251
|
Ma Z, Zhang F, Xiong J, Zhang H, Lin HK, Liu C. Activation of embryonic/germ cell-like axis links poor outcomes of gliomas. Cancer Cell Int 2022; 22:371. [DOI: 10.1186/s12935-022-02792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
It is unclear which core events drive the malignant progression of gliomas. Earlier studies have revealed that the embryonic stem (ES) cell/early PGC state is associated with tumourigenicity. This study was designed to investigate the role of ES/PGC state in poor outcomes of gliomas.
Methods
Crispr-Cas9 technology, RT–PCR and animal experiments were used to investigate whether PGC-like cell formation play crucial roles in the tumorigenicity of human glioma cells. Bioinformatic analysis was used to address the link between ES/PGC developmental axis and glioma overall outcomes.
Results
Here, our findings showed that germ cell-like cells were present in human gliomas and cultured glioma cells and that the formation of germ cell-like cells was essential for glioma tumours. Bioinformatic analysis showed that the mRNA levels of genes related to embryonic/germ cell development could be detected in most gliomas. Our findings showed that the activation of genes related to reprogramming or the germ cell-like state alone seemed to be insufficient to lead to a malignant prognosis, whereas increased mRNA levels of genes related to the activation of the embryonic/germ cell-like cycle (somatic PGC-EGC-like cycle and somatic parthenogenetic embryo-like cycle) were positively correlated with malignant prognoses and poor clinical outcomes of gliomas. Genes related to the embryonic/germ cell cycle alone or in combination with the WHO grade or 1p19q codeletion status could be used to subdivide gliomas with distinct clinical behaviours.
Conclusion
Together, our findings indicated that a crucial role of germ cell-like cell formation in glioma initiation as well as activation of genes related with the parthenogenetic embryo-like cycle and PGC-EGC-like cycle link to the malignant prognosis and poor outcomes of gliomas, which might provide a novel way to better understand the nature of and develop targeted therapies for gliomas as well as important markers for predicting clinical outcomes in gliomas.
Collapse
|
252
|
Chen G, Chen Y, Xu R, Zhang G, Zou X, Wu G. Impact of SOX2 function and regulation on therapy resistance in bladder cancer. Front Oncol 2022; 12:1020675. [PMID: 36465380 PMCID: PMC9709205 DOI: 10.3389/fonc.2022.1020675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2024] Open
Abstract
Bladder cancer (BC) is a malignant disease with high rates of recurrence and mortality. It is mainly classified as non-muscle-invasive BC and muscle-invasive BC (MIBC). Often, MIBC is chemoresistant, which, according to cancer stem cells (CSCs) theory, is linked to the presence of bladder cancer stem cells (BCSCs). Sex-determining region Y- (SRY) Box transcription factor 2 (SOX2), which is a molecular marker of BCSCs, is aberrantly over-expressed in chemoresistant BC cell lines. It is one of the standalone prognostic factors for BC, and it has an inherently significant function in the emergence and progression of the disease. This review first summarizes the role of SRY-related high-mobility group protein Box (SOX) family genes in BC, focusing on the SOX2 and its significance in BC. Second, it discusses the mechanisms relevant to the regulation of SOX2. Finally, it summarizes the signaling pathways related to SOX2 in BC, suggests current issues to be addressed, and proposes potential directions for future research to provide new insights for the treatment of BC.
Collapse
Affiliation(s)
- Guodong Chen
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Chen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiquan Xu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Gengqing Wu
- Department of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
253
|
Han M, Li F, Zhang Y, Dai P, He J, Li Y, Zhu Y, Zheng J, Huang H, Bai F, Gao D. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell 2022; 40:1306-1323.e8. [PMID: 36332622 DOI: 10.1016/j.ccell.2022.10.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/10/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Prostate cancer adeno-to-neuroendocrine lineage transition has emerged as a mechanism of targeted therapeutic resistance. Identifying the direct molecular drivers and developing pharmacological strategies using clinical-grade inhibitors to overcome lineage transition-induced therapeutic resistance are imperative. Here, using single-cell multiomics analyses, we investigate the dynamics of cellular heterogeneity, transcriptome regulation, and microenvironmental factors in 107,201 cells from genetically engineered mouse prostate cancer samples with complete time series of tumor evolution seen in patients. We identify that FOXA2 orchestrates prostate cancer adeno-to-neuroendocrine lineage transition and that Foxa2 expression is significantly induced by androgen deprivation. Moreover, Foxa2 knockdown induces the reversal of adeno-to-neuroendocrine transition. The KIT pathway is directly regulated by FOXA2 and specifically activated in neuroendocrine prostate cancer (NEPC). Pharmacologic inhibition of KIT pathway significantly suppresses mouse and human NEPC tumor growth. These findings reveal that FOXA2 drives adeno-to-neuroendocrine lineage plasticity in prostate cancer and provides a potential pharmacological strategy for castration-resistant NEPC.
Collapse
Affiliation(s)
- Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yehan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Dai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
254
|
Chen X, Shao Y, Wei W, Zhu S, Li Y, Chen Y, Li H, Tian H, Sun G, Niu Y, Shang Z. Androgen deprivation restores ARHGEF2 to promote neuroendocrine differentiation of prostate cancer. Cell Death Dis 2022; 13:927. [PMID: 36335093 PMCID: PMC9637107 DOI: 10.1038/s41419-022-05366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022]
Abstract
Androgen receptor (AR) plays an important role in the progression of prostate cancer and has been targeted by castration or AR-antagonists. The emergence of castration-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) is inevitable. However, it is not entirely clear how ADT fails or how it causes resistance. Through analysis of RNA-seq data, we nominate ARHGEF2 as a pivotal androgen-repressed gene. We show that ARHGEF2 is directly suppressed by androgen/AR. AR occupies the enhancer and communicates with the promoter region of ARHGEF2. Functionally, ARHGEF2 is important for the growth, lethal phenotype, and survival of CRPC cells and tumor xenografts. Correspondingly, AR inhibition or AR antagonist treatment can restore ARHGEF2 expression, thereby allowing prostate cancer cells to induce treatment resistance and tolerance. Overall, our findings provide an explanation for the contradictory clinical results that ADT resistance may be caused by the up-regulation of ARHGEF2 and provide a novel target.
Collapse
Affiliation(s)
- Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yi Shao
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Wanqing Wei
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
- Department of Pediatric Surgery, Huai'an Maternal and Children Health Hospital, Huai'an, China
| | - Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yang Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yutong Chen
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Hanling Li
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Hao Tian
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Guijiang Sun
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
255
|
Kotamarti S, Armstrong AJ, Polascik TJ, Moul JW. Molecular Mechanisms of Castrate-Resistant Prostate Cancer. Urol Clin North Am 2022; 49:615-626. [DOI: 10.1016/j.ucl.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
256
|
Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol 2022; 86:57-68. [PMID: 35597438 DOI: 10.1016/j.semcancer.2022.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-associated deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard of care for advanced prostate cancer. While patients with advanced prostate cancer initially respond to ADT, the disease frequently progresses to a lethal metastatic form, defined as castration-resistant prostate cancer (CRPC). After multiple rounds of anti-androgen therapies, 20-25% of metastatic CRPCs develop a neuroendocrine (NE) phenotype. These tumors are classified as neuroendocrine prostate cancer (NEPC). De novo NEPC is rare and accounts for less than 2% of all prostate cancers at diagnosis. NEPC is commonly characterized by the expression of NE markers and the absence of androgen receptor (AR) expression. NEPC is usually associated with tumor aggressiveness, hormone therapy resistance, and poor clinical outcome. Here, we review the molecular mechanisms underlying the emergence of NEPC and provide insights into the future perspectives on potential therapeutic strategies for NEPC.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Busola Ruth Alabi
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Qingqing Yin
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
257
|
Wang J, Park KS, Yu X, Gong W, Earp HS, Wang G, Jin J, Cai L. A cryptic transactivation domain of EZH2 binds AR and AR's splice variant, promoting oncogene activation and tumorous transformation. Nucleic Acids Res 2022; 50:10929-10946. [PMID: 36300627 PMCID: PMC9638897 DOI: 10.1093/nar/gkac861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 12/26/2022] Open
Abstract
Enhancer of Zeste Homolog 2 (EZH2) and androgen receptor (AR) are crucial chromatin/gene regulators involved in the development and/or progression of prostate cancer, including advanced castration-resistant prostate cancer (CRPC). To sustain prostate tumorigenicity, EZH2 establishes non-canonical biochemical interaction with AR for mediating oncogene activation, in addition to its canonical role as a transcriptional repressor and enzymatic subunit of Polycomb Repressive Complex 2 (PRC2). However, the molecular basis underlying non-canonical activities of EZH2 in prostate cancer remains elusive, and a therapeutic strategy for targeting EZH2:AR-mediated oncogene activation is also lacking. Here, we report that a cryptic transactivation domain of EZH2 (EZH2TAD) binds both AR and AR spliced variant 7 (AR-V7), a constitutively active AR variant enriched in CRPC, mediating assembly and/or recruitment of transactivation-related machineries at genomic sites that lack PRC2 binding. Such non-canonical targets of EZH2:AR/AR-V7:(co-)activators are enriched for the clinically relevant oncogenes. We also show that EZH2TAD is required for the chromatin recruitment of EZH2 to oncogenes, for EZH2-mediated oncogene activation and for CRPC growth in vitro and in vivo. To completely block EZH2's multifaceted oncogenic activities in prostate cancer, we employed MS177, a recently developed proteolysis-targeting chimera (PROTAC) of EZH2. Strikingly, MS177 achieved on-target depletion of both EZH2's canonical (EZH2:PRC2) and non-canonical (EZH2TAD:AR/AR-V7:co-activators) complexes in prostate cancer cells, eliciting far more potent antitumor effects than the catalytic inhibitors of EZH2. Overall, this study reports a previously unappreciated requirement for EZH2TAD for mediating EZH2's non-canonical (co-)activator recruitment and gene activation functions in prostate cancer and suggests EZH2-targeting PROTACs as a potentially attractive therapeutic for the treatment of aggressive prostate cancer that rely on the circuits wired by EZH2 and AR.
