251
|
Chen W, Shu Z, Gao D, Shen AQ. Sensing and Sensibility: Single-Islet-based Quality Control Assay of Cryopreserved Pancreatic Islets with Functionalized Hydrogel Microcapsules. Adv Healthc Mater 2016; 5:223-31. [PMID: 26606153 DOI: 10.1002/adhm.201500515] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/10/2015] [Indexed: 12/11/2022]
Abstract
Despite decades of research and clinical studies of islet transplantations, finding simple yet reliable islet quality assays that correlate accurately with in vivo potency is still a major challenge, especially for real-time and single-islet-based quality assessment. Herein, proof-of-concept studies of a cryopreserved microcapsule-based quality control assays are presented for single islets. Individual rat pancreatic islets and fluorescent oxygen-sensitive dye (FOSD) are encapsulated in alginate hydrogel microcapsules via a microfluidic device. To test the susceptibility of the microcapsules and the FOSD to cryopreservation, the islet microcapsules containing FOSD are cryopreserved and the islet functionalities (adenosine triphosphate, static insulin release measurement, and oxygen consumption rate) are assessed after freezing and thawing steps. The cryopreserved islet capsules with FOSD remain functional after encapsulation and freezing/thawing procedures, validating a simple yet reliable individual-islet-based quality control method for the entire islet processing procedure prior to transplantation. This work also demonstrates that the functionality of cryopreserved islets can be improved by introducing trehalose into the routinely used cryoprotectant dimethyl sulfoxide. The functionalized alginate hydrogel microcapsules with embedded FOSD and optimized cryopreservation protocol presented in this work serve as a versatile islet quality assay and offer tremendous promise for tackling existing challenges in islet transplantation procedures.
Collapse
Affiliation(s)
- Wanyu Chen
- School of Materials Science and Engineering; Wuhan University of Technology; Wuhan Hubei 430070 China
| | - Zhiquan Shu
- Department of Mechanical Engineering; University of Washington; Seattle WA 98195 USA
- School of Mechanical and Materials Engineering; Washington State University; Everett 98201 WA USA
| | - Dayong Gao
- Department of Mechanical Engineering; University of Washington; Seattle WA 98195 USA
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa 904-0495 Japan
| |
Collapse
|
252
|
Moore DS, Hansen R, Hand SC. Liposomes with diverse compositions are protected during desiccation by LEA proteins from Artemia franciscana and trehalose. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:104-15. [DOI: 10.1016/j.bbamem.2015.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 01/09/2023]
|
253
|
Abstract
Garlic is an important medicinal herb of culinary value by imparting its flavors and odors to the food. Allicin, a notable flavonoid in garlic, is a powerful antibiotic and antifungal compound. Due to poor bioavailability, garlic is of limited use for oral human consumption. Being sexually sterile, propagation of garlic is done by individual cloves from a bulb which increases the chances of transfer of viral diseases. In this chapter, an efficient and improved regeneration protocol for explant establishment and shoot multiplication under in vitro conditions is described. A high rate of shoot multiplication is obtained on MS medium supplemented with 0.5 mg/l BAP, 1.0 mg/l KN, and 2.0 mg/l GA3. Addition of 1.0 mg/l NAA to MS medium resulted in rooting at the shoot bases. A detailed method for encapsulation of explant in sodium alginate beads and their cryopreservation using encapsulation-dehydration is also described.
Collapse
|
254
|
|
255
|
Ozer Uyar E, Yücel M, Hamamcı H. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae. J Basic Microbiol 2015; 56:459-68. [PMID: 26567772 DOI: 10.1002/jobm.201500425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/18/2015] [Indexed: 11/11/2022]
Abstract
Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed.
Collapse
Affiliation(s)
- Ebru Ozer Uyar
- Arslanbey Vocational School, Kocaeli University, Kocaeli, Turkey.,Department of Biotechnology, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Meral Yücel
- Department of Biotechnology, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
| | - Haluk Hamamcı
- Department of Biotechnology, Institute of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.,Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
256
|
Abstract
Protein aggregation and loss of protein's biological functionality are manifestations of protein instability. Cosolvents, in particular trehalose, are widely accepted antidotes against such destabilization. Although numerous theories have been promulgated in the literature with regard to its mechanism of stabilization, the present scenario is still elusive in view of the discrepancies existing in them. To this end, we have revisited the conundrum and attempted to rationalize the mechanism by conducting thorough investigation of the effect of trehalose on the native, partially unfolded and denatured states of protein "Lysozyme" by means of molecular dynamic (MD) simulations under different temperature and concentration regimes. Two-dimensional contour plots along with principal component analysis suggest that trehalose molecules offer on-pathway stabilization unaltering the principal direction of protein's motion, although it slows down protein dynamics so that the protein gets trapped in the homogeneous ensemble of conformations closer to the native state. Free energy landscape reveals higher population of native compared to intermediate and denatured states. Delphi results and calculation of the preferential interaction parameter demonstrate that this relative stabilization of the native state can be ascribed to be the consequence of favourable interactions of trehalose with side chains of certain loci on the protein surface encompassing polar flexible residues. Stability of protein results from the observed difference in binding affinity of trehalose for native and denatured states of protein. Our findings are at variance with the common conception of relative destabilization of the denatured state. Rather, we provide evidence for relative stabilization of the native state. This stabilization is due to interplay of protein-trehalose, water-trehalose, water-water, protein-water and trehalose-trehalose interactions.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, 110016, India.
