251
|
Nontuberculous Mycobacterium. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
252
|
Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, Burgel PR, Tullis E, Castaños C, Castellani C, Byrnes CA, Cathcart F, Chotirmall SH, Cosgriff R, Eichler I, Fajac I, Goss CH, Drevinek P, Farrell PM, Gravelle AM, Havermans T, Mayer-Hamblett N, Kashirskaya N, Kerem E, Mathew JL, McKone EF, Naehrlich L, Nasr SZ, Oates GR, O'Neill C, Pypops U, Raraigh KS, Rowe SM, Southern KW, Sivam S, Stephenson AL, Zampoli M, Ratjen F. The future of cystic fibrosis care: a global perspective. THE LANCET. RESPIRATORY MEDICINE 2020; 8:65-124. [PMID: 31570318 PMCID: PMC8862661 DOI: 10.1016/s2213-2600(19)30337-6] [Citation(s) in RCA: 633] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
The past six decades have seen remarkable improvements in health outcomes for people with cystic fibrosis, which was once a fatal disease of infants and young children. However, although life expectancy for people with cystic fibrosis has increased substantially, the disease continues to limit survival and quality of life, and results in a large burden of care for people with cystic fibrosis and their families. Furthermore, epidemiological studies in the past two decades have shown that cystic fibrosis occurs and is more frequent than was previously thought in populations of non-European descent, and the disease is now recognised in many regions of the world. The Lancet Respiratory Medicine Commission on the future of cystic fibrosis care was established at a time of great change in the clinical care of people with the disease, with a growing population of adult patients, widespread genetic testing supporting the diagnosis of cystic fibrosis, and the development of therapies targeting defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which are likely to affect the natural trajectory of the disease. The aim of the Commission was to bring to the attention of patients, health-care professionals, researchers, funders, service providers, and policy makers the various challenges associated with the changing landscape of cystic fibrosis care and the opportunities available for progress, providing a blueprint for the future of cystic fibrosis care. The discovery of the CFTR gene in the late 1980s triggered a surge of basic research that enhanced understanding of the pathophysiology and the genotype-phenotype relationships of this clinically variable disease. Until recently, available treatments could only control symptoms and restrict the complications of cystic fibrosis, but advances in CFTR modulator therapies to address the basic defect of cystic fibrosis have been remarkable and the field is evolving rapidly. However, CFTR modulators approved for use to date are highly expensive, which has prompted questions about the affordability of new treatments and served to emphasise the considerable gap in health outcomes for patients with cystic fibrosis between high-income countries, and low-income and middle-income countries (LMICs). Advances in clinical care have been multifaceted and include earlier diagnosis through the implementation of newborn screening programmes, formalised airway clearance therapy, and reduced malnutrition through the use of effective pancreatic enzyme replacement and a high-energy, high-protein diet. Centre-based care has become the norm in high-income countries, allowing patients to benefit from the skills of expert members of multidisciplinary teams. Pharmacological interventions to address respiratory manifestations now include drugs that target airway mucus and airway surface liquid hydration, and antimicrobial therapies such as antibiotic eradication treatment in early-stage infections and protocols for maintenance therapy of chronic infections. Despite the recent breakthrough with CFTR modulators for cystic fibrosis, the development of novel mucolytic, anti-inflammatory, and anti-infective therapies is likely to remain important, especially for patients with more advanced stages of lung disease. As the median age of patients with cystic fibrosis increases, with a rapid increase in the population of adults living with the disease, complications of cystic fibrosis are becoming increasingly common. Steps need to be taken to ensure that enough highly qualified professionals are present in cystic fibrosis centres to meet the needs of ageing patients, and new technologies need to be adopted to support communication between patients and health-care providers. In considering the future of cystic fibrosis care, the Commission focused on five key areas, which are discussed in this report: the changing epidemiology of cystic fibrosis (section 1); future challenges of clinical care and its delivery (section 2); the building of cystic fibrosis care globally (section 3); novel therapeutics (section 4); and patient engagement (section 5). In panel 1, we summarise key messages of the Commission. The challenges faced by all stakeholders in building and developing cystic fibrosis care globally are substantial, but many opportunities exist for improved care and health outcomes for patients in countries with established cystic fibrosis care programmes, and in LMICs where integrated multidisciplinary care is not available and resources are lacking at present. A concerted effort is needed to ensure that all patients with cystic fibrosis have access to high-quality health care in the future.
Collapse
Affiliation(s)
- Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Marcus A Mall
- Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Lung Research, Berlin, Germany
| | | | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Susan Madge
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Jane C Davies
- Royal Brompton and Harefield NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College, London, UK
| | - Pierre-Régis Burgel
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Institut Cochin, Paris, France
| | - Elizabeth Tullis
- St Michael's Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Claudio Castaños
- Hospital de Pediatria "Juan P Garrahan", Buenos Aires, Argentina
| | - Carlo Castellani
- Cystic Fibrosis Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Catherine A Byrnes
- Starship Children's Hospital, Auckland, New Zealand; University of Auckland, Auckland, New Zealand
| | - Fiona Cathcart
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Isabelle Fajac
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Institut Cochin, Paris, France
| | | | - Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | | | - Anna M Gravelle
- Cystic Fibrosis Clinic, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Trudy Havermans
- Cystic Fibrosis Centre, University Hospital Leuven, Leuven, Belgium
| | - Nicole Mayer-Hamblett
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Joseph L Mathew
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Edward F McKone
- School of Medicine, St Vincent's University Hospital, Dublin, Ireland; University College Dublin School of Medicine, Dublin, Ireland
| | - Lutz Naehrlich
- Universities of Giessen and Marburg Lung Center, German Center of Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Samya Z Nasr
- CS Mott Children's Hospital, Ann Arbor, MI, USA; University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Steven M Rowe
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin W Southern
- Alder Hey Children's Hospital, Liverpool, UK; University of Liverpool, Liverpool, UK
| | - Sheila Sivam
- Royal Prince Alfred Hospital, Sydney, NSW, Australia; Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Anne L Stephenson
- St Michael's Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Marco Zampoli
- Division of Paediatric Pulmonology and MRC Unit for Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Felix Ratjen
- University of Toronto, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, Translational Medicine Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
253
|
Comparing the Utilities of Different Multilocus Sequence Typing Schemes for Identifying Outbreak Strains of Mycobacterium abscessus subsp. massiliense. J Clin Microbiol 2019; 58:JCM.01304-19. [PMID: 31619535 DOI: 10.1128/jcm.01304-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Outbreaks of infections by Mycobacterium abscessus, particularly subspecies massiliense, are increasingly reported worldwide. Several multilocus sequence typing (MLST) protocols for grouping international outbreak strains have been developed but not yet directly compared. Using the three-gene (hsp65, rpoB, and secA1), seven-gene (argH, cya, glpK, gnd, murC, pta, and purH) and thirteen-gene (all of the preceding genes plus gdhA, pgm, and pknA) MLST schemes, we identified 22, 38, and 40 unique sequence types (STs), respectively, among a total of 139 nonduplicated M. abscessus isolates. Among subspecies massiliense, three-gene MLST not only clustered all outbreak strains together (in 100% agreement with the seven-gene and thirteen-gene schemes), but it also distinguished between two new STs that would have been grouped together by the seven-gene MLST but were distinct by the thirteen-gene MLST owing to differences in hsp65, rpoB, and pknA Here, we show that an abbreviated MLST may be useful for simultaneous identification of M. abscessus the subspecies level and screening M. abscessus subsp. massiliense isolates with outbreak potential.
Collapse
|
254
|
Goto A, Ando M, Komiya K, Matsumoto H, Fujishima N, Watanabe E, Mitarai S, Kadota JI. Mycobacterium abscessus subsp. abscessus empyema complicated with subcutaneous abscess. J Infect Chemother 2019; 26:300-304. [PMID: 31859040 DOI: 10.1016/j.jiac.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
Abstract
There have been no case reports of thoracic subcutaneous abscess after surgery for Mycobacterium abscessus complex associated empyema. We herein report a case of Mycobacterium abscessus subsp. abscessus (M. abscessus subsp. abscessus) induced subcutaneous abscesses following surgical treatment for concurrent M. abscessus subsp. abscessus -associated empyema and pneumothorax. A 75-year-old woman had M. abscessus subsp. abscessus -associated empyema and pneumothorax. She underwent surgical treatment of decortication and fistulectomy and suffered from M. abscessus subsp. abscessus -associated subcutaneous abscesses after thoracentesis/drainage. A multidisciplinary approach combined with surgical care, thermal therapy, and multidrug chemotherapy contributed to a successful result. An early multidisciplinary approach is believed to be important in cases of M. abscessus subsp. abscessus -associated empyema and subcutaneous abscess.
Collapse
Affiliation(s)
- Akihiko Goto
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Masaru Ando
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| | - Kosaku Komiya
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Hiroyuki Matsumoto
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Nobuhiro Fujishima
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Erina Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24, Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Jun-Ichi Kadota
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| |
Collapse
|
255
|
Nontuberculous Mycobacteria Infection: Source and Treatment. CURRENT PULMONOLOGY REPORTS 2019. [DOI: 10.1007/s13665-019-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
256
|
Degiacomi G, Sammartino JC, Chiarelli LR, Riabova O, Makarov V, Pasca MR. Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. Int J Mol Sci 2019; 20:ijms20235868. [PMID: 31766758 PMCID: PMC6928860 DOI: 10.3390/ijms20235868] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) have recently emerged as important pathogens among cystic fibrosis (CF) patients worldwide. Mycobacterium abscessus is becoming the most worrisome NTM in this cohort of patients and recent findings clarified why this pathogen is so prone to this disease. M. abscessus drug therapy takes up to 2 years and its failure causes an accelerated lung function decline. The M. abscessus colonization of lung alveoli begins with smooth strains producing glycopeptidolipids and biofilm, whilst in the invasive infection, "rough" mutants are responsible for the production of trehalose dimycolate, and consequently, cording formation. Human-to-human M. abscessus transmission was demonstrated among geographically separated CF patients by whole-genome sequencing of clinical isolates worldwide. Using a M. abscessus infected CF zebrafish model, it was demonstrated that CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction seems to have a specific role in the immune control of M. abscessus infections only. This pathogen is also intrinsically resistant to many drugs, thanks to its physiology and to the acquisition of new mechanisms of drug resistance. Few new compounds or drug formulations active against M. abscessus are present in preclinical and clinical development, but recently alternative strategies have been investigated, such as phage therapy and the use of β-lactamase inhibitors.