Collapse
Affiliation(s)
- Jun Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
258
|
Asberry AM, Liu S, Nam HS, Deng X, Wan J, Hu CD. Reprogramming landscape highlighted by dynamic transcriptomes in therapy-induced neuroendocrine differentiation. Comput Struct Biotechnol J 2022; 20:5873-5885. [PMID: 36382181 PMCID: PMC9636493 DOI: 10.1016/j.csbj.2022.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Metastatic and locally advanced prostate cancer is treated by pharmacological targeting of androgen synthesis and androgen response via androgen signaling inhibitors (ASI), most of which target the androgen receptor (AR). However, ASI therapy invariably fails after 1-2 years. Emerging clinical evidence indicates that in response to ASI therapy, the AR-positive prostatic adenocarcinoma can transdifferentiate into AR-negative neuroendocrine prostate cancer (NEPC) in 17-25 % treated patients, likely through a process called neuroendocrine differentiation (NED). Despite high clinical incidence, the epigenetic pathways underlying NED and ASI therapy-induced NED remain unclear. By utilizing a combinatorial single cell and bulk mRNA sequencing workflow, we demonstrate in a time-resolved manner that following AR inhibition with enzalutamide, prostate cancer cells exhibit immediate loss of canonical AR signaling activity and simultaneous morphological change from epithelial to NE-like (NEL) morphology, followed by activation of specific neuroendocrine (NE)-associated transcriptional programs. Additionally, we observed that activation of NE-associated pathways occurs prior to complete repression of epithelial or canonical AR pathways, a phenomenon also observed clinically via heterogenous AR status in clinical samples. Our model indicates that, mechanistically, ASI therapy induces NED with initial morphological change followed by deactivation of canonical AR target genes and subsequent de-repression of NE-associated target genes, while retaining AR expression and transcriptional shift towards non-canonical AR activity. Coupled with scRNA-seq and CUT&RUN analysis, our model system can provide a platform for screening of potential therapeutic agents that may prevent ASI-induced NED or reverse the NED process.
Collapse
Key Words
- ASI, androgen signaling inhibition
- Androgen Receptor (AR)
- CRPC, castration resistant prostate cancer
- CYCL, cycling like
- ENZ, enzalutamide
- Epigenetics
- GEMM, genetically engineered mouse model
- HNPC, hormone naïve prostate cancer
- NE, neuroendocrine
- NED, neuroendocrine differentiation
- NEL, neuroendocrine like
- NEPC, neuroendocrine prostate cancer
- Neuroendocrine Differentiation (NED)
- Neuroendocrine Prostate Cancer (NEPC)
- Single Cell RNA-Seq
- TF, transcription factor
- Transdifferentiation
Collapse
Affiliation(s)
- Andrew Michael Asberry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hye Seung Nam
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
259
|
Ding D, Zheng R, Tian Y, Jimenez R, Hou X, Weroha SJ, Wang L, Shi L, Huang H. Retinoblastoma protein as an intrinsic BRD4 inhibitor modulates small molecule BET inhibitor sensitivity in cancer. Nat Commun 2022; 13:6311. [PMID: 36274096 PMCID: PMC9588789 DOI: 10.1038/s41467-022-34024-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bromodomain and extraterminal (BET) proteins including BRD4 play important roles in oncogenesis and immune inflammation. Here we demonstrate that cancer cells with loss of the retinoblastoma (RB) tumor suppressor became resistant to small molecule bromodomain inhibitors of BET proteins. We find that RB binds to bromodomain-1 (BD1) of BRD4, but binding is impeded by CDK4/6-mediated RB phosphorylation at serine-249/threonine-252 (S249/T252). ChIP-seq analysis shows RB knockdown increases BRD4 occupancy at genomic loci of genes enriched in cancer-related pathways including the GPCR-GNBIL-CREB axis. S249/T252-phosphorylated RB positively correlates with GNBIL protein level in prostate cancer patient samples. BET inhibitor resistance in RB-deficient cells is abolished by co-administration of CREB inhibitor. Our study identifies RB protein as a bona fide intrinsic inhibitor of BRD4 and demonstrates that RB inactivation confers resistance to small molecule BET inhibitors, thereby revealing a regulatory hub that converges RB upstream signaling onto BRD4 functions in diseases such as cancer.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rongbin Zheng
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Ye Tian
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Xiaonan Hou
- Divison of Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Saravut J Weroha
- Divison of Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Divison of Medical Informatics and Statistics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Radiation Oncology, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310000, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
260
|
Takayama KI, Inoue S. Targeting phase separation on enhancers induced by transcription factor complex formations as a new strategy for treating drug-resistant cancers. Front Oncol 2022; 12:1024600. [PMID: 36263200 PMCID: PMC9574090 DOI: 10.3389/fonc.2022.1024600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
The limited options for treating patients with drug-resistant cancers have emphasized the need to identify alternative treatment targets. Tumor cells have large super-enhancers (SEs) in the vicinity of important oncogenes for activation. The physical process of liquid-liquid phase separation (LLPS) contributes to the assembly of several membrane-less organelles in mammalian cells. Intrinsically disordered regions (IDRs) of proteins induce LLPS formation by developing condensates. It was discovered that key transcription factors (TFs) undergo LLPS in SEs. In addition, TFs play critical roles in the epigenetic and genetic regulation of cancer progression. Recently, we revealed the essential role of disease-specific TF collaboration changes in advanced prostate cancer (PC). OCT4 confers epigenetic changes by promoting complex formation with TFs, such as Forkhead box protein A1 (FOXA1), androgen receptor (AR) and Nuclear respiratory factor 1 (NRF1), inducing PC progression. It was demonstrated that TF collaboration through LLPS underlying transcriptional activation contributes to cancer aggressiveness and drug resistance. Moreover, the disruption of TF-mediated LLPS inhibited treatment-resistant PC tumor growth. Therefore, we propose that repression of TF collaborations involved in the LLPS of SEs could be a promising strategy for advanced cancer therapy. In this article, we summarize recent evidence highlighting the formation of LLPS on enhancers as a potent therapeutic target in advanced cancers.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Saitama, Japan
- *Correspondence: Satoshi Inoue,
| |
Collapse
|
261
|
An X, Liu Y. HOTAIR in solid tumors: Emerging mechanisms and clinical strategies. Biomed Pharmacother 2022; 154:113594. [DOI: 10.1016/j.biopha.2022.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
|
262
|
Kench JG, Amin MB, Berney DM, Compérat EM, Cree IA, Gill AJ, Hartmann A, Menon S, Moch H, Netto GJ, Raspollini MR, Rubin MA, Tan PH, Tsuzuki T, Turjalic S, van der Kwast TH, Zhou M, Srigley JR. WHO Classification of Tumours fifth edition: evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022; 81:447-458. [PMID: 35758185 PMCID: PMC9542779 DOI: 10.1111/his.14711] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
The fifth edition of the WHO Classification of Tumours of the Urinary and Male Genital Systems encompasses several updates to the classification and diagnosis of prostatic carcinoma as well as incorporating advancements in the assessment of its prognosis, including recent grading modifications. Some of the salient aspects include: (1) recognition that prostatic intraepithelial neoplasia (PIN)-like carcinoma is not synonymous with a pattern of ductal carcinoma, but better classified as a subtype of acinar adenocarcinoma; (2) a specific section on treatment-related neuroendocrine prostatic carcinoma in view of the tight correlation between androgen deprivation therapy and the development of prostatic carcinoma with neuroendocrine morphology, and the emerging data on lineage plasticity; (3) a terminology change of basal cell carcinoma to "adenoid cystic (basal cell) cell carcinoma" given the presence of an underlying MYB::NFIB gene fusion in many cases; (4) discussion of the current issues in the grading of acinar adenocarcinoma and the prognostic significance of cribriform growth patterns; and (5) more detailed coverage of intraductal carcinoma of prostate (IDC-P) reflecting our increased knowledge of this entity, while recommending the descriptive term atypical intraductal proliferation (AIP) for lesions falling short of IDC-P but containing more atypia than typically seen in high-grade prostatic intraepithelial neoplasia (HGPIN). Lesions previously regarded as cribriform patterns of HGPIN are now included in the AIP category. This review discusses these developments, summarising the existing literature, as well as the emerging morphological and molecular data that underpins the classification and prognostication of prostatic carcinoma.