| | | |
Collapse
|
257
|
Crowe JH, Crowe LM, Hoekstra FA, Wistrom CA. Effects of Water on the Stability of Phospholipid Bilayers: The Problem of Imbibition Damage in Dry Organisms. SEED MOISTURE 2015. [DOI: 10.2135/cssaspecpub14.c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
258
|
Tanji K, Miki Y, Maruyama A, Mimura J, Matsumiya T, Mori F, Imaizumi T, Itoh K, Wakabayashi K. Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease. Biochem Biophys Res Commun 2015; 465:746-52. [PMID: 26299928 DOI: 10.1016/j.bbrc.2015.08.076] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
The accumulation of mis-folded and/or abnormally modified proteins is a major characteristic of many neurodegenerative diseases. In Lewy body disease (LBD), which includes Parkinson's disease and dementia with Lewy bodies, insoluble α-synuclein is widely deposited in the presynaptic terminals as well as in the neuronal cytoplasm in distinct brain regions. It is well known that the autophagy-lysosome system serves as an efficient degradation pathway for abnormal molecules within cells. To test the possibility that activated autophagy can degrade abnormal molecules, we investigated the effect of trehalose on abnormal aggregation of α-synuclein in a model of LBD. Trehalose is a natural disaccharide composed of two glucose units and functions as an autophagy inducer. Consistent with previous studies, trehalose increased level of the autophagosomal protein LC3, especially a lipidated form LC3-II in cultured cells and mice brain. Also, trehalose increased levels of several chaperon molecules, such as HSP90 and SigmaR1, in the brains of LBD model mice. Further studies revealed that level of detergent-insoluble α-synuclein was suppressed in mice following oral administration of trehalose, despite an apparent alteration was not observed regarding abnormal aggregation of α-synuclein. These results suggest that the oral intake of trehalose modulates propensity of molecules prior to aggregation formation.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Atsushi Maruyama
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
259
|
Nakata S, Deguchi A, Seki Y, Furuta M, Fukuhara K, Nishihara S, Inoue K, Kumazawa N, Mashiko S, Fujihira S, Goto M, Denda M. Characteristic responses of a phospholipid molecular layer to polyols. Colloids Surf B Biointerfaces 2015; 136:594-9. [PMID: 26454550 DOI: 10.1016/j.colsurfb.2015.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 01/06/2023]
Abstract
Polyols (sugar alcohols) are widely used in foods, pharmaceutical formulations and cosmetics, and therefore it is important to understand their effects on cell membranes and skin. To address this issue, we examined the effect of polyols (1,2-ethanediol (ethylene glycol), 1,3-butanediol, 1,2,3-propanetriol (glycerol), and 1,2,3,4-butanetetraol) on artificial membrane systems (liposomes, monolayers, or dry films) prepared from phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)). 1,2-Ethanediol and 1,3-butanediol had little effect on the size of the DMPC liposomes or the surface pressure (π)-surface area (A) isotherm of DMPC monolayers at an air-water interface, whereas 1,2,3-propanetriol or 1,2,3,4-butanetetraol increased both liposome size and surface pressure. Attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) and differential scanning calorimetry (DSC) were used to evaluate the interaction between DMPC and polyols. These experimental results suggest that the chemical structure of polyol plays an important role in the characteristic interaction between polyol and DMPC.
Collapse
Affiliation(s)
- Satoshi Nakata
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan; Japan Science and Technology Agency, CREST, Tokyo, Japan.
| | - Ayano Deguchi
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Yota Seki
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Miyuki Furuta
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Koichi Fukuhara
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Sadafumi Nishihara
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Katsuya Inoue
- Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Noriyuki Kumazawa
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Shun Mashiko
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Shota Fujihira
- Department of Biomolecular Functional Engineering, College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Makiko Goto
- Japan Science and Technology Agency, CREST, Tokyo, Japan; Shiseido Research Center, 2-2-1Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| | - Mitsuhiro Denda
- Japan Science and Technology Agency, CREST, Tokyo, Japan; Shiseido Research Center, 2-2-1Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| |
Collapse
|
260
|
Kapla J, Engström O, Stevensson B, Wohlert J, Widmalm G, Maliniak A. Molecular dynamics simulations and NMR spectroscopy studies of trehalose-lipid bilayer systems. Phys Chem Chem Phys 2015; 17:22438-47. [PMID: 26252429 DOI: 10.1039/c5cp02472b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The disaccharide trehalose (TRH) strongly affects the physical properties of lipid bilayers. We investigate interactions between lipid membranes formed by 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and TRH using NMR spectroscopy and molecular dynamics (MD) computer simulations. We compare dipolar couplings derived from DMPC/TRH trajectories with those determined (i) experimentally in TRH using conventional high-resolution NMR in a weakly ordered solvent (bicelles), and (ii) by solid-state NMR in multilamellar vesicles (MLV) formed by DMPC. Analysis of the experimental and MD-derived couplings in DMPC indicated that the force field used in the simulations reasonably well describes the experimental results with the exception for the glycerol fragment that exhibits significant deviations. The signs of dipolar couplings, not available from the experiments on highly ordered systems, were determined from the trajectory analysis. The crucial step in the analysis of residual dipolar couplings (RDCs) in TRH determined in a bicelle-environment was access to the conformational distributions derived from the MD trajectory. Furthermore, the conformational behavior of TRH, investigated by J-couplings, in the ordered and isotropic phases is essentially identical, indicating that the general assumptions in the analyses of RDCs are well founded.
Collapse
Affiliation(s)
- Jon Kapla
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
261
|
Paul S, Paul S. Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study. J Phys Chem B 2015; 119:9820-34. [DOI: 10.1021/acs.jpcb.5b01576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subrata Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
262
|
Hong J, Gierasch LM, Liu Z. Its preferential interactions with biopolymers account for diverse observed effects of trehalose. Biophys J 2015; 109:144-53. [PMID: 26153711 PMCID: PMC4572414 DOI: 10.1016/j.bpj.2015.05.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022] Open
Abstract
Biopolymer homeostasis underlies the health of organisms, and protective osmolytes have emerged as one strategy used by Nature to preserve biopolymer homeostasis. However, a great deal remains unknown about the mechanism of action of osmolytes. Trehalose, as a prominent example, stabilizes proteins against denaturation by extreme temperature and denaturants, preserves membrane integrity upon freezing or in dry conditions, inhibits polyQ-mediated protein aggregation, and suppresses the aggregation of denatured proteins. The underlying thermodynamic mechanisms of such diverse effects of trehalose remain unclear or controversial. In this study, we applied the surface-additive method developed in the Record laboratory to attack this issue. We characterized the key features of trehalose-biopolymer preferential interactions and found that trehalose has strong unfavorable interactions with aliphatic carbon and significant favorable interactions with amide/anionic oxygen. This dissection has allowed us to elucidate the diverse effects of trehalose and to identify the crucial functional group(s) responsible for its effects. With (semi)quantitative thermodynamic analysis, we discovered that 1) the unfavorable interaction of trehalose with hydrophobic surfaces is the dominant factor in its effect on protein stability, 2) the favorable interaction of trehalose with polar amides enables it to inhibit polyQ-mediated protein aggregation and the aggregation of denatured protein in general, and 3) the favorable interaction of trehalose with phosphate oxygens, together with its unfavorable interaction with aliphatic carbons, enables trehalose to preserve membrane integrity in aqueous solution. These results provide a basis for a full understanding of the role of trehalose in biopolymer homeostasis and the reason behind its evolutionary selection as an osmolyte, as well as for a better application of trehalose as a chemical chaperone.
Collapse
Affiliation(s)
- Jiang Hong
- School of Life Science, Shanghai University, Shanghai, China.
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Zhicheng Liu
- School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
263
|
Abazari A, Meimetis LG, Budin G, Bale SS, Weissleder R, Toner M. Engineered Trehalose Permeable to Mammalian Cells. PLoS One 2015; 10:e0130323. [PMID: 26115179 PMCID: PMC4482662 DOI: 10.1371/journal.pone.0130323] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023] Open
Abstract
Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre) demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre) and trehalose tetraacetate (4-O-Ac-Tre). Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants) reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.
