251
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
252
|
Minor NR, Ramuta MD, Stauss MR, Harwood OE, Brakefield SF, Alberts A, Vuyk WC, Bobholz MJ, Rosinski JR, Wolf S, Lund M, Mussa M, Beversdorf LJ, Aliota MT, O'Connor SL, O'Connor DH. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. Sci Rep 2023; 13:21398. [PMID: 38049453 PMCID: PMC10696062 DOI: 10.1038/s41598-023-48352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
Innovative methods for evaluating virus risk and spread, independent of test-seeking behavior, are needed to improve routine public health surveillance, outbreak response, and pandemic preparedness. Throughout the COVID-19 pandemic, environmental surveillance strategies, including wastewater andair sampling, have been used alongside widespread individual-based SARS-CoV-2 testing programs to provide population-level data. These environmental surveillance strategies have predominantly relied on pathogen-specific detection methods to monitor viruses through space and time. However, this provides a limited picture of the virome present in an environmental sample, leaving us blind to most circulating viruses. In this study, we explore whether pathogen-agnostic deep sequencing can expand the utility of air sampling to detect many human viruses. We show that sequence-independent single-primer amplification sequencing of nucleic acids from air samples can detect common and unexpected human respiratory and enteric viruses, including influenza virus type A and C, respiratory syncytial virus, human coronaviruses, rhinovirus, SARS-CoV-2, rotavirus, mamastrovirus, and astrovirus.
Collapse
Affiliation(s)
| | - Mitchell D Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | | | - Olivia E Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Savannah F Brakefield
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Alexandra Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - William C Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Max J Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Jenna R Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Sydney Wolf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Madelyn Lund
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Madison Mussa
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | | | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Shelby L O'Connor
- Wisconsin National Primate Research Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA.
| |
Collapse
|
253
|
Ji J, Wang H, Wang L, Ramazi P, Kong JD, Watmough J. Climate-dependent effectiveness of nonpharmaceutical interventions on COVID-19 mitigation. Math Biosci 2023; 366:109087. [PMID: 37858753 DOI: 10.1016/j.mbs.2023.109087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Environmental factors have a significant impact on the transmission of infectious diseases. Existing results show that the novel coronavirus can persist outside the host. We propose a susceptible-exposed-presymptomatic-infectious-asymptomatic-recovered-susceptible (SEPIARS) model with a vaccination compartment and indirect incidence to explore the effect of environmental conditions, temperature and humidity, on the transmission of the SARS-CoV-2 virus. Using climate data and daily confirmed cases data in two Canadian cities with different atmospheric conditions, we evaluate the mortality rates of the SARS-CoV-2 virus and further estimate the transmission rates by the inverse method, respectively. The numerical results show that high temperature or humidity can be helpful in mitigating the spread of COVID-19 during the warm summer months. Our findings verify that nonpharmaceutical interventions are less effective if the virus can persist for a long time on surfaces. Based on climate data, we can forecast the transmission rate and the infection cases up to four weeks in the future by a generalized boosting machine learning model.
Collapse
Affiliation(s)
- Juping Ji
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Interdisciplinary Lab for Mathematical Ecology and Epidemiology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Lin Wang
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Pouria Ramazi
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jude Dzevela Kong
- Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - James Watmough
- Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
254
|
Rybak A, Cohen R, Kramer R, Béchet S, Delobbe JF, Dagrenat V, Vié Le Sage F, Deberdt P, Wollner A, Bangert M, Levy C. Respiratory Syncytial Virus in Outpatient Children with Bronchiolitis: Continuous Virus Circulation During the Nonepidemic Period. Pediatr Infect Dis J 2023; 42:e488-e490. [PMID: 37967149 PMCID: PMC10629605 DOI: 10.1097/inf.0000000000004105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 11/17/2023]
Abstract
We aimed to estimate the respiratory syncytial virus positivity rate among ambulatory children with bronchiolitis according to the bronchiolitis epidemic period as defined by the French Public Health Institute. The positivity rate was 28.9% during the nonepidemic period and 50.6% during the epidemic period, which suggests continuous virus circulation between bronchiolitis annual peaks.
Collapse
Affiliation(s)
- Alexis Rybak
- From the Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Department of Pediatric Emergency, Trousseau University Hospital, Sorbonne Université, Paris, France
- Groupe de Pathologie Infectieuse Pédiatrique, Paris, France
- Association Française de Pédiatrie Ambulatoire, Paris, France
- Sanofi Pasteur, Lyon, France
| | - Robert Cohen
- From the Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Groupe de Pathologie Infectieuse Pédiatrique, Paris, France
- Association Française de Pédiatrie Ambulatoire, Paris, France
- Research Center, Centre Hospitalier Intercommuncal de Créteil, Université Paris Est, Créteil, France
- Groupe de Recherche Clinique-Groupe d’Etude des Maladies Infectieuses Néonatales et Infantiles, Institut Mondor de Recherche Biomédicale, Créteil, France
| | | | - Stéphane Béchet
- From the Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
| | | | | | | | - Patrice Deberdt
- Association Française de Pédiatrie Ambulatoire, Paris, France
| | - Alain Wollner
- From the Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Association Française de Pédiatrie Ambulatoire, Paris, France
| | | | - Corinne Levy
- From the Association Clinique et Thérapeutique Infantile du Val-de-Marne, Créteil, France
- Groupe de Pathologie Infectieuse Pédiatrique, Paris, France
- Association Française de Pédiatrie Ambulatoire, Paris, France
- Research Center, Centre Hospitalier Intercommuncal de Créteil, Université Paris Est, Créteil, France
- Groupe de Recherche Clinique-Groupe d’Etude des Maladies Infectieuses Néonatales et Infantiles, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
255
|
Gordillo LF, Greenwood PE, Strong D. Epidemic highs and lows: a stochastic diffusion model for active cases. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2189001. [PMID: 36919440 DOI: 10.1080/17513758.2023.2189001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
We derive a stochastic epidemic model for the evolving density of infective individuals in a large population. Data shows main features of a typical epidemic consist of low periods interspersed with outbreaks of various intensities and duration. In our stochastic differential model, a novel reproductive term combines a factor expressing the recent notion of 'attenuated Allee effect' and a capacity factor is controlling the size of the process. Simulation of this model produces sample paths of the stochastic density of infectives, which behave much like long-time Covid-19 case data of recent years. Writing the process as a stochastic diffusion allows us to derive its stationary distribution, showing the relative time spent in low levels and in outbursts. Much of the behaviour of the density of infectives can be understood in terms of the interacting drift and diffusion coefficient processes, or, alternatively, in terms of the balance between noise level and the attenuation parameter of the Allee effect. Unexpected results involve the effect of increasing overall noise variance on the density of infectives, in particular on its level-crossing function.
Collapse
Affiliation(s)
- Luis F Gordillo
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | | | - Dana Strong
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| |
Collapse
|
256
|
Kim P, Boothby C, Grassian VH, Continetti RE. Photoinduced Reactions of Nitrate in Aqueous Microdroplets by Triplet Energy Transfer. J Phys Chem Lett 2023; 14:10677-10684. [PMID: 37988598 DOI: 10.1021/acs.jpclett.3c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In-situ Raman spectroscopy of single levitated charged aqueous microdroplets irradiated by dual-beam (266 and 532 nm) lasers demonstrates that the nitrate anion (NO3-) can be depleted in the droplet through an energy transfer mechanism following excitation of sulfanilic acid (SA), a UV-absorbing aromatic organic compound. Upon 266 nm irradiation, a fast decrease of the NO3- concentration was observed when SA is present in the droplet. This photoinduced reaction occurs without the direct photolysis of NO3-. Instead, the rate of NO3- depletion was found to depend on the initial concentration of SA and the pH of the droplet. Based on absorption-emission spectral analysis and excited-state energy calculations, triplet-triplet energy transfer between SA and NO3- is proposed as the underlying mechanism for the depletion of NO3- in aqueous microdroplets. These results suggest that energy transfer mechanisms initiated by light-absorbing organic molecules may play a significant role in NO3- photochemistry.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Christian Boothby
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| | - Robert E Continetti
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0340, United States
| |
Collapse
|
257
|
Sidorenkov G, Vonk JM, Grzegorczyk M, Cortés-Ibañez FO, de Bock GH. Factors associated with SARS-COV-2 positive test in Lifelines. PLoS One 2023; 18:e0294556. [PMID: 38019869 PMCID: PMC10686451 DOI: 10.1371/journal.pone.0294556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) can affect anyone, however, it is often mixed with other respiratory diseases. This study aimed to identify the factors associated with SARS-COV-2 positive test. METHODS Participants from the Northern Netherlands representative of the general population were included if filled in the questionnaire about well-being between June 2020-April 2021 and were tested for SARS-COV-2. The outcome was a self-reported test as measured by polymerase chain reaction. The data were collected on age, sex, household, smoking, alcohol use, physical activity, quality of life, fatigue, symptoms and medications use. Participants were matched on sex, age and the timing of their SARS-COV-2 tests maintaining a 1:4 ratio and classified into those with a positive and negative SARS-COV-2 using logistic regression. The performance of the model was compared with other machine-learning algorithms by the area under the receiving operating curve. RESULTS 2564 (20%) of 12786 participants had a positive SARS-COV-2 test. The factors associated with a higher risk of SARS-COV-2 positive test in multivariate logistic regression were: contact with someone tested positive for SARS-COV-2, ≥1 household members, typical SARS-COV-2 symptoms, male gender and fatigue. The factors associated with a lower risk of SARS-COV-2 positive test were higher quality of life, inhaler use, runny nose, lower back pain, diarrhea, pain when breathing, sore throat, pain in neck, shoulder or arm, numbness or tingling, and stomach pain. The performance of the logistic models was comparable with that of random forest, support vector machine and gradient boosting machine. CONCLUSIONS Having a contact with someone tested positive for SARS-COV-2 and living in a household with someone else are the most important factors related to a positive SARS-COV-2 test. The loss of smell or taste is the most prominent symptom associated with a positive test. Symptoms like runny nose, pain when breathing, sore throat are more likely to be indicative of other conditions.