Collapse
Affiliation(s)
- Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - José Camilla Sammartino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- IUSS—University School for Advanced Studies, 27100 Pavia, Italy
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
| | - Olga Riabova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Vadim Makarov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.R.); (V.M.)
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.D.); (J.C.S.); (L.R.C.)
- Correspondence: ; Tel.: +39-0382-985576
| |
Collapse
|
257
|
Skwark MJ, Torres PHM, Copoiu L, Bannerman B, Floto RA, Blundell TL. Mabellini: a genome-wide database for understanding the structural proteome and evaluating prospective antimicrobial targets of the emerging pathogen Mycobacterium abscessus. Database (Oxford) 2019; 2019:5611286. [PMID: 31681953 PMCID: PMC6853642 DOI: 10.1093/database/baz113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 02/02/2023]
Abstract
Mycobacterium abscessus, a rapid growing, multidrug resistant, nontuberculous mycobacteria, can cause a wide range of opportunistic infections, particularly in immunocompromised individuals. M. abscessus has emerged as a growing threat to patients with cystic fibrosis, where it causes accelerated inflammatory lung damage, is difficult and sometimes impossible to treat and can prevent safe transplantation. There is therefore an urgent unmet need to develop new therapeutic strategies. The elucidation of the M. abscessus genome in 2009 opened a wide range of research possibilities in the field of drug discovery that can be more effectively exploited upon the characterization of the structural proteome. Where there are no experimental structures, we have used the available amino acid sequences to create 3D models of the majority of the remaining proteins that constitute the M. abscessus proteome (3394 proteins and over 13 000 models) using a range of up-to-date computational tools, many developed by our own group. The models are freely available for download in an on-line database, together with quality data and functional annotation. Furthermore, we have developed an intuitive and user-friendly web interface (http://www.mabellinidb.science) that enables easy browsing, querying and retrieval of the proteins of interest. We believe that this resource will be of use in evaluating the prospective targets for design of antimicrobial agents and will serve as a cornerstone to support the development of new molecules to treat M. abscessus infections.
Collapse
Affiliation(s)
- Marcin J Skwark
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Pedro H M Torres
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Liviu Copoiu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Bridget Bannerman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
and,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge CB23 3RE, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK,Corresponding author: Tel: +44 1223 333628; Fax: +44 1223 766002;
| |
Collapse
|
258
|
Prevention of transmission of Mycobacterium abscessus among patients with cystic fibrosis. Curr Opin Pulm Med 2019; 25:646-653. [DOI: 10.1097/mcp.0000000000000621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
259
|
Bouso JM, Planet PJ. Complete nontuberculous mycobacteria whole genomes using an optimized DNA extraction protocol for long-read sequencing. BMC Genomics 2019; 20:793. [PMID: 31666009 PMCID: PMC6822416 DOI: 10.1186/s12864-019-6134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Background Nontuberculous mycobacteria (NTM) are a major cause of pulmonary and systemic disease in at-risk populations. Gaps in knowledge about transmission patterns, evolution, and pathogenicity during infection have prompted a recent surge in genomic NTM research. Increased availability and affordability of whole genome sequencing (WGS) techniques provide new opportunities to sequence and construct complete bacterial genomes faster and at a lower cost. However, extracting large quantities of pure genomic DNA is particularly challenging with NTM due to its slow growth and recalcitrant cell wall. Here we report a DNA extraction protocol that is optimized for long-read WGS of NTM, yielding large quantities of highly pure DNA with no additional clean-up steps. Results Our DNA extraction method was compared to 6 other methods with variations in timing of mechanical disruption and enzymatic digestion of the cell wall, quantity of matrix material, and reagents used in extraction and precipitation. We tested our optimized method on 38 clinical isolates from the M. avium and M. abscessus complexes, which yielded optimal quality and quantity measurements for Oxford Nanopore Technologies sequencing. We also present the efficient completion of circularized M. avium subspecies hominissuis genomes using our extraction technique and the long-read sequencing MinION platform, including the identification of a novel plasmid. Conclusions Our optimized extraction protocol and assembly pipeline was both sufficient and efficient for genome closure. We expect that our finely-tuned extraction method will prove to be a valuable tool in long-read sequencing and completion of mycobacterial genomes going forward. Utilization of comprehensive, long-read based approaches will advance the understanding evolution and pathogenicity of NTM infections.
Collapse
Affiliation(s)
- Jennifer M Bouso
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Planet
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| |
Collapse
|
260
|
Extremely Low Hit Rate in a Diverse Chemical Drug Screen Targeting Mycobacterium abscessus. Antimicrob Agents Chemother 2019; 63:AAC.01008-19. [PMID: 31427298 DOI: 10.1128/aac.01008-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
261
|
Cheng Y, Xie J, Lee KH, Gaur RL, Song A, Dai T, Ren H, Wu J, Sun Z, Banaei N, Akin D, Rao J. Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe. Sci Transl Med 2019; 10:10/454/eaar4470. [PMID: 30111644 DOI: 10.1126/scitranslmed.aar4470] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/26/2018] [Indexed: 01/07/2023]
Abstract
Tuberculosis (TB) remains a public health crisis and a leading cause of infection-related death globally. Although in high demand, imaging technologies that enable rapid, specific, and nongenetic labeling of live Mycobacterium tuberculosis (Mtb) remain underdeveloped. We report a dual-targeting strategy to develop a small molecular probe (CDG-DNB3) that can fluorescently label single bacilli within 1 hour. CDG-DNB3 fluoresces upon activation of the β-lactamase BlaC, a hydrolase naturally expressed in Mtb, and the fluorescent product is retained through covalent modification of the Mtb essential enzyme decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1). This dual-targeting probe not only discriminates live from dead Bacillus Calmette-Guérin (BCG) but also shows specificity for Mtb over other bacterial species including 43 nontuberculosis mycobacteria (NTM). In addition, CDG-DNB3 can image BCG phagocytosis in real time, as well as Mtb in patients' sputum. Together with a low-cost, self-driven microfluidic chip, we have achieved rapid labeling and automated quantification of live BCG. This labeling approach should find many potential applications for research toward TB pathogenesis, treatment efficacy assessment, and diagnosis.
Collapse
Affiliation(s)
- Yunfeng Cheng
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghang Xie
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyung-Hyun Lee
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute of Bioengineering and Nanotechnology, The Nanos, Singapore 138669, Singapore
| | - Rajiv L Gaur
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA 94304, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aiguo Song
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tingting Dai
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjun Ren
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jiannan Wu
- National Tuberculosis Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P. R. China.,Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P. R. China
| | - Zhaogang Sun
- National Tuberculosis Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P. R. China.,Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P. R. China
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA 94304, USA.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Demir Akin
- Center for Cancer Nanotechnology Excellence, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianghong Rao
- Departments of Radiology and Chemistry, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
262
|
Abstract
Nontuberculous mycobacteria (NTM) are members of the Mycobacterium genus other than Mycobacterium tuberculosis complex and Mycobacterium leprae. NTM are widely distributed in the environment and are increasingly recognized as causes of chronic lung disease that can be challenging to treat. In this brief review, we consider recent developments in the ecology, epidemiology, natural history, and treatment of NTM lung disease with a focus on Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex .
Collapse
Affiliation(s)
- David Horne
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Harborview Medical Center, Seattle, USA
| | - Shawn Skerrett
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Harborview Medical Center, Seattle, USA
| |
Collapse
|
263
|
The TetR Family Transcription Factor MAB_2299c Regulates the Expression of Two Distinct MmpS-MmpL Efflux Pumps Involved in Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother 2019; 63:AAC.01000-19. [PMID: 31332077 DOI: 10.1128/aac.01000-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Mycobacterium abscessus is a human pathogen responsible for severe respiratory infections, particularly in patients with underlying lung disorders. Notorious for being highly resistant to most antimicrobials, new therapeutic approaches are needed to successfully treat M. abscessus-infected patients. Clofazimine (CFZ) and bedaquiline (BDQ) are two antibiotics used for the treatment of multidrug-resistant tuberculosis and are considered alternatives for the treatment of M. abscessus pulmonary disease. To get insights into their mechanisms of resistance in M. abscessus, we previously characterized the TetR transcriptional regulator MAB_2299c, which controls expression of the MAB_2300-MAB_2301 genes, encoding an MmpS-MmpL efflux pump. Here, in silico studies identified a second mmpS-mmpL (MAB_1135c-MAB_1134c) target of MAB_2299c. A palindromic DNA sequence upstream of MAB_1135c, sharing strong homology with the one located upstream of MAB_2300, was found to form a complex with the MAB_2299c regulator in electrophoretic mobility shift assays. Deletion of MAB_1135c-1134c in a wild-type strain led to increased susceptibility to both CFZ and BDQ. In addition, deletion of these genes in a CFZ/BDQ-susceptible mutant lacking MAB_2299c as well as MAB_2300-MAB_2301 further exacerbated the sensitivity of this strain to both drugs in vitro and inside macrophages. Overall, these results indicate that MAB_1135c-1134c encodes a new MmpS-MmpL efflux pump system involved in the intrinsic resistance to CFZ and BDQ. They also support the view that MAB_2299c controls the expression of two separate MmpS-MmpL efflux pumps, substantiating the importance of MAB_2299c as a marker of resistance to be considered when assessing drug susceptibility in clinical isolates.
Collapse
|
264
|
Interference with Pseudomonas aeruginosa Quorum Sensing and Virulence by the Mycobacterial Pseudomonas Quinolone Signal Dioxygenase AqdC in Combination with the N-Acylhomoserine Lactone Lactonase QsdA. Infect Immun 2019; 87:IAI.00278-19. [PMID: 31308081 DOI: 10.1128/iai.00278-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.