Collapse
Affiliation(s)
- James G Kench
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred Hospital, NSW Health PathologyCamperdownNew South WalesAustralia
- The University of SydneyCamperdownNew South WalesAustralia
| | - Mahul B Amin
- The University of Tennessee Health Science CenterMemphisTNUSA
| | - Daniel M Berney
- Department of Cellular Pathology, Bartshealth NHS TrustRoyal London HospitalLondonUK
| | - Eva M Compérat
- Department of PathologyUniversity of ViennaViennaAustria
| | - Ian A Cree
- International Agency for Research on CancerLyonFrance
| | - Anthony J Gill
- The University of SydneyCamperdownNew South WalesAustralia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Pacific HighwaySt LeonardsNew South WalesAustralia
| | - Arndt Hartmann
- Institute of PathologyUniversity Hospital Erlangen, Friedrich‐Alexander‐University Erlangen‐NürnbergErlangenGermany
| | - Santosh Menon
- Department of PathologyTata Memorial Centre, Homi Bhabha National InstituteMumbaiIndia
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - George J Netto
- Heersink School of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Maria R Raspollini
- Histopathology and Molecular DiagnosticsUniversity Hospital CareggiFlorenceItaly
| | - Mark A Rubin
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Puay Hoon Tan
- Division of Pathology, Singapore General HospitalSingaporeSingapore
| | - Toyonori Tsuzuki
- Department of Surgical PathologyAichi Medical University HospitalNagakuteJapan
| | - Samra Turjalic
- Skin and Renal UnitsRoyal Marsden NHS Foundation TrustLondonUK
- Cancer Dynamics LaboratoryThe Francis Crick InstituteLondonUK
| | - Theo H van der Kwast
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming Zhou
- Pathology and Laboratory MedicineTufts Medical CenterBostonMAUSA
| | - John R Srigley
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
263
|
Lin Z, Radaeva M, Cherkasov A, Dong X. Lin28 Regulates Cancer Cell Stemness for Tumour Progression. Cancers (Basel) 2022; 14:4640. [PMID: 36230562 PMCID: PMC9564245 DOI: 10.3390/cancers14194640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Tumours develop therapy resistance through complex mechanisms, one of which is that cancer stem cell (CSC) populations within the tumours present self-renewable capability and phenotypical plasticity to endure therapy-induced stress conditions and allow tumour progression to the therapy-resistant state. Developing therapeutic strategies to cope with CSCs requires a thorough understanding of the critical drivers and molecular mechanisms underlying the aforementioned processes. One such hub regulator of stemness is Lin28, an RNA-binding protein. Lin28 blocks the synthesis of let-7, a tumour-suppressor microRNA, and acts as a global regulator of cell differentiation and proliferation. Lin28also targets messenger RNAs and regulates protein translation. In this review, we explain the role of the Lin28/let-7 axis in establishing stemness, epithelial-to-mesenchymal transition, and glucose metabolism reprogramming. We also highlight the role of Lin28 in therapy-resistant prostate cancer progression and discuss the emergence of Lin28-targeted therapeutics and screening methods.
Collapse
Affiliation(s)
- Zhuohui Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Faculty of Food and Land Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mariia Radaeva
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Artem Cherkasov
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
264
|
Tu H, Qian J, Zhang D, Barksdale AN, Wadman MC, Pipinos II, Li YL. Different responses of skeletal muscles to femoral artery ligation-induced ischemia identified in BABL/c and C57BL/6 mice. Front Physiol 2022; 13:1014744. [PMID: 36187770 PMCID: PMC9523359 DOI: 10.3389/fphys.2022.1014744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral arterial disease (PAD) is a common circulatory problem in lower extremities, and the murine ischemic model is used to reproduce human PAD. To compare strain differences of skeletal muscle responses to ischemia, the left femoral artery was blocked by ligation to reduce blood flow to the limb of BALB/c and C57BL/6 mice. After 6 weeks of the femoral artery ligation, the functional and morphological changes of the gastrocnemius muscle were evaluated. BALB/c mice displayed serious muscular dystrophy, including smaller myofibers (524.3 ± 66 µM2), accumulation of adipose-liked tissue (17.8 ± 0.9%), and fibrosis (6.0 ± 0.5%), compared to C57BL/6 mice (1,328.3 ± 76.3 µM2, 0.27 ± 0.09%, and 1.56 ± 0.06%, respectively; p < 0.05). About neuromuscular junctions (NMJs) in the gastrocnemius muscle, 6 weeks of the femoral artery ligation induced more damage in BALB/c mice than that in C57BL/6 mice, demonstrated by the fragment number of nicotinic acetylcholine receptor (nAChR) clusters (8.8 ± 1.3 in BALB/c vs. 2.5 ± 0.7 in C57BL/6 mice, p < 0.05) and amplitude of sciatic nerve stimulated-endplate potentials (EPPs) (9.29 ± 1.34 mV in BALB/c vs. 20.28 ± 1.42 mV in C57BL/6 mice, p < 0.05). More importantly, 6 weeks of the femoral artery ligation significantly weakened sciatic nerve-stimulated skeletal muscle contraction in BALB/c mice, whereas it didn’t alter the skeletal muscle contraction in C57BL/6 mice. These results suggest that the femoral artery ligation in BALB/c mice is a useful animal model to develop new therapeutic approaches to improve limb structure and function in PAD, although the mechanisms about strain differences of skeletal muscle responses to ischemia are unclear.
Collapse
Affiliation(s)
- Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Junliang Qian
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aaron N. Barksdale
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael C. Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Yu-Long Li,
| |
Collapse
|
265
|
Westbrook TC, Guan X, Rodansky E, Flores D, Liu CJ, Udager AM, Patel RA, Haffner MC, Hu YM, Sun D, Beer TM, Foye A, Aggarwal R, Quigley DA, Youngren JF, Ryan CJ, Gleave M, Wang Y, Huang J, Coleman I, Morrissey C, Nelson PS, Evans CP, Lara P, Reiter RE, Witte O, Rettig M, Wong CK, Weinstein AS, Uzunangelov V, Stuart JM, Thomas GV, Feng FY, Small EJ, Yates JA, Xia Z, Alumkal JJ. Transcriptional profiling of matched patient biopsies clarifies molecular determinants of enzalutamide-induced lineage plasticity. Nat Commun 2022; 13:5345. [PMID: 36109521 PMCID: PMC9477876 DOI: 10.1038/s41467-022-32701-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
The androgen receptor (AR) signaling inhibitor enzalutamide (enza) is one of the principal treatments for metastatic castration-resistant prostate cancer (CRPC). Several emergent enza clinical resistance mechanisms have been described, including lineage plasticity in which the tumors manifest reduced dependency on the AR. To improve our understanding of enza resistance, herein we analyze the transcriptomes of matched biopsies from men with metastatic CRPC obtained prior to treatment and at progression (n = 21). RNA-sequencing analysis demonstrates that enza does not induce marked, sustained changes in the tumor transcriptome in most patients. However, three patients' progression biopsies show evidence of lineage plasticity. The transcription factor E2F1 and pathways linked to tumor stemness are highly activated in baseline biopsies from patients whose tumors undergo lineage plasticity. We find a gene signature enriched in these baseline biopsies that is strongly associated with poor survival in independent patient cohorts and with risk of castration-induced lineage plasticity in patient-derived xenograft models, suggesting that tumors harboring this gene expression program may be at particular risk for resistance mediated by lineage plasticity and poor outcomes.
Collapse
Affiliation(s)
- Thomas C Westbrook
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Xiangnan Guan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Eva Rodansky
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Diana Flores
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Chia Jen Liu
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Radhika A Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ya-Mei Hu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Duanchen Sun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jack F Youngren
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Martin Gleave
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Primo Lara
- University of California Davis, Davis, CA, USA
| | | | - Owen Witte
- Department of Microbiology, Immunology, and Molecular Genetics at the David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Matthew Rettig
- University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Christopher K Wong
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alana S Weinstein
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Vlado Uzunangelov
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Josh M Stuart
- UC Santa Cruz Genomics Institute and Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - George V Thomas
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Departments of Radiation Oncology and Urology, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joel A Yates
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Xia
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Joshi J Alumkal
- Division of Hematology and Oncology, Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
266
|
Sanidas I, Lee H, Rumde PH, Boulay G, Morris R, Golczer G, Stanzione M, Hajizadeh S, Zhong J, Ryan MB, Corcoran RB, Drapkin BJ, Rivera MN, Dyson NJ, Lawrence MS. Chromatin-bound RB targets promoters, enhancers, and CTCF-bound loci and is redistributed by cell-cycle progression. Mol Cell 2022; 82:3333-3349.e9. [PMID: 35981542 PMCID: PMC9481721 DOI: 10.1016/j.molcel.2022.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Hanjun Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gaylor Boulay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Marcelo Stanzione
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Soroush Hajizadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Meagan B Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Benjamin J Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
267
|
Liu J, Tan Z, Yang S, Song X, Li W. A circadian rhythm-related gene signature for predicting relapse risk and immunotherapeutic effect in prostate adenocarcinoma. Aging (Albany NY) 2022; 14:7170-7185. [PMID: 36103249 PMCID: PMC9512510 DOI: 10.18632/aging.204288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Jin Liu
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhao Tan
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shijie Yang
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinda Song
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenping Li
- Department of Urology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
268
|
Wang M, Chen X, Tan P, Wang Y, Pan X, Lin T, Jiang Y, Wang B, Xu H, Wang Y, Yang Y, Wang J, Zhao L, Zhang J, Zhong A, Peng Y, Du J, Zhang Q, Zheng J, Chen J, Dai S, Na F, Lu Z, Liu J, Zheng X, Yang L, Zhang P, Han P, Gong Q, Zhong Q, Xiao K, Yang H, Deng H, Zhao Y, Shi H, Man J, Gou M, Zhao C, Dai L, Xue Z, Chen L, Wang Y, Zeng M, Huang C, Wei Q, Wei Y, Liu Y, Chen C. Acquired semi-squamatization during chemotherapy suggests differentiation as a therapeutic strategy for bladder cancer. Cancer Cell 2022; 40:1044-1059.e8. [PMID: 36099882 DOI: 10.1016/j.ccell.2022.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023]
Abstract
Cisplatin-based chemotherapy remains the primary treatment for unresectable and metastatic muscle-invasive bladder cancers (MIBCs). However, tumors frequently develop chemoresistance. Here, we established a primary and orthotopic MIBC mouse model with gene-edited organoids to recapitulate the full course of chemotherapy in patients. We found that partial squamous differentiation, called semi-squamatization, is associated with acquired chemoresistance in both mice and human MIBCs. Multi-omics analyses showed that cathepsin H (CTSH) is correlated with chemoresistance and semi-squamatization. Cathepsin inhibition by E64 treatment induces full squamous differentiation and pyroptosis, and thus specifically restrains chemoresistant MIBCs. Mechanistically, E64 treatment activates the tumor necrosis factor pathway, which is required for the terminal differentiation and pyroptosis of chemoresistant MIBC cells. Our study revealed that semi-squamatization is a type of lineage plasticity associated with chemoresistance, suggesting that differentiation via targeting of CTSH is a potential therapeutic strategy for the treatment of chemoresistant MIBCs.