Collapse
Affiliation(s)
- Alireza Abazari
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Labros G. Meimetis
- The Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ghyslain Budin
- The Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shyam Sundhar Bale
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ralph Weissleder
- The Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| |
Collapse
|
264
|
Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE. Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Curr Opin Biotechnol 2015; 33:228-59. [PMID: 25841213 DOI: 10.1016/j.copbio.2015.02.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Fermentation products can chaotropically disorder macromolecular systems and induce oxidative stress, thus inhibiting biofuel production. Recently, the chaotropic activities of ethanol, butanol and vanillin have been quantified (5.93, 37.4, 174kJ kg(-1)m(-1) respectively). Use of low temperatures and/or stabilizing (kosmotropic) substances, and other approaches, can reduce, neutralize or circumvent product-chaotropicity. However, there may be limits to the alcohol concentrations that cells can tolerate; e.g. for ethanol tolerance in the most robust Saccharomyces cerevisiae strains, these are close to both the solubility limit (<25%, w/v ethanol) and the water-activity limit of the most xerotolerant strains (0.880). Nevertheless, knowledge-based strategies to mitigate or neutralize chaotropicity could lead to major improvements in rates of product formation and yields, and also therefore in the economics of biofuel production.
Collapse
Affiliation(s)
- Jonathan A Cray
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Philip Ball
- 18 Hillcourt Road, East Dulwich, London SE22 0PE, UK
| | - Sandip B Bankar
- Department of Chemical Engineering, College of Engineering, Bharati Vidyapeeth University, Pune-Satara Road, Pune 411043, India
| | - Elis C A Eleutherio
- Universidade Federal do Rio de Janeiro, Instituto de Quimica, Programa de Pós-graduação Bioquimica, Rio de Janeiro, RJ, Brazil
| | - Thaddeus C Ezeji
- Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Rekha S Singhal
- Department of Food Engineering and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven and Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, Flanders, Leuven-Heverlee B-3001, Belgium
| | - David J Timson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
265
|
Wyatt TT, Gerwig GJ, Kamerling JP, Wösten HA, Dijksterhuis J. Structural analysis of novel trehalose-based oligosaccharides from extremely stress-tolerant ascospores of Neosartorya fischeri (Aspergillus fischeri). Carbohydr Res 2015; 411:49-55. [DOI: 10.1016/j.carres.2015.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022]
|
266
|
Statin, calcium channel blocker and Beta blocker therapy may decrease the incidence of tuberculosis infection in elderly Taiwanese patients with type 2 diabetes. Int J Mol Sci 2015; 16:11369-84. [PMID: 25993300 PMCID: PMC4463705 DOI: 10.3390/ijms160511369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/23/2023] Open
Abstract
Background: It is well known that diabetes mellitus impairs immunity and therefore is an independent risk factor for tuberculosis. However, the influence of associated metabolic factors, such as hypertension, dyslipidemia and gout has yet to be confirmed. This study aimed to investigate whether the strong association between tuberculosis and diabetes mellitus is independent from the influence of hypertension and dyslipidemia, and its treatment in elderly Taiwanese patients. Methods: A total of 27,958 patients aged more than 65 years were identified from the National Health Insurance Research Database (NIHRD) in 1997 and were followed from 1998 to 2009. The demographic characteristics between the patients with and without diabetes were analyzed using the χ2 test. A total of 13,981 patients with type 2 diabetes were included in this study. Cox proportional hazard regression models were used to determine the independent effects of diabetes on the risk of tuberculosis. Results: After adjusting for age, sex, other co-morbidities and medications, calcium channel blocker, beta blocker and statin users had a lower independent association, with risk ratios of 0.76 (95% CI, 0.58–0.98), 0.72 (95% CI, 0.58–0.91) and 0.76 (95% CI, 0.60–0.97), respectively. Conclusion: Calcium channel blocker, beta blocker and statin therapy may decrease the incidence of tuberculosis infection in elderly Taiwanese patients with type 2 diabetes.
Collapse
|
267
|
Jacobson K, van Diepeningen A, Evans S, Fritts R, Gemmel P, Marsho C, Seely M, Wenndt A, Yang X, Jacobson P. Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS One 2015; 10:e0126977. [PMID: 25978429 PMCID: PMC4433119 DOI: 10.1371/journal.pone.0126977] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/09/2015] [Indexed: 11/24/2022] Open
Abstract
The hyper-arid western Namib Sand Sea (mean annual rainfall 0-17 mm) is a detritus-based ecosystem in which primary production is driven by large, but infrequent rainfall events. A diverse Namib detritivore community is sustained by minimal moisture inputs from rain and fog. The decomposition of plant material in the Namib Sand Sea (NSS) has long been assumed to be the province of these detritivores, with beetles and termites alone accounting for the majority of litter losses. We have found that a mesophilic Ascomycete community, which responds within minutes to moisture availability, is present on litter of the perennial Namib dune grass Stipagrostis sabulicola. Important fungal traits that allow survival and decomposition in this hyper-arid environment with intense desiccation, temperature and UV radiation stress are darkly-pigmented hyphae, a thermal range that includes the relatively low temperature experienced during fog and dew, and an ability to survive daily thermal and desiccation stress at temperatures as high as 50°C for five hours. While rainfall is very limited in this area, fog and high humidity provide regular periods (≥ 1 hour) of sufficient moisture that can wet substrates and hence allow fungal growth on average every 3 days. Furthermore, these fungi reduce the C/N ratio of the litter by a factor of two and thus detritivores, like the termite Psammotermes allocerus, favor fungal-infected litter parts. Our studies show that despite the hyper-aridity of the NSS, fungi are a key component of energy flow and biogeochemical cycling that should be accounted for in models addressing how the NSS ecosystem will respond to projected climate changes which may alter precipitation, dew and fog regimes.
Collapse
Affiliation(s)
- Kathryn Jacobson
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | | | - Sarah Evans
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, United States of America
| | - Rachel Fritts
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Philipp Gemmel
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Chris Marsho
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Mary Seely
- Gobabeb Research and Training Centre, Gobabeb, Namibia
| | - Anthony Wenndt
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Xiaoxuan Yang
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| | - Peter Jacobson
- Biology Department, Grinnell College, Grinnell, Iowa, United States of America
| |
Collapse
|
268
|
Lee J, Ko JH, Lin EW, Wallace P, Ruch F, Maynard HD. Trehalose hydrogels for stabilization of enzymes to heat. Polym Chem 2015; 6:3443-3448. [PMID: 26005500 PMCID: PMC4436147 DOI: 10.1039/c5py00121h] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes can catalyze various reactions with high selectivity and are involved in many important biological processes. However, the general instability of enzymes against high temperature often limits their application. To address this, we synthesized a trehalose-based hydrogel in two steps from commercial starting materials with minimal purification procedures. Mono- and multi-functional trehalose monomers were cross-linked by redox-initiated radical polymerization to form a hydrogel. Phytase, an important enzyme utilized in animal feedstock, was employed to study the effectiveness of the trehalose hydrogel to stabilize proteins against heat. Addition of the phytase solution to the hydrogel resulted in enzyme internalization as confirmed by confocal microscopy. The phytase in the hydrogel retained 100% activity upon heating at 90 °C compared to 39% when the hydrogel was absent. The enzyme could also be recovered from the hydrogel. The trehalose hydrogel synthesis reported herein should be readily scalable for thermal stabilization of a wide variety of enzymes.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - En-Wei Lin
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Peter Wallace
- Phytex LLC, 214 S. Main Street, Sheridan, Indiana 46069
| | - Frank Ruch
- Phytex LLC, 214 S. Main Street, Sheridan, Indiana 46069
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| |
Collapse
|
269
|
Gibney PA, Schieler A, Chen JC, Rabinowitz JD, Botstein D. Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter. Proc Natl Acad Sci U S A 2015; 112:6116-21. [PMID: 25918382 PMCID: PMC4434743 DOI: 10.1073/pnas.1506289112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where Tapia et al. [Tapia H, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1506415112] demonstrate a direct role for trehalose in protecting cells against desiccation).
