251
|
Konstantinidis AK, Radhakrishnan R, Gu F, Rao RN, Yeh WK. Purification, characterization, and kinetic mechanism of cyclin D1. CDK4, a major target for cell cycle regulation. J Biol Chem 1998; 273:26506-15. [PMID: 9756886 DOI: 10.1074/jbc.273.41.26506] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin D1.CDK4-pRb (retinoblastoma protein) pathway plays a central role in the cell cycle, and its deregulation is correlated with many types of cancers. As a major drug target, we purified dimeric cyclin D1.CDK4 complex to near-homogeneity by a four-step procedure from a recombinant baculovirus-infected insect culture. We optimized the kinase activity and stability and developed a reproducible assay. We examined several catalytic and kinetic properties of the complex and, via steady-state kinetics, derived a kinetic mechanism with a peptide (RbING) and subsequently investigated the mechanistic implications with a physiologically relevant protein (Rb21) as the phosphoacceptor. The complex bound ATP 130-fold tighter when Rb21 instead of RbING was used as the phosphoacceptor. By using staurosporine and ADP as inhibitors, the kinetic mechanism of the complex appeared to be a "single displacement or Bi-Bi" with Mg2+.ATP as the leading substrate and phosphorylated RbING as the last product released. In addition, we purified a cyclin D1-CDK4 fusion protein to homogeneity by a three-step protocol from another recombinant baculovirus culture and observed similar kinetic properties and mechanisms as those from the complex. We attempted to model staurosporine in the ATP-binding site of CDK4 according to our kinetic data. Our biochemical and modeling data provide validation of both the complex and fusion protein as highly active kinases and their usefulness in antiproliferative inhibitor discovery.
Collapse
Affiliation(s)
- A K Konstantinidis
- Research Technologies and Proteins, Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
252
|
Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A. The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 1998; 142:1447-59. [PMID: 9744876 PMCID: PMC2141770 DOI: 10.1083/jcb.142.6.1447] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The muscle regulators MyoD and Myf-5 control cell cycle withdrawal and induction of differentiation in skeletal muscle cells. By immunofluorescence analysis, we show that MyoD and Myf-5 expression patterns become mutually exclusive when C2 cells are induced to differentiate with Myf-5 staining present in cells which fail to differentiate. Isolation of these undifferentiated cells reveals that upon serum stimulation they reenter the cell cycle, express MyoD and downregulate Myf-5. Similar regulations of MyoD and Myf-5 were observed using cultured primary myoblasts derived from satellite cells. To further analyze these regulations of MyoD and Myf-5 expression, we synchronized proliferating myoblasts. Analysis of MyoD and Myf-5 expression during cell cycle progression revealed distinct and contrasting profiles of expression. MyoD is absent in G0, peaks in mid-G1, falls to its minimum level at G1/S and reaugments from S to M. In contrast, Myf-5 protein is high in G0, decreases during G1 and reappears at the end of G1 to remain stable until mitosis. These data demonstrate that the two myogenic factors MyoD and Myf-5 undergo specific and distinct cell cycle-dependent regulation, thus establishing a correlation between the cell cycle-specific ratios of MyoD and Myf-5 and the capacity of cells to differentiate: (a) in G1, when cells express high levels of MyoD and enter differentiation; (b) in G0, when cells express high levels of Myf-5 and fail to differentiate.
Collapse
Affiliation(s)
- M Kitzmann
- Cell Biology Unit, Institut de Génétique Humaine, Unité Propre de Recherche 1142, Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
253
|
Vadiveloo PK, Vairo G, Royston AK, Novak U, Hamilton JA. Proliferation-independent induction of macrophage cyclin D2, and repression of cyclin D1, by lipopolysaccharide. J Biol Chem 1998; 273:23104-9. [PMID: 9722538 DOI: 10.1074/jbc.273.36.23104] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-type cyclins are induced in response to mitogens and are essential and rate-limiting for G1 phase progression in normal mammalian cells. Macrophages proliferating in response to colony-stimulating factor-1 (CSF-1) express cyclin D1 and to a lesser extent cyclin D2 but not cyclin D3. Previously we showed that the macrophage-activating agent lipopolysaccharide (LPS) blocks CSF-1-induced proliferation and cyclin D1 expression in macrophages. Here we report upon the effect of LPS on expression of cyclin D2 in normal mouse bone marrow-derived macrophages (BMM). Unexpectedly we found that this anti-mitogen raised levels of CSF-1-stimulated cyclin D2 mRNA and protein. Furthermore, LPS alone induced cyclin D2 but not cyclin D1. Inhibition of the MEK/ERK (MAPK/ERK kinase/extracellular signal-regulated kinase) mitogen-activated protein kinase pathway repressed LPS-induced cyclin D2 mRNA, whereas inhibition of the p38 mitogen-activated protein kinase enhanced expression. However, in contrast to cyclin D1, cyclin D2 in bone marrow-derived macrophages did not appear to be regulated by protein kinase A pathways. The present data (a) show elevation of a D-type cyclin in the absence of proliferation, (b) demonstrate inverse regulation of two distinct D-type cyclins under identical conditions, and (c) suggest that cyclin D2 plays a role in macrophage activation by LPS.
Collapse
Affiliation(s)
- P K Vadiveloo
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia 3050.
| | | | | | | | | |
Collapse
|
254
|
Abstract
The liver serves as a suitable model for studying tissue regeneration. Although various growth factors have been implicated in the promotion of this process, their precise role in liver regeneration remains to be elucidated. Whatever the extracellular signals may be, they all converge on cell cycle regulators in the nucleus, where the sequential activation of cyclin-dependent kinases (Cdk) takes place. The activities of Cdk are regulated positively through their association with cognate cyclins, and negatively via interactions with Cdk inhibitors. In this review article, our recent data as well as results of previous reports on how these cell cycle regulators trigger and/or terminate the process of liver regeneration are summarized. The authors believe that 'knockout' mice, in which specific genes are deleted, will be useful for providing further insight into the positive and negative regulation of liver regeneration.
Collapse
Affiliation(s)
- Masafumi Menjo
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi, Japan
| | - Kyoji Ikeda
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi, Japan
| | - Makoto Nakanishi
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi, Japan
| |
Collapse
|
255
|
Agarwal S, Mathur M, Shukla NK, Ralhan R. Expression of cyclin dependent kinase inhibitor p21waf1/cip1 in premalignant and malignant oral lesions: relationship with p53 status. Oral Oncol 1998; 34:353-60. [PMID: 9861340 DOI: 10.1016/s1368-8375(98)00021-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
p21waf1/cip1 protein, an inhibitor of cyclin dependent kinases, is a critical downstream target in the p53-specific pathway of growth control, and can also be induced by p53 independent pathways in relation to terminal differentiation. p21waf1 is also a putative tumour suppressor. Hence, we sought to determine whether this protein is abnormally expressed during betel- and tobacco-related oral oncogenesis. The aim was to determine whether a correlation exists between the expression profile of p21 and clinicopathological parameters of the patients, as well as with their p53 status. Immunohistochemical analysis showed that the expression of p21 protein in premalignant lesions was consistently elevated in the superficial, differentiated cells of the epithelium, while overexpression of the p53 tumour suppressor gene was observed in the basal proliferating layers of the epithelium. Our study demonstrated that p21 overexpression is associated with differentiation in proliferating dysplasias and squamous cell carcinomas (SCCs). The expression of p21 and p53 proteins was observed in 11/25 premalignant lesions. In 7 of these 11 cases, a heterogenous pattern of expression of p21 and p53 was observed. Four of these 11 premalignant and 30/51 malignant lesions showed concordant expression of both p21 and p53 proteins. The discordant p21 +/p53- phenotype was observed in 4/25 premalignant lesions and 5/51 oral SCCs. The p21-/p53+ phenotype was observed in 5/25 premalignant lesions and 7/51 oral SCCs. These results suggest that induction of p21 occurs by both p53 dependent and independent mechanisms during oral tumorigenesis.