Collapse
Affiliation(s)
- Manli Wang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuelan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Tan
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiyun Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianhai Lin
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huan Xu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuying Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yucen Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiapeng Zhang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ailing Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiman Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajia Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianan Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siqi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feifei Na
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenghao Lu
- Chengdu OrganoidMed Medical Laboratory, West China Health Valley, Chengdu, Sichuan 610041, China
| | - Jiaming Liu
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng Zhang
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
| | - Kai Xiao
- Laboratory of Non-Human Primate Disease Model Research, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hubing Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100850, China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihong Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chong Chen
- Department of Urology, Institute of Urology, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
269
|
Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, Wadosky KM, Gopalan A, Choo ZN, Persad S, Choi J, LaClair J, Lawrence KE, Chaudhary O, Xu T, Masilionis I, Linkov I, Wang S, Lee C, Barlas A, Morris MJ, Mazutis L, Chaligne R, Chen Y, Goodrich DW, Karthaus WR, Pe’er D, Sawyers CL. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science 2022; 377:1180-1191. [PMID: 35981096 PMCID: PMC9653178 DOI: 10.1126/science.abn0478] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.
Collapse
Affiliation(s)
- Joseph M. Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jillian R. Love
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland
| | - Jimmy L. Zhao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manu Setty
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Basic sciences division and translational data science IRC, Fred Hutchinson Cancer research center
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zi-Ning Choo
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sitara Persad
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Justin LaClair
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Linkov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael J. Morris
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Ronan Chaligne
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Wouter R. Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Current address: Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, 1015 Switzerland
| | - Dana Pe’er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
270
|
Histological patterns, subtypes and aspects of prostate cancer: different aspects, different outcomes. Curr Opin Urol 2022; 32:643-648. [PMID: 36081403 DOI: 10.1097/mou.0000000000001038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The most common prostatic cancers (PCa) are acinary adenocarcinomas. Histological subtypes have been variably defined. The purpose of this review is to discuss unusual histological patterns and subtypes of acinar adenocarcinoma, as well as other types of PCa and their prognostic and therapeutic relevance. RECENT FINDINGS The new term 'subtype' for morphologically defined tumor entities replaced the term 'variant' in the new 2022 classification of the WHO to allow for clear terminological distinction from genetic variants. The 2022 WHO classification mentions prostatic intraepithelial neoplasia (PIN)-like carcinoma, signet-cell-like adenocarcinoma, sarcomatoid carcinoma and pleomorphic-giant-cell adenocarcinoma of the prostate as true subtypes of acinary PCa. Other forms of acinary PCa are termed unusual histological patterns and include atrophic, foamy-cell, microcystic, pseudohyperplastic and mucinous patterns. Nonacinar forms of prostate cancer include other glandular PCa, the ductal adenocarcinoma and the treatment-associated neuroendocrine carcinoma, and nonglandular PCa, the adenosquamous carcinoma, the squamous cell carcinoma and the adenoid cystic (basal cell) carcinoma of the prostate. SUMMARY True subtypes of acinary PCa and other forms of glandular and nonglandular PCa show relevant differences in prognosis and treatment approach compared with classic acinary PCa. The relevance of unusual histological patterns mainly lies in their deceptive benign appearance and the need for pathologists to know about these entities for accurate and timely diagnosis.
Collapse
|
271
|
Ferguson AM, Rubin MA. Lineage plasticity in prostate cancer: Looking beyond intrinsic alterations. Cancer Lett 2022; 548:215901. [PMID: 36075486 DOI: 10.1016/j.canlet.2022.215901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023]
Abstract
Emergence of small cell prostate cancer is linked to the plasticity of tumour cells and avoidance of environmental pressures. This process is thought to be reversable, however to-date evidence of this has been demonstrated in small-cell prostate cancer. To study the plasticity of prostate tumours, we look to clinical cohorts of patients covering the spectra of malignancy subtypes and utilise in vitro and in vivo models of disease progression. Current models have assisted in the understanding of the extremities of this plasticity, elucidating internal mechanisms and adaptations to stressors through transition to altered cell states. By interrogating the tumour microenvironment and earlier time points, we are beginning to form a deeper understanding of the full spectra of tumour plasticity. It could be proffered that this deeper understanding will lead to better patient outcome, with earlier interventions more likely to reverse plasticity and prevent trans-differentiation to the aggressive, small cell phenotype.
Collapse
Affiliation(s)
- Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3008, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, 3008, Switzerland.
| |
Collapse
|
272
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
273
|
Deng S, Wang C, Wang Y, Xu Y, Li X, Johnson NA, Mukherji A, Lo UG, Xu L, Gonzalez J, Metang LA, Ye J, Tirado CR, Rodarte K, Zhou Y, Xie Z, Arana C, Annamalai V, Liu X, Vander Griend DJ, Strand D, Hsieh JT, Li B, Raj G, Wang T, Mu P. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance. NATURE CANCER 2022; 3:1071-1087. [PMID: 36065066 PMCID: PMC9499870 DOI: 10.1038/s43018-022-00431-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023]
Abstract
Emerging evidence indicates that various cancers can gain resistance to targeted therapies by acquiring lineage plasticity. Although various genomic and transcriptomic aberrations correlate with lineage plasticity, the molecular mechanisms enabling the acquisition of lineage plasticity have not been fully elucidated. We reveal that Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is a crucial executor in promoting lineage plasticity-driven androgen receptor (AR)-targeted therapy resistance in prostate cancer. Importantly, ectopic JAK-STAT activation is specifically required for the resistance of stem-like subclones expressing multilineage transcriptional programs but not subclones exclusively expressing the neuroendocrine-like lineage program. Both genetic and pharmaceutical inhibition of JAK-STAT signaling resensitizes resistant tumors to AR-targeted therapy. Together, these results suggest that JAK-STAT are compelling therapeutic targets for overcoming lineage plasticity-driven AR-targeted therapy resistance.
Collapse
Affiliation(s)
- Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - U-Ging Lo
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Kathia Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yinglu Zhou
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Arana
- Wakeland Genomics Core, UT Southwestern Medical Center, Dallas, TX, USA
| | - Valli Annamalai
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
274
|
Korsen JA, Kalidindi TM, Khitrov S, Samuels ZV, Chakraborty G, Gutierrez JA, Poirier JT, Rudin CM, Chen Y, Morris MJ, Pillarsetty N, Lewis JS. Molecular Imaging of Neuroendocrine Prostate Cancer by Targeting Delta-Like Ligand 3. J Nucl Med 2022; 63:1401-1407. [PMID: 35058323 PMCID: PMC9454466 DOI: 10.2967/jnumed.121.263221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer. Using the 89Zr-labeled delta-like ligand 3 (DLL3) targeting antibody SC16 (89Zr-desferrioxamine [DFO]-SC16), we have developed a PET agent to noninvasively identify the presence of DLL3-positive NEPC lesions. Methods: Quantitative polymerase chain reaction and immunohistochemistry were used to compare relative levels of androgen receptor (AR)-regulated markers and the NEPC marker DLL3 in a panel of prostate cancer cell lines. PET imaging with 89Zr-DFO-SC16, 68Ga-PSMA-11, and 68Ga-DOTATATE was performed on H660 NEPC-xenografted male nude mice. 89Zr-DFO-SC16 uptake was corroborated by biodistribution studies. Results: In vitro studies demonstrated that H660 NEPC cells are positive for DLL3 and negative for AR, prostate-specific antigen, and prostate-specific membrane antigen (PSMA) at both the transcriptional and the translational levels. PET imaging and biodistribution studies confirmed that 89Zr-DFO-SC16 uptake is restricted to H660 xenografts, with background uptake in non-NEPC lesions (both AR-dependent and AR-independent). Conversely, H660 xenografts cannot be detected with imaging agents targeting PSMA (68Ga-PSMA-11) or somatostatin receptor subtype 2 (68Ga-DOTATATE). Conclusion: These studies demonstrated that H660 NEPC cells selectively express DLL3 on their cell surface and can be noninvasively identified with 89Zr-DFO-SC16.