Collapse
|
265
|
Kirst ME, Baker D, Li E, Abu-Hasan M, Wang GP. Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation. PLoS One 2019; 14:e0222323. [PMID: 31536536 PMCID: PMC6752789 DOI: 10.1371/journal.pone.0222323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Airways of children with cystic fibrosis (CF) harbor complex polymicrobial communities which correlates with pulmonary disease progression and use of antibiotics. Throat swabs are widely used in young CF children as a surrogate to detect potentially pathogenic microorganisms in lower airways. However, the relationship between upper and lower airway microbial communities remains poorly understood. This study aims to determine (1) to what extent oropharyngeal microbiome resembles the lung microbiome in CF children and (2) if lung microbiome composition correlates with airway inflammation. Method Throat swabs and bronchoalveolar lavage (BAL) were obtained concurrently from 21 CF children and 26 disease controls. Oropharyngeal and lung microbiota were analyzed using 16S rRNA deep sequencing and correlated with neutrophil counts in BAL and antibiotic exposure. Results Oropharyngeal microbial communities clustered separately from lung communities and had higher microbial diversity (p < 0.001). CF microbiome differed significantly from non-CF controls, with a higher abundance of Proteobacteria in both upper and lower CF airways. Neutrophil count in the BAL correlated negatively with the diversity but not richness of the lung microbiome. In CF children, microbial genes involved in bacterial motility proteins, two-component system, flagella assembly, and secretion system were enriched in both oropharyngeal and lung microbiome, whereas genes associated with synthesis and metabolism of nucleic acids and protein dominated the non-CF controls. Conclusions This study identified a unique microbial profile with altered microbial diversity and metabolic functions in CF airways which is significantly affected by airway inflammation. These results highlight the limitations of using throat swabs as a surrogate to study lower airway microbiome and metagenome in CF children.
Collapse
Affiliation(s)
- Mariana E. Kirst
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Dawn Baker
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Eric Li
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Mutasim Abu-Hasan
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Gary P. Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
- Medical Service, Infectious Disease Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
266
|
Prevalence and risk factors of pulmonary nontuberculous mycobacterial infections in the Zhejiang Province of China. Epidemiol Infect 2019; 147:e269. [PMID: 31506134 PMCID: PMC6807301 DOI: 10.1017/s0950268819001626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Risk factors and prevalence of pulmonary nontuberculous mycobacterial (NTM) diseases were retrospectively evaluated in 1208 suspected pulmonary TB patients seeking care at the Affiliated Hospital of Hangzhou Normal University between July 2018 and December 2018. Further analysis of 390 culture-positive cases demonstrated that 358 (358/390, 91.8%) were infected with Mycobacterium tuberculosis (MTB), 24 (24/390, 6.2%) with NTM and eight (8/390, 2.0%) with both MTB and NTM. M. intracellulare was the most prevalent NTM isolated (16/24, 66.7%), followed by M. abscessus (3/24), M. kansasii (2/24), M. avium (1/24), M. szulgai (1/24) and M. fortuitum (1/24). The difference between NTM and TB case rates for the ⩾65-year-old age group significantly exceeded the difference for the reference group (patients aged 25-44 years) (OR (95% CI): 4.63 (1.03-20.90)). Pulmonary NTM diseases incidence positively correlated with prior TB history (OR (95% CI): 12.92 (3.24-31.82)). Moreover, pulmonary NTM patients were significantly more likely to exhibit underlying bronchiectasis than pulmonary TB patients (OR (95% CI): 18.89 (7.54-47.88)). In conclusion, approximately one-tenth of culture-positive suspected pulmonary TB patients are infected with NTM (most frequently M. intracellulare) in Zhejiang Province, China. The elderly and those with bronchiectasis or a history of TB are at the greatest risk of contracting pulmonary NTM disease.
Collapse
|
267
|
Rokadiya S, Millar FR, Tiberi S. Non-tuberculous mycobacterial pulmonary disease: a clinical update. Br J Hosp Med (Lond) 2019; 79:C118-C122. [PMID: 30070955 DOI: 10.12968/hmed.2018.79.8.c118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S Rokadiya
- Infectious Diseases and General Medicine Specialist Registrar, Royal London Hospital, Bart's Health NHS Trust, London E1 1BB
| | - F R Millar
- ECAT Clinical Research Fellow and Respiratory Specialist Registrar, University of Edinburgh, Edinburgh
| | - S Tiberi
- Infectious Diseases Consultant, Royal London Hospital, Bart's Health NHS Trust, London
| |
Collapse
|
268
|
Stoudemire W, Jiang X, Zhou JJ, Maykowski P, Kosorok MR, Muhlebach MS, Saiman L. Cystic fibrosis program characteristics associated with adoption of 2013 infection prevention and control recommendations. Am J Infect Control 2019; 47:1090-1095. [PMID: 31036402 DOI: 10.1016/j.ajic.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND The Cystic Fibrosis (CF) Foundation disseminated an updated guideline for infection prevention and control (IP&C) practices for CF care programs in 2013. Assessing adoption rates of IP&C recommendations is crucial to evaluate their impact. METHODS CF care programs provided their written IP&C policies for CF. Policies were analyzed to determine adoption of selected recommendations new in 2013, as well as recommendations made in both 2003 and 2013. Weighted adoption scores were analyzed for association with program characteristics. RESULTS The median number of new recommendations adopted by each program was 7 (mean 6.3, range 0-9). The most commonly adopted new recommendations were universal mask use by patients in both inpatient and outpatient settings (85% and 87%, respectively) and contact precautions for CF patients in inpatient and outpatient settings (90% for both). The least frequently adopted new recommendations were the "6-foot rule" in inpatient settings (n = 66, 53%) and auditing disinfection of surfaces in clinic (n = 64, 49%). Larger program size was associated with a higher weighted adoption score (odds ratio [OR] 1.9, P =.02). CONCLUSIONS Whereas most programs adopted more than one-half of the selected IP&C recommendations assessed, adoption was variable. Efforts to improve adoption of IP&C recommendations should focus on smaller programs with fewer resources.
Collapse
Affiliation(s)
| | - Xiaotong Jiang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | - Juyan J Zhou
- Department of Pediatrics, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | - Philip Maykowski
- Department of Pediatrics, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | - Michael R Kosorok
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC
| | | | - Lisa Saiman
- Department of Pediatrics, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY; Department of Infection Prevention & Control, New York-Presbyterian Hospital New York, NY.
| |
Collapse
|
269
|
Auranofin Activity Exposes Thioredoxin Reductase as a Viable Drug Target in Mycobacterium abscessus. Antimicrob Agents Chemother 2019; 63:AAC.00449-19. [PMID: 31262763 DOI: 10.1128/aac.00449-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/23/2019] [Indexed: 02/01/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are highly drug-resistant, opportunistic pathogens that can cause pulmonary disease. The outcomes of the currently recommended treatment regimens are poor, especially for Mycobacterium abscessus New or repurposed drugs are direly needed. Auranofin, a gold-based antirheumatic agent, was investigated for Mycobacterium tuberculosis Here, we test auranofin against NTM in vitro and ex vivo We tested the susceptibility of 63 NTM isolates to auranofin using broth microdilution. Next, we assessed synergy between auranofin and antimycobacterial drugs using the checkerboard method and calculated the fractional inhibition concentration index (FICI). Using time-kill kinetics assays (TK), we assessed pharmacodynamics of auranofin alone and in combination with drug combinations showing the lowest FICIs for M. abscessus CIP 104536. A response surface analysis was used to assess synergistic interactions over time in TKs. Primary isolated macrophages were infected with M. abscessus and treated with auranofin. Finally, using KEGG Orthology, we looked for orthologues to auranofins drug target in M. tuberculosis M. abscessus had the lowest auranofin MIC50 (2 μg/ml) among the tested NTM. The lowest average FICIs were observed between auranofin and amikacin (0.45) and linezolid (0.50). Auranofin exhibited concentration-dependent killing of M. abscessus, with >1-log killing at concentrations of >2× MIC. Only amikacin was synergistic with auranofin according to Bliss independence. Auranofin could not lower the intracellular bacterial load in macrophages. Auranofin itself may not be feasible for M. abscessus treatment, but these data point toward a promising, unutilized drug target.
Collapse
|
270
|
Lande L, Alexander DC, Wallace RJ, Kwait R, Iakhiaeva E, Williams M, Cameron ADS, Olshefsky S, Devon R, Vasireddy R, Peterson DD, Falkinham JO. Mycobacterium avium in Community and Household Water, Suburban Philadelphia, Pennsylvania, USA, 2010-2012. Emerg Infect Dis 2019; 25:473-481. [PMID: 30789130 PMCID: PMC6390762 DOI: 10.3201/eid2503.180336] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Attention to environmental sources of Mycobacterium avium complex (MAC) infection is a vital component of disease prevention and control. We investigated MAC colonization of household plumbing in suburban Philadelphia, Pennsylvania, USA. We used variable-number tandem-repeat genotyping and whole-genome sequencing with core genome single-nucleotide variant analysis to compare M. avium from household plumbing biofilms with M. avium isolates from patient respiratory specimens. M. avium was recovered from 30 (81.1%) of 37 households, including 19 (90.5%) of 21 M. avium patient households. For 11 (52.4%) of 21 patients with M. avium disease, isolates recovered from their respiratory and household samples were of the same genotype. Within the same community, 18 (85.7%) of 21 M. avium respiratory isolates genotypically matched household plumbing isolates. Six predominant genotypes were recovered across multiple households and respiratory specimens. M. avium colonizing municipal water and household plumbing may be a substantial source of MAC pulmonary infection.