Collapse
Affiliation(s)
- S Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|
256
|
Song A, Wang Q, Goebl MG, Harrington MA. Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol Cell Biol 1998; 18:4994-9. [PMID: 9710583 PMCID: PMC109084 DOI: 10.1128/mcb.18.9.4994] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1998] [Accepted: 06/08/1998] [Indexed: 11/20/2022] Open
Abstract
MyoD is a basic helix-loop-helix transcription factor involved in the activation of genes encoding skeletal muscle-specific proteins. Independent of its ability to transactivate muscle-specific genes, MyoD can also act as a cell cycle inhibitor. MyoD activity is regulated by transcriptional and posttranscriptional mechanisms. While MyoD can be found phosphorylated, the functional significance of this posttranslation modification has not been established. MyoD contains several consensus cyclin-dependent kinase (CDK) phosphorylation sites. In these studies, we examined whether a link could be established between MyoD activity and phosphorylation at putative CDK sites. Site-directed mutagenesis of potential CDK phosphorylation sites in MyoD revealed that S200 is required for MyoD hyperphosphorylation as well as the normally short half-life of the MyoD protein. Additionally, we determined that turnover of the MyoD protein requires the proteasome and Cdc34 ubiquitin-conjugating enzyme activity. Results of these studies demonstrate that hyperphosphorylated MyoD is targeted for rapid degradation by the ubiquitin pathway. The targeted degradation of MyoD following CDK phosphorylation identifies a mechanism through which MyoD activity can be regulated coordinately with the cell cycle machinery (CDK2 and CDK4) and/or coordinately with the cellular transcriptional machinery (CDK7, CDK8, and CDK9).
Collapse
Affiliation(s)
- A Song
- Department of Biochemistry and Molecular Biology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
257
|
Bellido T, O'Brien CA, Roberson PK, Manolagas SC. Transcriptional activation of the p21(WAF1,CIP1,SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 1998; 273:21137-44. [PMID: 9694869 DOI: 10.1074/jbc.273.33.21137] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21(WAF1,CIP1,SDI1) plays a critical role in cell differentiation, and it has been shown to confer resistance to apoptosis. Based on this, and on evidence that activation of the gp130/signal transducer and activator of transcription (STAT) signal transduction pathway by interleukin (IL)-6 type cytokines promotes differentiation and prevents apoptosis in osteoblastic cells, we have investigated the possibility that p21 is a downstream effector of this signaling pathway in osteoblasts. We report that either oncostatin M (OSM) or IL-6 plus soluble IL-6 receptor increased the levels of p21 mRNA and protein in the osteoblast-like human osteosarcoma cell line MG63 and stimulated the activity of a 2.4-kilobase pair segment of the human p21 gene promoter. Further, nuclear extracts from cytokine-stimulated MG63 cells formed protein-DNA complexes with a 19-base pair nucleotide fragment of the p21 promoter containing a single STAT response element. The identity of the binding proteins as Stat3 and Stat1 was demonstrated with specific antibodies. In addition, and in support of a mediating role of STATs in the activation of the p21 promoter, overexpression of Stat3 potentiated the cytokine effect on the p21 promoter; whereas a dominant negative Stat3, or a mutation of the STAT response element on the promoter, significantly reduced the cytokine effect. Finally, antisense oligonucleotides complementary to p21 mRNA inhibited OSM-induced stimulation of alkaline phosphatase expression and antagonized the protective effect of OSM on anti-Fas-induced apoptosis. These results demonstrate that p21 is a downstream effector of gp130/Stat3 activation and a critical mediator of the pro-differentiating and anti-apoptotic effects of IL-6 type cytokines on human osteoblastic cells.
Collapse
Affiliation(s)
- T Bellido
- Division of Endocrinology and Metabolism, the Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
258
|
Shih HH, Tevosian SG, Yee AS. Regulation of differentiation by HBP1, a target of the retinoblastoma protein. Mol Cell Biol 1998; 18:4732-43. [PMID: 9671483 PMCID: PMC109059 DOI: 10.1128/mcb.18.8.4732] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The induction of HBP1, RB, and p130 upon differentiation in the muscle C2C12 cells suggested a coordinated role. Here we report that the expression of HBP1 unexpectedly blocked muscle cell differentiation without interfering with cell cycle exit. Moreover, the expression of MyoD and myogenin, but not Myf5, was inhibited in HBP1-expressing cells. HBP1 inhibited transcriptional activation by the MyoD family members. The inhibition of MyoD family function by HBP1 required binding to RB and/or p130. Since Myf5 might function upstream of MyoD, our data suggested that HBP1 probably blocked differentiation by disrupting Myf5 function, thus preventing expression of MyoD and myogenin. Consistent with this, the expression of each MyoD family member could reverse the inhibition of differentiation by HBP1. Further investigation implicated the relative ratio of RB to HBP1 as a determinant of whether cell cycle exit or full differentiation occurred. At a low RB/HBP1 ratio cell cycle exit occurred but there was no tissue-specific gene expression. At elevated RB/HBP1 ratios full differentiation occurred. Similar changes in the RB/HBP1 ratio have been observed in normal C2 differentiation. Thus, we postulate that the relative ratio of RB to HBP1 may be one signal for activation of the MyoD family. We propose a model in which a checkpoint of positive and negative regulation may coordinate cell cycle exit with MyoD family activation to give fidelity and progression in differentiation.
Collapse
Affiliation(s)
- H H Shih
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
259
|
Dominov JA, Dunn JJ, Miller JB. Bcl-2 expression identifies an early stage of myogenesis and promotes clonal expansion of muscle cells. J Cell Biol 1998; 142:537-44. [PMID: 9679150 PMCID: PMC2133046 DOI: 10.1083/jcb.142.2.537] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We show that Bcl-2 expression in skeletal muscle cells identifies an early stage of the myogenic pathway, inhibits apoptosis, and promotes clonal expansion. Bcl-2 expression was limited to a small proportion of the mononucleate cells in muscle cell cultures, ranging from approximately 1-4% of neonatal and adult mouse muscle cells to approximately 5-15% of the cells from the C2C12 muscle cell line. In rapidly growing cultures, some of the Bcl-2-positive cells coexpressed markers of early stages of myogenesis, including desmin, MyoD, and Myf-5. In contrast, Bcl-2 was not expressed in multinucleate myotubes or in those mononucleate myoblasts that expressed markers of middle or late stages of myogenesis, such as myogenin, muscle regulatory factor 4 (MRF4), and myosin. The small subset of Bcl-2-positive C2C12 cells appeared to resist staurosporine-induced apoptosis. Furthermore, though myogenic cells from genetically Bcl-2-null mice formed myotubes normally, the muscle colonies produced by cloned Bcl-2-null cells contained only about half as many cells as the colonies produced by cells from wild-type mice. This result suggests that, during clonal expansion from a muscle progenitor cell, the number of progeny obtained is greater when Bcl-2 is expressed.
Collapse
Affiliation(s)
- J A Dominov
- Myogenesis Research Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
260
|
Yoshiko Y, Hirao K, Maeda N. Dexamethasone regulates the actions of endogenous insulin-like growth factor-II during myogenic differentiation. Life Sci 1998; 63:77-85. [PMID: 9674941 DOI: 10.1016/s0024-3205(98)00242-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of dexamethasone (DEX) on the action of endogenous insulin-like growth factor (IGF)-II during myogenic differentiation was investigated by culturing C2C12 mouse myogenic cells in serum-free medium. DEX treatment maintained a high level of creatine kinase (CK) activity, and caused an increase in the number of nuclei per cell, hypertrophy and IGF-II mRNA accumulation in the cells. These effects were abrogated by the glucocorticoid receptor antagonist RU-38486. An anti-IGF-II monoclonal antibody neutralized DEX-dependent CK activity. Thus, we conclude that DEX increases the level of IGF-II mRNA in C2C12 cells, and that DEX may assist myogenic differentiation via, at least in part, its promotive action on IGF-II gene expression.