Collapse
Affiliation(s)
- Grigory Sidorenkov
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M. Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco Grzegorczyk
- Computer Science and Artificial Intelligence, University of Groningen—Bernoulli Institute for Mathematics, Groningen, Netherlands
| | - Francisco O. Cortés-Ibañez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Geertruida H. de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
258
|
Zumbrun EE, Zak SE, Lee ED, Bowling PA, Ruiz SI, Zeng X, Koehler JW, Delp KL, Bakken RR, Hentschel SS, Bloomfield HA, Ricks KM, Clements TL, Babka AM, Dye JM, Herbert AS. SARS-CoV-2 Aerosol and Intranasal Exposure Models in Ferrets. Viruses 2023; 15:2341. [PMID: 38140582 PMCID: PMC10747480 DOI: 10.3390/v15122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the worldwide COVID-19 pandemic. Animal models are extremely helpful for testing vaccines and therapeutics and for dissecting the viral and host factors that contribute to disease severity and transmissibility. Here, we report the assessment and comparison of intranasal and small particle (~3 µm) aerosol SARS-CoV-2 exposure in ferrets. The primary endpoints for analysis were clinical signs of disease, recovery of the virus in the upper respiratory tract, and the severity of damage within the respiratory tract. This work demonstrated that ferrets were productively infected with SARS-CoV-2 following either intranasal or small particle aerosol exposure. SARS-CoV-2 infection of ferrets resulted in an asymptomatic disease course following either intranasal or small particle aerosol exposure, with no clinical signs, significant weight loss, or fever. In both aerosol and intranasal ferret models, SARS-CoV-2 replication, viral genomes, and viral antigens were detected within the upper respiratory tract, with little to no viral material detected in the lungs. The ferrets exhibited a specific IgG immune response to the SARS-CoV-2 full spike protein. Mild pathological findings included inflammation, necrosis, and edema within nasal turbinates, which correlated to positive immunohistochemical staining for the SARS-CoV-2 virus. Environmental sampling was performed following intranasal exposure of ferrets, and SARS-CoV-2 genomic material was detected on the feeders and nesting areas from days 2-10 post-exposure. We conclude that both intranasal and small particle aerosol ferret models displayed measurable parameters that could be utilized for future studies, including transmission studies and testing SARS-CoV-2 vaccines and therapeutics.
Collapse
Affiliation(s)
- Elizabeth E. Zumbrun
- Division of Virology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (S.E.Z.); (R.R.B.); (S.S.H.); (J.M.D.); (A.S.H.)
| | - Samantha E. Zak
- Division of Virology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (S.E.Z.); (R.R.B.); (S.S.H.); (J.M.D.); (A.S.H.)
| | - Eric D. Lee
- Division of Pathology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (E.D.L.); (X.Z.); (H.A.B.); (A.M.B.)
| | - Philip A. Bowling
- Division of Veterinary Medicine, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA;
| | - Sara I. Ruiz
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA;
| | - Xiankun Zeng
- Division of Pathology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (E.D.L.); (X.Z.); (H.A.B.); (A.M.B.)
| | - Jeffrey W. Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (J.W.K.); (K.L.D.); (K.M.R.); (T.L.C.)
| | - Korey L. Delp
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (J.W.K.); (K.L.D.); (K.M.R.); (T.L.C.)
| | - Russel R. Bakken
- Division of Virology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (S.E.Z.); (R.R.B.); (S.S.H.); (J.M.D.); (A.S.H.)
| | - Shannon S. Hentschel
- Division of Virology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (S.E.Z.); (R.R.B.); (S.S.H.); (J.M.D.); (A.S.H.)
| | - Holly A. Bloomfield
- Division of Pathology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (E.D.L.); (X.Z.); (H.A.B.); (A.M.B.)
| | - Keersten M. Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (J.W.K.); (K.L.D.); (K.M.R.); (T.L.C.)
| | - Tamara L. Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (J.W.K.); (K.L.D.); (K.M.R.); (T.L.C.)
| | - April M. Babka
- Division of Pathology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (E.D.L.); (X.Z.); (H.A.B.); (A.M.B.)
| | - John M. Dye
- Division of Virology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (S.E.Z.); (R.R.B.); (S.S.H.); (J.M.D.); (A.S.H.)
| | - Andrew S. Herbert
- Division of Virology, United States Army Medical Research Institute of Infectious Disease, Frederick, MD 21702, USA; (S.E.Z.); (R.R.B.); (S.S.H.); (J.M.D.); (A.S.H.)
| |
Collapse
|
259
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
260
|
Sobek E, Elias DA. Bipolar ionization rapidly inactivates real-world, airborne concentrations of infective respiratory viruses. PLoS One 2023; 18:e0293504. [PMID: 37992037 PMCID: PMC10664916 DOI: 10.1371/journal.pone.0293504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/05/2023] [Indexed: 11/24/2023] Open
Abstract
The SARS-CoV-2 (COVID-19) pandemic has highlighted the urgent need for strategies that rapidly inactivate airborne respiratory viruses and break the transmission cycle of indoor spaces. Air ions can reduce viable bacteria, mold, and virus counts, however, most studies use small test enclosures with target microbes and ion sources in close vicinity. To evaluate ion performance in real-world spaces, experiments were conducted in a large, room-size BSL-3 Chamber. Negative and positive ions were delivered simultaneously using a commercially available bipolar air ion device. The device housed Needle Point Bipolar ionization (NPBI) technology. Large chamber studies often use unrealistically high virus concentrations to ensure measurable virus is present at the trial end. However, excessively high viral concentrations bias air cleaning devices towards underperformance. Hence, devices that provide a substantial impact for protecting occupants in real-world spaces with real-world virus concentrations are often dismissed as poor performers. Herein, both real-world and excessive virus concentrations were studied using Influenza A and B, Human Respiratory Syncytial Virus (RSV), and the SARS-CoV-2 Alpha and Delta strains. The average ion concentrations ranged from 4,100 to 24,000 per polarity over 60-minute and 30-minute time trials. The reduction rate was considerably greater for trials that used real-world virus concentrations, reducing infectivity for Influenza A and B, RSV, and SARS-CoV-2 Delta by 88.3-99.98% in 30 minutes, whereas trials using in-excess concentrations showed 49.5-61.2% in 30 minutes. These findings strongly support the addition of NPBI ion technology to building management strategies aimed to protect occupants from contracting and spreading infective respiratory viruses indoors.
Collapse
Affiliation(s)
- Edward Sobek
- Global Plasma Solutions, Charlotte, NC, United States of America
| | - Dwayne A. Elias
- Elias Consulting, LLC, Knoxville, TN, United States of America
| |
Collapse
|
261
|
Bain A, Ghosh K, Prisle NL, Bzdek BR. Surface-Area-to-Volume Ratio Determines Surface Tensions in Microscopic, Surfactant-Containing Droplets. ACS CENTRAL SCIENCE 2023; 9:2076-2083. [PMID: 38033804 PMCID: PMC10683496 DOI: 10.1021/acscentsci.3c00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023]
Abstract
The surface composition of aerosol droplets is central to predicting cloud droplet number concentrations, understanding atmospheric pollutant transformation, and interpreting observations of accelerated droplet chemistry. Due to the large surface-area-to-volume ratios of aerosol droplets, adsorption of surfactant at the air-liquid interface can deplete the droplet's bulk concentration, leading to droplet surface compositions that do not match those of the solutions that produced them. Through direct measurements of individual surfactant-containing, micrometer-sized droplet surface tensions, and fully independent predictive thermodynamic modeling of droplet surface tension, we demonstrate that, for strong surfactants, the droplet's surface-area-to-volume ratio becomes the key factor in determining droplet surface tension rather than differences in surfactant properties. For the same total surfactant concentration, the surface tension of a droplet can be >40 mN/m higher than that of the macroscopic solution that produced it. These observations indicate that an explicit consideration of surface-area-to-volume ratios is required when investigating heterogeneous chemical reactivity at the surface of aerosol droplets or estimating aerosol activation to cloud droplets.
Collapse
Affiliation(s)
- Alison Bain
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kunal Ghosh
- Center
for Atmospheric Research, University of
Oulu, Oulu 90014, Finland
| | - Nønne L. Prisle
- Center
for Atmospheric Research, University of
Oulu, Oulu 90014, Finland
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
262
|
Greentree DH, Wilson BM, Donskey CJ. Carbon Dioxide Monitoring Demonstrates Variations in the Quality of Ventilation on Public Transportation Buses and University Student Shuttle Vans and Identifies Effective Interventions. Pathog Immun 2023; 8:148-160. [PMID: 38035133 PMCID: PMC10686372 DOI: 10.20411/pai.v8i1.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Background There is a risk for transmission of severe acute respiratory syndrome 2 (SARS-CoV-2) and other respiratory viruses in motor vehicles, particularly if ventilation is inadequate. Methods We used carbon dioxide monitoring to examine the quality of ventilation in several public transportation buses and in university student shuttle vans in the Cleveland metro area during peak and non-peak travel times. Carbon dioxide levels above 800 parts per million (ppm) were considered an indicator of suboptimal ventilation for the number of people present. In the shuttle vans, we evaluated the impact of an intervention to improve ventilation. Results In large articulated buses with 2 ventilation systems, carbon dioxide concentrations never exceeded 800 ppm, whereas in standard buses with 1 ventilation system concentrations rose above 800 ppm during peak travel times and on some trips during non-peak travel times. In shuttle vans, the ventilation system was not turned on during routine operation, and carbon dioxide levels rose above 800 ppm on all trips during peak and non-peak travel times. In the shuttle vans, an intervention involving operation of the existing ventilation system resulted in a significant reduction in carbon dioxide levels (mean concentration, 1,042 no intervention versus 785 with intervention; P < 0.001). Conclusions Our findings demonstrate substantial variability in the quality of ventilation in public transportation buses and university shuttle vans. There is a need for efforts to assess and optimize ventilation in motor vehicles used for public transportation to reduce the risk for aerosol-mediated transmission of respiratory viruses. Carbon dioxide monitoring may provide a useful tool to assess and improve ventilation.
Collapse
Affiliation(s)
- David Henry Greentree
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio
- College of Medicine, The Ohio State University, Columbus, Ohio
| | - Brigid M. Wilson
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Curtis J. Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
263
|
Li H, Gong H, Wong TH, Zhou J, Wang Y, Lin L, Dou Y, Jia H, Huang X, Gao Z, Shi R, Huang Y, Chen Z, Park W, Li JY, Chu H, Jia S, Wu H, Wu M, Liu Y, Li D, Li J, Xu G, Chang T, Zhang B, Gao Y, Su J, Bai H, Hu J, Yiu CK, Xu C, Hu W, Huang J, Chang L, Yu X. Wireless, battery-free, multifunctional integrated bioelectronics for respiratory pathogens monitoring and severity evaluation. Nat Commun 2023; 14:7539. [PMID: 37985765 PMCID: PMC10661182 DOI: 10.1038/s41467-023-43189-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.
