subtilis biofilm formation depends upon paracrine signaling where the signal-producing and target-responsive cells are different.
Collapse
Affiliation(s)
- Ishita M Shah
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
298
|
Luo C, Hu GQ, Zhu H. Genome reannotation of Escherichia coli CFT073 with new insights into virulence. BMC Genomics 2009; 10:552. [PMID: 19930606 PMCID: PMC2785843 DOI: 10.1186/1471-2164-10-552] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 11/22/2009] [Indexed: 11/30/2022] Open
Abstract
Background As one of human pathogens, the genome of Uropathogenic Escherichia coli strain CFT073 was sequenced and published in 2002, which was significant in pathogenetic bacterial genomics research. However, the current RefSeq annotation of this pathogen is now outdated to some degree, due to missing or misannotation of some essential genes associated with its virulence. We carried out a systematic reannotation by combining automated annotation tools with manual efforts to provide a comprehensive understanding of virulence for the CFT073 genome. Results The reannotation excluded 608 coding sequences from the RefSeq annotation. Meanwhile, a total of 299 coding sequences were newly added, about one third of them are found in genomic island (GI) regions while more than one fifth of them are located in virulence related regions pathogenicity islands (PAIs). Furthermore, there are totally 341 genes were relocated with their translational initiation sites (TISs), which resulted in a high quality of gene start annotation. In addition, 94 pseudogenes annotated in RefSeq were thoroughly inspected and updated. The number of miscellaneous genes (sRNAs) has been updated from 6 in RefSeq to 46 in the reannotation. Based on the adjustment in the reannotation, subsequent analysis were conducted by both general and case studies on new virulence factors or new virulence-associated genes that are crucial during the urinary tract infections (UTIs) process, including invasion, colonization, nutrition uptaking and population density control. Furthermore, miscellaneous RNAs collected in the reannotation are believed to contribute to the virulence of strain CFT073. The reannotation including the nucleotide data, the original RefSeq annotation, and all reannotated results is freely available via http://mech.ctb.pku.edu.cn/CFT073/. Conclusion As a result, the reannotation presents a more comprehensive picture of mechanisms of uropathogenicity of UPEC strain CFT073. The new genes change the view of its uropathogenicity in many respects, particularly by new genes in GI regions and new virulence-associated factors. The reannotation thus functions as an important source by providing new information about genomic structure and organization, and gene function. Moreover, we expect that the detailed analysis will facilitate the studies for exploration of novel virulence mechanisms and help guide experimental design.
Collapse
Affiliation(s)
- Chengwei Luo
- State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
299
|
Hayes CS, Low DA. Signals of growth regulation in bacteria. Curr Opin Microbiol 2009; 12:667-73. [PMID: 19854099 DOI: 10.1016/j.mib.2009.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 08/15/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
A fundamental characteristic of cells is their ability to regulate growth in response to changing environmental conditions. This review focuses on recent progress toward understanding the mechanisms by which bacterial growth is regulated. These phenomena include the 'viable but not culturable' (VBNC) state, in which bacterial growth becomes conditional, and 'persistence', which confers antibiotic resistance to a small fraction of bacteria in a population. Notably, at least one form of persistence appears to involve the generation of nongrowing phenotypic variants after transition through stationary phase. The possible roles of toxin-antitoxin modules in growth control are explored, as well as other mechanisms including contact-dependent growth inhibition, which regulates cellular metabolism and growth through binding to an outer membrane protein receptor.
Collapse
Affiliation(s)
- Christopher S Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
300
|
Baud C, Hodak H, Willery E, Drobecq H, Locht C, Jamin M, Jacob-Dubuisson F. Role of DegP for two-partner secretion in Bordetella. Mol Microbiol 2009; 74:315-29. [PMID: 19703106 DOI: 10.1111/j.1365-2958.2009.06860.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sorting of proteins destined to the surface or the extracellular milieu is mediated by specific machineries, which guide the protein substrates towards the proper route of secretion and determine the compartment in which folding occurs. In gram-negative bacteria, the two-partner secretion (TPS) pathway is dedicated to the secretion of large proteins rich in beta-helical structure. The secretion of the filamentous haemagglutinin (FHA), a 230 kDa adhesin of Bordetella pertussis, represents a model TPS system. FHA is exported by the Sec machinery and transits through the periplasm in an extended conformation. From there it is translocated across the outer membrane by its dedicated transporter FhaC to finally fold into a long beta-helix at the cell surface in a progressive manner. In this work, we show that B. pertussis lacking the periplasmic chaperone/protease DegP has a strong growth defect at 37 degrees C, and the integrity of its outer membrane is compromised. While both phenotypes are significantly aggravated by the presence of FHA, the chaperone activity of DegP markedly alleviates the periplasmic stress. In vitro, DegP binds to non-native FHA with high affinity. We propose that DegP chaperones the extended FHA polypeptide in the periplasm and is thus involved in the TPS pathway.
Collapse
Affiliation(s)
- C Baud
- INSERM U629, Lille, France
| | | | | | | | | | | | | |
Collapse
|