Collapse
Affiliation(s)
- Y Yoshiko
- Department of Oral Anatomy, Hiroshima University School of Dentistry, Japan
| | | | | |
Collapse
|
261
|
Todd C, Reynolds NJ. Up-regulation of p21WAF1 by phorbol ester and calcium in human keratinocytes through a protein kinase C-dependent pathway. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:39-45. [PMID: 9665463 PMCID: PMC1852944 DOI: 10.1016/s0002-9440(10)65543-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Terminal differentiation in a variety of cell types has been associated with p53-independent up-regulation of p21WAF1 p21WAF1 mRNA and protein are expressed at low levels in normal human skin, but overexpression of p21WAF1 has been observed in differentiating keratinocytes in involved psoriatic epidermis and in human squamous cell carcinoma. In this study we investigated by immunohistochemistry and Western blotting whether calcium and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, well characterized differentiation signals, induce p21WAF1 in cultured normal human keratinocytes and whether induction of p21WAF1 in this system depends on protein kinase C activation or functional p53. Phorbol ester induced p21WAF1 expression, which was maximal at 4 to 8 h with reduction back to baseline by 24 to 48 h. In contrast, increasing the extracellular Ca2+ concentration from 70 micromol/L to 1.5 mmol/L resulted in upregulation of p21WAF1 expression with a slower time course, with peak induction at 18 to 24 h. No parallel increase in p53 expression was observed in normal human keratinocytes. Up-regulation of p21WAF1 was also observed in response to phorbol ester in HaCaT cells, which carry homozygous and inactivating mutations for p53. Induction of p21WAF1 by phorbol ester and Ca2+ was inhibited by the specific protein kinase C inhibitor Ro 31-8220. The results demonstrate a differential time course of p21WAF1 protein up-regulation in response to phorbol ester and Ca2+, signals that result in keratinocyte differentiation, and suggest that induction of p21WAF1 in differentiating human keratinocytes occurs through protein kinase C-dependent and p53-independent mechanisms.
Collapse
Affiliation(s)
- C Todd
- Department of Dermatology, Medical School, University of Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
262
|
Snowden AW, Perkins ND. Cell cycle regulation of the transcriptional coactivators p300 and CREB binding protein. Biochem Pharmacol 1998; 55:1947-54. [PMID: 9714314 DOI: 10.1016/s0006-2952(98)00020-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To respond to changes in its environment, the cell utilizes mechanisms that integrate extracellular signals with specific changes in gene expression. To better understand these critical regulatory mechanisms, research has focused, for the most part, on the identification of sequence-specific DNA-binding proteins, such as the nuclear factor kappaB (NF-kappaB) or activator protein 1 (AP-1) families of transcription factors, that interact with the promoter and enhancer elements of genes induced or repressed during cellular activation. More recently, however, it has become apparent that non-DNA-binding transcriptional coactivators, such as p300 and CREB binding protein (CBP), previously thought to function primarily as "bridging" proteins between DNA-bound transcription factors and the basal transcription complex, play a critical regulatory role as integrators of diverse signalling pathways with the selective induction of gene expression. In this commentary, we shall discuss the implications of a particular aspect of this growing and expanding field: how cell cycle regulation of p300 and CBP impacts our understanding of cellular differentiation, the response to DNA damage, and oncogenesis.
Collapse
Affiliation(s)
- A W Snowden
- Department of Biochemistry, University of Dundee, Scotland, UK
| | | |
Collapse
|
263
|
Watanabe G, Pena P, Shambaugh GE, Haines GK, Pestell RG. Regulation of cyclin dependent kinase inhibitor proteins during neonatal cerebella development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:77-87. [PMID: 9693786 DOI: 10.1016/s0165-3806(98)00032-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cyclin dependent kinase holoenzymes (CDKs), composed of catalytic (cdk) and regulatory (cyclin) subunits, promote cellular proliferation and are inhibited by cyclin dependent kinase inhibitor proteins (CDKIs). The CDKIs include the Ink4 family (p15Ink4b, p16Ink4a, p18Ink4c, p19Ink4d) and the KIP family (p21Cip1 and p27Kip1). The sustained induction of p21 and p18 during myogenesis implicates these CDKI in maintaining cellular differentiation. Herein we examined the CDK (cyclin D1, cdk5) and CDKI expression profiles during the first 24 days of postnatal rat cerebella development. Cdk5 abundance increased and cyclin D1 decreased from day 9 through to adulthood. The CDKIs increased transiently during differentiation. p27 increased 20-fold between days 4 and 24, whereas p21 rose twofold between 6 to 11 days. p19, p18 and p16 increased approximately two- to threefold, falling to low levels in the adult. Immunostaining of cyclin D1 was localized in the external granular cells, whereas p27, was found primarily in the Purkinje cells. The period of maximal differentiation between days 9 to 13 was associated with a change in p21 and p16 staining from the external granular and Purkinje cells to a primarily Purkinje cell distribution. Protein-calorie malnutrition, which was previously shown to arrest rat cerebella development, reduced cyclin D1 kinase activity and p27 levels. However, p16 and p21 levels were unchanged. We conclude that the CDKIs are induced with distinct kinetics in specific cell types and respond differentially to growth factors during cerebella development, suggesting discrete roles for these proteins in normal cerebella development.
Collapse
Affiliation(s)
- G Watanabe
- Albert Einstein Cancer Center, Department of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
264
|
Neuveut C, Low KG, Maldarelli F, Schmitt I, Majone F, Grassmann R, Jeang KT. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb. Mol Cell Biol 1998; 18:3620-32. [PMID: 9584203 PMCID: PMC108944 DOI: 10.1128/mcb.18.6.3620] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human T-cell leukemia virus type 1 is etiologically linked to the development of adult T-cell leukemia and various human neuropathies. The Tax protein of human T-cell leukemia virus type I has been implicated in cellular transformation. Like other oncoproteins, such as Myc, Jun, and Fos, Tax is a transcriptional activator. How it mechanistically dysregulates the cell cycle is unclear. Previously, it was suggested that Tax affects cell-phase transition by forming a direct protein-protein complex with p16(INK4a), thereby inactivating an inhibitor of G1-to-S-phase progression. Here we show that, in T cells deleted for p16(INK4a), Tax can compel an egress of cells from G0/G1 into S despite the absence of serum. We also show that in undifferentiated myocytes, expression of Tax represses cellular differentiation. In both settings, Tax expression was found to increase cyclin D-cdk activity and to enhance pRb phosphorylation. In T cells, a Tax-associated increase in steady-state E2F2 protein was also documented. In searching for a molecular explanation for these observations, we found that Tax forms a protein-protein complex with cyclin D3, whereas a point-mutated and transcriptionally inert Tax mutant failed to form such a complex. Interestingly, expression of wild-type Tax protein in cells was also correlated with the induction of a novel hyperphosphorylated cyclin D3 protein. Taken together, these findings suggest that Tax might directly influence cyclin D-cdk activity and function, perhaps by a route independent of cdk inhibitors such as p16(INK4a).
Collapse
Affiliation(s)
- C Neuveut
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | |
Collapse
|
265
|
Mayol X, Graña X. pRB, p107 and p130 as transcriptional regulators: role in cell growth and differentiation. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:157-69. [PMID: 9580269 DOI: 10.1007/978-1-4615-5371-7_13] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian cell cycle engine, which is composed of cyclin/CDK holoenzymes, controls the progression throughout the cell cycle by regulating, at least in part, the transcription of two types of genes: genes whose protein products are required for DNA metabolism and genes whose protein products are involved in cell cycle control. Among the targets of cyclin/CDKs, there is a family of negative growth regulators collectively known as pocket proteins. This family of pocket proteins includes the product of the retinoblastoma tumor suppressor gene, pRB and the functionally and structurally related proteins p107 and p130. In this review, the mechanisms by which pocket proteins are thought to regulate cell growth and differentiation are discussed.