Collapse
Affiliation(s)
- Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Huarui Gong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Yuqiong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Long Lin
- College of Engineering, Peking University, 100871, Beijing, China
| | - Ying Dou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, China
| | - Huiling Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Wooyoung Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ji Yu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Hongwei Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Guoqiang Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianrui Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Hao Bai
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Liver Surgery, Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Hu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Liver Surgery, Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Wenchuang Hu
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, Department of Liver Surgery, Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jiandong Huang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, 999077, China.
- Clinical Oncology Center, Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China.
| |
Collapse
|
264
|
Liu H, Liu Z, He J, Hu C, Rong R, Han H, Wang L, Wang D. Reducing airborne transmission of SARS-CoV-2 by an upper-room ultraviolet germicidal irradiation system in a hospital isolation environment. ENVIRONMENTAL RESEARCH 2023; 237:116952. [PMID: 37619635 DOI: 10.1016/j.envres.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) technology can potentially inhibit the transmission of airborne disease pathogens. There is a lack of quantitative evaluation of the performance of the upper-room UVGI for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) airborne transmission under the combined effects of ventilation and UV irradiation. Therefore, this study aimed to explore the performance of the upper-room UVGI system for reducing SARS-CoV-2 virus transmission in a hospital isolation environment. Computational fluid dynamics and virological data on SARS-CoV-2 were integrated to obtain virus aerosol exposure in the hospital isolation environment containing buffer rooms, wards and bathrooms. The UV inactivation model was applied to investigate the effects of ventilation rate, irradiation flux and irradiation height on the upper-room UVGI performance. The results showed that increasing ventilation rate from 8 to 16 air changes per hour (ACH) without UVGI obtained 54.32% and 45.63% virus reduction in the wards and bathrooms, respectively. However, the upper-room UVGI could achieve 90.43% and 99.09% virus disinfection, respectively, with the ventilation rate of 8 ACH and the irradiation flux of 10 μW cm-2. Higher percentage of virus could be inactivated by the upper-room UVGI at a lower ventilation rate; the rate of improvement of UVGI elimination effect slowed down with the increase of irradiation flux. Increase irradiation height at lower ventilation rate was more effective in improving the UVGI performance than the increase in irradiation flux at smaller irradiation height. These results could provide theoretical support for the practical application of UVGI in hospital isolation environments.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China.
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Chenxing Hu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Rong
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China.
| | - Lingyun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Desheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| |
Collapse
|
265
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
266
|
Barsch F, Peters V, Morath O, Krumnau O, Maier P, Huzly D, Prettin S, Deibert P. Trends in the numbers of SARS-CoV-2 infections among students: a prospective cohort study comparing students in sports boarding schools with students in day schools during early COVID-19 pandemic. Front Public Health 2023; 11:1223748. [PMID: 38035288 PMCID: PMC10682161 DOI: 10.3389/fpubh.2023.1223748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction During the first months of the COVID pandemic it emerged that facilities where people gather or live together in cohorts, such as nursing homes or schools, were particularly at high risk for becoming hotspots of virus transmission. German political and health institutions responded with far-reaching interventions and preventive strategies to protect the population from infection with SARS-CoV-2. In this context, it remains unclear whether boarding schools for sports particularly pose a risk of infection to their residents. Methods In a single-center prospective cohort study, numbers of SARS-CoV-2 infections of students in sports boarding schools (n = 11) vs. students attending regular day schools (n = 22) in the region Freiburg/Hochschwarzwald in Germany were investigated over a period from October 2020 to January 2021 via regular virus and antibody screening (German Clinical Trials Register; Study ID: DRKS00021909). In addition, individual and behavioral risk factors for infection were stratified via questionnaire, which provide an indication of cohort specific risk factors for infection and the success of the implementation of hygiene concepts, as well as other infection prevention strategies, within the respective facilities. Results Regarding SARS-CoV-2 infection numbers, the screening detected no significant group difference between sports boarding schools vs. day schools. Discussion The study results provide indications that sports boarding schools did not pose an increased risk of infection, assuming that the facilities prevent virus transmissions with appropriate preventive strategies and hygiene measures. In future pandemic scenarios larger-scale and multicenter studies are necessary to achieve more comprehensive epidemiological data in this field.
Collapse
Affiliation(s)
- Friedrich Barsch
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Vera Peters
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Morath
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Krumnau
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp Maier
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniela Huzly
- Freiburg University Medical Center, Faculty of Medicine, Institute of Virology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan Prettin
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter Deibert
- Department of Medicine, Medical Center University of Freiburg, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
267
|
Ratliff KM, Oudejans L, Archer J, Calfee W, Gilberry JU, Hook DA, Schoppman WE, Yaga RW, Brooks L, Ryan S. Impact of test methodology on the efficacy of triethylene glycol (Grignard Pure) against bacteriophage MS2. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2023; 57:1178-1185. [PMID: 38268721 PMCID: PMC10805242 DOI: 10.1080/02786826.2023.2262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 01/26/2024]
Abstract
The COVID-19 pandemic has raised interest in using chemical air treatments as part of a strategy to reduce the risk of disease transmission, but more information is needed to characterize their efficacy at scales translatable to applied settings and to develop standardized test methods for characterizing the performance of these products. Grignard Pure, a triethylene glycol (TEG) active ingredient air treatment, was evaluated using two different test protocols in a large bioaerosol test chamber and observed to inactivate bacteriophage MS2 in air (up to 99.9% at 90 min) and on surfaces (up to 99% at 90 min) at a concentration of approximately 1.2 - 1.5 mg/m3. Introducing bioaerosol into a TEG-charged chamber led to overall greater reductions compared to when TEG was introduced into a bioaerosol-charged chamber, although the differences in efficacy against airborne MS2 were only significant in the first 15 min. Time-matched control conditions (no TEG present) and replicate tests for each condition were essential for characterizing treatment efficacy. These findings suggest that chemical air treatments could be effective in reducing the air and surface concentrations of infectious pathogens in occupied spaces, although standard methods are needed for evaluating their efficacy and comparing results across studies. The potential health impacts of chronic exposure to chemicals should also be considered, but those were not evaluated here.
Collapse
Affiliation(s)
- Katherine M. Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Lukas Oudejans
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - John Archer
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Worth Calfee
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - David Adam Hook
- Jacobs Technology Inc, Research Triangle Park, North Carolina, USA
| | | | - Robert W. Yaga
- Jacobs Technology Inc, Research Triangle Park, North Carolina, USA
| | - Lance Brooks
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shawn Ryan
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
268
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
269
|
Sklar R, Noth E, Kwan A, Sear D, Bertozzi S. Ventilation conditions during COVID-19 outbreaks in six California state carceral institutions. PLoS One 2023; 18:e0293533. [PMID: 37934737 PMCID: PMC10629643 DOI: 10.1371/journal.pone.0293533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/23/2023] [Indexed: 11/09/2023] Open
Abstract
Residents of carceral facilities are exposed to poor ventilation conditions which leads to the spread of communicable diseases such as COVID-19. Indoor ventilation conditions are rarely studied within carceral settings and there remains limited capacity to develop solutions to address the impact of poor ventilation on the health of people who are incarcerated. In this study, we empirically measured ventilation rates within housing units of six adult prisons in the California Department of Corrections and Rehabilitation (CDCR) and compare the measured ventilation rates to recommended standards issued by the World Health Organization (WHO). Findings from the empirical assessment include lower ventilation rates than the recommended ventilation standards with particularly low ventilation during winter months when heating systems were in use. Inadvertent airflows from spaces housing potentially infected individuals to shared common spaces was also observed. The methodology used for this work can be leveraged for routine ventilation monitoring, pandemic preparedness, and disaster response.
Collapse
Affiliation(s)
- Rachel Sklar
- Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
| | - Ada Kwan
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - David Sear
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Stefano Bertozzi
- Division of Health Policy and Management, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, University of Washington, Seattle, Washington, USA and Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
270
|
Malmgren R, Välimaa H, Oksanen L, Sanmark E, Nikuri P, Heikkilä P, Hakala J, Ahola A, Yli-Urpo S, Palomäki V, Asmi E, Sofieva S, Rostedt A, Laitinen S, Romantschuk M, Sironen T, Atanasova N, Paju S, Lahdentausta-Suomalainen L. High-volume evacuation mitigates viral aerosol spread in dental procedures. Sci Rep 2023; 13:18984. [PMID: 37923796 PMCID: PMC10624893 DOI: 10.1038/s41598-023-46430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Dental healthcare personnel (DHCP) are subjected to microbe-containing aerosols and splatters in their everyday work. Safer work conditions must be developed to ensure the functioning of the healthcare system. By simulating dental procedures, we aimed to compare the virus-containing aerosol generation of four common dental instruments, and high-volume evacuation (HVE) in their mitigation. Moreover, we combined the detection of infectious viruses with RT-qPCR to form a fuller view of virus-containing aerosol spread in dental procedures. The air-water syringe produced the highest number of aerosols. HVE greatly reduced aerosol concentrations during procedures. The air-water syringe spread infectious virus-containing aerosols throughout the room, while other instruments only did so to close proximity. Additionally, infectious viruses were detected on the face shields of DHCP. Virus genomes were detected throughout the room with all instruments, indicating that more resilient viruses might remain infectious and pose a health hazard. HVE reduced the spread of both infectious viruses and viral genomes, however, it did not fully prevent them. We recommend meticulous use of HVE, a well-fitting mask and face shields in dental procedures. We advise particular caution when operating with the air-water syringe. Due to limited repetitions, this study should be considered a proof-of-concept report.