Collapse
|
271
|
Whitehouse A, Thomas SE, Brown KP, Fanourakis A, Chan DSH, Libardo MDJ, Mendes V, Boshoff HIM, Floto RA, Abell C, Blundell TL, Coyne AG. Development of Inhibitors against Mycobacterium abscessus tRNA (m 1G37) Methyltransferase (TrmD) Using Fragment-Based Approaches. J Med Chem 2019; 62:7210-7232. [PMID: 31282680 PMCID: PMC6691401 DOI: 10.1021/acs.jmedchem.9b00809] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Indexed: 02/02/2023]
Abstract
Mycobacterium abscessus (Mab) is a rapidly growing species of multidrug-resistant nontuberculous mycobacteria that has emerged as a growing threat to individuals with cystic fibrosis and other pre-existing chronic lung diseases. Mab pulmonary infections are difficult, or sometimes impossible, to treat and result in accelerated lung function decline and premature death. There is therefore an urgent need to develop novel antibiotics with improved efficacy. tRNA (m1G37) methyltransferase (TrmD) is a promising target for novel antibiotics. It is essential in Mab and other mycobacteria, improving reading frame maintenance on the ribosome to prevent frameshift errors. In this work, a fragment-based approach was employed with the merging of two fragments bound to the active site, followed by structure-guided elaboration to design potent nanomolar inhibitors against Mab TrmD. Several of these compounds exhibit promising activity against mycobacterial species, including Mycobacterium tuberculosis and Mycobacterium leprae in addition to Mab, supporting the use of TrmD as a target for the development of antimycobacterial compounds.
Collapse
Affiliation(s)
- Andrew
J. Whitehouse
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Sherine E. Thomas
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Karen P. Brown
- Molecular
Immunity Unit, Department of Medicine, MRC Laboratory of Molecular
Biology, University of Cambridge, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
- Cambridge
Centre for Lung Infection, Royal Papworth
Hospital, Cambridge CB23 3RE, U.K.
| | - Alexander Fanourakis
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniel S.-H. Chan
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - M. Daben J. Libardo
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology,
National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology,
National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - R. Andres Floto
- Molecular
Immunity Unit, Department of Medicine, MRC Laboratory of Molecular
Biology, University of Cambridge, Francis Crick Avenue, Cambridge
Biomedical Campus, Cambridge CB2 0QH, U.K.
- Cambridge
Centre for Lung Infection, Royal Papworth
Hospital, Cambridge CB23 3RE, U.K.
| | - Chris Abell
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Anthony G. Coyne
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
272
|
Abstract
Aside from the traditional CF pathogens, Haemophilus influenzae, Staphylococcus aureus and Pseudomonas aeruginosa, there are an increasing number of organisms found to have chronic carriage in patients with cystic fibrosis, including gram-negative bacteria, non-tuberculous mycobacteria, anaerobic bacteria and fungal species. Some of these lower prevalence organisms, such as Burkholderia cenocepacia and Mycobacterium abscessus complex, are recognised as true pathogens associated with significant adverse clinical consequences, whilst for others the relative pathogenicity and need for treatment are unclear. This article will highlight some of the challenges in assessing what is a pathogen in CF and the potential implications of infection with different organisms for individual patients.
Collapse
|
273
|
Synergistic Efficacy of β-Lactam Combinations against Mycobacterium abscessus Pulmonary Infection in Mice. Antimicrob Agents Chemother 2019; 63:AAC.00614-19. [PMID: 31109979 DOI: 10.1128/aac.00614-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/11/2019] [Indexed: 01/31/2023] Open
Abstract
Mycobacterium abscessus is an emerging pathogen capable of causing invasive pulmonary infections in patients with chronic lung diseases. These infections are difficult to treat, necessitating prolonged multidrug therapy, which is further complicated by extensive intrinsic and acquired resistance exhibited by clinical M. abscessus isolates. Therefore, development of novel treatment regimens effective against drug-resistant strains is crucial. Prior studies have demonstrated synergistic efficacy of several β-lactams against M. abscessus in vitro; however, these combinations have never been tested in an animal model of M. abscessus pulmonary disease. We utilized a recently developed murine system of sustained M. abscessus lung infection delivered via an aerosol route to test the bactericidal efficacy of four novel dual β-lactam combinations and one β-lactam/β-lactamase inhibitor combination. All five of the novel combinations exhibited synergy and resulted in at least 6-log10 reductions in bacterial burden in the lungs of mice at 4 weeks compared to untreated controls (P = 0.038).
Collapse
|
274
|
Visser SK, Bye PTP, Fox GJ, Burr LD, Chang AB, Holmes-Liew CL, King P, Middleton PG, Maguire GP, Smith D, Thomson RM, Stroil-Salama E, Britton WJ, Morgan LC. Australian adults with bronchiectasis: The first report from the Australian Bronchiectasis Registry. Respir Med 2019; 155:97-103. [PMID: 31326739 DOI: 10.1016/j.rmed.2019.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND /objective: There are no large, multi-centre studies of Australians with bronchiectasis. The Australian Bronchiectasis Registry (ABR) was established in 2015 to create a longitudinal research platform. We aimed to describe the baseline characteristics of adult ABR participants and assess the impact of disease severity and exacerbation phenotype on quality of life (QoL). METHODS The ABR is a centralised database of patients with radiologically confirmed bronchiectasis unrelated to cystic fibrosis. We analysed the baseline data of adult patients (≥18 years). RESULTS From March 2016-August 2018, 799 adults were enrolled from 14 Australian sites. Baseline data were available for 589 adults predominantly from six tertiary centres (420 female, median age 71 years (interquartile range 64-77), 14% with chronic Pseudomonas aeruginosa infection). Most patients had moderate or severe disease based on the Bronchiectasis Severity Index (BSI) (84%) and FACED (59%) composite scores. Using Global Lung function Initiative-2012 reference equations, the majority of patients (48%) had normal spirometry; only 34% had airflow obstruction (FEV1/FVC < LLN). Disease severity scores (BSI and FACED) were negatively correlated with QoL-Bronchiectasis domain scores (rs between -0.09 and -0.58). The frequent exacerbator phenotype (≥3 in the preceding year) was identified in 23%; this group had lower scores in all QoL-B domains (p ≤ 0.001) and more hospitalisations (p < 0.001) than those with <3 exacerbations. CONCLUSIONS The largest cohort of Australian adults with bronchiectasis has been described. Using contemporary criteria, most patients with bronchiectasis did not have airflow obstruction. The frequent exacerbation trait connotes poorer QoL and greater health-care utilisation.
Collapse
Affiliation(s)
- Simone K Visser
- Central Clinical School Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2006 and Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| | - Peter T P Bye
- Central Clinical School Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2006 and Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Greg J Fox
- Central Clinical School Faculty of Medicine and Health, The University of Sydney, Sydney NSW 2006 and Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Lucy D Burr
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD and Mater Research, University of Queensland, QLD, Australia
| | - Anne B Chang
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Queensland University of Technology, Brisbane, Australia and Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Chien-Li Holmes-Liew
- Department of Thoracic Medicine, Royal Adelaide Hospital, South Australia, University of Adelaide, South Australia, Australia
| | - Paul King
- Monash Respiratory and Sleep Medicine, Monash Medical Centre, Melbourne, VIC, Australia
| | - Peter G Middleton
- Department of Respiratory Medicine, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Graeme P Maguire
- Western Clinical School, University of Melbourne, Melbourne Australia 3021 and General Internal Medicine, Western Health, Melbourne Australia, 3011, Australia
| | - Daniel Smith
- The Prince Charles Hospital - Thoracic Medicine, Brisbane, Australia. QIMR Berghofer Medical Research Institute - Lung Inflammation and Infection Laboratory, Herston, Australia
| | - Rachel M Thomson
- Department of Respiratory Medicine, Greenslopes Private Hospital, Greenslopes, QLD, 4120, Australia
| | | | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lucy C Morgan
- Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney NSW 2006 and Department of Respiratory Medicine, Concord General Repatriation Hospital, Concord, NSW, 2137, Australia
| |
Collapse
|
275
|
Ung KL, Alsarraf HMAB, Olieric V, Kremer L, Blaise M. Crystal structure of the aminoglycosides N-acetyltransferase Eis2 from Mycobacterium abscessus. FEBS J 2019; 286:4342-4355. [PMID: 31254444 DOI: 10.1111/febs.14975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023]
Abstract
Mycobacterium abscessus is an emerging human pathogen that is notorious for being one of the most drug-resistant species of Mycobacterium. It has developed numerous strategies to overcome the antibiotic stress response, limiting treatment options and leading to frequent therapeutic failure. The panel of aminoglycosides (AG) usually used in the treatment of M. abscessus pulmonary infections is restricted by chemical modification of the drugs by the N-acetyltransferase Eis2 protein (Mabs_Eis2). This enzyme acetylates the primary amine of AGs, preventing these antibiotics from binding ribosomal RNA and thereby impairing their activity. In this study, the high-resolution crystal structures of Mabs_Eis2 in its apo- and cofactor-bound forms were solved. The structural analysis of Mabs_Eis2, supported by the kinetic characterization of the enzyme, highlights the large substrate specificity of the enzyme. Furthermore, in silico docking and biochemical approaches attest that Mabs_Eis2 modifies clinically relevant drugs such as kanamycin and amikacin, with a better efficacy for the latter. In line with previous biochemical and in vivo studies, our work suggests that Mabs_Eis2 represents an attractive pharmacological target to be further explored. The high-resolution crystal structures presented here may pave the way to the design of Eis2-specific inhibitors with the potential to counteract the intrinsic resistance levels of M. abscessus to an important class of clinically important antibiotics. DATABASE: Structural data are available in the PDB database under the accession numbers: 6RFY, 6RFX and 6RFT.