Collapse
Affiliation(s)
- X Mayol
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
266
|
Tong B, Grimes HL, Yang TY, Bear SE, Qin Z, Du K, El-Deiry WS, Tsichlis PN. The Gfi-1B proto-oncoprotein represses p21WAF1 and inhibits myeloid cell differentiation. Mol Cell Biol 1998; 18:2462-73. [PMID: 9566867 PMCID: PMC110626 DOI: 10.1128/mcb.18.5.2462] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1997] [Accepted: 02/01/1998] [Indexed: 02/07/2023] Open
Abstract
Gfi-1 is a cellular proto-oncogene that was identified as a target of provirus integration in T-cell lymphoma lines selected for interleukin-2 (IL-2) independence in culture and in primary retrovirus-induced lymphomas. Gfi-1 encodes a zinc finger protein that functions as a transcriptional repressor. Here we show that Gfi-1B, a Gfi-1 related gene expressed in bone marrow and spleen, also encodes a transcriptional repressor. IL-6-induced G1 arrest and differentiation of the myelomonocytic cell line M1 were linked to the downregulation of Gfi-1B and the parallel induction of the cyclin-dependent kinase inhibitor p21WAF1. Experiments addressing the potential mechanism of the apparent coordinate regulation of these genes revealed that Gfi-1B represses p21WAF1 directly by binding to a high-affinity site at -1518 to -1530 in the p21WAF1 promoter. Forced expression of Gfi-1B, but not of Gfi-1B deletion mutants lacking the repressor domain, blocked the IL-6-mediated induction of p21WAF1 and inhibited G1 arrest and differentiation. We conclude that Gfi-1B is a direct repressor of the p21WAF1 promoter, the first such repressor identified to date, and that sustained expression of Gfi-1B blocks IL-6-induced G1 arrest and differentiation of M1 cells perhaps because it prevents p21WAF1 induction by IL-6.
Collapse
Affiliation(s)
- B Tong
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Yook JI, Kim J. Expression of p21WAF1/CIP1 is unrelated to p53 tumour suppressor gene status in oral squamous cell carcinomas. Oral Oncol 1998; 34:198-203. [PMID: 9692054 DOI: 10.1016/s1368-8375(97)00091-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The p53 tumour suppressor gene is frequently mutated in oral squamous cell carcinomas. However, the downstream mechanism of p53 during oral carcinogenesis is not fully understood. The cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21), which can be induced by wild-type p53, functions as a downstream mediator of the antiproliferative and apoptosis-inducing actions of wild-type p53. To learn more about the roles of the p53 gene and its downstream mechanism, we evaluated p53 gene mutation and immunohistochemical expression of p53 and p21 in 20 cases of oral squamous cell carcinoma. p53 gene mutations were observed in 7 cases (35%). Overexpression of p53 was found in 4 of 13 cases with wild-type p53, and in 6 of 7 cases with p53 mutations. p21 expression was detected in 15 of 20 cases (75%). The expression of p21 correlated neither with mutated p53 mutation nor with p53 protein overexpression. p21 was expressed even in carcinomas in which molecular analysis revealed a nonsense mutation. In normal oral mucosa, p21 expression was limited in the differentiating spinous cell layer. However, dysplastic or hyperplastic epithelium adjacent to the tumour demonstrated the increased expression of p21 even in the proliferating basal cell layer. These molecular and immunohistochemical data did not show any correlation with various clinico-pathologic parameters. These results suggest that p53 gene mutations and altered expression of p21 are commonly involved in oral carcinogenesis, but do not correlate with each other or with the clinico-pathologic parameters. They also suggest that p21 expression in oral squamous cell carcinomas may be induced by a p53-independent pathway.
Collapse
Affiliation(s)
- J I Yook
- Department of Oral Pathology, College of Dentistry, Yonsei University, Seoul, Korea
| | | |
Collapse
|
268
|
Smith L, Liu SJ, Goodrich L, Jacobson D, Degnin C, Bentley N, Carr A, Flaggs G, Keegan K, Hoekstra M, Thayer MJ. Duplication of ATR inhibits MyoD, induces aneuploidy and eliminates radiation-induced G1 arrest. Nat Genet 1998; 19:39-46. [PMID: 9590286 DOI: 10.1038/ng0598-39] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 3q alterations occur frequently in many types of tumours. In a genetic screen for loci present in rhabdomyosarcomas, we identified an isochromosome 3q [i(3q)], which inhibits muscle differentiation when transferred into myoblasts. The i(3q) inhibits MyoD function, resulting in a non-differentiating phenotype. Furthermore, the i(3q) induces a 'cut' phenotype, abnormal centrosome amplification, aneuploidy and loss of G1 arrest following gamma-irradiation. Testing candidate genes within this region reveals that forced expression of ataxia-telangiectasia and rad3-related (ATR) results in a phenocopy of the i(3q). Thus, genetic alteration of ATR leads to loss of differentiation as well as cell-cycle abnormalities.
Collapse
Affiliation(s)
- L Smith
- Vollum Institute, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
|
270
|
Harvat BL, Wang A, Seth P, Jetten AM. Up-regulation of p27Kip1, p21WAF1/Cip1 and p16Ink4a is associated with, but not sufficient for, induction of squamous differentiation. J Cell Sci 1998; 111 ( Pt 9):1185-96. [PMID: 9547295 DOI: 10.1242/jcs.111.9.1185] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Irreversible growth arrest is an early and integral part of squamous cell differentiation in normal human epidermal keratinocytes (NHEKs) and is assumed to be linked to the control of expression of differentiation-specific genes. In this study, we examine the link between the molecular events associated with growth arrest and the expression of differentiation genes. NHEKs that have been induced to undergo growth arrest and differentiation by suspension culture contain populations in both G1 and G2/M of the cell cycle. The irreversible growth arrest state in NHEKs is characterized by an accumulation of the hypophosphorylated forms of Rb and p130, with subsequent down-regulation of levels of Rb, up-regulation of p130 and associated down-regulation of E2F-regulated genes such as cyclin A. These events correlate with an inhibition of G1 cdk activity, mediated in part by an increase in the cdk inhibitors p21(WAF1/Cip1), p27(Kip1) and p16(Ink4a). Flow cytometric and immunoblot analysis demonstrated that the timing of the up-regulation of p27, p16 and p130 corresponds closely with the induction of the squamous-specific genes cornifin alpha (SPRR-1) and transglutaminase type I, suggesting a close link between control of growth arrest and differentiation. However, growth arrest induced by over-expression of p27, p21 or p16 by recombinant adenovirus is not sufficient to induce expression of the differentiation genes, or to invoke the pattern of cell cycle regulatory protein expression characteristic of the differentiation-specific irreversible growth arrest. We conclude that growth arrest mediated by activation of the Rb pathway is not sufficient to trigger terminal squamous differentiation and additional signals which can be generated during suspension culture are required to promote the complete differentiation program.
Collapse
Affiliation(s)
- B L Harvat
- Cell Biology Section, Laboratory of Pulmonary Pathobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
271
|
Affiliation(s)
- M F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital Memphis, Tennessee 38105, USA
| |
Collapse
|
272
|
Peter M. The regulation of cyclin-dependent kinase inhibitors (CKIs). PROGRESS IN CELL CYCLE RESEARCH 1998; 3:99-108. [PMID: 9552409 DOI: 10.1007/978-1-4615-5371-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inhibitors of cyclin-dependent kinases (CKIs) play key roles in coordinating cell proliferation and development. They also function to control critical cell cycle transitions and as effectors of checkpoint pathways. The activity of CKIs is tightly controlled through the cell cycle and in response to various signals. Regulation generally affects the levels or availability of the CKIs rather than changing their intrinsic activities. Mechanisms controlling CKI function include the regulation of transcription, translation and proteolysis. In addition some signals appear to induce sequestration of CKIs within the cells, thereby changing their ability to interact with specific targets.