Collapse
Affiliation(s)
- Joshua A Korsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Teja M Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Khitrov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary V Samuels
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Julia A Gutierrez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health, New York, New York; and
| | - Charles M Rudin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
275
|
Affiliation(s)
- Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Barbieri
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
276
|
Torborg SR, Li Z, Chan JE, Tammela T. Cellular and molecular mechanisms of plasticity in cancer. Trends Cancer 2022; 8:735-746. [PMID: 35618573 PMCID: PMC9388572 DOI: 10.1016/j.trecan.2022.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022]
Abstract
Cancer cells are plastic - they can assume a wide range of distinct phenotypes. Plasticity is integral to cancer initiation and progression, as well as to the emergence and maintenance of intratumoral heterogeneity. Furthermore, plastic cells can rapidly adapt to and evade therapy, which poses a challenge for effective cancer treatment. As such, targeting plasticity in cancer holds tremendous promise. Yet, the principles governing plasticity in cancer cells remain poorly understood. Here, we provide an overview of the fundamental molecular and cellular mechanisms that underlie plasticity in cancer and in other biological contexts, including development and regeneration. We propose a key role for high-plasticity cell states (HPCSs) as crucial nodes for cell state transitions and enablers of intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Stefan R Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
277
|
Patierno BM, Foo WC, Allen T, Somarelli JA, Ware KE, Gupta S, Wise S, Wise JP, Qin X, Zhang D, Xu L, Li Y, Chen X, Inman BA, McCall SJ, Huang J, Kittles RA, Owzar K, Gregory S, Armstrong AJ, George DJ, Patierno SR, Hsu DS, Freedman JA. Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer Prostatic Dis 2022; 25:513-523. [PMID: 34645983 PMCID: PMC9005588 DOI: 10.1038/s41391-021-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer is a clinically and molecularly heterogeneous disease, with highest incidence and mortality among men of African ancestry. To date, prostate cancer patient-derived xenograft (PCPDX) models to study this disease have been difficult to establish because of limited specimen availability and poor uptake rates in immunodeficient mice. Ancestrally diverse PCPDXs are even more rare, and only six PCPDXs from self-identified African American patients from one institution were recently made available. METHODS In the present study, we established a PCPDX from prostate cancer tissue from a patient of estimated 90% West African ancestry with metastatic castration resistant disease, and characterized this model's pathology, karyotype, hotspot mutations, copy number, gene fusions, gene expression, growth rate in normal and castrated mice, therapeutic response, and experimental metastasis. RESULTS This PCPDX has a mutation in TP53 and loss of PTEN and RB1. We have documented a 100% take rate in mice after thawing the PCPDX tumor from frozen stock. The PCPDX is castrate- and docetaxel-resistant and cisplatin-sensitive, and has gene expression patterns associated with such drug responses. After tail vein injection, the PCPDX tumor cells can colonize the lungs of mice. CONCLUSION This PCPDX, along with others that are established and characterized, will be useful pre-clinically for studying the heterogeneity of prostate cancer biology and testing new therapeutics in models expected to be reflective of the clinical setting.
Collapse
Affiliation(s)
- Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Santosh Gupta
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandra Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yanjing Li
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brant A Inman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, 91010, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Gregory
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
278
|
A Pan-Cancer Assessment of RB1/TP53 Co-Mutations. Cancers (Basel) 2022; 14:cancers14174199. [PMID: 36077736 PMCID: PMC9454436 DOI: 10.3390/cancers14174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cancers are caused by genetic alterations called mutations. In some cases, specific mutation combinations act synergistically to provide unique advantages for cancer development. These mutation combinations are observed more frequently than by random chance. In this study, we investigated a large public tumor mutation database and found the most diverse and frequent concurrent mutations occur in TP53 and RB1. We enumerated the cancer types with TP53/RB1 co-mutations and investigated the patient outcome and the specific characteristics of cancer cells with TP53/RB1 co-mutations, especially the drugs that can and cannot be used to kill these cells. Our work provides a tool for cancer researchers to investigate co-mutations and provides insights into the treatment of TP53/RB1 co-mutated cancers. Abstract Nearly all tumors have multiple mutations in cancer-causing genes. Which of these mutations act in tandem with other mutations to drive malignancy and also provide therapeutic vulnerability? To address this fundamental question, we conducted a pan-cancer screen of co-mutation enrichment (looking for two genes mutated together in the same tumor at a statistically significant rate) using the AACR-GENIE 11.0 data (AACR, Philadelphia, PA, USA). We developed a web tool for users to review results and perform ad hoc analyses. From our screen, we identified a number of such co-mutations and their associated lineages. Here, we focus on the RB1/TP53 co-mutation, which we discovered was the most frequently observed co-mutation across diverse cancer types, with particular enrichment in small cell carcinomas, neuroendocrine carcinomas, and sarcomas. Furthermore, in many cancers with a substantial fraction of co-mutant tumors, the presence of concurrent RB1/TP53 mutations is associated with poor clinical outcomes. From pan-cancer cell line multi-omics and functional screening datasets, we identified many targetable co-mutant-specific molecular alterations. Overall, our analyses revealed the prevalence, cancer type-specificity, clinical significance, and therapeutic vulnerabilities of the RB1/TP53 co-mutation in the pan-cancer landscape and provide a roadmap forward for future clinical translational research.
Collapse
|
279
|
Chen HY, Durmaz YT, Li Y, Sabet AH, Vajdi A, Denize T, Walton E, Laimon YN, Doench JG, Mahadevan NR, Losman JA, Barbie DA, Tolstorukov MY, Rudin CM, Sen T, Signoretti S, Oser MG. Regulation of neuroendocrine plasticity by the RNA-binding protein ZFP36L1. Nat Commun 2022; 13:4998. [PMID: 36008402 PMCID: PMC9411550 DOI: 10.1038/s41467-022-31998-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Some small cell lung cancers (SCLCs) are highly sensitive to inhibitors of the histone demethylase LSD1. LSD1 inhibitors are thought to induce their anti-proliferative effects by blocking neuroendocrine differentiation, but the mechanisms by which LSD1 controls the SCLC neuroendocrine phenotype are not well understood. To identify genes required for LSD1 inhibitor sensitivity in SCLC, we performed a positive selection genome-wide CRISPR/Cas9 loss of function screen and found that ZFP36L1, an mRNA-binding protein that destabilizes mRNAs, is required for LSD1 inhibitor sensitivity. LSD1 binds and represses ZFP36L1 and upon LSD1 inhibition, ZFP36L1 expression is restored, which is sufficient to block the SCLC neuroendocrine differentiation phenotype and induce a non-neuroendocrine "inflammatory" phenotype. Mechanistically, ZFP36L1 binds and destabilizes SOX2 and INSM1 mRNAs, two transcription factors that are required for SCLC neuroendocrine differentiation. This work identifies ZFP36L1 as an LSD1 target gene that controls the SCLC neuroendocrine phenotype and demonstrates that modulating mRNA stability of lineage transcription factors controls neuroendocrine to non-neuroendocrine plasticity.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Amin H Sabet
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Thomas Denize
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yasmin Nabil Laimon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
280
|
Lundberg A, Yi JJJ, Lindström LS, Tobin NP. Reclassifying tumour cell cycle activity in terms of its tissue of origin. NPJ Precis Oncol 2022; 6:59. [PMID: 35987928 PMCID: PMC9392789 DOI: 10.1038/s41698-022-00302-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
Genomic alterations resulting in loss of control over the cell cycle is a fundamental hallmark of human malignancies. Whilst pan-cancer studies have broadly assessed tumour genomics and their impact on oncogenic pathways, analyses taking the baseline signalling levels in normal tissue into account are lacking. To this end, we aimed to reclassify the cell cycle activity of tumours in terms of their tissue of origin and determine if any common DNA mutations, chromosome arm-level changes or signalling pathways contribute to an increase in baseline corrected cell cycle activity. Combining normal tissue and pan-cancer data from over 13,000 samples we demonstrate that tumours of gynaecological origin show the highest levels of corrected cell cycle activity, partially owing to hormonal signalling and gene expression changes. We also show that normal and tumour tissues can be separated into groups (quadrants) of low/high cell cycle activity and propose the hypothesis of an upper limit on these activity levels in tumours.
Collapse
Affiliation(s)
- Arian Lundberg
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
- Helen Diller Family Comperhensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Joan Jong Jing Yi
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Linda S Lindström
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| |
Collapse
|
281
|
Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer. Oncogene 2022; 41:4307-4317. [PMID: 35986103 PMCID: PMC9464715 DOI: 10.1038/s41388-022-02437-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine prostate cancer (NEPC), a lethal subset of prostate cancer, is characterized by loss of AR signaling and resulting resistance to AR-targeted therapy during neuroendocrine transdifferentiation, for which the molecular mechanisms remain unclear. Here, we report that neuropilin 2 (NRP2) is upregulated in both de novo and therapy-induced NEPC, which induces neuroendocrine markers, neuroendocrine cell morphology, and NEPC cell aggressive behavior. NRP2 silencing restricted NEPC tumor xenograft growth. Mechanistically, NRP2 engages in reciprocal crosstalk with AR, where NRP2 is transcriptionally inhibited by AR, and in turn suppresses AR signaling by downregulating the AR transcriptional program and confers resistance to enzalutamide. Moreover, NRP2 physically interacts with VEGFR2 through the intracellular SEA domain to activate STAT3 phosphorylation and subsequently SOX2, thus driving NEPC differentiation and growth. Collectively, these results characterize NRP2 as a driver of NEPC and suggest NRP2 as a potential therapeutic target in NEPC.
Collapse
|
282
|
Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer. Nat Commun 2022; 13:4760. [PMID: 35963852 PMCID: PMC9376089 DOI: 10.1038/s41467-022-32530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer. Chondroitin sulfate (CS) is one of the most abundant glycosaminoglycans in prostate cancers. Here the authors show that inhibition of the androgen receptor pathway leads to the upregulation of CS, which promotes prostate cancer growth and metastasis.
Collapse
|
283
|
Yao Y, Gu X, Xu X, Ge S, Jia R. Novel insights into RB1 mutation. Cancer Lett 2022; 547:215870. [PMID: 35964818 DOI: 10.1016/j.canlet.2022.215870] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of the retinoblastoma susceptibility gene (RB1) decades ago, RB1 has been regarded as a prototype tumor suppressor gene providing a paradigm for tumor genetic research. Constant research has updated the understanding of RB1-related pathways and their impact on tumor and nontumor diseases. Mutation of RB1 gene has been observed in multiple types of malignant tumors including prostate cancer, lung cancer, breast cancer, and almost every familial and sporadic case of retinoblastoma. Even if well-known and long-investigated, the application potential of RB1 mutation has not been fully tapped. In this review, we focus on the mechanism underlying RB1 mutation during oncogenesis. Therapeutically, we have further discussed potential clinical strategies by targeting RB1-mutated cancers. The unsolved problems and prospects of RB1 mutation are also discussed.