Collapse
Affiliation(s)
- Patrick A Gibney
- Lewis-Sigler Institute for Integrative Genomics and Departments of Molecular Biology and
| | | | - Jonathan C Chen
- Lewis-Sigler Institute for Integrative Genomics and Chemistry, Princeton University, Princeton, NJ 08544
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Chemistry, Princeton University, Princeton, NJ 08544
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics and Departments of Molecular Biology and
| |
Collapse
|
270
|
Petitjean M, Teste MA, François JM, Parrou JL. Yeast Tolerance to Various Stresses Relies on the Trehalose-6P Synthase (Tps1) Protein, Not on Trehalose. J Biol Chem 2015; 290:16177-90. [PMID: 25934390 DOI: 10.1074/jbc.m115.653899] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
Trehalose is a stable disaccharide commonly found in nature, from bacteria to fungi and plants. For the model yeast Saccharomyces cerevisiae, claims that trehalose is a stress protectant were based indirectly either on correlation between accumulation of trehalose and high resistance to various stresses or on stress hypersensitivity of mutants deleted for TPS1, which encodes the first enzyme in trehalose biosynthetic pathway. Our goal was to investigate more directly which one, between trehalose and/or the Tps1 protein, may serve yeast cells to withstand exposure to stress. By employing an original strategy that combined the use of mutant strains expressing catalytically inactive variants of Tps1, with MAL(+) yeast strains able to accumulate trehalose from an exogenous supply, we bring for the first time unbiased proof that trehalose does not protect yeast cells from dying and that the stress-protecting role of trehalose in this eukaryotic model was largely overestimated. Conversely, we identified the Tps1 protein as a key player for yeast survival in response to temperature, oxidative, and desiccation stress. We also showed by robust RT-quantitative PCR and genetic interaction analysis that the role of Tps1 in thermotolerance is not dependent upon Hsf1-dependent transcription activity. Finally, our results revealed that the Tps1 protein is essential to maintain ATP levels during heat shock. Altogether, these findings supported the idea that Tps1 is endowed with a regulatory function in energy homeostasis, which is essential to withstand adverse conditions and maintain cellular integrity.
Collapse
Affiliation(s)
- Marjorie Petitjean
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Marie-Ange Teste
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean M François
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| | - Jean-Luc Parrou
- From the Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés and CNRS, UMR5504, F-31400 Toulouse, France
| |
Collapse
|
271
|
Kim KJ, Lee YA, Kim BJ, Kim YH, Kim BG, Kang HG, Jung SE, Choi SH, Schmidt JA, Ryu BY. Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing. Cryobiology 2015; 70:175-83. [DOI: 10.1016/j.cryobiol.2015.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 01/15/2023]
|
272
|
Garza-López PM, Suárez-Vergel G, Hamdan-Partida A, Loera O. Variations in oxygen concentration cause differential antioxidant response and expression of related genes in Beauveria bassiana. Fungal Biol 2015; 119:257-63. [PMID: 25813512 DOI: 10.1016/j.funbio.2014.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
The entomopathogenic fungus Beauveria bassiana is widely used in pest biocontrol strategies. We evaluated both the antioxidant response mediated by compatible solutes, trehalose or mannitol, and the expression of related genes using oxygen pulses at three oxygen concentrations in solid state culture (SSC): normal atmosphere (21% O2), low oxygen (16% O2) and enriched oxygen (26% O2). Trehalose concentration decreased 75% after atmospheric modifications in the cultures, whereas mannitol synthesis was three-fold higher under the 16% O2 pulses relative to normal atmosphere (100 and 30 μg mannitol mg(-1) biomass, respectively). Confirming this result, expression of the mpd gene, coding for mannitol-1-P dehydrogenase (MPD), increased up to 1.4 times after O2 pulses. The expression of the bbrgs1 gene, encoding a regulatory G protein related to conidiation, was analysed to explain previously reported differences in conidial production. Surprisingly, expression of bbrgs1 decreased after atmospheric modification. Finally, principal component analysis (PCA) indicated that 83.39% of the variability in the data could be explained by two components. This analysis corroborated the positive correlation between mannitol concentration and mpd gene expression, as well as the negative correlation between conidial production and bbrgs1 gene expression. This study contributes to understanding of antioxidant and molecular response of B. bassiana induced under oxidant conditions.
Collapse
Affiliation(s)
- Paul Misael Garza-López
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, México D. F., Mexico
| | - Gerardo Suárez-Vergel
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, México D. F., Mexico
| | - Aida Hamdan-Partida
- Universidad Autónoma Metropolitana Xochimilco, Departamento de Sistemas Biológicos, Calz. del Hueso 1100, Col. Villa Quietud, C. P. 04960, México, D. F., Mexico
| | - Octavio Loera
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Biotecnología, San Rafael Atlixco 186, Col. Vicentina, C. P. 09340, México D. F., Mexico.
| |
Collapse
|
273
|
Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 2015; 61:383-404. [PMID: 25791499 DOI: 10.1007/s00294-015-0477-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/07/2023]
Abstract
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Collapse
|
274
|
Qian KK, Grobelny PJ, Tyagi M, Cicerone MT. Using the fluorescence red edge effect to assess the long-term stability of lyophilized protein formulations. Mol Pharm 2015; 12:1141-9. [PMID: 25786057 DOI: 10.1021/mp500641f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanosecond relaxation processes in sugar matrices are causally linked through diffusional processes to protein stability in lyophilized formulations. Long-term protein degradation rates track mean-squared displacement (⟨u(2)⟩) of hydrogen atoms in sugar glasses, a parameter describing dynamics on a time scale of picoseconds to nanoseconds. However, measurements of ⟨u(2)⟩ are usually performed by neutron scattering, which is not conducive to rapid formulation screening in early development. Here, we present a benchtop technique to derive a ⟨u(2)⟩ surrogate based on the fluorescence red edge effect. Glycerol, lyophilized trehalose, and lyophilized sucrose were used as model systems. Samples containing 10(-6) mole fraction of rhodamine 6G, a fluorophore, were excited at either 532 nm (main peak) or 566 nm (red edge), and the ⟨u(2)⟩ surrogate was determined based the corresponding Stokes shifts. Results showed reasonable agreement between ⟨u(2)⟩ from neutron scattering and the surrogate from fluorescence, although deviations were observed at very low temperatures. We discuss the sources of the deviations and suggest technique improvements to ameliorate these. We expect that this method will be a valuable tool to evaluate lyophilized sugar matrices with respect to their ability to protect proteins from diffusion-limited degradation processes during long-term storage. Additionally, the method may have broader applications in amorphous pharmaceutical solids.