Collapse
Affiliation(s)
- Kien Lam Ung
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France
| | - Husam M A B Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, France
| |
Collapse
|
276
|
Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J 2019; 54:13993003.00250-2019. [PMID: 31221809 DOI: 10.1183/13993003.00250-2019] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/31/2019] [Indexed: 02/03/2023]
Abstract
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a challenging infection which is becoming increasingly prevalent, particularly in the elderly, for reasons which are unknown. While underlying lung disease is a well-established risk factor for NTM-PD, it may also occur in apparently healthy individuals. No single common genetic or immunological defect has been identified in this group, and it is likely that multiple pathways contribute towards host susceptibility to NTM-PD which further interact with environmental and microbiological factors leading to the development of disease.The diagnosis of NTM-PD relies on the integration of clinical, radiological and microbiological results. The clinical course of NTM-PD is heterogeneous, with some patients remaining stable without the need for treatment and others developing refractory disease associated with considerable mortality and morbidity. Treatment regimens are based on the identity of the isolated species, drug sensitivity testing (for some agents) and the severity of disease. Multiple antibiotics are typically required for prolonged periods of time and treatment is frequently poorly tolerated. Surgery may be beneficial in selected cases. In some circumstances cure may not be attainable and there is a pressing need for better regimens to treat refractory and drug-resistant NTM-PD.This review summarises current knowledge on the epidemiology, aetiology and diagnosis of NTM-PD and discusses the treatment of two of the most clinically significant species, the M. avium and M. abscessus complexes, with a focus on refractory disease and novel therapies.
Collapse
Affiliation(s)
- Steven Cowman
- Host Defence Unit, Royal Brompton Hospital, London, UK.,Imperial College, London, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David E Griffith
- Dept of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton Hospital, London, UK .,Imperial College, London, UK
| |
Collapse
|
277
|
Longworth SA, Daly JS. Management of infections due to nontuberculous mycobacteria in solid organ transplant recipients-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13588. [PMID: 31077618 DOI: 10.1111/ctr.13588] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023]
Abstract
These updated guidelines from the American Society of Transplantation Infectious Diseases Community of Practice review the epidemiology, diagnosis, prevention, and management of nontuberculous mycobacterial infections in the pre- and post-transplant period. NTM commonly cause one of five different clinical syndromes: pleuropulmonary disease, skin and soft tissue infection, osteoarticular infection, disseminated disease, including that caused by catheter-associated infection, and lymphadenitis. Diagnosis of these infections can be challenging, particularly when they are isolated from nonsterile spaces, owing to their ubiquity in nature. Consequently, diagnosis of pulmonary infections with these pathogens requires fulfillment of microbiologic, radiographic, and clinical criteria to address this concern. A combination of culture and molecular diagnostic techniques is often required to make a species-level identification. Treatment varies depending on the species isolated and is complex, owing to drug toxicities, need for long-term multidrug regimens, and consideration of complex drug-drug interactions between antimicrobials and immunosuppressive agents. Given these treatment challenges, efforts should be made in both the hospital and community settings to limit exposure to these pathogens to the extent feasible.
Collapse
Affiliation(s)
- Sarah A Longworth
- Division of Infectious Disease, Hospital of University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer S Daly
- UMass Memorial Health Care, University of Massachusetts Medical School, Worcester, Massachusetts
| | | |
Collapse
|
278
|
Mycobacterium abscessus Cells Have Altered Antibiotic Tolerance and Surface Glycolipids in Artificial Cystic Fibrosis Sputum Medium. Antimicrob Agents Chemother 2019; 63:AAC.02488-18. [PMID: 31010859 DOI: 10.1128/aac.02488-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a biofilm-forming, multidrug-resistant nontuberculous mycobacterial (NTM) pathogen increasingly found in cystic fibrosis patients. Antibiotic treatment for these infections is often unsuccessful, partly due to M. abscessus's high intrinsic antibiotic resistance. It is not clear whether antibiotic tolerance caused by biofilm formation also contributes to poor treatment outcomes. We studied the surface glycolipids and antibiotic tolerance of M. abscessus biofilms grown in artificial cystic fibrosis sputum (ACFS) medium to determine how they are affected by nutrient conditions that mimic infection. We found that M. abscessus displays more of the virulence lipid trehalose dimycolate when grown in ACFS than when grown in standard lab medium. In ACFS medium, biofilm-associated cells were more antibiotic tolerant than planktonic cells in the same well. This contrasts with standard lab media, where both biofilm and planktonic cells are highly antibiotic tolerant. These results indicate that M. abscessus cell physiology in biofilms depends on environmental factors and that nutrient conditions found within cystic fibrosis infections could contribute to both increased virulence and antibiotic tolerance.
Collapse
|
279
|
Santucci P, Johansen MD, Point V, Poncin I, Viljoen A, Cavalier JF, Kremer L, Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci Rep 2019; 9:8667. [PMID: 31209261 PMCID: PMC6572852 DOI: 10.1038/s41598-019-45164-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Mycobacteria share with other actinomycetes the ability to produce large quantities of triacylglycerol (TAG), which accumulate as intracytoplasmic lipid inclusions (ILI) also known as lipid droplets (LD). Mycobacterium tuberculosis (M. tb), the etiologic agent of tuberculosis, acquires fatty acids from the human host which are utilized to synthesize TAG, subsequently stored in the form of ILI to meet the carbon and nutrient requirements of the bacterium during long periods of persistence. However, environmental factors governing mycobacterial ILI formation and degradation remain poorly understood. Herein, we demonstrated that in the absence of host cells, carbon excess and nitrogen starvation promote TAG accumulation in the form of ILI in M. smegmatis and M. abscessus, used as surrogate species of M. tb. Based on these findings, we developed a simple and reversible in vitro model to regulate ILI biosynthesis and hydrolysis in mycobacteria. We also showed that TAG formation is tgs1 dependent and that lipolytic enzymes mediate TAG breakdown. Moreover, we confirmed that the nitrogen-deprived and ILI-rich phenotype was associated with an increased tolerance towards several drugs used for treating mycobacterial infections. Importantly, we showed that the presence of ILI substantially enhanced the bacterial burden and granuloma abundance in zebrafish embryos infected with lipid-rich M. abscessus as compared to embryos infected with lipid-poor M. abscessus, suggesting that ILI are actively contributing to mycobacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France.,INSERM, IRIM, 34293, Montpellier, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.
| |
Collapse
|
280
|
Ruangkiattikul N, Rys D, Abdissa K, Rohde M, Semmler T, Tegtmeyer PK, Kalinke U, Schwarz C, Lewin A, Goethe R. Type I interferon induced by TLR2-TLR4-MyD88-TRIF-IRF3 controls Mycobacterium abscessus subsp. abscessus persistence in murine macrophages via nitric oxide. Int J Med Microbiol 2019; 309:307-318. [PMID: 31178418 DOI: 10.1016/j.ijmm.2019.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium abscessus (MAB) is an emerging, rapidly growing non-tuberculous Mycobacterium causing therapy-resistant pulmonary disease especially in patients with cystic fibrosis (CF). Smooth and rough colony type MAB can be isolated from infected patients whereby rough colony type MAB are more often associated with severe disease. Disease severity is also associated with an alternated type I interferon (IFN-I) response of the MAB-infected patients. However the relevance of this response for the outcome of MAB infection is still unknown. In this study, we analyzed the IFNβ expression of murine macrophages infected with a MAB rough colony strain (MAB-R) isolated from a patient with progressive CF and compared it to macrophages infected with the MAB smooth colony type reference strain (MAB-S). We found that MAB-R infected macrophages expressed significantly more IFNβ mRNA and protein than MAB-S infected macrophages. Higher IFNβ induction by MAB-R was associated with higher TNF expression and intracellular killing while low IFNβ induction was associated with lower TNF expression and persistence of MAB-S. IFNβ induction was independent of the intracellular cGAS-STING recognition pathway. MAB appeared to be recognized extracellularly and induced IFNβ expression via TLR2-TLR4-MyD88-TRIF-IRF3 dependent pathways. By using macrophages lacking the IFN-I receptor we demonstrate that MAB induced IFN-I response essentially contributed to restricting MAB-R and MAB-S infections by activating macrophage Nos2 expression and nitric oxide production. Thus IFN-I seem to influence the intrinsic ability of macrophages to control MAB infections. As MAB persists over long time periods in susceptible patients, our findings suggest that virulence of MAB strains is promoted by an insufficient IFN-I response of the host.
Collapse
Affiliation(s)
| | - Doris Rys
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ketema Abdissa
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Pia-K Tegtmeyer
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research, Braunschweig, and The Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research, Braunschweig, and The Hannover Medical School, Hannover, Germany
| | - Carsten Schwarz
- Department of Pediatric Pneumonology and Immunology, Division of Cystic Fibrosis, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Lewin
- FG16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
281
|
Recovery of Non-tuberculous Mycobacteria from Water is Influenced by Phenotypic Characteristics and Decontamination Methods. Curr Microbiol 2019; 77:621-631. [PMID: 31111226 DOI: 10.1007/s00284-019-01704-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Infections related to non-tuberculous mycobacteria (NTM) have recently increased worldwide. The transmission of these microorganisms from the environment has been suggested as the main source for human infections. To elucidate the epidemiological aspects and distribution of these pathogens, many studies have evaluated several decontamination methods and protocols to properly isolate NTM from environmental samples, mainly from water. However, no satisfactory strategy has been found for isolation of most of the NTM species harboring different phenotypic characteristics. Here, we evaluated the susceptibility of 23 NTM strains presenting variable growth rate and pigmentation patterns to eight different methods: oxalic acid (2.5% and 5%), cetylpyridinium chloride (CPC) (0.0025% and 0.005%), sodium hydroxide (NaOH) (2% and 4%), and sodium dodecyl sulfate (SDS) plus NaOH (SDS 1.5%-NaOH 0.5% and SDS 3%-NaOH 1%). It was found that the viability of NTM exposed to different decontamination methods varies according to their phenotypic characteristics and two methods (SDS 1.5% plus NaOH 0.5% and CPC 0.0025%) were necessary for effective isolation of all of the species tested. These findings supply important insights for future studies on the environmental occurrence of mycobacteria and improving the sensibility of traditional strategies.