Collapse
Affiliation(s)
- Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
284
|
Chen M, Chen Z, Lin Z, Ding X, Liang T. Utilization of hypoxia-derived gene signatures to predict clinical outcomes and immune checkpoint blockade therapy responses in prostate cancer. Front Genet 2022; 13:922074. [PMID: 36035150 PMCID: PMC9412200 DOI: 10.3389/fgene.2022.922074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Increasing evidences show a clinical significance in the interaction between hypoxia and prostate cancer. However, reliable prognostic signatures based on hypoxia have not been established yet.Methods: We screened hypoxia-related gene modules by weighted gene co-expression network analysis (WGCNA) and established a hypoxia-related prognostic risk score (HPRS) model by univariate Cox and LASSO-Cox analyses. In addition, enriched pathways, genomic mutations, and tumor-infiltrating immune cells in HPRS subgroups were analyzed and compared. HPRS was also estimated to predict immune checkpoint blockade (ICB) therapy response.Results: A hypoxia-related 22-gene prognostic model was established. Furthermore, three independent validation cohorts showed moderate performance in predicting biochemical recurrence-free (BCR-free) survival. HPRS could be a useful tool in selecting patients who can benefit from ICB therapy. The CIBERSORT results in our study demonstrated that hypoxia might act on multiple T cells, activated NK cells, and macrophages M1 in various ways, suggesting that hypoxia might exert its anti-tumor effects by suppressing T cells and NK cells.Conclusion: Hypoxia plays an important role in the progression of prostate cancer. The hypoxia-derived signatures are promising biomarkers to predict biochemical recurrence-free survival and ICB therapy responses in patients with prostate cancer.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhang Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zongbin Lin
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiang Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyu Liang
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Tianyu Liang,
| |
Collapse
|
285
|
Benedetti V, Banfi F, Zaghi M, Moll-Diaz R, Massimino L, Argelich L, Bellini E, Bido S, Muggeo S, Ordazzo G, Mastrototaro G, Moneta M, Sessa A, Broccoli V. A SOX2-engineered epigenetic silencer factor represses the glioblastoma genetic program and restrains tumor development. SCIENCE ADVANCES 2022; 8:eabn3986. [PMID: 35921410 PMCID: PMC9348799 DOI: 10.1126/sciadv.abn3986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Current therapies remain unsatisfactory in preventing the recurrence of glioblastoma multiforme (GBM), which leads to poor patient survival. By rational engineering of the transcription factor SOX2, a key promoter of GBM malignancy, together with the Kruppel-associated box and DNA methyltransferase3A/L catalytic domains, we generated a synthetic repressor named SOX2 epigenetic silencer (SES), which induces the transcriptional silencing of its original targets. By doing so, SES kills both glioma cell lines and patient-derived cancer stem cells in vitro and in vivo. SES expression, through local viral delivery in mouse xenografts, induces strong regression of human tumors and survival rescue. Conversely, SES is not harmful to neurons and glia, also thanks to a minimal promoter that restricts its expression in mitotically active cells, rarely present in the brain parenchyma. Collectively, SES produces a significant silencing of a large fraction of the SOX2 transcriptional network, achieving high levels of efficacy in repressing aggressive brain tumors.
Collapse
Affiliation(s)
- Valerio Benedetti
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raquel Moll-Diaz
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Argelich
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Ordazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Mastrototaro
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Moneta
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
286
|
Cresta Morgado P, Mateo J. Clinical implications of homologous recombination repair mutations in prostate cancer. Prostate 2022; 82 Suppl 1:S45-S59. [PMID: 35657156 DOI: 10.1002/pros.24352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/06/2022]
Abstract
Prostate cancer is a disease with significant interpatient genomics, with a proportion of patients presenting mutations in key homologous recombination repair (HRR) gene aberrations, particularly in late-stage disease. A better understanding of the genomic landscape of prostate cancer and the prognostic and predictive value of HRR mutations could lead to more precise care for prostate cancer patients. BRCA1/2 mutations are associated with a more aggressive disease course and higher risk of developing lethal prostate cancer, but also identify patients who could benefit from directed therapeutic strategies with PARP inhibitors. Other HRR mutations are also frequent but their prognostic and predictive value for prostate cancer patients is less clear. Moreover, a proportion of these mutations are associated with inherited germline defects, being relevant for the patients' risk of second malignancies but also to inform their relatives' risk of cancer through cascade testing. In this manuscript, we review current knowledge of the prognostic and predictive value for different HHR alterations across the different prostate cancer disease states. Additionally, we assess the challenges to implement genomic testing in clinical practice for prostate cancer patients.
Collapse
Affiliation(s)
- Pablo Cresta Morgado
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Prostate Cancer Translational Research Group, Barcelona, Spain
| | - Joaquin Mateo
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Prostate Cancer Translational Research Group, Barcelona, Spain
| |
Collapse
|
287
|
Lo UG, Chen YA, Cen J, Deng S, Luo J, Zhau H, Ho L, Lai CH, Mu P, Chung LWK, Hsieh JT. The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med 2022; 12:e978. [PMID: 35908276 PMCID: PMC9339240 DOI: 10.1002/ctm2.978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lineage plasticity in prostate cancer (PCa) has emerged as an important mechanism leading to the onset of therapy- and castration-resistant PCa (t-CRPC), which is closely associated with cancer stem cell (CSC) activity. This study is to identify critical driver(s) with mechanism of action and explore new targeting strategy. METHODS Various PCa cell lines with different genetic manipulations were subjected to in vitro prostasphere assay, cell viability assay and in vivo stemness potential. In addition, bioinformatic analyses such as Ingenuity pathway and Gene Set Enrichment Analysis were carried out to determine clinical relevance. The in vivo anti-tumour activity of JAK or STAT1 inhibitors was examined in clinically relevant t-CRPC model. RESULTS We demonstrated the role of interferon-related signalling pathway in promoting PCa stemness, which correlated with significant elevation of interferon related DNA damage resistance signature genes in metastatic PCa. Inhibition of JAK-STAT1 signalling suppresses the in vitro and in vivo CSC capabilities. Mechanistically, IFIT5, a unique downstream effector of JAK-STAT1 pathway, can facilitate the acquisition of stemness properties in PCa by accelerating the turnover of specific microRNAs (such as miR-128 and -101) that can target several CSC genes (such as BMI1, NANOG, and SOX2). Consistently, knocking down IFIT5 in t-CRPC cell can significantly reduce in vitro prostasphere formation as well as decrease in vivo tumour initiating capability. CONCLUSIONS This study provides a critical role of STAT1-IFIT5 in the acquisition of PCSC and highlights clinical translation of JAK or STAT1 inhibitors to prevent the outgrowth of t-CRPC.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Junjie Cen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Su Deng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junghang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Haiyen Zhau
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lin Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
288
|
Abu el Maaty MA, Terzic J, Keime C, Rovito D, Lutzing R, Yanushko D, Parisotto M, Grelet E, Namer IJ, Lindner V, Laverny G, Metzger D. Hypoxia-mediated stabilization of HIF1A in prostatic intraepithelial neoplasia promotes cell plasticity and malignant progression. SCIENCE ADVANCES 2022; 8:eabo2295. [PMID: 35867798 PMCID: PMC9307253 DOI: 10.1126/sciadv.abo2295] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related deaths. The slow evolution of precancerous lesions to malignant tumors provides a broad time frame for preventing PCa. To characterize prostatic intraepithelial neoplasia (PIN) progression, we conducted longitudinal studies on Pten(i)pe-/- mice that recapitulate prostate carcinogenesis in humans. We found that early PINs are hypoxic and that hypoxia-inducible factor 1 alpha (HIF1A) signaling is activated in luminal cells, thus enhancing malignant progression. Luminal HIF1A dampens immune surveillance and drives luminal plasticity, leading to the emergence of cells that overexpress Transglutaminase 2 (TGM2) and have impaired androgen signaling. Elevated TGM2 levels in patients with PCa are associated with shortened progression-free survival after prostatectomy. Last, we show that pharmacologically inhibiting HIF1A impairs cell proliferation and induces apoptosis in PINs. Therefore, our study demonstrates that HIF1A is a target for PCa prevention and that TGM2 is a promising prognostic biomarker of early relapse after prostatectomy.
Collapse
Affiliation(s)
- Mohamed A. Abu el Maaty
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Julie Terzic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Régis Lutzing
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Darya Yanushko
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Maxime Parisotto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Elise Grelet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Izzie Jacques Namer
- Université de Strasbourg, Strasbourg, France
- ICube, CNRS, UMR 7357, Strasbourg, France
| | - Véronique Lindner
- Département de Pathologie, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Corresponding author. (D.M.); (G.L.)
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Corresponding author. (D.M.); (G.L.)
| |
Collapse
|
289
|
Chen Y, Zhou Q, Hankey W, Fang X, Yuan F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis 2022; 13:632. [PMID: 35864113 PMCID: PMC9304354 DOI: 10.1038/s41419-022-05084-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Prostate cancer is a hormone-dependent malignancy, whose onset and progression are closely related to the activity of the androgen receptor (AR) signaling pathway. Due to this critical role of AR signaling in driving prostate cancer, therapy targeting the AR pathway has been the mainstay strategy for metastatic prostate cancer treatment. The utility of these agents has expanded with the emergence of second-generation AR antagonists, which began with the approval of enzalutamide in 2012 by the United States Food and Drug Administration (FDA). Together with apalutamide and darolutamide, which were approved in 2018 and 2019, respectively, these agents have improved the survival of patients with prostate cancer, with applications for both androgen-dependent and castration-resistant disease. While patients receiving these drugs receive a benefit in the form of prolonged survival, they are not cured and ultimately progress to lethal neuroendocrine prostate cancer (NEPC). Here we summarize the current state of AR antagonist development and highlight the emerging challenges of their clinical application and the potential resistance mechanisms, which might be addressed by combination therapies or the development of novel AR-targeted therapies.