Collapse
Affiliation(s)
- Rasmus Malmgren
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland.
| | - Hanna Välimaa
- Department of Virology, University of Helsinki, Haartmanninkatu 3, 00014, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
- Meilahti Vaccine Research Center MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Annankatu 32, 00029, Helsinki, Finland
| | - Lotta Oksanen
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, 00014, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
| | - Enni Sanmark
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 4, 00014, Helsinki, Finland
- Department of Otorhinolaryngology and Phoniatrics - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029, Helsinki, Finland
| | - Petra Nikuri
- Helsinki University Hospital, 00029, Helsinki, Finland
| | - Paavo Heikkilä
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland
| | - Jani Hakala
- VTT Technical Research Centre of Finland, Visiokatu 4, 33101, Tampere, Finland
| | - Aleksi Ahola
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Simeoni Yli-Urpo
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Ville Palomäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Eija Asmi
- Atmospheric Composition Research, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland
| | - Svetlana Sofieva
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland
- Atmospheric Composition Research, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland
| | - Antti Rostedt
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland
| | - Sirpa Laitinen
- Occupational Safety, Finnish Institute of Occupational Health, Neulaniementie 4, 70210, Kupio, Finland
| | - Martin Romantschuk
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Haartmanninkatu 3, 00014, Helsinki, Finland
- Veterinary Biosciences, University of Helsinki, Agnes Sjöberginkatu 2, 00014, Helsinki, Finland
| | - Nina Atanasova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00790, Helsinki, Finland
- Atmospheric Composition Research, Finnish Meteorological Institute, Erik Palménin Aukio 1, 00560, Helsinki, Finland
| | - Susanna Paju
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| | - Laura Lahdentausta-Suomalainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Haartmanninkatu 1, 00014, Helsinki, Finland
| |
Collapse
|
271
|
Chiba S, Shinohara K. Keigai-rengyo-to as post-exposure prophylaxis for severe acute respiratory syndrome coronavirus 2 infection. Respir Investig 2023; 61:669-674. [PMID: 37708631 DOI: 10.1016/j.resinv.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Effective prevention against COVID-19 is urgently required to control vaccine breakthrough infection. Laboratory and clinical data suggested that Keigai-rengyo-to (KRT) performs biological activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated whether KRT could prevent SARS-CoV-2 in medical personnel exposed to patients with COVID-19. METHODS We conducted an open-label controlled clinical trial of medical personnel after COVID-19 vaccination at our hospital (ClinicalTrials.gov: UMIN000048389). Participants were close contacts recently exposed (<72 h) to patients with COVID-19. We provided the participants with KRT (7.5 g/day for 5 days) or no drug as a control. The primary endpoint was nicking endonuclease amplification reaction or polymerase chain reaction confirming incident SARS-CoV-2 infection. Safety was assessed in all treated participants. RESULTS Between January and September 2022, 38 close contacts were assigned: 20 to the KRT group and 18 to the control group. During 2 weeks of follow-up, 10/38 (26%) participants had new-onset COVID-19. The incidence of COVID-19 was significantly lower in the KRT group (2/20; 10%) than in the control group (8/18; 44%), with a medium effect size (p < 0.05; phi coefficient = -0.391; total absolute risk reduction: 34.4% points). The number needed to treat to prevent the occurrence of a COVID-19 case was 2.9. The overall relative risk was 0.23 (95% confidence interval: 0.06-0.78). No serious safety problems were detected. CONCLUSION Post-exposure prophylaxis with KRT can prevent the onset of COVID-19 in close contacts after vaccination. More randomized clinical trials with larger samples are required to better evaluate KRT as a post-exposure prophylaxis of SARS-CoV-2.
Collapse
Affiliation(s)
- Satoru Chiba
- Department of Internal Medicine, Sapporo Suzuki Hospital, Medical Corporation Kenseikai, Hokkaido, Japan.
| | - Kaoru Shinohara
- Department of Psychiatric Medicine, Sapporo Suzuki Hospital, Medical Corporation Kenseikai, Hokkaido, Japan
| |
Collapse
|
272
|
Brosseau LM, Gold D, Materna B, Rosen J, Seminario P, Thomason J. Public Health Experts Ask CDC Director to Broaden Input on Revisions to Key Infection Control Guidelines. New Solut 2023; 33:165-173. [PMID: 37621093 DOI: 10.1177/10482911231195898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
On July 20, 2023 a letter was sent to the Director of the Centers for Disease Control and Prevention requesting the agency's Healthcare Infection Control Practice Advisory Committee seek input from more stakeholders and the public, recognize the importance of infectious disease transmission by inhalation of human-generated aerosols, and ensure the application of interventions from all levels of the control hierarchy.
Collapse
Affiliation(s)
- Lisa M Brosseau
- Center for Infectious Disease Research and Policy, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | | | | | | | | | - Jane Thomason
- Health and Safety Division, National Nurses United, Oakland, CA, USA
| |
Collapse
|
273
|
Donskey CJ. High technology and low technology measures to reduce risk of SARS-CoV-2 transmission. Am J Infect Control 2023; 51:A126-A133. [PMID: 37890942 DOI: 10.1016/j.ajic.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 10/29/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, a variety of low technology and high technology measures have been proposed to reduce the risk for transmission. Identifying those measures likely to be useful in reducing viral transmission without undue expense or potential for adverse effects has been a challenge for infection control programs. The challenge has been compounded by the lack of tools that can be used to assess the risk for viral transmission in different settings. This review discusses practical tools that can be used to assess ventilation and airflow and evaluates some of the low technology and high technology measures that have been proposed as control measures for COVID-19. Some typical questions posed to infection control programs during the pandemic are presented to illustrate real-world application of the concepts being discussed.
Collapse
Affiliation(s)
- Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
274
|
Minor NR, Ramuta MD, Stauss MR, Harwood OE, Brakefield SF, Alberts A, Vuyk WC, Bobholz MJ, Rosinski JR, Wolf S, Lund M, Mussa M, Beversdorf LJ, Aliota MT, O’Connor SL, O’Connor DH. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.28.23290648. [PMID: 37398492 PMCID: PMC10312882 DOI: 10.1101/2023.05.28.23290648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Innovative methods for evaluating virus risk and spread, independent of test-seeking behavior, are needed to improve routine public health surveillance, outbreak response, and pandemic preparedness. Throughout the COVID-19 pandemic, environmental surveillance strategies, including wastewater and air sampling, have been used alongside widespread individual-based SARS-CoV-2 testing programs to provide population-level data. These environmental surveillance strategies have predominantly relied on pathogen-specific detection methods to monitor viruses through space and time. However, this provides a limited picture of the virome present in an environmental sample, leaving us blind to most circulating viruses. In this study, we explore whether pathogen-agnostic deep sequencing can expand the utility of air sampling to detect many human viruses. We show that sequence-independent single-primer amplification sequencing of nucleic acids from air samples can detect common and unexpected human respiratory and enteric viruses, including influenza virus type A and C, respiratory syncytial virus, human coronaviruses, rhinovirus, SARS-CoV-2, rotavirus, mamastrovirus, and astrovirus.
Collapse
Affiliation(s)
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Savannah F. Brakefield
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - William C. Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Max J. Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Wolf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Madelyn Lund
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison Mussa
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, Madison, WI USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H. O’Connor
- Wisconsin National Primate Research Center, Madison, WI USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
275
|
Donskey CJ. Continuous surface and air decontamination technologies: Current concepts and controversies. Am J Infect Control 2023; 51:A144-A150. [PMID: 37890945 DOI: 10.1016/j.ajic.2023.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 10/29/2023]
Abstract
Effective and safe continuous surface and air decontamination technologies could be a useful adjunct to routine cleaning and disinfection in health care settings. Continuously active quaternary ammonium disinfectants that provide residual antimicrobial activity on undisturbed surfaces for up to 24.ßhours have been shown to reduce the recovery of clinically important pathogens in some but not all real-world studies. Although quaternary ammonium-based supplemental coatings have been reported to provide prolonged residual efficacy in patient care settings, there is concern that some of these products may be removed by routine cleaning and disinfection. To address this concern, the Environmental Protection Agency has recently issued updated guidance requiring demonstration of efficacy after multiple abrasion and chemical exposures for registration of supplemental residual antimicrobial coatings. Far-ultraviolet-C and direct irradiation below exposure limits are promising technologies for continuous air and surface decontamination in occupied spaces, but additional studies are needed to evaluate their long-term safety and efficacy. Given the increasing use of electronic air cleaning technologies in community and health care settings, there is a need for studies to assess real-world efficacy and safety.
Collapse
Affiliation(s)
- Curtis J Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH.
| |
Collapse
|
276
|
Hu Z, Tian X, Lai R, Ji C, Li X. Airborne transmission of common swine viruses. Porcine Health Manag 2023; 9:50. [PMID: 37908005 PMCID: PMC10619269 DOI: 10.1186/s40813-023-00346-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
The transmission of viral aerosols poses a vulnerable aspect in the biosecurity measures aimed at preventing and controlling swine virus in pig production. Consequently, comprehending and mitigating the spread of aerosols holds paramount significance for the overall well-being of pig populations. This paper offers a comprehensive review of transmission characteristics, influential factors and preventive strategies of common swine viral aerosols. Firstly, certain viruses such as foot-and-mouth disease virus (FMDV), porcine reproductive and respiratory syndrome virus (PRRSV), influenza A viruses (IAV), porcine epidemic diarrhea virus (PEDV) and pseudorabies virus (PRV) have the potential to be transmitted over long distances (exceeding 150 m) through aerosols, thereby posing a substantial risk primarily to inter-farm transmission. Additionally, other viruses like classical swine fever virus (CSFV) and African swine fever virus (ASFV) can be transmitted over short distances (ranging from 0 to 150 m) through aerosols, posing a threat primarily to intra-farm transmission. Secondly, various significant factors, including aerosol particle sizes, viral strains, the host sensitivity to viruses, weather conditions, geographical conditions, as well as environmental conditions, exert a considerable influence on the transmission of viral aerosols. Researches on these factors serve as a foundation for the development of strategies to combat viral aerosol transmission in pig farms. Finally, we propose several preventive and control strategies that can be implemented in pig farms, primarily encompassing the implementation of early warning models, viral aerosol detection, and air pretreatment. This comprehensive review aims to provide a valuable reference for the formulation of efficient measures targeted at mitigating the transmission of viral aerosols among swine populations.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China
| | - Xiaogang Tian
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Ranran Lai
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China
| | - Chongxing Ji
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China
| | - Xiaowen Li
- Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology, Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd, Xiajin Economic Development Zone, Qingwo Venture Park, Dezhou, 253200, Shandong Province, People's Republic of China.
- Key Laboratory of Feed and Livestock and Poultry Products Quality and Safety Control, Ministry of Agriculture and Rural Affairs, New Hope Liuhe Co., Ltd, 316 Jinshi Road, Chengdu, 610100, Sichuan, People's Republic of China.
- Shandong New Hope Liuhe Co., Ltd, No. 592-26 Jiushui East Road Laoshan District, Qingdao, 266100, Shandong, People's Republic of China.
- Shandong New Hope Liuhe Agriculture and Animal Husbandry Technology Co., Ltd (NHLH Academy of Swine Research), 6596 Dongfanghong East Road, Yuanqiao Town, Dezhou, 253000, Shandong, People's Republic of China.