Collapse
|
282
|
Daniel-Wayman S, Shallom S, Azeem N, Olivier KN, Zelazny AM, Prevots DR. Amikacin exposure and susceptibility of macrolide-resistant Mycobacterium abscessus. ERJ Open Res 2019; 5:00154-2018. [PMID: 31149626 PMCID: PMC6536947 DOI: 10.1183/23120541.00154-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/15/2019] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium abscessus is associated with antibiotic resistance and poor treatment outcomes. We described within-patient changes in M. abscessus resistance to clarithromycin and amikacin. Patients with amikacin exposure and a >50-month interval between M. abscessus isolates were identified. Antimicrobial susceptibility testing was performed on the first and last isolates by broth microdilution, and genetic markers of resistance were identified. 16 patients were identified with a median amikacin exposure of 2.3 years (range 0.6–8.6 years). 15 patients also received macrolides (median 7.2 years, range 1.3–10.7 years). All initial isolates were resistant to clarithromycin (minimum inhibitory concentration (MIC) ≥8 µg·mL−1). Two patients had later susceptible isolates, which were of a different subspecies (M. abscessus subsp. massiliense) than the initial isolates (M. abscessus subsp. abscessus). All initial isolates were susceptible or intermediately resistant to amikacin, and only one patient had a resistant final isolate (MIC >64 µg·mL−1), accompanied by an A→G mutation at position 1408 of the 16S ribosomal RNA. Forced expiratory volume in 1 s decreased significantly over the study period, while smear quantity and the proportions of patients with elevated C-reactive protein or cavitary lesions all increased significantly. Despite prolonged, mostly inhaled amikacin exposure, development of amikacin resistance was uncommon in this patient population; however, disease progression continued. Patients with long-term amikacin treatment rarely develop resistance but their disease continues to progresshttp://bit.ly/2V7k0kH
Collapse
Affiliation(s)
- Shelby Daniel-Wayman
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shamira Shallom
- Dept of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Nabila Azeem
- Dept of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth N Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Dept of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
283
|
Andrew EC, Connell T, Robinson P, Curtis N, Massie J, Robertson C, Harrison J, Shanthikumar S, Bryant PA, Starr M, Steer A, Ranganathan S, Gwee A. Pulmonary Mycobacterium abscessus complex in children with cystic fibrosis: A practical management guideline. J Paediatr Child Health 2019; 55:502-511. [PMID: 30884016 DOI: 10.1111/jpc.14427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 11/28/2022]
Abstract
The treatment of Mycobacterium abscessus complex (MABSC) pulmonary infections is an emerging challenge in patients with cystic fibrosis (CF). Multidrug therapy for prolonged durations is required and carries the significant burden of drug-related toxicity, cost and selective pressure for multiresistant bacteria. International guidelines acknowledge that clinical and in vitro data to support treatment regimens are limited, particularly in children. As part of a collaboration between the infectious diseases and respiratory units at our institution, we have developed a modified treatment guideline that aims to balance the aims of MABSC eradication and slowing disease progression with minimising drug toxicity and resistance. The outcomes of this treatment approach will be monitored and reported. In this manuscript, we discuss the available evidence for treatment choices and present our treatment guideline for paediatric patients with CF and MABSC infection.
Collapse
Affiliation(s)
- Eden C Andrew
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Tom Connell
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Clinical Infectious Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Phil Robinson
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Clinical Infectious Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - John Massie
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Colin Robertson
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joanne Harrison
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Shivanthan Shanthikumar
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Penelope A Bryant
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Clinical Infectious Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Mike Starr
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Steer
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Group A Streptococcal Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory and Sleep Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Clinical Infectious Diseases Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
284
|
Li M, Müller C, Fröhlich K, Gorka O, Zhang L, Groß O, Schilling O, Einsle O, Jessen-Trefzer C. Detection and Characterization of a Mycobacterial L-Arabinofuranose ABC Transporter Identified with a Rapid Lipoproteomics Protocol. Cell Chem Biol 2019; 26:852-862.e6. [PMID: 31006617 DOI: 10.1016/j.chembiol.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Nutrient uptake is essential for survival of organisms, and carbohydrates serve as a crucial carbon and energy source for most microorganisms. Given the importance of mycobacteria as human pathogens a detailed knowledge of carbohydrate uptake transporters is highly desirable, but currently available information is severely limited and mainly based on in silico analyses. Moreover, there is only very little data available on the in vitro characterization of carbohydrate transporters from mycobacterial species. To overcome these significant limitations there is a strong demand for innovative approaches to experimentally match substrates to ATP-binding cassette (ABC) transporters in a straightforward manner. Our study focuses on the model organism Mycobacterium smegmatis and identifies a mycobacterial ABC transport system based on a rapid label-free mass spectrometry lipoproteomics assay with broad applicability. Further validation and X-ray structure analyses reveal a highly selective mycobacterial L-arabinose uptake system.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| | - Christoph Müller
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Klemens Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Lin Zhang
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany.
| |
Collapse
|
285
|
Wood ME, Stockwell RE, Johnson GR, Ramsay KA, Sherrard LJ, Jabbour N, Ballard E, O'Rourke P, Kidd TJ, Wainwright CE, Knibbs LD, Sly PD, Morawska L, Bell SC. Face Masks and Cough Etiquette Reduce the Cough Aerosol Concentration of Pseudomonas aeruginosa in People with Cystic Fibrosis. Am J Respir Crit Care Med 2019; 197:348-355. [PMID: 28930641 DOI: 10.1164/rccm.201707-1457oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE People with cystic fibrosis (CF) generate Pseudomonas aeruginosa in droplet nuclei during coughing. The use of surgical masks has been recommended in healthcare settings to minimize pathogen transmission between patients with CF. OBJECTIVES To determine if face masks and cough etiquette reduce viable P. aeruginosa aerosolized during coughing. METHODS Twenty-five adults with CF and chronic P. aeruginosa infection were recruited. Participants performed six talking and coughing maneuvers, with or without face masks (surgical and N95) and hand covering the mouth when coughing (cough etiquette) in an aerosol-sampling device. An Andersen Cascade Impactor was used to sample the aerosol at 2 meters from each participant. Quantitative sputum and aerosol bacterial cultures were performed, and participants rated the mask comfort levels during the cough maneuvers. MEASUREMENTS AND MAIN RESULTS During uncovered coughing (reference maneuver), 19 of 25 (76%) participants produced aerosols containing P. aeruginosa, with a positive correlation found between sputum P. aeruginosa concentration (measured as cfu/ml) and aerosol P. aeruginosa colony-forming units. There was a reduction in aerosol P. aeruginosa load during coughing with a surgical mask, coughing with an N95 mask, and cough etiquette compared with uncovered coughing (P < 0.001). A similar reduction in total colony-forming units was observed for both masks during coughing; yet, participants rated the surgical masks as more comfortable (P = 0.013). Cough etiquette provided approximately half the reduction of viable aerosols of the mask interventions during voluntary coughing. Talking was a low viable aerosol-producing activity. CONCLUSIONS Face masks reduce cough-generated P. aeruginosa aerosols, with the surgical mask providing enhanced comfort. Cough etiquette was less effective at reducing viable aerosols.
Collapse
Affiliation(s)
- Michelle E Wood
- 1 Lung Bacteria Group and.,2 Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia.,3 Faculty of Medicine and
| | | | - Graham R Johnson
- 4 International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Kay A Ramsay
- 1 Lung Bacteria Group and.,3 Faculty of Medicine and
| | - Laura J Sherrard
- 1 Lung Bacteria Group and.,5 School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Nassib Jabbour
- 4 International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Emma Ballard
- 6 Statistical Support Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Peter O'Rourke
- 6 Statistical Support Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Timothy J Kidd
- 1 Lung Bacteria Group and.,7 School of Chemistry and Biomolecular Sciences, The University of Queensland, Brisbane, Australia.,8 Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Claire E Wainwright
- 3 Faculty of Medicine and.,8 Child Health Research Centre, The University of Queensland, South Brisbane, Australia.,9 Lady Cilento Children's Hospital, South Brisbane, Australia; and
| | - Luke D Knibbs
- 10 School of Public Health, The University of Queensland, Herston, Australia
| | - Peter D Sly
- 3 Faculty of Medicine and.,8 Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Lidia Morawska
- 4 International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Scott C Bell
- 1 Lung Bacteria Group and.,2 Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Brisbane, Australia.,3 Faculty of Medicine and
| |
Collapse
|
286
|
In Silico Identification of Three Types of Integrative and Conjugative Elements in Elizabethkingia anophelis Strains Isolated from around the World. mSphere 2019; 4:4/2/e00040-19. [PMID: 30944210 PMCID: PMC6449604 DOI: 10.1128/msphere.00040-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Elizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE. Elizabethkingia anophelis is an emerging global multidrug-resistant opportunistic pathogen. We assessed the diversity among 13 complete genomes and 23 draft genomes of E. anophelis strains derived from various environmental settings and human infections from different geographic regions around the world from 1950s to the present. Putative integrative and conjugative elements (ICEs) were identified in 31/36 (86.1%) strains in the study. A total of 52 putative ICEs (including eight degenerated elements lacking integrases) were identified and categorized into three types based on the architecture of the conjugation module and the phylogeny of the relaxase, coupling protein, TraG, and TraJ protein sequences. The type II and III ICEs were found to integrate adjacent to tRNA genes, while type I ICEs integrate into intergenic regions or into a gene. The ICEs carry various cargo genes, including transcription regulator genes and genes conferring antibiotic resistance. The adaptive immune CRISPR-Cas system was found in nine strains, including five strains in which CRISPR-Cas machinery and ICEs coexist at different locations on the same chromosome. One ICE-derived spacer was present in the CRISPR locus in one strain. ICE distribution in the strains showed no geographic or temporal patterns. The ICEs in E. anophelis differ in architecture and sequence from CTnDOT, a well-studied ICE prevalent in Bacteroides spp. The categorization of ICEs will facilitate further investigations of the impact of ICE on virulence, genome epidemiology, and adaptive genomics of E. anophelis. IMPORTANCEElizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE.