Collapse
Affiliation(s)
- Ken K Qian
- †National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Pawel J Grobelny
- ‡University of Connecticut, Storrs, Connecticut 06269, United States
| | - Madhusudan Tyagi
- †National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marcus T Cicerone
- †National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
275
|
|
276
|
Maiorova MA, Odintsova NA. β Integrin-like protein-mediated adhesion and its disturbances during cell cultivation of the mussel Mytilus trossulus. Cell Tissue Res 2015; 361:581-92. [PMID: 25673210 DOI: 10.1007/s00441-015-2122-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023]
Abstract
In this study, we focus on the specific contribution of β integrin-like protein to adhesion-mediated events in molluscan larval cells in culture that could not have been investigated within the whole animal. An analysis of disturbances to cell-substratum adhesion, caused by the integrin receptor inhibiting Arg-Gly-Asp-Ser (RGDS)-peptide, the Ca(2+)/Mg(2+)-chelators and the stress influence of freezing-thawing, reveals that all these factors resulted in the partial destruction of the integrin-extracellular matrix (ECM) interaction in culture and, in particular, changes in the distribution and relative abundance of β integrin-positive cells. The experiments, carried out on selected substrates, found that β integrin-positive cells demonstrate different affinities for the substrates. This finding further supports the assumption that epithelial differentiation in cultivated cells of larval Mytilus may be mediated by β integrin-like proteins via binding to laminin; direct binding to other components of the ECM could not be demonstrated. The mussel β integrin-positive cells are not involved in myogenic or neuronal differentiation on any of the substrates but part of them has tubulin-positive cilia, forming some epithelia-like structures. Our data indicate that β integrin-positive cells are able to proliferate in vitro which suggests that they could participate in renewing the digestive epithelium in larvae. The findings provide evidence that the distribution pattern of β integrin-like protein depends on the cell type and the factors influencing the adhesion.
Collapse
Affiliation(s)
- Mariia A Maiorova
- A. V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041, Vladivostok, Russia
| | | |
Collapse
|
277
|
Bai B, Toubiana D, Gendler T, Degu A, Gutterman Y, Fait A. Metabolic patterns associated with the seasonal rhythm of seed survival after dehydration in germinated seeds of Schismus arabicus. BMC PLANT BIOLOGY 2015; 15:37. [PMID: 25652352 PMCID: PMC4330942 DOI: 10.1186/s12870-015-0421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/12/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Seed of Shismus arabicus, a desert annual, display a seasonal tolerance to dehydration. The occurrence of a metabolic seasonal rhythm and its relation with the fluctuations in seed dehydration tolerance was investigated. RESULTS Dry seeds metabolism was the least affected by the season, while the metabolism of germinated and dehydrated seeds exhibit distinct seasonal patterns. Negative associations exist between amino acids, sugars and TCA cycle intermediates and seed survival, while positive relations exist with seed germination. In contrast, associations between the level of secondary metabolites identified in the dehydrated seeds and survival percentage were evenly distributed in positive and negative values, suggesting a functional role of these metabolites in the establishment of seed dehydration tolerance. CONCLUSION Our results indicate the occurrence of metabolic biorhythms in germinating and dehydrating seeds associated with seasonal changes in germination and, more pronouncedly, in seed dehydration tolerance. Increased biosynthesis of protective compounds (polyphenols) in dehydrating seeds during the winter season at the expenses of central metabolites likely contributes to the respective enhanced dehydration tolerance monitored.
Collapse
Affiliation(s)
- Bing Bai
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Midreshet Ben-Gurion, 84990, Israel.
- Current address: Department of Molecular Plant Physiology, Utrecht University, Utrecht, 3584 CH, The Netherlands.
| | - David Toubiana
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Midreshet Ben-Gurion, 84990, Israel.
| | - Tanya Gendler
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Midreshet Ben-Gurion, 84990, Israel.
| | - Asfaw Degu
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Midreshet Ben-Gurion, 84990, Israel.
| | - Yitzchak Gutterman
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Midreshet Ben-Gurion, 84990, Israel.
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Midreshet Ben-Gurion, 84990, Israel.
| |
Collapse
|
278
|
Wyatt TT, van Leeuwen MR, Golovina EA, Hoekstra FA, Kuenstner EJ, Palumbo EA, Snyder NL, Visagie C, Verkennis A, Hallsworth JE, Wösten HAB, Dijksterhuis J. Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Environ Microbiol 2015; 17:395-411. [PMID: 25040129 PMCID: PMC4371660 DOI: 10.1111/1462-2920.12558] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 12/03/2022]
Abstract
Ascospores of Neosartorya, Byssochlamys and Talaromyces can be regarded as the most stress-resistant eukaryotic cells. They can survive exposure at temperatures as high as 85°C for 100 min or more. Neosartorya fischeri ascospores are more viscous and more resistant to the combined stress of heat and desiccation than the ascospores of Talaromyces macrosporus which contain predominantly trehalose. These ascospores contain trehalose-based oligosaccharides (TOS) that are novel compatible solutes, which are accumulated to high levels. These compounds are also found in other members of the genus Neosartorya and in some other genera within the order Eurotiales that also include Byssochlamys and Talaromyces. The presence of oligosaccharides was observed in species that had a relatively high growth temperature. TOS glasses have a higher glass transition temperature (Tg ) than trehalose, and they form a stable glass with crystallizing molecules, such as mannitol. Our data indicate that TOS are important for prolonged stabilization of cells against stress. The possible unique role of these solutes in protection against dry heat conditions is discussed.
Collapse
Affiliation(s)
- Timon T Wyatt
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 2015; 72:673-89. [PMID: 25336153 PMCID: PMC11113132 DOI: 10.1007/s00018-014-1767-0] [Citation(s) in RCA: 520] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/14/2022]
Abstract
Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.
Collapse
Affiliation(s)
- Yujie Fang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China,
| | | |
Collapse
|
280
|
Oliver AE. Dry state preservation of nucleated cells: progress and challenges. Biopreserv Biobank 2015; 10:376-85. [PMID: 24849888 DOI: 10.1089/bio.2012.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Effective stabilization of nucleated cells for dry storage would be a transformative development in the field of cell-based biosensors and biotechnologic devices, as well as regenerative medicine and other areas in which stem cells have clinical utility. Ultimately, the tremendous promise of cell-based products will only be fully realized when stable long-term storage becomes available without the use of liquid nitrogen and bulky, energetically expensive freezers. Significant progress has been made over the last 10 years toward this goal, but obstacles still remain. Loading cells with the protective disaccharide trehalose has been achieved by several different techniques and has been shown to increase cell survival at low water contents. Likewise, the protective effect of heat shock proteins and other compounds have also been explored alone and in combination with trehalose. In some cases, the benefit of these molecules is seen not initially upon rehydration, but over time during cellular recovery. Other considerations, such as inhibiting apoptosis and utilizing isotonic buffer conditions have also provided stepwise increases in cell viability and function following drying and rehydration. In all these cases, however, a low level of residual water is required to achieve viability after rehydration. The most significant remaining challenge is to protect nucleated cells such that this residual water can be safely removed, thus allowing vitrification of intra- and extracellular trehalose and stable dry state storage at room temperature.