Collapse
Affiliation(s)
- Yanhua Chen
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Qianqian Zhou
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - William Hankey
- grid.10698.360000000122483208Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xiaosheng Fang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 271000 Jinan, Shandong China
| | - Fuwen Yuan
- grid.412540.60000 0001 2372 7462Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
290
|
Islam R, Mishra J, Polavaram NS, Bhattacharya S, Hong Z, Bodas S, Sharma S, Bouska A, Gilbreath T, Said AM, Smith LM, Teply BA, Muders MH, Batra SK, Datta K, Dutta S. Neuropilin-2 axis in regulating secretory phenotype of neuroendocrine-like prostate cancer cells and its implication in therapy resistance. Cell Rep 2022; 40:111097. [PMID: 35858551 PMCID: PMC9362995 DOI: 10.1016/j.celrep.2022.111097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Zhengdong Hong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sanika Bodas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Alyssa Bouska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Tyler Gilbreath
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Ahmed M Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo, Egypt
| | - Lynette M Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Benjamin A Teply
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Michael H Muders
- Department of Prostate Cancer Research, Center for Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA.
| |
Collapse
|
291
|
Xu Y, Mu J, Zhou Z, Leng Y, Yu Y, Song X, Liu A, Zhu H, Li J, Wang D. Expansion of mouse castration-resistant intermediate prostate stem cells in vitro. Stem Cell Res Ther 2022; 13:299. [PMID: 35841025 PMCID: PMC9284701 DOI: 10.1186/s13287-022-02978-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Most castration-resistant prostate cancers (CRPCs) have a luminal phenotype with high androgen receptor (AR) and prostate-specific antigen (PSA) expression. Currently, it is difficult to culture castration-resistant luminal cells with AR and PSA expression. Methods We formulated a custom-made medium and isolated primary cells from the prostate of adult wild-type (WT) and TRAMP mice. The cells were characterized by immunofluorescence staining, transcriptomic analysis, and qRT-PCR verification. Their self-renewal and differentiation potential in vitro and in vivo were examined. We treated the cells with androgen deprivation and enzalutamide and performed immunofluorescence staining and western blotting to analyze their expression of AR and PSA. Results We isolated a novel type of castration-resistant intermediate prostate stem cells (CRIPSCs) from adult WT and TRAMP mice. The mouse CRIPSCs proliferated rapidly in two-dimensional (2D) culture dishes and can be cultured for more than six months. The mouse CRIPSCs expressed luminal markers (AR, PSA, and Dsg4), basal markers (CK5 and p63), Psca, and the intermediate cell marker (Ivl). Transcriptomic analysis showed that the mouse CRIPSCs had upregulated signaling pathways related to cancer development and drug resistance. In the long-term culture, TRAMP CRIPSCs had higher expression of the genes related to stem cells and cancers than WT mice. Both WT and TRAMP CRIPSCs formed organoids in Matrigel. WT CRIPSCs did not form prostate tissues when transplanted in vivo without urogenital sinus mesenchyme (UGM) cells. In contrast, TRAMP CRIPSCs formed prostate ducts in NOG mice without UGM cells and differentiated into luminal, basal, and neuroendocrine cells. Androgens regulated AR translocation between the nucleus and cytoplasm in the mouse CRIPSCs. Treatment of androgen deprivation (ADT) and enzalutamide reduced AR expression in WT and TRAMP CRIPSCs; however, this treatment promoted PSA expression in TRAMP, while not WT CRIPSCs, similar to the clinical observations of CRPC. Conclusions Our study established a method for isolating and expanding mouse CRIPSCs in 2D culture dishes. Mouse CRIPSCs had markers of basal and luminal cells, including AR and PSA, and can differentiate into prostate organoids and tissues. TRAMP CRIPSCs had elevated PSA expression upon ADT and enzalutamide treatment. Our method can be translated into clinical settings for CRPC precision medicine.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Jie Mu
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.,School of Basic Medicine, Qingdao University, Qingdao, 266021, China
| | - Aihua Liu
- College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, 266011, China.
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
292
|
Coleman IM, DeSarkar N, Morrissey C, Xin L, Roudier MP, Sayar E, Li D, Corey E, Haffner MC, Nelson PS. Therapeutic Implications for Intrinsic Phenotype Classification of Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:3127-3140. [PMID: 35552660 PMCID: PMC9365375 DOI: 10.1158/1078-0432.ccr-21-4289] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE To determine whether metastatic castration-resistant prostate cancers (mCRPC) partition into molecular phenotypes corresponding to intrinsic differentiation states and ascertain whether these subtypes exhibit specific druggable features and associate with treatment outcomes. EXPERIMENTAL DESIGN We used RNAseq, digital spatial profiling, and histological assessments from metastatic biopsies and patient-derived xenografts to segregate mCRPCs into subtypes defined by the PAM50 breast cancer classification algorithm. Subtype associations with treatment responses in preclinical models and patients were determined. RESULTS Using the PAM50 algorithm, we partitioned 270 mCRPC tumors into LumA (42%), LumB (24%), and Basal (34%) subtypes with classification largely driven by proliferation rates and androgen receptor (AR) activity. Most neuroendocrine tumors classified as Basal. Pathways enriched in the LumA subtype include TGFß and NOTCH signaling. LumB subtype tumors were notable for elevated MYC activity. Basal subtype tumors exhibited elevated IL6-STAT3 signaling and features of adult stem cell states. In patients where multiple tumors were evaluated, the majority had concordant PAM50 subtype determination, though a subset exhibited marked inter- and intratumor heterogeneity, including divergent classifications between primary and metastatic sites. In preclinical models, LumA subtype tumors were highly responsive to androgen deprivation and docetaxel chemotherapy whereas Basal tumors were largely resistant. In clinical cohorts patients with Basal subtype tumors demonstrated a shorter time on treatment with AR signaling inhibitors and docetaxel relative to patients with luminal subtypes. CONCLUSIONS Subtyping of mCRPC based on cell differentiation states has potential clinical utility for identifying patients with divergent expression of treatment targets and responses to systemic therapy.
Collapse
Affiliation(s)
- Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Navonil DeSarkar
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Li Xin
- Department of Urology, University of Washington, Seattle, Washington
| | | | | | - Dapei Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
293
|
Zhang L, Billet S, Gonzales G, Rohena-Rivera K, Muranaka H, Chu GCY, Yang Q, Kim H, Bhowmick NA, Smith B. Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner. Cancers (Basel) 2022; 14:3449. [PMID: 35884514 PMCID: PMC9318639 DOI: 10.3390/cancers14143449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) affects an estimated 250,000 men every year and causes 34,000 deaths annually. A high-fat diet and obesity are associated with PCa progression and mortality. This study's premise was the novel observation of crosstalk between PCa epithelia and cancer-associated fibroblasts (CAF) in response to palmitate-mediated lineage plasticity. We found that cholesterol activated canonical Hedgehog (Hh) signaling by increasing cilium Gli activity in PCa cells, while palmitate activated Hh independent of Gli. Exogenous palmitate activated SOX2, a known mediator of lineage plasticity, in PCa cells cocultured with CAF. Stroma-derived Wnt5a was upregulated in CAF while cocultured with PCa cells and treated with palmitate. Wnt5a knockdown in CAF inhibited Hh and SOX2 expression in PCa cells from cocultures. These findings supported our proposed mechanism of a high-fat diet promoting Hh signaling-mediated transformation within the tumor microenvironment. SOX2 and Wnt5a expression were limited by the CD36 neutralizing antibody. Mice xenografted with PCa epithelia and CAF tumors were fed a high-fat diet, leading to elevated SOX2 expression and lineage plasticity reprogramming compared to mice fed an isocaloric rodent diet. CD36 inhibition with enzalutamide elevated apoptosis by TUNEL, but limited proliferation and SOX2 expression compared to enzalutamide alone. This study revealed a mechanism for a high-fat diet to affect prostate cancer progression. We found that saturated fat induced lineage plasticity reprogramming of PCa by interaction with CAF through Wnt5a and Hh signaling.
Collapse
Affiliation(s)
- Le Zhang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Gabrielle Gonzales
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Krizia Rohena-Rivera
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Hayato Muranaka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Hyung Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bethany Smith
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| |
Collapse
|
294
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
295
|
Storck WK, May AM, Westbrook TC, Duan Z, Morrissey C, Yates JA, Alumkal JJ. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity. Front Endocrinol (Lausanne) 2022; 13:926585. [PMID: 35909568 PMCID: PMC9329809 DOI: 10.3389/fendo.2022.926585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
The androgen receptor (AR) signaling pathway is critical for growth and differentiation of prostate cancer cells. For that reason, androgen deprivation therapy with medical or surgical castration is the principal treatment for metastatic prostate cancer. More recently, new potent AR signaling inhibitors (ARSIs) have been developed. These drugs improve survival for men with metastatic castration-resistant prostate cancer (CRPC), the lethal form of the disease. However, ARSI resistance is nearly universal. One recently appreciated resistance mechanism is lineage plasticity or switch from an AR-driven, luminal differentiation program to an alternate differentiation program. Importantly, lineage plasticity appears to be increasing in incidence in the era of new ARSIs, strongly implicating AR suppression in this process. Lineage plasticity and shift from AR-driven tumors occur on a continuum, ranging from AR-expressing tumors with low AR activity to AR-null tumors that have activation of alternate differentiation programs versus the canonical luminal program found in AR-driven tumors. In many cases, AR loss coincides with the activation of a neuronal program, most commonly exemplified as therapy-induced neuroendocrine prostate cancer (t-NEPC). While genetic events clearly contribute to prostate cancer lineage plasticity, it is also clear that epigenetic events-including chromatin modifications and DNA methylation-play a major role. Many epigenetic factors are now targetable with drugs, establishing the importance of clarifying critical epigenetic factors that promote lineage plasticity. Furthermore, epigenetic marks are readily measurable, demonstrating the importance of clarifying which measurements will help to identify tumors that have undergone or are at risk of undergoing lineage plasticity. In this review, we discuss the role of AR pathway loss and activation of a neuronal differentiation program as key contributors to t-NEPC lineage plasticity. We also discuss new epigenetic therapeutic strategies to reverse lineage plasticity, including those that have recently entered clinical trials.