- China Agriculture Research System-Yangling Comprehensive Test Station, Intersection of Changqing Road and Park Road 1, Yangling District, Xianyang, People's Republic of China.
| |
Collapse
|
277
|
Iseli AN, Pohl MO, Glas I, Gaggioli E, Martínez-Barragán P, David SC, Schaub A, Luo B, Klein LK, Bluvshtein N, Violaki K, Motos G, Hugentobler W, Nenes A, Krieger UK, Peter T, Kohn T, Stertz S. The neuraminidase activity of influenza A virus determines the strain-specific sensitivity to neutralization by respiratory mucus. J Virol 2023; 97:e0127123. [PMID: 37819131 PMCID: PMC10617592 DOI: 10.1128/jvi.01271-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The respiratory tract of humans is constantly exposed to potentially harmful agents, such as small particles or pathogens, and thus requires protective measures. Respiratory mucus that lines the airway epithelia plays a major role in the prevention of viral infections by limiting the mobility of viruses, allowing subsequent mucociliary clearance. Understanding the interplay between respiratory mucus and viruses can help elucidate host and virus characteristics that enable the initiation of infection. Here, we tested a panel of primary influenza A viruses of avian or human origin for their sensitivity to mucus derived from primary human airway cultures and found that differences between virus strains can be mapped to viral neuraminidase activity. We also show that binding of influenza A viruses to decoy receptors on highly glycosylated mucus components constitutes the major inhibitory function of mucus against influenza A viruses.
Collapse
Affiliation(s)
- Alena N. Iseli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marie O. Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Elisabeth Gaggioli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
278
|
Han JJ, Song HA, Pierson SL, Shen-Gunther J, Xia Q. Emerging Infectious Diseases Are Virulent Viruses-Are We Prepared? An Overview. Microorganisms 2023; 11:2618. [PMID: 38004630 PMCID: PMC10673331 DOI: 10.3390/microorganisms11112618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The recent pandemic caused by SARS-CoV-2 affected the global population, resulting in a significant loss of lives and global economic deterioration. COVID-19 highlighted the importance of public awareness and science-based decision making, and exposed global vulnerabilities in preparedness and response systems. Emerging and re-emerging viral outbreaks are becoming more frequent due to increased international travel and global warming. These viral outbreaks impose serious public health threats and have transformed national strategies for pandemic preparedness with global economic consequences. At the molecular level, viral mutations and variations are constantly thwarting vaccine efficacy, as well as diagnostic, therapeutic, and prevention strategies. Here, we discuss viral infectious diseases that were epidemic and pandemic, currently available treatments, and surveillance measures, along with their limitations.
Collapse
Affiliation(s)
- Jasmine J. Han
- Division of Gynecologic Oncology, Department of Gynecologic Surgery and Obstetrics, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | - Hannah A. Song
- Department of Bioengineering, University of California, Los Angeles, CA 90024, USA;
| | - Sarah L. Pierson
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | - Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | - Qingqing Xia
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| |
Collapse
|
279
|
Jang H, Matsuoka M, Freire M. Oral mucosa immunity: ultimate strategy to stop spreading of pandemic viruses. Front Immunol 2023; 14:1220610. [PMID: 37928529 PMCID: PMC10622784 DOI: 10.3389/fimmu.2023.1220610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Global pandemics are most likely initiated via zoonotic transmission to humans in which respiratory viruses infect airways with relevance to mucosal systems. Out of the known pandemics, five were initiated by respiratory viruses including current ongoing coronavirus disease 2019 (COVID-19). Striking progress in vaccine development and therapeutics has helped ameliorate the mortality and morbidity by infectious agents. Yet, organism replication and virus spread through mucosal tissues cannot be directly controlled by parenteral vaccines. A novel mitigation strategy is needed to elicit robust mucosal protection and broadly neutralizing activities to hamper virus entry mechanisms and inhibit transmission. This review focuses on the oral mucosa, which is a critical site of viral transmission and promising target to elicit sterile immunity. In addition to reviewing historic pandemics initiated by the zoonotic respiratory RNA viruses and the oral mucosal tissues, we discuss unique features of the oral immune responses. We address barriers and new prospects related to developing novel therapeutics to elicit protective immunity at the mucosal level to ultimately control transmission.
Collapse
Affiliation(s)
- Hyesun Jang
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Michele Matsuoka
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Marcelo Freire
- Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
- Division of Infectious Diseases and Global Public Health Department of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
280
|
Tanner K, Good KM, Goble D, Good N, Keisling A, Keller KP, L’Orange C, Morton E, Phillips R, Volckens J. Large Particle Emissions from Human Vocalization and Playing of Wind Instruments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15392-15400. [PMID: 37796739 PMCID: PMC10586367 DOI: 10.1021/acs.est.3c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Humans emit large salivary particles when talking, singing, and playing musical instruments, which have implications for respiratory disease transmission. Yet little work has been done to characterize the emission rates and size distributions of such particles. This work characterized large particle (dp > 35 μm in aerodynamic diameter) emissions from 70 volunteers of varying age and sex while vocalizing and playing wind instruments. Mitigation efficacies for face masks (while singing) and bell covers (while playing instruments) were also examined. Geometric mean particle count emission rates varied from 3.8 min-1 (geometric standard deviation [GSD] = 3.1) for brass instruments playing to 95.1 min-1 (GSD = 3.8) for talking. On average, talking produced the highest emission rates for large particles, in terms of both number and mass, followed by singing and then instrument playing. Neither age, sex, CO2 emissions, nor loudness (average dBA) were significant predictors of large particle emissions, contrary to previous findings for smaller particle sizes (i.e., for dp < 35 μm). Size distributions were similar between talking and singing (count median diameter = 53.0 μm, GSD = 1.69). Bell covers did not affect large particle emissions from most wind instruments, but face masks reduced large particle count emissions for singing by 92.5% (95% CI: 97.9%, 73.7%).
Collapse
Affiliation(s)
- Ky Tanner
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Kristen M. Good
- Department
of Environmental and Radiological Health Sciences, Colorado State University, Fort
Collins, Colorado 80523, United States
- Colorado
Department of Public Health and Environment, Denver, Colorado 80246, United States
| | - Dan Goble
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Nicholas Good
- Department
of Civil and Environmental Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Amy Keisling
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Kayleigh P. Keller
- Department
of Statistics, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christian L’Orange
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Emily Morton
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Rebecca Phillips
- School
of Music, Theatre, and Dance, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - John Volckens
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
- Department
of Environmental and Radiological Health Sciences, Colorado State University, Fort
Collins, Colorado 80523, United States
| |
Collapse
|
281
|
Asai T, Kurosaki E, Kimachi K, Nakayama M, Koido M, Hong S. Peak risk of SARS-CoV-2 infection within 5 s of face-to-face encounters: an observational/retrospective study. Sci Rep 2023; 13:17520. [PMID: 37845540 PMCID: PMC10579401 DOI: 10.1038/s41598-023-44967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023] Open
Abstract
The link between aerosol dynamics and viral exposure risk is not fully understood, particularly during movement and face-to-face interactions. To investigate this, we employed Particle Trace Velocimetry with a laser sheet and a high-speed camera to measure microparticles from a human mannequin's mouth. The average peak time in the non-ventilated condition (expiratory volume, 30 L; passing speed, 5 km/h) was 1.33 s (standard deviation = 0.32 s), while that in the ventilated condition was 1.38 s (standard deviation = 0.35 s). Our results showed that the peak of viral exposure risk was within 5 s during face-to-face encounters under both ventilated and non-ventilated conditions. Moreover, the risk of viral exposure greatly decreased in ventilated conditions compared to non-ventilated conditions. Based on these findings, considering a risk mitigation strategy for the duration of 5 s during face-to-face encounters is expected to significantly reduce the risk of virus exposure in airborne transmission.
Collapse
Affiliation(s)
- Takeshi Asai
- Faculty of Health and Sports Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8574, Japan.
- Faculty of Physical Education, International Pacific University, Okayama, Japan.
| | - Erina Kurosaki
- Faculty of Health and Sports Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8574, Japan
| | - Kaoru Kimachi
- Faculty of Health and Sports Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8574, Japan
| | - Masao Nakayama
- Faculty of Health and Sports Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8574, Japan
| | - Masaaki Koido
- Faculty of Health and Sports Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8574, Japan
| | - Sungchan Hong
- Faculty of Health and Sports Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8574, Japan
| |
Collapse
|
282
|
Zhao T, Xiao X, Wu Y, Ma J, Li Y, Lu C, Shokoohi C, Xu Y, Zhang X, Zhang Y, Ge G, Zhang G, Chen J, Zeng Y. Tracing the Flu Symptom Progression via a Smart Face Mask. NANO LETTERS 2023; 23:8960-8969. [PMID: 37750614 DOI: 10.1021/acs.nanolett.3c02492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Respiration and body temperature are largely influenced by the highly contagious influenza virus, which poses persistent global public health challenges. Here, we present a wireless all-in-one sensory face mask (WISE mask) made of ultrasensitive fibrous temperature sensors. The WISE mask shows exceptional thermosensitivity, excellent breathability, and wearing comfort. It offers highly sensitive body temperature monitoring and respiratory detection capabilities. Capitalizing on the advances in the Internet of Things and artificial intelligence, the WISE mask is further demonstrated by customized flexible circuitry, deep learning algorithms, and a user-friendly interface to continuously recognize the abnormalities of both the respiration and body temperature. The WISE mask represents a compelling approach to tracing flu symptom progression in a cost-effective and convenient manner, serving as a powerful solution for personalized health monitoring and point-of-care systems in the face of ongoing influenza-related public health concerns.
Collapse
Affiliation(s)
- Tienan Zhao
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuchen Wu
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Jiajia Ma
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Li
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chengyue Lu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cyrus Shokoohi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuze Zhang
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Gang Ge
- Department of Electrical and Computer Engineering, National University of Singapore,117583, Singapore
| | - Guanglin Zhang
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
283
|
Port JR, Morris DH, Riopelle JC, Yinda CK, Avanzato VA, Holbrook MG, Bushmaker T, Schulz JE, Saturday TA, Barbian K, Russell CA, Perry-Gottschalk R, Shaia CI, Martens C, Lloyd-Smith JO, Fischer RJ, Munster VJ. Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.08.15.504010. [PMID: 36032963 PMCID: PMC9413705 DOI: 10.1101/2022.08.15.504010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10μm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.