Collapse
Affiliation(s)
- M Peter
- ISREC, Epalinges/VD, Switzerland
| |
Collapse
|
273
|
Walsh K. Coordinate regulation of cell cycle and apoptosis during myogenesis. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:53-8. [PMID: 9552406 DOI: 10.1007/978-1-4615-5371-7_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During myogenesis, precursor cells irreversibly withdraw from the cell cycle as they differentiate into mature myotubes. The state of myocyte differentiation also influences the propensity of these cells to undergo apoptosis. Proliferative precursor cells are far more susceptible to apoptotic cell death than are terminally differentiated myotubes. The upregulation of the cdk inhibitor p21 and the dephosphorylation of pRb are critical regulatory events that establish both the post-mitotic and apoptosis-resistant states. The coordinate regulation of cell proliferation and death provides the organism with a mechanism to control the deposition of muscle mass during embryonic development.
Collapse
Affiliation(s)
- K Walsh
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Boston, MA, USA
| |
Collapse
|
274
|
Abstract
The eukaryotic cell division cycle is regulated by a family of protein kinases, the cyclin-dependent kinases (cdk's), constituted of at least two subunits, a catalytic subunit (cdk1-7) associated with a regulatory subunit (cyclin A-H). Transient activation of cdk's is responsible for transition through the different phases of the cell cycle. Major abnormalities of cdk's expression and regulation have been described in human tumours. Enzymatic screening is starting to uncover chemical inhibitors of cdk's with anti-mitotic activities. This review summarizes our knowledge of these first inhibitors, their mechanism of action, their effects on the cell cycle, and discusses the potential of such type of inhibitors as anti-tumour agents.
Collapse
Affiliation(s)
- L Meijer
- CNRS, Station Biologique, Roscoff, France
| |
Collapse
|
275
|
Abstract
The intestinal epithelium is maintained by a balance between proliferation, differentiation and death that occurs as cells migrate up the crypt-villus axis. Cell cycle regulators such as cyclins, cyclin-dependent kinases (Cdks) and Cdk inhibitory proteins are expressed in a distinct pattern along the crypt-villus structure, suggesting their role in controlling intestinal cells. This is supported by observations that these cell cycle proteins are regulated by growth factors, nutrients and cell-cell contact in cultured intestinal epithelial cells. One of the key regulators of intestinal cell proliferation and differentiation is transforming growth factor-beta, which is expressed in the gut epithelium.
Collapse
Affiliation(s)
- T C Ko
- Department of Surgery, University of Texas Medical Branch, Galveston 77555-0542, USA
| | | | | |
Collapse
|
276
|
Kilbourne EJ, Evans MJ, Karathanasis SK. E1A represses apolipoprotein AI enhancer activity in liver cells through a pRb- and CBP-independent pathway. Nucleic Acids Res 1998; 26:1761-8. [PMID: 9512550 PMCID: PMC147459 DOI: 10.1093/nar/26.7.1761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein AI (apoAI) promoter/enhancer contains multiple cis -acting elements on which a variety of hepatocyte-enriched and ubiquitous transcription factors function synergistically to regulate liver-specific transcription. Adenovirus E1A proteins repress tissue-specific gene expression and disrupt the differentiated state in a variety of cell types. In this study expression of E1A 12Sor 13S in hepatoblastoma HepG2 cells repressed apoAI enhancer activity 8-fold. Deletion mapping analysis showed that inhibition by E1A was mediated by the apoAI promoter site B. E1A selectively inhibited the ability of HNF3beta and HNF3alpha to transactivate reporter genes controlled by the apoAI site B and the HNF3 binding site from the transthyretin promoter. The E1A-mediated repression of HNF3 activity was not reversed by overexpression of HNF3beta nor did E1A alter nuclear HNF3beta protein levels or inhibit HNF3 binding to DNA in mobility shift assays. Overexpression of two cofactors known to interact with E1A, pRb and CBP failed to overcome inhibition of HNF3 activity. Similarly, mutations in E1A that disrupt its interaction with pRb or CBP did not compromise its ability to repress HNF3beta transcriptional activity. These data suggest that E1A inhibits HNF3 activity by inactivating a limiting cofactor(s) distinct from pRb or CBP.
Collapse
Affiliation(s)
- E J Kilbourne
- Department of Nuclear Receptors, Wyeth-Ayerst Research, 145 King of Prussia Road, Radnor, PA 19087, USA
| | | | | |
Collapse
|
277
|
Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O. Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:39-51. [PMID: 9551084 DOI: 10.1016/s0167-4889(97)00124-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of hepatocyte growth factor (HGF) and its receptor, c-met, in proliferation and differentiation of satellite cells was studied in primary cultures of chicken skeletal muscle satellite cells and a myogenic C2 cell line. HGF mRNA was expressed mainly in the myotubes of both cultures. The addition of conditioned medium derived from those cultures had a scattering effect on the canine kidney epithelial cell line, MDCK. In contrast, c-met mRNA levels decreased during cell differentiation of C2 and primary satellite cells. Application of exogenous HGF to chicken myoblasts resulted in their enhanced DNA synthesis. Among several growth factors, HGF was the first to induce DNA synthesis in quiescent satellite cells, thereby driving them into the cell cycle. Ectopic expression of chicken HGF in primary satellite cells suppressed the activation of muscle-regulatory gene reporter constructs MCK-CAT, MRF4-CAT, MEF2-CAT and 4Rtk-CAT, as well as the gene expression of MyoD and myogenin, and MHC protein expression. Ectopic MyoD reversed HGF's inhibitory effect on MCK transactivation. These data suggest that HGF inhibits cell differentiation by inhibiting the activity of basic helix-loop-helix (bHLH)/E protein heterodimers, thus inhibiting myogenic determination factor activity and subsequent muscle-specific protein expression. During muscle growth and regeneration, HGF plays a dual role in satellite-cell myogenesis, affecting both the proliferation and differentiation of these cells in a paracrine fashion.
Collapse
Affiliation(s)
- R Gal-Levi
- Dept. of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
278
|
Abraham C, Scaglione-Sewell B, Skarosi SF, Qin W, Bissonnette M, Brasitus TA. Protein kinase C alpha modulates growth and differentiation in Caco-2 cells. Gastroenterology 1998; 114:503-9. [PMID: 9496940 DOI: 10.1016/s0016-5085(98)70533-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Caco-2 cells have been used extensively to elucidate events involved in intestinal cell proliferation and differentiation. Because individual isoforms of protein kinase C (PKC) and p21waf1, a cyclin-dependent kinase inhibitor, may regulate these processes, their role(s) on the growth and differentiation of Caco-2 cells were assessed. METHODS Protein abundance and subcellular distribution of several PKC isoforms, as well as the expression of p21waf1, were examined in preconfluent and postconfluent cells. RESULTS In cells at confluence (approximately 7 days postplating) and during their postconfluent phase (up to 20 days postplating), both total protein expression of PKC-alpha and its particulate distribution increased compared with their 3-day postplated counterparts. These findings were in agreement with those obtained by immunocytochemistry of PKC-alpha. In contrast, neither the total expression nor the subcellular distribution of PKC-betaI, -betaII, -delta, or -zeta changed significantly during these time periods. In addition, the expression of p21waf1, which can be induced by PKC-alpha, increased in postconfluent cells. CONCLUSIONS PKC-alpha, but not other isoforms of PKC, may modulate the proliferation and differentiation of Caco-2 cells. This regulation appears to be mediated, at least in part, via a mechanism involving p21waf1.