Collapse
Affiliation(s)
- William K. Storck
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Allison M. May
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas C. Westbrook
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Zhi Duan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Joel A. Yates
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Joshi J. Alumkal
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
296
|
Biancotti R, Dal Pozzo CA, Parente P, Businello G, Angerilli V, Realdon S, Savarino EV, Farinati F, Milanetto AC, Pasquali C, Vettor R, Grillo F, Pennelli G, Luchini C, Mastracci L, Vanoli A, Milione M, Galuppini F, Fassan M. Histopathological Landscape of Precursor Lesions of Gastro-Entero-Pancreatic Neuroendocrine Neoplasms. Dig Dis 2022; 41:34-48. [PMID: 35816999 DOI: 10.1159/000525421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/12/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Despite the important advances in research on neuroendocrine neoplasms of the gastro-entero-pancreatic tract, their precursor lesions are much less well known. SUMMARY This review analyzes the preneoplastic neuroendocrine lesions of the gastro-entero-pancreatic tract, by adopting a coherent anatomical benchmark. In particular, the settings in which neuroendocrine precursor lesions represent well-recognized pathophysiological and morphological entities (with eventual molecular correlates) have been distinguished from the ones in which the nature of preneoplastic changes is still obscure. KEY MESSAGES The aim of the paper was to summarize what is known about precursor lesions of gastro-entero-pancreatic neuroendocrine tumors, with the goal of providing a useful tool for future research aimed at obtaining a fuller understanding of the underlying biology and early development of these diseases.
Collapse
Affiliation(s)
- Rachele Biancotti
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Edoardo Vincenzo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Fabio Farinati
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Anna Caterina Milanetto
- Division of Surgery, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Claudio Pasquali
- Division of Surgery, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Roberto Vettor
- Endocrine-Metabolic Laboratory, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Center for the Study and the Integrated Management of Obesity, Padua University Hospital, Padua, Italy
| | - Federica Grillo
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, Genova, Italy
- Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Mastracci
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, Genova, Italy
- Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genova, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, Pavia, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| |
Collapse
|
297
|
Abdulfatah E, Fine SW, Lotan T, Mehra R. De Novo Neuroendocrine Features in Prostate Cancer. Hum Pathol 2022; 127:112-122. [PMID: 35810832 DOI: 10.1016/j.humpath.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/22/2022]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| |
Collapse
|
298
|
Zurita AJ, Graf RP, Villacampa G, Raskina K, Sokol E, Jin D, Antonarakis ES, Li G, Huang RSP, Casanova-Salas I, Vivancos A, Carles J, Ross JS, Schrock AB, Oxnard GR, Mateo J. Genomic Biomarkers and Genome-Wide Loss-of-Heterozygosity Scores in Metastatic Prostate Cancer Following Progression on Androgen-Targeting Therapies. JCO Precis Oncol 2022; 6:e2200195. [PMID: 35820087 PMCID: PMC9307307 DOI: 10.1200/po.22.00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To study the impact of standard-of-care hormonal therapies on metastatic prostate cancer (mPC) clinical genomic profiles in real-world practice, with a focus on homologous recombination-repair (HRR) genes. PATIENTS AND METHODS Targeted next-generation sequencing of 1,302 patients with mPC was pursued using the FoundationOne or FoundationOne CDx assays. Longitudinal clinical data for correlative analysis were curated via technology-enabled abstraction of electronic health records. Genomic biomarkers, including individual gene aberrations and genome-wide loss-of-heterozygosity (gLOH) scores, were compared according to biopsy location and time of sample acquisition (androgen deprivation therapy [ADT]-naïve, ADT-progression and post-ADT, and novel hormonal therapies [NHT]-progression), using chi-square and Wilcoxon rank-sum tests. Multivariable analysis used linear regression. False-discovery rate of 0.05 was applied to account for multiple comparisons. RESULTS Eight hundred forty (65%), 132 (10%), and 330 (25%) biopsies were ADT-naïve, ADT-progression, and NHT-progression, respectively. Later-stage samples were enriched for AR, MYC, TP53, PTEN, and RB1 aberrations (all adjusted P values < .05), but prevalence of HRR-related BRCA2, ATM, and CDK12 aberrations remained stable. Primary and metastatic ADT-naïve biopsies presented similar prevalence of TP53 (36% v 31%) and BRCA2 (8% v 7%) aberrations; 81% of ADT-naïve BRCA2-mutated samples presented BRCA2 biallelic loss. Higher gLOH scores were independently associated with HRR genes (BRCA2, PALB2, and FANCA), TP53, and RB1 aberrations, and with prior exposure to hormonal therapies in multivariable analysis. CONCLUSION Prevalence of HRR-gene aberrations remains stable along mPC progression, supporting the use of diagnostic biopsies to guide poly (ADP-ribose) polymerase inhibitor treatment in metastatic castration-resistant prostate cancer. gLOH scores increase with emerging resistance to hormonal therapies, independently of individual HRR gene mutations.
Collapse
Affiliation(s)
- Amado J Zurita
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Guillermo Villacampa
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | | | | | | | | | - Gerald Li
- Foundation Medicine Inc, Cambridge, MA
| | | | - Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Jeffrey S Ross
- Foundation Medicine Inc, Cambridge, MA.,SUNY Upstate Medical University, Syracuse, NY
| | | | | | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO) and Vall d'Hebron University Hospital Campus, Barcelona, Spain
| |
Collapse
|
299
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
300
|
Soundararajan R, Viscuse P, Pilie P, Liu J, Logotheti S, Laberiano Fernández C, Lorenzini D, Hoang A, Lu W, Soto LMS, Wistuba II, Xu M, Song X, Shepherd PDA, Navone NM, Tidwell RSS, Lozano G, Logothetis C, Zhang J, Long JP, Estecio MR, Tzelepi V, Aparicio AM. Genotype-to-Phenotype Associations in the Aggressive Variant Prostate Cancer Molecular Profile (AVPC-m) Components. Cancers (Basel) 2022; 14:3233. [PMID: 35805010 PMCID: PMC9265062 DOI: 10.3390/cancers14133233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aggressive variant prostate cancer molecular profile (AVPC-m), composed of combined defects in TP53, RB1 and PTEN, characterizes a subset of prostate cancers linked to androgen indifference and platinum sensitivity. To contribute to the optimization of the AVPC-m assessment for inclusion in prospective clinical trials, we investigated the status of the AVPC-m components in 28 patient tumor-derived xenografts (PDXs) developed at MDACC. We subjected single formalin-fixed, paraffin-embedded (FFPE) blocks from each PDX to immunohistochemistry (IHC), targeted next-generation genomic sequencing (NGS) and Clariom-S Affymetrix human microarray expression profiling. Standard validated IHC assays and a 10% labeling index cutoff resulted in high reproducibility across three separate laboratories and three independent readers for all tumor suppressors, as well as strong correlations with loss-of-function transcriptional scores (LOF-TS). Adding intensity assessment to labeling indices strengthened the association between IHC results and LOF-TS for TP53 and RB1, but not for PTEN. For TP53, genomic alterations determined by NGS had slightly higher agreement scores with LOF-TS than aberrant IHC, while for RB1 and PTEN, NGS and IHC determinations resulted in similar agreement scores with LOF-TS. Nonetheless, our results indicate that the AVPC-m components can be assessed reproducibly by IHC using various widely available standardized assays.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.L.F.); (W.L.); (L.M.S.S.); (I.I.W.)
| | - Paul Viscuse
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Patrick Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (M.X.); (X.S.); (J.Z.)
| | - Souzana Logotheti
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Caddie Laberiano Fernández
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.L.F.); (W.L.); (L.M.S.S.); (I.I.W.)
| | - Daniele Lorenzini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Instituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.L.F.); (W.L.); (L.M.S.S.); (I.I.W.)
| | - Luisa Maren Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.L.F.); (W.L.); (L.M.S.S.); (I.I.W.)
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.L.F.); (W.L.); (L.M.S.S.); (I.I.W.)
| | - Mingchu Xu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (M.X.); (X.S.); (J.Z.)
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (M.X.); (X.S.); (J.Z.)
| | - Peter D. A. Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Rebecca S. S. Tidwell
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; (R.S.S.T.); (J.P.L.)
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (M.X.); (X.S.); (J.Z.)
| | - James P. Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; (R.S.S.T.); (J.P.L.)
| | - Marcos R. Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Vasiliki Tzelepi
- Department of Pathology, University of Patras, 26504 Patras, Greece;
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.V.); (P.P.); (S.L.); (A.H.); (P.D.A.S.); (N.M.N.); (C.L.)
| |
Collapse
|