Collapse
Affiliation(s)
- Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Dylan H. Morris
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G. Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kent Barbian
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Colin A. Russell
- Department of Medical Microbiology | Amsterdam University Medical Center, University of Amsterdam
| | - Rose Perry-Gottschalk
- Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I. Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Craig Martens
- Rocky Mountain Research and Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert J. Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
284
|
Hoerger M, Kim S, Mossman B, Alonzi S, Xu K, Coward JC, Whalen K, Nauman E, Miller J, De La Cerda T, Peyser T, Dunn A, Zapolin D, Rivera D, Murugesan N, Baker CN. Cultivating community-based participatory research (CBPR) to respond to the COVID-19 pandemic: an illustrative example of partnership and topic prioritization in the food services industry. BMC Public Health 2023; 23:1939. [PMID: 37803311 PMCID: PMC10559526 DOI: 10.1186/s12889-023-16787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND As an illustrative example of COVID-19 pandemic community-based participatory research (CBPR), we describe a community-academic partnership to prioritize future research most important to people experiencing high occupational exposure to COVID-19 - food service workers. Food service workers face key challenges surrounding (1) health and safety precautions, (2) stress and mental health, and (3) the long-term pandemic impact. METHOD Using CBPR methodologies, academic scientists partnered with community stakeholders to develop the research aims, methods, and measures, and interpret and disseminate results. We conducted a survey, three focus groups, and a rapid qualitative assessment to understand the three areas of concern and prioritize future research. RESULTS The survey showed that food service employers mainly supported basic droplet protections (soap, hand sanitizer, gloves), rather than comprehensive airborne protections (high-quality masks, air quality monitoring, air cleaning). Food service workers faced challenging decisions surrounding isolation, quarantine, testing, masking, vaccines, and in-home transmission, described anxiety, depression, and substance use as top mental health concerns, and described long-term physical and financial concerns. Focus groups provided qualitative examples of concerns experienced by food service workers and narrowed topic prioritization. The rapid qualitative assessment identified key needs and opportunities, with help reducing in-home COVID-19 transmission identified as a top priority. COVID-19 mitigation scientists offered recommendations for reducing in-home transmission. CONCLUSIONS The COVID-19 pandemic has forced food service workers to experience complex decisions about health and safety, stress and mental health concerns, and longer-term concerns. Challenging health decisions included attempting to avoid an airborne infectious illness when employers were mainly only concerned with droplet precautions and trying to decide protocols for testing and isolation without clear guidance, free tests, or paid sick leave. Key mental health concerns were anxiety, depression, and substance use. Longer-term challenges included Long COVID, lack of mental healthcare access, and financial instability. Food service workers suggest the need for more research aimed at reducing in-home COVID-19 transmission and supporting long-term mental health, physical health, and financial concerns. This research provides an illustrative example of how to cultivate community-based partnerships to respond to immediate and critical issues affecting populations most burdened by public health crises.
Collapse
Affiliation(s)
- Michael Hoerger
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA.
- Department of Psychology, Tulane University, New Orleans, LA, USA.
- Departments of Psychiatry and Medicine, Tulane University, New Orleans, LA, USA.
- Freeman School of Business, Tulane University, New Orleans, LA, USA.
- Department of Palliative Medicine and Supportive Care, University Medical Center of New Orleans, New Orleans, LA, USA.
- Louisiana Cancer Research Center, New Orleans, LA, USA.
| | - Seowoo Kim
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Brenna Mossman
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Sarah Alonzi
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Department of Psychology, University of California, Los Angeles, USA
| | - Kenneth Xu
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - John C Coward
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
| | - Kathleen Whalen
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
| | - Elizabeth Nauman
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Louisiana Public Health Institute, New Orleans, USA
| | - Jonice Miller
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
| | - Tracey De La Cerda
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
| | - Tristen Peyser
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Addison Dunn
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Dana Zapolin
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Dulcé Rivera
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Navya Murugesan
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
| | - Courtney N Baker
- New Orleans Louisiana (NOLA) Pandemic Food Collaborative, Tulane University, New Orleans, LA, USA
- Department of Psychology, Tulane University, New Orleans, LA, USA
- Freeman School of Business, Tulane University, New Orleans, LA, USA
| |
Collapse
|
285
|
Guo L, Zhao P, Jia Y, Wang Z, Chen M, Zhang H, Liu D, Zhang Y, Wang X, Rong M. Inactivation of airborne pathogenic microorganisms by plasma-activated nebulized mist. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132072. [PMID: 37480605 DOI: 10.1016/j.jhazmat.2023.132072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The airborne microorganisms in the aerosols are one main transmission way of pathogenic microorganisms and therefore inactivation of microorganisms in aerosols could effectively prevent the transmission of pathogenic microorganisms to control epidemics. The mist nebulized by plasma-activated air could effectively inactivate bacteria and could be developed for the sterilization of microorganisms in aerosols. In this study, the plasma-activated nebulized mist (PANM) was applied for the inactivation of microorganisms in aerosols and efficiently inactivated the bacteria, yeast, and viruses in aerosols after 2-min treatment. The PANM treatment caused morphologic changes and damage to the bacteria cells in aerosols. The PANM could also inactivate the microorganisms attached to the surface of the treatment chamber and the bacteria attached to the skin of mice within 6-min treatment. The biosafety assays demonstrated that the PANM treatment exhibited no effects on the behavior, hematological and serum biochemical parameters of blood, and organs from the mice. This study would supply an efficient, broad-spectrum, and safe aerosol sterilization strategy based on plasma technology to prevent the transmission of airborne microorganisms.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Pengyu Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yikang Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yong Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
286
|
Shin-Ya M, Nakashio M, Ohgitani E, Suganami A, Kawamoto M, Ichitani M, Kobayashi M, Takihara T, Inaba T, Nukui Y, Kinugasa H, Ishikura H, Tamura Y, Mazda O. Effects of tea, catechins and catechin derivatives on Omicron subvariants of SARS-CoV-2. Sci Rep 2023; 13:16577. [PMID: 37789046 PMCID: PMC10547759 DOI: 10.1038/s41598-023-43563-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
The Omicron subvariants of SARS-CoV-2 have multiple mutations in the S-proteins and show high transmissibility. We previously reported that tea catechin (-)-epigallocatechin gallate (EGCG) and its derivatives including theaflavin-3,3'-di-O-digallate (TFDG) strongly inactivated the conventional SARS-CoV-2 by binding to the receptor binding domain (RBD) of the S-protein. Here we show that Omicron subvariants were effectively inactivated by green tea, Matcha, and black tea. EGCG and TFDG strongly suppressed infectivity of BA.1 and XE subvariants, while effect on BA.2.75 was weaker. Neutralization assay showed that EGCG and TFDG inhibited interaction between BA.1 RBD and ACE2. In silico analyses suggested that N460K, G446S and F490S mutations in RBDs crucially influenced the binding of EGCG/TFDG to the RBDs. Healthy volunteers consumed a candy containing green tea or black tea, and saliva collected from them immediately after the candy consumption significantly decreased BA.1 virus infectivity in vitro. These results indicate specific amino acid substitutions in RBDs that crucially influence the binding of EGCG/TFDG to the RBDs and different susceptibility of each Omicron subvariant to EGCG/TFDG. The study may suggest molecular basis for potential usefulness of these compounds in suppression of mutant viruses that could emerge in the future and cause next pandemic.
Collapse
Affiliation(s)
- Masaharu Shin-Ya
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Maiko Nakashio
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Eriko Ohgitani
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Kawamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ichitani
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Central Research Institute, ITO EN, Ltd, Shizuoka, Japan
| | | | | | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
287
|
Poydenot F, Lebreton A, Haiech J, Andreotti B. At the crossroads of epidemiology and biology: Bridging the gap between SARS-CoV-2 viral strain properties and epidemic wave characteristics. Biochimie 2023; 213:54-65. [PMID: 36931337 PMCID: PMC10017177 DOI: 10.1016/j.biochi.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The COVID-19 pandemic has given rise to numerous articles from different scientific fields (epidemiology, virology, immunology, airflow physics …) without any effort to link these different insights. In this review, we aim to establish relationships between epidemiological data and the characteristics of the virus strain responsible for the epidemic wave concerned. We have carried out this study on the Wuhan, Alpha, Delta and Omicron strains allowing us to illustrate the evolution of the relationships we have highlighted according to these different viral strains. We addressed the following questions. 1) How can the mean infectious dose (one quantum, by definition in epidemiology) be measured and expressed as an amount of viral RNA molecules (in genome units, GU) or as a number of replicative viral particles (in plaque-forming units, PFU)? 2) How many infectious quanta are exhaled by an infected person per unit of time? 3) How many infectious quanta are exhaled, on average, integrated over the whole contagious period? 4) How do these quantities relate to the epidemic reproduction rate R as measured in epidemiology, and to the viral load, as measured by molecular biological methods? 5) How has the infectious dose evolved with the different strains of SARS-CoV-2? We make use of state-of-the-art modelling, reviewed and explained in the appendix of the article (Supplemental Information, SI), to answer these questions using data from the literature in both epidemiology and virology. We have considered the modification of these relationships according to the vaccination status of the population.
Collapse
Affiliation(s)
- Florian Poydenot
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université de Paris, 75005, Paris, France
| | - Alice Lebreton
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France; INRAE, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Jacques Haiech
- CNRS UMR7242 BSC ESBS, 300 Bd Sébastien Brant, CS 10413, 67412, Illkirch cedex, France.
| | - Bruno Andreotti
- Laboratoire de Physique de l'Ecole Normale Supérieure (LPENS), CNRS UMR 8023, Ecole Normale Supérieure, Université PSL, Sorbonne Université, and Université de Paris, 75005, Paris, France
| |
Collapse
|
288
|
Le Sage V, Lowen AC, Lakdawala SS. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu Rev Virol 2023; 10:347-370. [PMID: 37308086 DOI: 10.1146/annurev-virology-111821-115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses, such as influenza viruses, cause significant morbidity and mortality worldwide through seasonal epidemics and sporadic pandemics. Influenza viruses transmit through multiple modes including contact (either direct or through a contaminated surface) and inhalation of expelled aerosols. Successful human to human transmission requires an infected donor who expels virus into the environment, a susceptible recipient, and persistence of the expelled virus within the environment. The relative efficiency of each mode can be altered by viral features, environmental parameters, donor and recipient host characteristics, and viral persistence. Interventions to mitigate transmission of influenza viruses can target any of these factors. In this review, we discuss many aspects of influenza virus transmission, including the systems to study it, as well as the impact of natural barriers and various nonpharmaceutical and pharmaceutical interventions.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Seema S Lakdawala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
289
|
Wu CC, Chen WL, Tseng CW, Su YC, Chen HL, Lin CL, Hung TY. Continuous aerosol monitoring and comparison of aerosol exposure based on smoke dispersion distance and concentrations during oxygenation therapy. Sci Rep 2023; 13:15910. [PMID: 37741874 PMCID: PMC10517922 DOI: 10.1038/s41598-023-42909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
This study evaluated the aerosol exposure risks while using common noninvasive oxygenation devices. A simulated mannequin was designed to breathe at a minute ventilation of 20 L/min and used the following oxygen-therapy devices: nasal cannula oxygenation (NCO) at 4 and 15 L/min, nonrebreathing mask (NRM) at 15 L/min, simple mask at 6 L/min, combination of NCO at 15 L/min and NRM at 15 L/min, high-flow nasal cannula (HFNC) at 50 L/min, and flush rate NRM. Two-dimension of the dispersion distance and the aerosol concentrations were measured at head, trunk, and foot around the mannequin for over 10 min. HFNC and flush-rate NRM yielded the longest dispersion distance and highest aerosol concentrations over the three sites of the mannequin than the other oxygenation devices and should use with caution. For flow rates of < 15 L/min, oxygenation devices with mask-like effects, such as NRM or NCO with NRM, decreased aerosol dispersion more effectively than NCO alone or a simple mask. In the upright position, the foot area exhibited the highest aerosol concentration regardless of the oxygenation device than the head-trunk areas of the mannequin. Healthcare workers should be alert even at the foot side of the patient while administering oxygenation therapy.