Collapse
Affiliation(s)
- C Abraham
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
279
|
Inoue K, Sherr CJ. Gene expression and cell cycle arrest mediated by transcription factor DMP1 is antagonized by D-type cyclins through a cyclin-dependent-kinase-independent mechanism. Mol Cell Biol 1998; 18:1590-600. [PMID: 9488476 PMCID: PMC108874 DOI: 10.1128/mcb.18.3.1590] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 12/09/1997] [Indexed: 02/06/2023] Open
Abstract
A novel 761-amino-acid transcription factor, DMP1, contains a central DNA binding domain that includes three imperfect myb repeats flanked by acidic transactivating domains at the amino and carboxyl termini. D-type cyclins associate with a region of the DMP1 DNA binding domain immediately adjacent to the myb repeats to form heteromeric complexes which detectably interact neither with cyclin-dependent kinase 4 (CDK4) nor with DNA. The segment of D-type cyclins required for its interaction with DMP1 falls outside the "cyclin box," which contains the residues predicted to contact CDK4. Hence, D-type cyclin point mutants that do not interact with CDK4 can still bind to DMP1. Enforced coexpression of either of three D-type cyclins (D1, D2, or D3) with DMP1 in mammalian cells canceled its ability to activate gene expression. This property was not shared by cyclins A, B, C, or H; did not depend upon CDK4 or CDK2 coexpression; was not subverted by a mutation in cyclin D1 that prevents its interaction with CDK4; and was unaffected by inhibitors of CDK4 catalytic activity. Introduction of DMP1 into mouse NIH 3T3 fibroblasts inhibited entry into S phase. Cell cycle arrest depended upon the ability of DMP1 to bind to DNA and to transactivate gene expression and was specifically antagonized by coexpression of D-type cyclins, including a D1 point mutant that does not bind to CDK4. Taken together, these findings suggest that DMP1 induces genes that inhibit S phase entry and that D-type cyclins can override DMP1-mediated growth arrest in a CDK-independent manner.
Collapse
Affiliation(s)
- K Inoue
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
280
|
Kiyokawa H, Koff A. Roles of cyclin-dependent kinase inhibitors: lessons from knockout mice. Curr Top Microbiol Immunol 1998; 227:105-20. [PMID: 9479827 DOI: 10.1007/978-3-642-71941-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- H Kiyokawa
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
281
|
Affiliation(s)
- L Hengst
- Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
282
|
Affiliation(s)
- A Carnero
- Cold Spring Harbor Laboratory, NY 11724, USA
| | | |
Collapse
|
283
|
Chellappan SP, Giordano A, Fisher PB. Role of cyclin-dependent kinases and their inhibitors in cellular differentiation and development. Curr Top Microbiol Immunol 1998; 227:57-103. [PMID: 9479826 DOI: 10.1007/978-3-642-71941-7_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S P Chellappan
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
284
|
Ray RB, Steele R, Meyer K, Ray R. Hepatitis C virus core protein represses p21WAF1/Cip1/Sid1 promoter activity. Gene X 1998; 208:331-6. [PMID: 9524287 DOI: 10.1016/s0378-1119(98)00030-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) often causes a prolonged and persistent infection, and an association between hepatocellular carcinoma (HCC) and HCV infection has been noted. Recent experimental evidence using a cloned genomic region suggests that the putative core protein of HCV has numerous biological properties and is implicated as a viral factor for HCV mediated pathogenesis. WAF1/Cip1/Sid1 (p21) is the prototype of a family of proteins that inhibit cyclin-dependent kinases (CDK) and regulate cell cycle progression in eukaryotic cells. In this study, we have observed that the HCV core protein represses the transcriptional activity of the p21 promoter when tested separately by an in-vitro transient expression assay using murine fibroblasts (NIH3T3), human hepatocellular carcinoma (HepG2), and human cervical carcinoma (HeLa) cells. A deletion analysis of the p21 promoter suggested that the HCV core responsive region is located downstream of the p53 binding site. A gel mobility shift analysis showed that the HCV core protein does not bind directly to p21 regulatory sequences. Thus, the HCV core protein appears to act as an effector in the promotion of cell growth by repressing p21 transcription through unknown cellular factor(s).
Collapse
Affiliation(s)
- R B Ray
- Division of Infectious Diseases and Immunology, Saint Louis University, MO 63110, USA.
| | | | | | | |
Collapse
|
285
|
Kobayashi M, Yamauchi Y, Tanaka A. Stable expression of antisense Rb-1 RNA inhibits terminal differentiation of mouse myoblast C2 cells. Exp Cell Res 1998; 239:40-9. [PMID: 9511723 DOI: 10.1006/excr.1997.3880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the roles of the retinoblastoma gene (Rb-1) in skeletal muscle differentiation in vitro, we isolated C2 myoblasts stably expressing an antisense RNA directed to the 3'-untranslated region (3'UTR) of Rb-1 mRNA. The levels of Rb-1 mRNA and its product (pRb) in the clones transfected with antisense Rb were markedly decreased to 25-35% of those in the control clone. Cell growth of the clones was accelerated, especially in medium containing low concentrations of fetal calf serum. Even in differentiation medium with a low mitogen level, the antisense Rb clones proliferated as single-nucleated myoblast-like cells without expressing the sarcometric myosin heavy chain protein, whereas the control clone formed highly multinucleated myotubes after 4 days of culture under the same conditions. Under this condition, the levels of Rb-1 mRNA and pRb in the antisense Rb clones were 30-50% of those in the control clone, and no divergent increase in the Rb-family protein p107 expression was observed. This inhibited differentiation was abrogated by reintroducing expression vectors for the sense 3'UTR of Rb-1 mRNA or Rb-1 mRNA lacking its 3'UTR to the clone transfected with antisense Rb. In the antisense Rb clone cultured in differentiation medium, the amounts of MyoD and myogenin mRNA were markedly decreased on the 2nd day of culture in the differentiation medium. The expression of cell cycle-promoting genes including E2F-1 and cyclin D1 was up-regulated throughout the experiment. These results demonstrate that pRb is essential for the completion of terminal differentiation in C2 cells.
Collapse
Affiliation(s)
- M Kobayashi
- Morinaga Milk Branch, Research Institute of Innovative Technology for the Earth, c/o Biochemical Research Institute, Morinaga Milk Ind. Co., Ltd, Kanagawa, Japan
| | | | | |
Collapse
|
286
|
Megyesi J, Safirstein RL, Price PM. Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 1998; 101:777-82. [PMID: 9466972 PMCID: PMC508625 DOI: 10.1172/jci1497] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The p21 protein is found in the nucleus of most cells at low levels and is induced to elevated levels after DNA damage, causing cell-cycle arrest. We have reported that p21 mRNA is rapidly induced to high levels in murine kidney after acute renal failure. The function(s) in the kidney of p21 induction in cisplatin-induced acute renal failure was studied with mice that are homozygous for a p21 gene deletion. After drug administration, as compared with their wild-type littermates, p21(-/-) mice display a more rapid onset of the physiologic signs of acute renal failure, develop more severe morphologic damage, and have a higher mortality. Therefore, the induction of p21 after cisplatin administration is a protective event for kidney cells. Using both bromodeoxyuridine incorporation and nuclear proliferating cell nuclear antigen detection, we found that cisplatin administration caused kidney cells to start entering the cell-cycle. However, cell-cycle progression is inhibited in wild-type mice, whereas kidney cells in the p21(-/-) mice progress into S-phase. We propose that p21 protects kidneys damaged by cisplatin by preventing DNA-damaged cells from entering the cell-cycle, which would otherwise result in death from either apoptosis or necrosis.
Collapse
Affiliation(s)
- J Megyesi
- Department of Medicine, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
287
|
Lin X, Cui H, Bulleit RF. BDNF accelerates gene expression in cultured cerebellar granule neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 105:277-86. [PMID: 9541745 DOI: 10.1016/s0165-3806(97)00193-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study reports that in purified cultures of postnatal cerebellar granule cells, BDNF significantly accelerated GABAA receptor alpha 6 subunit (GABAA alpha 6) mRNA expression, a marker for terminally differentiated cerebellar granule neurons, and also accelerated p21cip1 expression. p21cip1 is a general cyclin-dependent kinase (Cdk) inhibitor that can inhibit progression through the cell cycle. Alternatively, the expression of p27kip1, another Cdk inhibitor closely related to p21cip1, is not modified by BDNF. In cultured granule cells, the increase in p21cip1 expression induced by BDNF occurred after dividing granule cells had left the cell cycle and thus was not required to direct granule neuron precursors out of the cell cycle. p21cip1 may have an alterative function during granule neuron terminal differentiation, separate from its ability to regulate cell cycle exit. This report shows that, in vitro, BDNF accelerates granule cell gene expression and may thus modulate cerebellar granule cell differentiation.