Collapse
Affiliation(s)
- Ann E Oliver
- Department of Biomedical Engineering, University of California , Davis, California
| |
Collapse
|
281
|
Kang B, Opatz T, Landfester K, Wurm FR. Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 2015; 44:8301-25. [DOI: 10.1039/c5cs00092k] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbohydrates are used to functionalize or construct nanocarriers for biomedical applications – specific targeting, biocompatibility, stealth effect, biodegradability.
Collapse
Affiliation(s)
- Biao Kang
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Till Opatz
- Institute of Organic Chemistry
- University of Mainz
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
282
|
Abstract
Anhydrobiosis (Life Without Water) has been known for millennia, but the underlying mechanisms have not been understood until recent decades, and we have achieved only a partial understanding. One of the chief sites of damage from dehydration is membranes, and we and others have provided evidence that this damage may be obviated by the production of certain sugars, particularly trehalose. The sugar stabilizes membranes by preventing fusion and fluidizing the dry bilayers. The mechanism by which this is accomplished has been controversial, and I review that controversy here. In the past decade evidence is accumulating for a role of stress proteins in addition to or as a substitute for trehalose. Genomic studies on anhydrobiotes are yielding rapid progress. Also in the past decade, numerous uses for trehalose in treating human diseases have been proposed, some of which are in clinical testing. I conclude that the mechanisms underlying anhydrobiosis are more complex than we thought 20 years ago, but progress is being made towards elucidating those mechanisms.
Collapse
Affiliation(s)
- John H Crowe
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95618, USA.
| |
Collapse
|
283
|
Strimbeck GR, Schaberg PG, Fossdal CG, Schröder WP, Kjellsen TD. Extreme low temperature tolerance in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:884. [PMID: 26539202 PMCID: PMC4609829 DOI: 10.3389/fpls.2015.00884] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/05/2015] [Indexed: 05/07/2023]
Abstract
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.
Collapse
Affiliation(s)
- G. Richard Strimbeck
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
- *Correspondence: G. Richard Strimbeck,
| | - Paul G. Schaberg
- Northern Research Station, United States Department of Agriculture Forest Service, BurlingtonVT, USA
| | | | | | - Trygve D. Kjellsen
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
284
|
Kan Z, Yan X, Ma J. Conformation Dynamics and Polarization Effect of α,α-Trehalose in a Vacuum and in Aqueous and Salt Solutions. J Phys Chem A 2014; 119:1573-89. [DOI: 10.1021/jp507692h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zigui Kan
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
- School
of Sciences, China Pharmaceutical University, Nanjing 211198, People’s Republic of China
| | - Xiufen Yan
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Ma
- School
of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic
Chemistry of MOE, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
285
|
Kannan V, Balabathula P, Thoma LA, Wood GC. Effect of sucrose as a lyoprotectant on the integrity of paclitaxel-loaded liposomes during lyophilization. J Liposome Res 2014; 25:270-8. [PMID: 25534990 DOI: 10.3109/08982104.2014.992023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The stability of liposomes in the form of dispersion is a major concern due to drug leakage and fusion or aggregation. The stability can be improved by lyophilization, but the stress induced by the lyophilization process can affect the integrity of liposomes. OBJECTIVE The objective of this study was to evaluate the lyoprotective effect of sucrose on drug leakage and vesicle size of paclitaxel-loaded liposomes during the lyophilization process. MATERIALS AND METHODS Paclitaxel-loaded liposomal dispersions were prepared with sucrose at several lipid-sugar ratios, and internal-external sugar ratios, and then lyophilized. The entrapped paclitaxel content and vesicle size were monitored before and after lyophilization. The stability of the formulation was evaluated at 5 and 25 °C. RESULTS A significant increase in free paclitaxel and vesicle size was observed with the liposomes lyophilized without sucrose. Inclusion of sucrose in the formulation significantly reduced the free paclitaxel concentration and minimized the changes in vesicle size. The extent of protection improved further when sucrose was also present in the internal portion of the bilayer. The lyophilized formulation was stable at 5 °C for 3 months. DISCUSSION A significant (p < 0.05) correlation was observed between free paclitaxel content and the average diameter of the liposomes with respect to sucrose concentrations in the formulation. Sucrose protected the liposomes from drug leakage and aggregation/fusion induced by the lyophilization process in a concentration dependent manner. CONCLUSION The integrity of paclitaxel-loaded liposomes was preserved during lyophilization by optimal levels of lyoprotectant sucrose in the formulation.
Collapse
Affiliation(s)
- Vinayagam Kannan
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and
| | - Pavan Balabathula
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and.,b Plough Center for Sterile Drug Delivery Systems, The University of Tennessee Health Science Center , Memphis , TN , USA
| | - Laura A Thoma
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and.,b Plough Center for Sterile Drug Delivery Systems, The University of Tennessee Health Science Center , Memphis , TN , USA
| | - George C Wood
- a Department of Pharmaceutical Sciences , The University of Tennessee Health Science Center , Memphis , TN , USA and
| |
Collapse
|
286
|
Tapia H, Koshland DE. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 2014; 24:2758-66. [PMID: 25456447 DOI: 10.1016/j.cub.2014.10.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/16/2014] [Accepted: 10/02/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Diverse organisms across taxa are desiccation tolerant, capable of surviving extreme water loss. Remarkably, desiccation tolerant organisms can survive years without water. However, the molecular mechanisms underlying this rare trait are poorly understood. RESULTS Here, using Saccharomyces cerevisiae, we show that intracellular trehalose is essential for survival to long-term desiccation. The time frame for maintaining long-term desiccation tolerance consists of a balance of trehalose stockpiled prior to desiccation and trehalose degradation by trehalases in desiccated cells. The activity of trehalases in desiccated cell reveals the stunning ability of cells to retain enzymatic activity while desiccated. Interestingly, the protein chaperone Hsp104 compensates for loss of trehalose during short-term, but not long-term, desiccation. We show that desiccation induces protein misfolding/aggregation of cytoplasmic and membrane proteins using luciferase and prion reporters. We demonstrate that trehalose, but not Hsp104, mitigates the aggregation of both cytoplasmic and membrane prions. We propose that desiccated cells initially accumulate both protein and chemical chaperones, like Hsp104 and trehalose, respectively. As desiccation extends, the activities of the protein chaperones are lost because of their complexity and requirement for energy, leaving trehalose as the major protector against the aggregation of cytoplasmic and membrane proteins. CONCLUSIONS Our results suggest that trehalose is both a more stable and more versatile protectant than protein chaperones, explaining its important role in desiccation tolerance and emphasizing the translational potential of small chemical chaperones as stress effectors.