Collapse
Affiliation(s)
- Chih-Chieh Wu
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Wei-Lun Chen
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Cheng-Wei Tseng
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yung-Cheng Su
- School of Medicine, Tzu Chi University, Hualien County, Hualien, Taiwan
- Department of Emergency, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi County, Chiayi, Taiwan
| | - Hsin-Ling Chen
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Lung Lin
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Tzu-Yao Hung
- Department of Emergency Medicine, Zhong-Xing Branch, Taipei City Hospital, Taipei, Taiwan.
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
- CrazyatLAB (Critical Airway Training Laboratory), Taipei, Taiwan.
| |
Collapse
|
290
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
291
|
Lee D, Jang J, Jang J. Sensitive and highly rapid electrochemical measurement of airborne coronaviruses through condensation-based direct impaction onto carbon nanotube-coated porous paper working electrodes. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131972. [PMID: 37399725 DOI: 10.1016/j.jhazmat.2023.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Rapid detection of indoor airborne viruses is critical to prevent the spread of respiratory diseases. Herein, we present sensitive, highly rapid electrochemical measurement of airborne coronaviruses through condensation-based direct impaction onto antibody-immobilized, carbon nanotube-coated porous paper working electrodes (PWEs). Carboxylated carbon nanotubes are drop-cast on paper fibers to make three-dimensional (3D) porous PWEs. These PWEs have higher active surface area-to-volume ratios and electron transfer characteristics than conventional screen-printed electrodes. The limit of detection and detection time of the PWEs for liquid-borne coronaviruses OC43 are 65.7 plaque-forming units (PFU)/mL and 2 min, respectively. The PWEs showed sensitive and rapid detection of whole coronaviruses, which can be ascribed to the 3D porous electrode structure of the PWEs. Moreover, water molecules condense on airborne virus particles during air sampling, and these water-encapsulated virus particles (<4 µm) are impacted on the PWE for direct measurement without virus lysis and elution. The whole detection takes ∼10 min, including air sampling, at virus concentrations of 1.8 and 11.5 PFU/L of air, which can be due to the highly enriching and minimally damaging virus capture on a soft and porous PWE, demonstrating the potential for the rapid and low-cost airborne virus monitoring system.
Collapse
Affiliation(s)
- Daesoon Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Junbeom Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering & Department of Urban and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
292
|
Liu Z, Li H, Chu J, Huang Z, Xiao X, Wang Y, He J. The impact of high background particle concentration on the spatiotemporal distribution of Serratia marcescens bioaerosol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131863. [PMID: 37354722 DOI: 10.1016/j.jhazmat.2023.131863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Airborne transmission is a well-established mode of dissemination for infectious diseases, particularly in closed environments. However, previous research has often overlooked the potential impact of background particle concentration on bioaerosol characteristics. We compared the spatial and temporal distributions of bioaerosols under two levels of background particle concentration: heavily polluted (150-250 μg/m3) and excellent (0-35 μg/m3) in a typical ward. Serratia marcescens bioaerosol was adopted as a bioaerosol tracer, and the bioaerosol concentrations were quantified using six-stage Andersen cascade impactors. The results showed a significant reduction (over at least 62.9%) in bioaerosol concentration under heavily polluted levels compared to excellent levels at all sampling points. The temporal analysis also revealed that the decay rate of bioaerosols was higher (at least 0.654 min-1) under heavily polluted levels compared to excellent levels. These findings suggest that background particles can facilitate bioaerosol removal, contradicting the assumption made in previous research that background particle has no effect on bioaerosol characteristics. Furthermore, we observed differences in the size distribution of bioaerosols between the two levels of background particle concentration. The average bioaerosols size under heavily polluted levels was found to be higher than that under excellent levels, and the average particle size under heavily polluted levels gradually increased with time. In conclusion, these results highlight the importance of considering background particle concentration in future research on bioaerosol characteristics.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Haochuan Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiaqi Chu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhenzhe Huang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Xia Xiao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Yongxin Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Junzhou He
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
293
|
Yang J, Sun D, Xia T, Shi S, Suo J, Kuang H, Sun N, Hu H, Zheng Z, Zhou Y, Li X, Chen S, Huang H, Yan Z. Monitoring Prevalence and Persistence of Environmental Contamination by SARS-CoV-2 RNA in a Makeshift Hospital for Asymptomatic and Very Mild COVID-19 Patients. Int J Public Health 2023; 68:1605994. [PMID: 37767017 PMCID: PMC10520216 DOI: 10.3389/ijph.2023.1605994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Objective: To investigate the details of environmental contamination status by SARS-CoV-2 in a makeshift COVID-19 hospital. Methods: Environmental samples were collected from a makeshift hospital. The extent of contamination was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for SARS-CoV-2 RNA from various samples. Results: There was a wide range of total collected samples contaminated with SARS-CoV-2 RNA, ranging from 8.47% to 100%. Results revealed that 70.00% of sewage from the bathroom and 48.19% of air samples were positive. The highest rate of contamination was found from the no-touch surfaces (73.07%) and the lowest from frequently touched surfaces (33.40%). The most contaminated objects were the top surfaces of patient cubic partitions (100%). The median Ct values among strongly positive samples were 33.38 (IQR, 31.69-35.07) and 33.24 (IQR, 31.33-34.34) for ORF1ab and N genes, respectively. SARS-CoV-2 relic RNA can be detected on indoor surfaces for up to 20 days. Conclusion: The findings show a higher prevalence and persistence in detecting the presence of SARS-CoV-2 in the makeshift COVID-19 hospital setting. The contamination mode of droplet deposition may be more common than contaminated touches.
Collapse
Affiliation(s)
- Jinyan Yang
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Dan Sun
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Tingting Xia
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Shi Shi
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Jijiang Suo
- Department of Disease Prevention and Control, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Huihui Kuang
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Nana Sun
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Hongyan Hu
- Department of Laboratory Medicine, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Zhecheng Zheng
- Department of Health Economics Management, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Yang Zhou
- Department of Health Economics Management, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Xiaocui Li
- Department of Cardiology, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Shaojuan Chen
- Department of Cardiology, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Haiqiang Huang
- Department of Radiotherapy, Hainan Hospital of People’s Liberation Army of China General Hospital, Sanya, China
| | - Zhongqiang Yan
- Department of Disease Prevention and Control, The Second Medical Center of People’s Liberation Army of China General Hospital, Beijing, China
| |
Collapse
|
294
|
Gonzaga A, Andreu E, Hernández-Blasco LM, Meseguer R, Al-Akioui-Sanz K, Soria-Juan B, Sanjuan-Gimenez JC, Ferreras C, Tejedo JR, Lopez-Lluch G, Goterris R, Maciá L, Sempere-Ortells JM, Hmadcha A, Borobia A, Vicario JL, Bonora A, Aguilar-Gallardo C, Poveda JL, Arbona C, Alenda C, Tarín F, Marco FM, Merino E, Jaime F, Ferreres J, Figueira JC, Cañada-Illana C, Querol S, Guerreiro M, Eguizabal C, Martín-Quirós A, Robles-Marhuenda Á, Pérez-Martínez A, Solano C, Soria B. Rationale for combined therapies in severe-to-critical COVID-19 patients. Front Immunol 2023; 14:1232472. [PMID: 37767093 PMCID: PMC10520558 DOI: 10.3389/fimmu.2023.1232472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
| | - Etelvina Andreu
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Applied Physics Department, Miguel Hernández University, Elche, Spain
| | | | - Rut Meseguer
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Karima Al-Akioui-Sanz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Bárbara Soria-Juan
- Réseau Hospitalier Neuchâtelois, Hôpital Pourtalès, Neuchâtel, Switzerland
| | | | - Cristina Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Guillermo Lopez-Lluch
- University Pablo de Olavide, Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Científicas (CABD-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Rosa Goterris
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Loreto Maciá
- Nursing Department, University of Alicante, Alicante, Spain
| | - Jose M. Sempere-Ortells
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Biotechnology Department, University of Alicante, Alicante, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), Valencia, Spain
| | - Alberto Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid, IdiPAz, Madrid, Spain
| | - Jose L. Vicario
- Transfusion Center of the Autonomous Community of Madrid, Madrid, Spain
| | - Ana Bonora
- Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Jose L. Poveda
- Health Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Arbona
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Cristina Alenda
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Fabian Tarín
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Francisco M. Marco
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Immunology Department, Dr. Balmis General University Hospital, Alicante, Spain
| | - Esperanza Merino
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Clinical Medicine, Miguel Hernández University, Elche, Spain
- Infectious Diseases Unit, Dr. Balmis General University Hospital, Alicante, Spain
| | - Francisco Jaime
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - José Ferreres
- Intensive Care Service, Hospital Clinico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | | | | | | | - Manuel Guerreiro
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Antonio Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Bernat Soria
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
295
|
Nakashio M, Ohgitani E, Shin-Ya M, Kawamoto M, Ichitani M, Kobayashi M, Takihara T, Kinugasa H, Ishikura H, Mazda O. Milk Casein Inhibits Effect of Black Tea Galloylated Theaflavins to Inactivate SARS-CoV-2 In Vitro. Bioengineering (Basel) 2023; 10:1068. [PMID: 37760169 PMCID: PMC10526027 DOI: 10.3390/bioengineering10091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Continuing caution is required against the potential emergence of SARS-CoV-2 novel mutants that could pose the next global health and socioeconomical threats. If virus in saliva can be inactivated by a beverage, such a beverage may be useful because the saliva of infected persons is the major origin of droplets and aerosols that mediate human-to-human viral transmission. We previously reported that SARS-CoV-2 was significantly inactivated by treatment in vitro with tea including green tea and black tea. Catechins and its derived compounds galloylated theaflavins (gTFs) bound to the receptor-binding domain (RBD) of the S-protein and blocked interaction between RBD and ACE2. Black tea is often consumed with sugar, milk, lemon juice, etc., and it remains unclarified whether these ingredients may influence the anti-SARS-CoV-2 effect of black tea. Here, we examined the effect of black tea on Omicron subvariants in the presence of these ingredients. The infectivity of Omicron subvariants was decreased to 1/100 or lower after treatment with black tea for 10 s. One or two teaspoons of milk (4~8 mL) completely blocked the anti-viral effect of a cup of tea (125 mL), whereas an addition of sugar or lemon juice failed to do so. The suppressive effect was dose-dependently exerted by milk casein but not whey proteins. gTFs were coprecipitated with casein after acidification of milk-supplemented black tea, strongly suggesting the binding of gTFs to casein. The present study demonstrates for the first time that an addition of milk cancelled the anti-SARS-CoV-2 effect of black tea due to binding of casein to gTFs.