Collapse
Affiliation(s)
- X Lin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
288
|
Datta B, Min W, Burma S, Lengyel P. Increase in p202 expression during skeletal muscle differentiation: inhibition of MyoD protein expression and activity by p202. Mol Cell Biol 1998; 18:1074-83. [PMID: 9448005 PMCID: PMC108820 DOI: 10.1128/mcb.18.2.1074] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1997] [Accepted: 11/13/1997] [Indexed: 02/05/2023] Open
Abstract
p202 is a primarily nuclear, interferon-inducible murine protein that is encoded by the Ifi 202 gene. Overexpression of p202 in transfected cells retards cell proliferation. p202 modulates the pattern of gene expression by inhibiting the activity of various transcription factors including NF-kappaB, c-Fos, c-Jun, E2F-1, and p53. Here we report that p202 was constitutively expressed in mouse skeletal muscle and that the levels of 202 RNA and p202 greatly increased during the differentiation of cultured C2C12 myoblasts to myotubes. When overexpressed in transfected myoblasts, p202 inhibited the expression of one muscle protein (MyoD) without affecting the expression of a second one (myogenin). Thus, the decrease in the level of MyoD (but not of myogenin) during muscle differentiation may be the consequence of the increase in p202 level. Overexpressed p202 also inhibited the transcriptional activity of both MyoD and myogenin. This inhibition was correlated with an interaction of p202 with both proteins, as well as the inhibition by p202 of the sequence-specific binding of both proteins to DNA. This inhibition of the expression of MyoD and of the transcriptional activity of MyoD and myogenin may account for the inhibition of the induction of myoblast differentiation by premature overexpression of p202.
Collapse
Affiliation(s)
- B Datta
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
289
|
Dupont E, Sansal I, Evrard C, Rouget P. Developmental pattern of expression of NPDC-1 and its interaction with E2F-1 suggest a role in the control of proliferation and differentiation of neural cells. J Neurosci Res 1998; 51:257-67. [PMID: 9469579 DOI: 10.1002/(sici)1097-4547(19980115)51:2<257::aid-jnr14>3.0.co;2-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously identified NPDC-1, a gene specifically expressed in neural cells and involved in the control of cell proliferation and differentiation. In the present study, we have investigated the expression of this gene during mouse development and the interactions of the NPDC-1 protein with cell cycle regulatory proteins. The data show that NPDC-1 mRNA begins to be expressed in a variety of neural structures when the precursors enter into their terminal differentiation. They also indicate that in adult brain, the expression patterns of NPDC-1 and E2F-1 mRNA largely overlap. In addition, the NPDC-1 protein is able to interact directly with the transcription factor E2F-1 that participates in the regulation of the cell cycle, cell survival, and apoptosis. The present results suggest that NPDC-1 might be involved in the terminal differentiation and survival of neural cells and might act through interactions with E2F-1.
Collapse
Affiliation(s)
- E Dupont
- Unité de Génétique Oncologique, CNRS-URA 1967, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
290
|
Lindon C, Montarras D, Pinset C. Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 1998; 140:111-8. [PMID: 9425159 PMCID: PMC2132595 DOI: 10.1083/jcb.140.1.111] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myf5 is the earliest-known muscle-specific factor to be expressed in vivo and its expression is associated with determination of the myoblast lineage. In C2 cells, we show by immunocytolocalization that Myf5 disappears rapidly from cells in which the differentiation program has been initiated. In proliferating myoblasts, the levels of Myf5 and MyoD detected from cell to cell are very heterogeneous. We find that some of the heterogeneity of Myf5 expression arises from a posttranscriptional regulation of Myf5 by the cell cycle. Immunoblotting of extracts from synchronized cultures reveals that Myf5 undergoes periodic fluctuations during the cell cycle and is absent from cells blocked early in mitosis by use of nocodazole. The disappearance of Myf5 from mitotic cells involves proteolytic degradation of a phosphorylated form of Myf5 specific to this phase of the cell cycle. In contrast, MyoD levels are not depleted in mitotic C2 cells. The mitotic destruction of Myf5 is the first example of a transcription factor showing cell cycle-regulated degradation. These results may be significant in view of the possible role of Myf5 in maintaining the determination of proliferating cells and in timing the onset of differentiation.
Collapse
Affiliation(s)
- C Lindon
- Groupe de Développement Cellulaire, Institut Pasteur, Département de Biologie Moléculaire, 75724 Paris Cedex 15.
| | | | | |
Collapse
|
291
|
Wechsler-Reya RJ, Elliott KJ, Prendergast GC. A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Mol Cell Biol 1998; 18:566-75. [PMID: 9418903 PMCID: PMC121524 DOI: 10.1128/mcb.18.1.566] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/1997] [Accepted: 10/20/1997] [Indexed: 02/05/2023] Open
Abstract
Bin1 is a Myc-interacting protein with features of a tumor suppressor. The high level of Bin1 expression in skeletal muscle prompted us to investigate its role in muscle differentiation. Significant levels of Bin1 were observed in undifferentiated C2C12 myoblasts, a murine in vitro model system. Induction of differentiation by growth factor withdrawal led to an upregulation of Bin1 mRNA and to the generation of higher-molecular-weight forms of Bin1 protein by alternate splicing. While Bin1 in undifferentiated cells was localized exclusively in the nucleus, differentiation-associated isoforms of Bin1 were found in the cytoplasm as well. To examine the function of Bin1 during differentiation, we generated stable cell lines that express exogenous human Bin1 cDNA in the sense or antisense orientation. Cells overexpressing Bin1 grew more slowly than control cells and differentiated more rapidly when deprived of growth factors. In contrast, C2C12 cells expressing antisense Bin1 showed an impaired ability to undergo differentiation. Taken together, the results indicated that Bin1 expression, structure, and localization are tightly regulated during muscle differentiation and suggested that Bin1 plays a functional role in the differentiation process.
Collapse
|
292
|
Sellers WR, Novitch BG, Miyake S, Heith A, Otterson GA, Kaye FJ, Lassar AB, Kaelin WG. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev 1998; 12:95-106. [PMID: 9420334 PMCID: PMC316399 DOI: 10.1101/gad.12.1.95] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRB) can inhibit cell cycle progression and promote differentiation. pRB interacts with a variety of transcription factors, including members of the E2F and C-EBP protein families and MyoD, and can either repress or activate transcription depending on the promoter under study. These biological and biochemical activities of pRB have been mapped previously to a core domain, referred to as the pRB pocket. Using a panel of synthetic pRB pocket mutants, we found that the acute induction of a G1/S block by pRB is linked to its ability to both bind to E2F and to repress transcription. In contrast, these functions were not required for pRB to promote differentiation, which correlated with its ability to activate transcription in concert with fate-determining proteins such as MyoD. All tumor-derived pRB mutants tested to date failed to bind to E2F and did not repress transcription. Despite an inability to bind to E2F, pRB mutants associated with a low risk of retinoblastoma, unlike high-risk mutants, retained the ability to activate transcription and promote differentiation. Thus, the pRB pocket participates in dual tumor suppressor functions, one linked to cell cycle progression and the other to differentiation control, and these functions can be genetically and mechanistically dissociated.