Collapse
Affiliation(s)
- Hugo Tapia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Douglas E Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
287
|
Müller M, Bamann C, Bamberg E, Kühlbrandt W. Light-induced helix movements in channelrhodopsin-2. J Mol Biol 2014; 427:341-9. [PMID: 25451024 DOI: 10.1016/j.jmb.2014.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/10/2014] [Accepted: 11/02/2014] [Indexed: 11/26/2022]
Abstract
Channelrhodopsin-2 (ChR2) is a cation-selective light-gated channel from Chlamydomonas reinhardtii (Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003;100:13940-5), which has become a powerful tool in optogenetics. Two-dimensional crystals of the slow photocycling C128T ChR2 mutant were exposed to 473 nm light and rapidly frozen to trap the open state. Projection difference maps at 6Å resolution show the location, extent and direction of light-induced conformational changes in ChR2 during the transition from the closed state to the ion-conducting open state. Difference peaks indicate that transmembrane helices (TMHs) TMH2, TMH6 and TMH7 reorient or rearrange during the photocycle. No major differences were found near TMH3 and TMH4 at the dimer interface. While conformational changes in TMH6 and TMH7 are known from other microbial-type rhodopsins, our results indicate that TMH2 has a key role in light-induced channel opening and closing in ChR2.
Collapse
Affiliation(s)
- Maria Müller
- Max Planck Institute of Biophysics Department of Structural Biology, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics Department of Biophysical Chemistry, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics Department of Biophysical Chemistry, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| | - Werner Kühlbrandt
- Max Planck Institute of Biophysics Department of Structural Biology, Max von Laue Strasse 3, 60438 Frankfurt, Germany.
| |
Collapse
|
288
|
Abusharkh SE, Erkut C, Oertel J, Kurzchalia TV, Fahmy K. The role of phospholipid headgroup composition and trehalose in the desiccation tolerance of Caenorhabditis elegans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12897-12906. [PMID: 25290156 DOI: 10.1021/la502654j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic state. Distributed to various taxa of life, these organisms have developed strategies to efficiently protect their cell membranes and proteins against extreme water loss. Recently, we showed that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation to harsh desiccation (preconditioning). Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, dauer larvae dramatically reduce their phosphatidylcholine (PC) content. The chemical composition of the phospholipids (PLs) has key consequences not only for their interaction with trehalose, as we demonstrate with Langmuir-Blodgett monolayers, but also, the kinetic response of PLs to hydration transients is strongly influenced as evidenced by time-resolved FTIR spectroscopy. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates of their lyotropic transitions and sub-headgroup H-bond interactions. The different hydration properties of PC and phosphatidylethanolamine (PE) headgroups are crucial for the hydration-dependent rearrangement of the trehalose-mediated H-bond network. As a consequence, the compressibility modulus of PLs from preconditioned larvae is about 2.6-fold smaller than that from non-preconditioned ones. Thus, the biological relevance of reducing the PC:PE ratio by PL headgroup adaptation should be the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose-containing cells during fast rehydration.
Collapse
Affiliation(s)
- Sawsan E Abusharkh
- Biophysics Division, Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf , PF 510119, D-01314 Dresden, Germany
| | | | | | | | | |
Collapse
|
289
|
Abstract
OBJECTIVE Pancreas preservation is a major factor influencing the results of islet cell transplantation. This study evaluated the effects of 2 different solutions for pancreatic ductal perfusion (PDP) at organ procurement. METHODS Eighteen human pancreases were assigned to 3 groups: non-PDP (control), PDP with ET-Kyoto solution, and PDP with cold storage/purification stock solution. Pancreatic islets were isolated according to the modified Ricordi method. RESULTS No significant differences in donor characteristics, including cold ischemia time, were observed between the 3 groups. All islet isolations in the PDP groups had more than 400,000 islet equivalence in total islet yield after purification, a significant increase when compared with the control (P = 0.04 and P < 0.01). The islet quality assessments, including an in vivo diabetic nude mice assay and the response of high-mobility group box protein 1 to cytokine stimulation, also showed no significant differences. The proportion of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells showing apoptosis in islets in the PDP groups was significantly lower than in the control group (P < 0.05). CONCLUSIONS Both ET-Kyoto solution and cold storage/purification stock solution are suitable for PDP and consistently resulted in isolation success. Further studies with a larger number of pancreas donors should be done to compare the effects of the PDP solutions.
Collapse
|
290
|
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2014. [PMID: 25336153 DOI: 10.1007/s00018‐014‐1767‐0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future.
Collapse
Affiliation(s)
- Yujie Fang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China,
| | | |
Collapse
|
291
|
Wyatt TT, Golovina EA, van Leeuwen R, Hallsworth JE, Wösten HAB, Dijksterhuis J. A decrease in bulk water and mannitol and accumulation of trehalose and trehalose-based oligosaccharides define a two-stage maturation process towards extreme stress resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri). Environ Microbiol 2014; 17:383-94. [PMID: 25040022 DOI: 10.1111/1462-2920.12557] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 12/01/2022]
Abstract
Fungal propagules survive stresses better than vegetative cells. Neosartorya fischeri, an Aspergillus teleomorph, forms ascospores that survive high temperatures or drying followed by heat. Not much is known about maturation and development of extreme stress resistance in fungal cells. This study provides a novel two-step model for the acquisition of extreme stress resistance and entry into dormancy. Ascospores of 11- and 15-day-old cultures exhibited heat resistance, physiological activity, accumulation of compatible solutes and a steep increase in cytoplasmic viscosity. Electron spin resonance spectroscopy indicated that this stage is associated with the removal of bulk water and an increase of chemical stability. Older ascospores from 15- to 50-day-old cultures showed no changes in compatible solute content and cytoplasmic viscosity, but did exhibit a further increase of heat resistance and redox stability with age. This stage was also characterized by changes in the composition of the mixture of compatible solutes. Mannitol levels decreased and the relative quantities of trehalose and trehalose-based oligosaccharides increased. Dormant ascospores of N. fischeri survive in low-water habitats. After activation of the germination process, the stress resistance decreases, compatible solutes are degraded and the cellular viscosity drops. After 5 h, the hydrated cells enter the vegetative stage and redox stability has decreased notably.