Collapse
|
287
|
Verma D, Stapleton M, Gadwa J, Vongtongsalee K, Schenkel AR, Chan ED, Ordway D. Mycobacterium avium Infection in a C3HeB/FeJ Mouse Model. Front Microbiol 2019; 10:693. [PMID: 31001241 PMCID: PMC6456659 DOI: 10.3389/fmicb.2019.00693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Infections caused by Mycobacterium avium complex (MAC) species are increasing worldwide, resulting in a serious public health problem. Patients with MAC lung disease face an arduous journey of a prolonged multidrug regimen that is often poorly tolerated and associated with relatively poor outcome. Identification of new animal models that demonstrate a similar pulmonary pathology as humans infected with MAC has the potential to significantly advance our understanding of nontuberculosis mycobacteria (NTM) pathogenesis as well as provide a tractable model for screening candidate compounds for therapy. One new mouse model is the C3HeB/FeJ which is similar to MAC patients in that these mice can form foci of necrosis in granulomas. In this study, we evaluated the ability of C3HeB/FeJ mice exposure to an aerosol infection of a rough strain of MAC 2285 to produce a progressive infection resulting in small necrotic foci during granuloma formation. C3HeB/FeJ mice were infected with MAC and demonstrated a progressive lung infection resulting in an increase in bacterial burden peaking around day 40, developed micronecrosis in granulomas and was associated with increased influx of CD4+ Th1, Th17, and Treg lymphocytes into the lungs. However, during chronic infection around day 50, the bacterial burden plateaued and was associated with the reduced influx of CD4+ Th1, Th17 cells, and increased numbers of Treg lymphocytes and necrotic foci during granuloma formation. These results suggest the C3HeB/FeJ MAC infection mouse model will be an important model to evaluate immune pathogenesis and compound efficacy.
Collapse
Affiliation(s)
- Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Megan Stapleton
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jake Gadwa
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kridakorn Vongtongsalee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Alan R Schenkel
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Edward D Chan
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States.,Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
288
|
Mycobacterium bolletii Lung Disease in Cystic Fibrosis. Chest 2019; 156:247-254. [PMID: 30935892 DOI: 10.1016/j.chest.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The cystic fibrosis (CF) pathogen, Mycobacterium abscessus complex, covers three subspecies: M. abscessus, M. massiliense, and M. bolletii. There are no clinical outcome data concerning M. bolletii. Our aim was to characterize M. bolletii lung infections in patients with CF. METHODS We included patients with M. bolletii lung infection recorded between 1994 and 2012 in France. Data were collected from the CF registry, medical records, and questionnaires submitted to the CF primary physician. Strains were typed by multilocus sequence typing analysis. RESULTS Fifteen cases were identified in nine CF centers. Nine patients (60%) presented with nontuberculous mycobacterial pulmonary disease. Follow-up of 13 patients showed a trend to more rapid decline in FEV1 in the first year of colonization (-9.4%; SD 19.3) in comparison with noninfected control subjects (-2.3%; SD 12.1) (P = .16). Twelve patients were treated, and 11 received oral macrolides. Treatment-induced eradication occurred in five patients (41.7%). Four patients died (26.7%), including one patient with fatal nontuberculous mycobacterial pulmonary disease. Inducible macrolide resistance was demonstrated in all strains. Patients always harbored unique strains. CONCLUSIONS Our study reports the largest study cohort of CF patients infected with M. bolletii. M. bolletii infection affects both children and young adults, is most often symptomatic, and may be fatal. Macrolide-based therapies have poor effectiveness. There is no evidence of patient-to-patient transmission.
Collapse
|
289
|
Rowbotham NJ, Palser SC, Smith SJ, Smyth AR. Infection prevention and control in cystic fibrosis: a systematic review of interventions. Expert Rev Respir Med 2019; 13:425-434. [DOI: 10.1080/17476348.2019.1595594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nicola J Rowbotham
- Evidence Based Child Health Group, Division of Child Health, Obstetrics & Gynaecology, Queens Medical Centre, Nottingham, UK
| | - Sally C Palser
- Evidence Based Child Health Group, Division of Child Health, Obstetrics & Gynaecology, Queens Medical Centre, Nottingham, UK
| | - Sherie J Smith
- Evidence Based Child Health Group, Division of Child Health, Obstetrics & Gynaecology, Queens Medical Centre, Nottingham, UK
| | - Alan R Smyth
- Evidence Based Child Health Group, Division of Child Health, Obstetrics & Gynaecology, Queens Medical Centre, Nottingham, UK
| |
Collapse
|
290
|
Pereira SG, Alarico S, Tiago I, Reis D, Nunes-Costa D, Cardoso O, Maranha A, Empadinhas N. Studies of antimicrobial resistance in rare mycobacteria from a nosocomial environment. BMC Microbiol 2019; 19:62. [PMID: 30890149 PMCID: PMC6425705 DOI: 10.1186/s12866-019-1428-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are ubiquitous in nature and recognized agents of opportunistic infection, which is often aggravated by their intrinsic resistance to antimicrobials, poorly defined therapeutic strategies and by the lack of new drugs. However, evaluation of their prevalence in anthropogenic environments and the associated antimicrobial resistance profiles have been neglected. In this work, we sought to determine minimal inhibitory concentrations of 25 antimicrobials against 5 NTM isolates recovered from a tertiary-care hospital surfaces. Antimicrobial susceptibilities of 5 other Corynebacterineae isolated from the same hospital were also determined for their potential clinical relevance. RESULTS Our phylogenetic study with each of the NTM isolates confirm they belong to Mycobacterium obuense, Mycobacterium mucogenicum and Mycobacterium paragordonae species, the latter initially misidentified as strains of M. gordonae, a species frequently isolated from patients with NTM disease in Portugal. In contrast to other strains, the M. obuense and M. mucogenicum examined here were resistant to several of the CLSI-recommended drugs, suggestive of multidrug-resistant profiles. Surprisingly, M. obuense was susceptible to vancomycin. Their genomes were sequenced allowing detection of gene erm (erythromycin resistance methylase) in M. obuense, explaining its resistance to clarithromycin. Remarkably, and unlike other strains of the genus, the Corynebacterium isolates were highly resistant to penicillin, ciprofloxacin and linezolid. CONCLUSIONS This study highlights the importance of implementing effective measures to screen, accurately identify and control viable NTM and closely related bacteria in hospital settings. Our report on the occurrence of rare NTM species with antibiotic susceptibility profiles that are distinct from those of the corresponding Type strains, along with unexpected resistance mechanisms detected seem to suggest that resistance may be more common than previously thought and also a potential threat to frail and otherwise vulnerable inpatients.
Collapse
Affiliation(s)
- Sónia Gonçalves Pereira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Susana Alarico
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Igor Tiago
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Diogo Reis
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniela Nunes-Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Olga Cardoso
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chemical Process Engineering and Forest Products Center (CIEPQPF), University of Coimbra, Coimbra, Portugal
| | - Ana Maranha
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
291
|
Behra PRK, Das S, Pettersson BMF, Shirreff L, DuCote T, Jacobsson KG, Ennis DG, Kirsebom LA. Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains. Sci Rep 2019; 9:4603. [PMID: 30872669 PMCID: PMC6418233 DOI: 10.1038/s41598-019-40922-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | | | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
292
|
Investigating transmission of Mycobacterium abscessus amongst children in an Australian cystic fibrosis centre. J Cyst Fibros 2019; 19:219-224. [PMID: 30853372 DOI: 10.1016/j.jcf.2019.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/25/2019] [Accepted: 02/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium abscessus is an emerging pathogen in cystic fibrosis (CF) lung disease. Hospital transmission of M. abscessus has been described. This paper details the investigation into possible cross-transmission of M. abscessus locally at our paediatric hospital CF centre, and the subsequent infection control response. METHODS Whole genome sequencing (WGS) of M. abscessus respiratory isolates with epidemiological linkage analysis using hospital electronic medical records. RESULTS 6.7% (22/328) of CF patients had M. abscessus isolated from respiratory specimens. WGS revealed a cluster of three patients with genomically related isolates that differed by <7 single nucleotide polymorphisms (SNPs), suggesting a shared recent ancestor and probable cross-transmission. Epidemiological investigation revealed multiple potential crossovers between patients with genomically similar M. abscessus isolates. CONCLUSIONS Cross-infection of NTM occurs in CF hospital patients. Hospital infection control practices should be upgraded to reflect this. Consensus is needed between centres.
Collapse
|
293
|
Santos-Silva A, Pereira F, Gaio R, Duarte R. Differential risk factors for slowly and rapidly-growing nontuberculous mycobacteria: A retrospective cross-sectional study. Pulmonology 2019; 25:114-116. [DOI: 10.1016/j.pulmoe.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022] Open
|
294
|
de Oliveira FM, Corrêa VLR, Corrêa AF, da Costa AC, Procopio VO, Junqueira-Kipnis AP, Kipnis A. The mycma_1113 Gene from Mycobacterium abscessus subsp. massiliense is Related to Siderophore Synthesis. Indian J Microbiol 2019; 59:180-187. [PMID: 31031432 DOI: 10.1007/s12088-019-00788-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Iron (Fe) homeostasis control is important for both pathogen and the host. During infection, the host reduces the access of microorganisms to iron, however, studies have shown that virulent pathogens are capable to sequester Fe from host proteins, and establish the infection. M. abscessus subsp. massiliense (Mycma), that is resistant to most drugs used against tuberculosis, was responsible for outbreaks around the world showing increased virulence when compared to other rapidly growing mycobacteria. The goal of this study was to determine whether Mycma produce siderophores and if the mycma_1113 gene expression, a putative homolog of M. tuberculosis mbtB gene located in the mbt gene cluster, is related to the synthesis of these molecules. For that, the effect of different iron concentrations on the growth of Mycma, the expression of mycma_1113 gene, and the production of siderophores was evaluated in vitro and in vivo. It is shown that Mycma produce siderophores under iron deprivation conditions and mycma_1113 gene expression was influenced by iron availability. The mycma_1113 gene expression was also increased after macrophage or in vivo infection indicating that mycobactin synthesis by Mycma could participate in the Fe sequestration from the host during infection. In conclusion, we show that Mycma produces siderophores under iron deprivation conditions and that the mycma_1113 gene is involved in this process, furthermore, this gene expression is induced during infection.