Collapse
Affiliation(s)
- W R Sellers
- The Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Sarcevic B, Lilischkis R, Sutherland RL. Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin-CDK complexes. J Biol Chem 1997; 272:33327-37. [PMID: 9407125 DOI: 10.1074/jbc.272.52.33327] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cyclin-dependent kinases (CDKs) promote cell cycle transitions in mammalian cells by phosphorylation of key substrates. To characterize substrates of the G1 and S phase cyclin-CDK complexes, including cyclin D1-CDK4, cyclin D3-CDK4, cyclin D3-CDK6, cyclin E-CDK2, and cyclin A-CDK2, which are largely undefined, we phosphorylated T-47D breast cancer cell nuclear lysates partially purified by ion-exchange chromatography with purified baculovirus expressed cyclin-CDK complexes. A comparison of the substrates that were phosphorylated by the different cyclin D-CDKs revealed some common as well as specific substrates. Hence, cyclin D1-CDK4 specifically phosphorylated a 38-kDa protein while cyclin D3-CDK4 specifically phosphorylated proteins of 105, 102, and 42 kDa. A 24-kDa protein was phosphorylated by both complexes. Cyclin D3-CDK6 exhibited similar substrate preferences to cyclin D3-CDK4, phosphorylating the 105- and 102-kDa proteins but not the 24-kDa protein. Hence, both the cyclin D1 and D3 as well as CDK4 and CDK6 subunits can confer substrate specificity on the overall cyclin D-CDK complex. Cyclin E-CDK2 and cyclin A-CDK2 phosphorylated a greater number of substrates than the cyclin D-CDKs, ranging in size from 10 kDa to over 200 kDa. Twenty-two substrates were common to both complexes, while six were specific for cyclin A-CDK2 and only one protein of 34 kDa was specific for cyclin E-CDK2. These studies indicate that cyclins E and A modulate the specificity of CDK2 and have demonstrated substrates that may be important for the specific roles of these cyclin-CDKs during G1 and S phase progression. Protein sequencing of one of the cyclin-CDK substrates characterized in this study identified this protein as nucleolin, a previously characterized CDC2 (CDK1) substrate, thus indicating the utility of this approach in identifying cyclin-CDK targets. These results show that both the cyclin and CDK subunits can regulate the substrate specificity of the overall cyclin-CDK complex and have demonstrated numerous substrates of D-, E-, and A-type cyclin-CDK complexes potentially involved in regulating transit through the G1 and S phases of the cell cycle.
Collapse
Affiliation(s)
- B Sarcevic
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia.
| | | | | |
Collapse
|
294
|
Abstract
In this review, the complex relationship between tissue-specific transcription factors and genes regulating cell cycle is taken into account. Both E1-A binding proteins belonging to the family of the retinoblastoma gene product and the CBP/p300 coactivator of transcription interact physically and functionally with tissue-specific transcription factor. The relationship between these two classes of molecules regulates cell fate in differentiating cells, deciding whether cells continue to replicate, undergo apoptosis or terminally differentiate. We provide here an update on the recent advances in this field and some models of interaction between E1A binding protein and tissue-specific transcription factors.
Collapse
Affiliation(s)
- G Condorelli
- Kimmel Cancer Center, Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
295
|
Arden SR, Smith AM, Booth MJ, Tweedie S, Gounaris K, Selkirk ME. Identification of serine/threonine protein kinases secreted by Trichinella spiralis infective larvae. Mol Biochem Parasitol 1997; 90:111-9. [PMID: 9497036 DOI: 10.1016/s0166-6851(97)00145-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serine/threonine protein kinase activity was identified in excretory/secretory (ES) products of Trichinella spiralis infective larvae, via phosphorylation of exogenous and endogenous substrates. Protein kinase activity was identified as an authentic secretory product via blockade of release into culture medium by brefeldin A. Enzyme activity was reductant-dependent, and the relative resistance to a panel of inhibitors suggested that it could not be readily assigned to any of the major documented subfamilies of serine/threonine protein kinases. There was no evidence for protein tyrosine kinase activity in ES products. The major phosphorylated proteins in this compartment resolved at 50 and 55 kDa by SDS-PAGE, and are therefore designated pp50/55. These proteins contained mainly phosphoserine, and appear to represent differentially glycosylated variants of a 35 kDa polypeptide, modified via the addition of three and four N-linked oligosaccharides, respectively. An autophosphorylation assay following separation by SDS-PAGE identified two protein kinases of 70 and 135 kDa in ES products.
Collapse
Affiliation(s)
- S R Arden
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
296
|
Abstract
Progression through the eukaryotic cell cycle is regulated by the activities of a family of cyclin dependent kinases (CDKs). These kinases are negatively regulated by phosphorylation and by the action of cyclin kinase inhibitors (CKIs). In mammalian cells, two classes of CKIs have been identified, the INK4 class and the CIP/KIP class. These CKIs are versatile negative regulators of CDK function and have potential roles in development, checkpoint control and tumour suppression. Analysis of CKI knockout indicates that although these inhibitors are not generally required for survival, the phenotypes observed span the gamut of what might be expected for loss of a cell cycle inhibitor. This chapter summarizes our current understanding of the roles of CKIs in growth control.
Collapse
Affiliation(s)
- J W Harper
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
297
|
MITSUI S, OHUCHI A, HOTTA M, TSUBOI R, OGAWA H. Genes for a range of growth factors and cyclin-dependent kinase inhibitors are expressed by isolated human hair follicles. Br J Dermatol 1997. [DOI: 10.1046/j.1365-2133.1997.19372052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
298
|
MITSUI S, OHUCHI A, HOTTA M, TSUBOI R, OGAWA H. Genes for a range of growth factors and cyclin-dependent kinase inhibitors are expressed by isolated human hair follicles. Br J Dermatol 1997. [DOI: 10.1111/j.1365-2133.1997.tb01103.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
299
|
Abstract
Myogenic precursor cells withdraw irreversibly from the cell cycle as they differentiate into mature myotubes. Cell cycle exit occurs early during the differentiation program and is required for normal expression of the contractile phenotype. Differentiated myocytes also display a decreased propensity to undergo apoptotic cell death. The upregulation of the cyclin-dependent kinase inhibitor p21 and the dephosphorylation of retinoblastoma protein (pRb) appear to be critical regulatory events for the establishment of both the postmitotic and apoptosis-resistant states. The coordinated regulation of cell proliferation and death provides the developing embryo with a mechanism for controlling muscle mass and thereby the size of individual motor units.
Collapse
Affiliation(s)
- K Walsh
- Division of Cardiovascular Research, St Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA.
| | | |
Collapse
|
300
|
Groshong SD, Owen GI, Grimison B, Schauer IE, Todd MC, Langan TA, Sclafani RA, Lange CA, Horwitz KB. Biphasic regulation of breast cancer cell growth by progesterone: role of the cyclin-dependent kinase inhibitors, p21 and p27(Kip1). Mol Endocrinol 1997; 11:1593-607. [PMID: 9328342 DOI: 10.1210/mend.11.11.0006] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Depending on the tissue, progesterone is classified as a proliferative or a differentiative hormone. To explain this paradox, and to simplify analysis of its effects, we used a breast cancer cell line (T47D-YB) that constitutively expresses the B isoform of progesterone receptors. These cells are resistant to the proliferative effects of epidermal growth factor (EGF). Progesterone treatment accelerates T47D-YB cells through the first mitotic cell cycle, but arrests them in late G1 of the second cycle. This arrest is accompanied by decreased levels of cyclins D1, D3, and E, disappearance of cyclins A and B, and sequential induction of the cyclin-dependent kinase (cdk) inhibitors p21 and p27(Kip1). The retinoblastoma protein is hypophosphorylated and extensively down-regulated. The activity of the cell cycle-dependent protein kinase, cdk2, is regulated biphasically by progesterone: it increases initially, then decreases. This is consistent with the biphasic proliferative increase followed by arrest produced by one pulse of progesterone. A second treatment with progesterone cannot restart proliferation despite adequate levels of transcriptionally competent PR. Instead, a second progesterone dose delays the fall of p21 and enhances the rise of p27(Kip1), thereby intensifying the progesterone resistance in an autoinhibitory loop. However, during the progesterone-induced arrest, the cell cycling machinery is poised to restart. The first dose of progesterone increases the levels of EGF receptors and transiently sensitizes the cells to the proliferative effects of EGF. We conclude that progesterone is neither inherently proliferative nor antiproliferative, but that it is capable of stimulating or inhibiting cell growth depending on whether treatment is transient or continuous. We also suggest that the G1 arrest after progesterone treatment is accompanied by cellular changes that permit other, possibly tissue-specific, factors to influence the final proliferative or differentiative state.
Collapse
Affiliation(s)
- S D Groshong
- University of Colorado Health Sciences Center, The Molecular Biology Program, Denver 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|