Collapse
Affiliation(s)
- Maiko Nakashio
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.N.)
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Eriko Ohgitani
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.N.)
| | - Masaharu Shin-Ya
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.N.)
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masaya Kawamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.N.)
| | - Masaki Ichitani
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Central Research Institute, ITO EN, Ltd., Shizuoka 421-0516, Japan
| | - Makoto Kobayashi
- Central Research Institute, ITO EN, Ltd., Shizuoka 421-0516, Japan
| | | | - Hitoshi Kinugasa
- Central Research Institute, ITO EN, Ltd., Shizuoka 421-0516, Japan
| | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (M.N.)
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
296
|
Vass WB, Shankar SN, Lednicky JA, Yang Y, Manzanas C, Zhang Y, Boyette J, Chen J, Chen Y, Shirkhani A, Washeem M, Fan ZH, Eiguren-Fernandez A, Jutla A, Wu CY. Detection and isolation of infectious SARS-CoV-2 omicron subvariants collected from residential settings. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2023; 57:1142-1153. [PMID: 38143528 PMCID: PMC10735208 DOI: 10.1080/02786826.2023.2251537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/17/2023] [Indexed: 12/26/2023]
Abstract
Airborne transmission of infectious (viable) SARS-CoV-2 is increasingly accepted as the primary manner by which the virus is spread from person to person. Risk of exposure to airborne virus is higher in enclosed and poorly ventilated spaces. We present a study focused on air sampling within residences occupied by individuals with COVID-19. Air samplers (BioSpot-VIVAS, VIVAS, and BC-251) were positioned in primary- and secondary-occupancy regions in seven homes. Swab samples were collected from high-touch surfaces. Isolation of SARS-CoV-2 was attempted for samples with virus detectable by RT-qPCR. Viable virus was quantified by plaque assay, and complete virus genome sequences were obtained for selected samples from each sampling day. SARS-CoV-2 was detected in 24 of 125 samples (19.2%) by RT-qPCR and isolated from 14 (11.2%) in cell cultures. It was detected in 80.9% (17/21) and cultured from 61.9% (13/21) of air samples collected using water condensation samplers, compared to swab samples which had a RT-qPCR detection rate of 10.5% (4/38) and virus isolation rate of 2.63% (1/38). No statistically significant differences existed in the likelihood of virus detection by RT-qPCR or amount of infectious virus in the air between areas of primary and secondary occupancy within residences. Our work provides information about the presence of SARS-CoV-2 in the air within homes of individuals with COVID-19. Information herein can help individuals make informed decisions about personal exposure risks when sharing indoor spaces with infected individuals isolating at home and further inform health departments and the public about SARS-CoV-2 exposure risks within residences.
Collapse
Affiliation(s)
- William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Yang Yang
- Department of Statistics, University of Georgia, Athens, Georgia, USA
| | - Carlos Manzanas
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Jessica Boyette
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Jiayi Chen
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Yuqiao Chen
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Amin Shirkhani
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Mo Washeem
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | | | - Antarpreet Jutla
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
297
|
Kumar MS, He R, Feng L, Olin P, Chew HP, Jardine P, Anderson GC, Hong J. Particle generation and dispersion from high-speed dental drilling. Clin Oral Investig 2023; 27:5439-5448. [PMID: 37479870 DOI: 10.1007/s00784-023-05163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE To investigate the characteristics of particle generation and dispersion during dental procedure using digital inline holography (DIH) METHODS: Particles at two locations, near-field and far-field, which represent the field closer to the procedure location and within 0.5 m from the procedure location respectively, are studied using two different DIH systems. The effect of three parameters namely rotational speed, coolant flow rate, and bur angle on particle generation and dispersion are evaluated by using 10 different operating conditions. The particle characteristics at different operating conditions are estimated from the holograms using machine learning-based analysis. RESULTS The particle concentration decreased by at least two orders of magnitude between the near-field and far-field locations across the 10 different operating conditions, indicating significant dispersion of the particles. High rotational speed is found to produce a larger number of smaller particles, while lower rotational speeds generate larger particles. Coolant flow rate is found to have a greater impact on particle transport to the far-field location. Irregular shape dental particles account for 29% of total particles at far-field location, with the majority of these irregular shape particles having diameters ranging from 12 to 18 μm. CONCLUSIONS All three parameters have significant effects on particle generation and dispersion, with rotational speed having a more significant influence on particle generation at near-field and coolant flow rate playing a more important role on particle transport to the far-field. CLINICAL RELEVANCE This study provides valuable insights on particle characteristics during high-speed drilling. It can help dental professionals minimize exposure risks for themselves and patients by optimizing clinical operating conditions.
Collapse
Affiliation(s)
- M Shyam Kumar
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ruichen He
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA
| | - Lei Feng
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA
| | - Paul Olin
- University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Hooi Pin Chew
- University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Paul Jardine
- University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Gary C Anderson
- University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Jiarong Hong
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA.
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
298
|
Marco L, Cambien G, Garcia M, Broutin L, Cateau E, Lariviere A, Castel O, Thevenot S, Bousseau A. [Respiratory infections: Additional transmission-based precautions in healthcare facilities]. Rev Mal Respir 2023; 40:572-603. [PMID: 37365075 DOI: 10.1016/j.rmr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION In health care, measures against cross-transmission of microorganisms are codified by standard precautions, and if necessary, they are supplemented by additional precautions. STATE OF THE ART Several factors impact transmission of microorganisms via the respiratory route: size and quantity of the emitted particles, environmental conditions, nature and pathogenicity of the microorganisms, and degree of host receptivity. While some microorganisms necessitate additional airborne or droplet precautions, others do not. PROSPECTS For most microorganisms, transmission patterns are well-understood and transmission-based precautions are well-established. For others, measures to prevent cross-transmission in healthcare facilities remain under discussion. CONCLUSIONS Standard precautions are essential to the prevention of microorganism transmission. Understanding of the modalities of microorganism transmission is essential to implementation of additional transmission-based precautions, particularly in view of opting for appropriate respiratory protection.
Collapse
Affiliation(s)
- L Marco
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - G Cambien
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France; Inserm CIC 1402, université de Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - M Garcia
- Département des agents infectieux, laboratoire de virologie et mycobactériologie, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France; Laboratoire inflammation, tissus épithéliaux et cytokines, EA 4331, université de Poitiers, 86021 Poitiers, France
| | - L Broutin
- Département des agents infectieux, laboratoire de bactériologie, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - E Cateau
- Laboratoire écologie et biologie des interactions, UMR CNRS 7267, université de Poitiers, 86021 Poitiers, France; Département des agents infectieux, laboratoire de parasitologie et mycologie médicale, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - A Lariviere
- Département des agents infectieux, laboratoire de virologie et mycobactériologie, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - O Castel
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - S Thevenot
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France; Inserm CIC 1402, université de Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - A Bousseau
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France.
| |
Collapse
|
299
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
300
|
Gil E, Roy S, Best T, Hatcher J, Breuer J. Increasing rhinovirus prevalence in paediatric intensive care patients since the SARS-CoV2 pandemic. J Clin Virol 2023; 166:105555. [PMID: 37536014 DOI: 10.1016/j.jcv.2023.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Rhinovirus (HRV) is a significant seasonal pathogen in children. The emergence of SARS-CoV2, and the social restrictions introduced in, disrupted viral epidemiology. Here we describe the experience of Great Ormond Street Hospital (GOSH), where HRV almost entirely disappeared from the paediatric intensive care units (PICU) during the first national lockdown and then rapidly re-emerged with a fast-increasing incidence, leading to concerns about possible nosocomial transmission in a vulnerable population. OBJECTIVES To describe alterations in HRV infection amongst PICU patients at GOSH since the emergence of SARS-COV2 STUDY DESIGN: 10,950 nasopharyngeal aspirate viral PCR samples from GOSH PICU patients from 2019 to 2023 were included. 3083 returned a positive result for a respiratory virus, with 1530 samples positive for HRV. 66 HRV isolates from August 2020 - Jan 2021, the period of rapidly increasing HRV incidence, were sequenced. Electronic health record data was retrospectively collected for the same period. RESULTS Following a reduction in the incidence of HRV infection during the first national lockdown, multiple genotypes of HRV emerged amongst GOSH PICU patients, with the incidence of HRV infection rapidly surging to levels higher than that seen prior to the emergence of SARS-CoV2 and continuing to circulate at increased incidence year-round. CONCLUSIONS The incidence of HRV infection amongst GOSH PICU patients is markedly higher than prior to the emergence of SARS-CoV2, a pattern not seen in other respiratory viruses. The increased burden of HRV-infection in vulnerable PICU patients has both clinical and infection prevention and control Implications.
Collapse
Affiliation(s)
- Eliza Gil
- Department of Clinical Research, London School of Hygiene and Tropical Medicine; Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, UK; Infection, Immunity and Inflammation Department, GOS Institute of Child Health, University College London, London, UK.
| | - Sunando Roy
- Infection, Immunity and Inflammation Department, GOS Institute of Child Health, University College London, London, UK
| | - Tim Best
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, UK
| | - James Hatcher
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, UK
| | - Judith Breuer
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, UK; Infection, Immunity and Inflammation Department, GOS Institute of Child Health, University College London, London, UK
| |
Collapse
|