Collapse
Affiliation(s)
- Fábio Muniz de Oliveira
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| | - Viviane Lopes Rocha Corrêa
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| | - André França Corrêa
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| | - Adeliane Castro da Costa
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| | - Victor Oliveira Procopio
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| | - Ana Paula Junqueira-Kipnis
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| | - André Kipnis
- Tropical Institute of Pathology and Public Health, Federal University of Goiás, Rua 235 esquina com 1a avenida S/N, Setor Universitário, Goiânia, Goiás CEP 7405-050 Brazil
| |
Collapse
|
295
|
Han JT, Zhang SP, Jia WJ, Zhang Z, Wang Y, He YX. Discovery and structural analysis of a phloretin hydrolase from the opportunistic human pathogen Mycobacterium abscessus. FEBS J 2019; 286:1959-1971. [PMID: 30784195 DOI: 10.1111/febs.14792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022]
Abstract
The family of PhlG proteins catalyses the hydrolysis of carbon-carbon bonds and is widely distributed across diverse bacterial species. Two members of the PhlG family have been separately identified as 2,4-diacetylphloroglucinol (2,4-DAPG) hydrolase and phloretin hydrolase; however, the extent of functional divergence and catalytic substrates for most members of this family is still unknown. Here, using sequence similarity network and gene co-occurrence analysis, we categorized PhlG proteins into several subgroups and inferred that PhlG proteins from Mycobacterium abscessus (MaPhlG) are likely to be functionally equivalent to phloretin hydrolase. Indeed, we confirmed the hydrolytic activity of MaPhlG towards phloretin and its analog monoacetylphloroglucinol (MAPG), and the crystal structure of MaPhlG in complex with MAPG revealed the key residues involved in catalysis and substrate binding. Through mutagenesis and enzymatic assays, we demonstrated that H160, I162, A213 and Q266, which are substituted in 2,4-DAPG hydrolase, are essential for the activity towards phloretin. Based on the conservation of these residues, potential phloretin hydrolases were identified from Frankia, Colletotrichum tofieldiae and Magnaporthe grisea, which are rhizosphere inhabitants. These enzymes may be important for rhizosphere adaptation of the producing microbes by providing a carbon source through anaerobic degradation of flavonoids. Taken together, our results provided a framework for understanding the mechanism of functional divergence of PhlG proteins.
Collapse
Affiliation(s)
- Jian-Ting Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Wen-Juan Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Zhang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| |
Collapse
|
296
|
Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis 2019; 13:e0007083. [PMID: 30763316 PMCID: PMC6375572 DOI: 10.1371/journal.pntd.0007083] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Seemingly innocuous nontuberculous mycobacteria (NTM) species, classified by their slow or rapid growth rates, can cause a wide range of illnesses, from skin ulceration to severe pulmonary and disseminated disease. Despite their worldwide prevalence and significant disease burden, NTM do not garner the same financial or research focus as Mycobacterium tuberculosis. In this review, we outline the most abundant of over 170 NTM species and inadequacies of diagnostics and treatments and weigh the advantages and disadvantages of currently available in vivo animal models of NTM. In order to effectively combat this group of mycobacteria, more research focused on appropriate animal models of infection, screening of chemotherapeutic compounds, and development of anti-NTM vaccines and diagnostics is urgently needed.
Collapse
Affiliation(s)
- Susan L. Baldwin
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Sasha E. Larsen
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gail Cassell
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- PAI Life Sciences, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
297
|
Pandey R, Chen L, Manca C, Jenkins S, Glaser L, Vinnard C, Stone G, Lee J, Mathema B, Nuermberger EL, Bonomo RA, Kreiswirth BN. Dual β-Lactam Combinations Highly Active against Mycobacterium abscessus Complex In Vitro. mBio 2019; 10:e02895-18. [PMID: 30755518 PMCID: PMC6372805 DOI: 10.1128/mbio.02895-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023] Open
Abstract
As a consequence of a growing population of immunocompromised individuals, including transplant recipients and cystic fibrosis patients, there has been a dramatic increase in chronic infections caused by Mycobacterium abscessus complex (MABC) strains that are usually recalcitrant to effective antibiotic therapy. The recent rise of macrolide resistance in MABC has further complicated this clinical dilemma, dramatizing the need for novel agents. The repurposing of current antibiotics is one rapid path from discovery to patient care. In this study, we have discovered that dual β-lactams, and specifically the combination of ceftazidime with either ceftaroline or imipenem, are synergistic and have clinically relevant activities, with MIC50s of 0.25 (ceftaroline with 100 µg/ml ceftazidime) and 0.5 µg/ml (imipenem with 100 µg/ml ceftazidime) against clinical MABC isolates. Similar synergy was observed in time-kill studies against the M. abscessus ATCC 19977 strain using clinically achievable concentrations of either imipenem (4 µg/ml) or ceftaroline (2 µg/ml), as the addition of ceftazidime at concentrations of ≥50 µg/ml showed a persistent bactericidal effect over 5 days. Treatment of THP-1 human macrophages infected with three different M. abscessus clinical isolates supported the in vitro findings, as the combination of 100 µg/ml ceftazidime and 0.125 µg/ml ceftaroline or 100 µg/ml ceftazidime and 0.25 µg/ml imipenem dramatically reduced the CFU counts to near baseline levels of infection. This study's finding that there is synergy between certain β-lactam combinations against M. abscessus infection provides optimism toward identifying an optimum dual β-lactam treatment regimen.IMPORTANCE The emergence of chronic MABC infections among immunocompromised populations and their inherent and acquired resistance to effective antibiotic therapy have created clinical challenges in advancing patients for transplant surgery and treating those with disease. There is an urgent need for new treatment regimens, and the repurposing of existing antibiotics provides a rapid strategy to advance a laboratory finding to patient care. Our recent discoveries that dual β-lactams, specifically the combination of ceftazidime with ceftaroline or ceftazidime with imipenem, have significant in vitro MIC values and kill curve activities and are effective against infected THP-1 human macrophages provide optimism for a dual β-lactam treatment strategy against MABC infections. The unexpected synergistic activities reported in this study create a new path of discovery to repurpose the large family of β-lactam drugs.
Collapse
Affiliation(s)
- R Pandey
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - L Chen
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - C Manca
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - S Jenkins
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - L Glaser
- Department of Clinical Microbiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Vinnard
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - G Stone
- Pfizer, Groton, Connecticut, USA
| | - J Lee
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - B Mathema
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - E L Nuermberger
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - R A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - B N Kreiswirth
- Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
298
|
Abstract
PURPOSE OF REVIEW To highlight recent original research and specialty society guidelines regarding the diagnosis and treatment of nontuberculous mycobacterial (NTM) pulmonary disease. RECENT FINDINGS The prevalence of NTM pulmonary disease has risen in recent years. The prevalence of individual NTM species varies geographically, although Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex (MABC) remain among the most commonly encountered in many regions. Diagnosis and treatment of NTM pulmonary disease can be complex but guideline-based recommendations have been published. However, adherence to guideline recommendations is poor. Drug susceptibility testing plays a role with important caveats for treatment. Alternative therapies are being explored with older antimycobacterial drugs like clofazimine, which has demonstrated efficacy and tolerability for treatment-refractory NTM infections, and a novel formulation of amikacin for inhalation which may be better tolerated than parenteral administration. Several studies have shown that patients will have recurrences as high as 48%, and that these are not solely relapses but many cases are reinfections with a new organism. United States and European research registries of patients with non-cystic fibrosis bronchiectasis are expected to provide needed data on clinical characteristics of patients at risk for NTM pulmonary disease. SUMMARY The evidence base for optimal management of NTM pulmonary disease is expanding but notable gaps in the literature remain.
Collapse
|
299
|
Jones RS, Shier KL, Master RN, Bao JR, Clark RB. Current significance of the Mycobacterium chelonae-abscessus group. Diagn Microbiol Infect Dis 2019; 94:248-254. [PMID: 30954313 DOI: 10.1016/j.diagmicrobio.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
Abstract
Organisms of the Mycobacterium chelonae-abscessus group can be significant pathogens in humans. They produce a number of diseases including acute, invasive and chronic infections, which may be difficult to diagnose correctly. Identification among members of this group is complicated by differentiating at least eleven (11) known species and subspecies and complexity of identification methodologies. Treatment of their infections may be problematic due to their correct species identification, antibiotic resistance, their differential susceptibility to the limited number of drugs available, and scarcity of susceptibility testing.
Collapse
Affiliation(s)
- Robert S Jones
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Kileen L Shier
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Ronald N Master
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Jian R Bao
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131
| | - Richard B Clark
- Infectious Disease Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20131.
| |
Collapse
|
300
|
Lu M, Saddi V, Britton PN, Selvadurai H, Robinson PD, Pandit C, Marais BJ, Fitzgerald DA. Disease caused by non-tuberculous mycobacteria in children with cystic fibrosis. Paediatr Respir Rev 2019; 29:42-52. [PMID: 30473423 DOI: 10.1016/j.prrv.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/24/2023]
Abstract
Non-tuberculous mycobacterial (NTM) (especially M. abscessus complex) infections pose a considerable challenge in the management of lung disease in patients with cystic fibrosis (CF). The apparent increase in prevalence is likely multifactorial. Emergent evidence of patient-to-patient transmission and isolation of highly resistant strains is a concern for all CF centers around the world. Treatment is often long and burdensome with multiple agents. Treatment side effects are frequent and can cause significant morbidity. Although consensus guidelines provide some direction, many units are faced with the challenges of: finding drug combinations for highly resistant strains; dealing with interruptions of treatment; discussing additional facilitating procedures in the form of gastrostomy and long-term vascular access devices; as well as supporting families emotionally and psychologically through the process.
Collapse
Affiliation(s)
- Mimi Lu
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia.
| | - Vishal Saddi
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Philip N Britton
- Department of Infectious Diseases, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Hiran Selvadurai
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Chetan Pandit
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ben J Marais
- Department of Infectious Diseases, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Dominic A Fitzgerald
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|