Collapse
Affiliation(s)
- Timon T Wyatt
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584CT, The Netherlands
| | | | | | | | | | | |
Collapse
|
292
|
Stokich B, Osgood Q, Grimm D, Moorthy S, Chakraborty N, Menze MA. Cryopreservation of hepatocyte (HepG2) cell monolayers: Impact of trehalose. Cryobiology 2014; 69:281-90. [DOI: 10.1016/j.cryobiol.2014.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
293
|
Diallo SO, Zhang Q, O'Neill H, Mamontov E. High-pressure dynamics of hydrated protein in bioprotective trehalose environment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042725. [PMID: 25375541 DOI: 10.1103/physreve.90.042725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 06/04/2023]
Abstract
We present a pressure-dependence study of the dynamics of lysozyme protein powder immersed in deuterated α,α-trehalose environment via quasielastic neutron scattering (QENS). The goal is to assess the baroprotective benefits of trehalose on biomolecules by comparing the findings with those of a trehalose-free reference study. While the mean-square displacement of the trehalose-free protein (hydrated to dD2O≃40 w%) as a whole, is reduced by increasing pressure, the actual observable relaxation dynamics in the picoseconds to nanoseconds time range remains largely unaffected by pressure--up to the maximum investigated pressure of 2.78(2) Kbar. Our observation is independent of whether or not the protein is mixed with the deuterated sugar. This suggests that the hydrated protein's conformational states at atmospheric pressure remain unaltered by hydrostatic pressures, below 2.78 Kbar. We also found the QENS response to be totally recoverable after ambient pressure conditions are restored. Small-angle neutron diffraction measurements confirm that the protein-protein correlation remains undisturbed. We observe, however, a clear narrowing of the QENS response as the temperature is decreased from 290 to 230 K in both cases, which we parametrize using the Kohlrausch-Williams-Watts stretched exponential model. Only the fraction of protons that are immobile on the accessible time window of the instrument, referred to as the elastic incoherent structure factor, is observably sensitive to pressure, increasing only marginally but systematically with increasing pressure.
Collapse
Affiliation(s)
- S O Diallo
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Q Zhang
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H O'Neill
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - E Mamontov
- Chemical and Engineering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
294
|
Eleutherio E, Panek A, De Mesquita JF, Trevisol E, Magalhães R. Revisiting yeast trehalose metabolism. Curr Genet 2014; 61:263-74. [DOI: 10.1007/s00294-014-0450-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/16/2022]
|
295
|
Disalvo EA, Martini MF, Bouchet AM, Hollmann A, Frías MA. Structural and thermodynamic properties of water-membrane interphases: significance for peptide/membrane interactions. Adv Colloid Interface Sci 2014; 211:17-33. [PMID: 25085854 DOI: 10.1016/j.cis.2014.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 12/28/2022]
Abstract
Water appears as a common intermediary in the mechanisms of interaction of proteins and polypeptides with membranes of different lipid composition. In this review, how water modulates the interaction of peptides and proteins with lipid membranes is discussed by correlating the thermodynamic response and the structural changes of water at the membrane interphases. The thermodynamic properties of the lipid-protein interaction are governed by changes in the water activity of monolayers of different lipid composition according to the lateral surface pressure. In this context, different water populations can be characterized below and above the phase transition temperature in relation to the CH₂ conformers' states in the acyl chains. According to water species present at the interphase, lipid membrane acts as a water state regulator, which determines the interfacial water domains in the surface. It is proposed that those domains are formed by the contact between lipids themselves and between lipids and the water phase, which are needed to trigger adsorption-insertion processes. The water domains are essential to maintain functional dynamical properties and are formed by water beyond the hydration shell of the lipid head groups. These confined water domains probably carries information in local units in relation to the lipid composition thus accounting for the link between lipidomics and aquaomics. The analysis of these results contributes to a new insight of the lipid bilayer as a non-autonomous, responsive (reactive) structure that correlates with the dynamical properties of a living system.
Collapse
Affiliation(s)
- E A Disalvo
- Centro de Investigaciones y Transferencia Santiago del Estero (CITSE), (CONICET-UNSE), Laboratorio de Biointerfases y Sistemas Biomiméticos, Laboratorios Centrales - Ala Norte, Ruta Nacional 9, Km 1125 - Villa El Zanjón, CP 4206 Santiago del Estero, Argentina.
| | - M F Martini
- Department of Pharmaceutical Technology, Universidad de Buenos Aires, Buenos Aires, Argentina and CONICET
| | - A M Bouchet
- Centro de Investigaciones y Transferencia Santiago del Estero (CITSE), (CONICET-UNSE), Laboratorio de Biointerfases y Sistemas Biomiméticos, Laboratorios Centrales - Ala Norte, Ruta Nacional 9, Km 1125 - Villa El Zanjón, CP 4206 Santiago del Estero, Argentina
| | - A Hollmann
- Centro de Investigaciones y Transferencia Santiago del Estero (CITSE), (CONICET-UNSE), Laboratorio de Biointerfases y Sistemas Biomiméticos, Laboratorios Centrales - Ala Norte, Ruta Nacional 9, Km 1125 - Villa El Zanjón, CP 4206 Santiago del Estero, Argentina
| | - M A Frías
- Centro de Investigaciones y Transferencia Santiago del Estero (CITSE), (CONICET-UNSE), Laboratorio de Biointerfases y Sistemas Biomiméticos, Laboratorios Centrales - Ala Norte, Ruta Nacional 9, Km 1125 - Villa El Zanjón, CP 4206 Santiago del Estero, Argentina
| |
Collapse
|
296
|
Dupont S, Rapoport A, Gervais P, Beney L. Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 2014; 98:8821-34. [DOI: 10.1007/s00253-014-6028-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 01/08/2023]
|
297
|
Preparation of Cross-Linked Enzyme Aggregates of Trehalose Synthase via Co-aggregation with Polyethyleneimine. Appl Biochem Biotechnol 2014; 174:2067-78. [DOI: 10.1007/s12010-014-1104-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
|
298
|
Pinto OA, Bouchet AM, Frías MA, Disalvo EA. Microthermodynamic Interpretation of Fluid States from FTIR Measurements in Lipid Membranes: A Monte Carlo Study. J Phys Chem B 2014; 118:10436-43. [DOI: 10.1021/jp5044078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- O. A. Pinto
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| | - A. M. Bouchet
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| | - M. A. Frías
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| | - E. A. Disalvo
- Centro de Investigaciones y Transferencia
de Santiago del Estero
(CITSE) and ‡Laboratorio de Biointerfases y Sistemas Biomiméticos, Centro
de Investigación y Transferencia de Santiago del Estero (CITSE), Universidad Nacional de Santiago de Estero, CONICET RN 9 Km 1125 Villa el Zanjón, Santiago del Estero, CP 4206 Argentina
| |
Collapse
|
299
|
Effect of the cosolutes trehalose and methanol on the equilibrium and phase-transition properties of glycerol-monopalmitate lipid bilayers investigated using molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:517-44. [DOI: 10.1007/s00249-014-0982-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
300
|
Boestfleisch C, Wagenseil NB, Buhmann AK, Seal CE, Wade EM, Muscolo A, Papenbrock J. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AOB PLANTS 2014; 6:plu046. [PMID: 25125698 PMCID: PMC4174659 DOI: 10.1093/aobpla/plu046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/07/2014] [Indexed: 05/27/2023]
Abstract
Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals.
Collapse
Affiliation(s)
| | - Niko B Wagenseil
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Anne K Buhmann
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Charlotte E Seal
- Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Ellie Merrett Wade
- Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Adele Muscolo
- Department of Agriculture, Mediterranea University, 89126 Reggio Calabria, Italy
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany
| |
Collapse
|