251
|
Vega JL, Gutiérrez C, Rojas M, Güiza J, Sáez JC. Contribution of large-pore channels to inflammation induced by microorganisms. Front Cell Dev Biol 2023; 10:1094362. [PMID: 36699007 PMCID: PMC9868820 DOI: 10.3389/fcell.2022.1094362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Plasma membrane ionic channels selectively permeate potassium, sodium, calcium, and chloride ions. However, large-pore channels are permeable to ions and small molecules such as ATP and glutamate, among others. Large-pore channels are structures formed by several protein families with little or no evolutionary linkages including connexins (Cxs), pannexins (Panxs), innexin (Inxs), unnexins (Unxs), calcium homeostasis modulator (CALHMs), and Leucine-rich repeat-containing 8 (LRRC8) proteins. Large-pore channels are key players in inflammatory cell response, guiding the activation of inflammasomes, the release of pro-inflammatory cytokines such as interleukin-1 beta (IL-1ß), and the release of adenosine-5'-triphosphate (ATP), which is considered a danger signal. This review summarizes our current understanding of large-pore channels and their contribution to inflammation induced by microorganisms, virulence factors or their toxins.
Collapse
Affiliation(s)
- José L. Vega
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile,Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta (CIIBBA), Universidad de Antofagasta, Antofagasta, Chile,Centro de Fisiología y Medicina de Altura (FIMEDALT), Universidad de Antofagasta, Antofagasta, Chile,*Correspondence: José L. Vega,
| | - Camila Gutiérrez
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Mauro Rojas
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan Güiza
- Laboratory of Gap Junctions Proteins and Parasitic Diseases (GaPaL), Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
252
|
ZENG W, SONG Y, WANG R, HE R, WANG T. Neutrophil elastase: From mechanisms to therapeutic potential. J Pharm Anal 2023; 13:355-366. [PMID: 37181292 PMCID: PMC10173178 DOI: 10.1016/j.jpha.2022.12.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Neutrophil elastase (NE), a major protease in the primary granules of neutrophils, is involved in microbicidal activity. NE is an important factor promoting inflammation, has bactericidal effects, and shortens the inflammatory process. NE also regulates tumor growth by promoting metastasis and tumor microenvironment remodeling. However, NE plays a role in killing tumors under certain conditions and promotes other diseases such as pulmonary ventilation dysfunction. Additionally, it plays a complex role in various physiological processes and mediates several diseases. Sivelestat, a specific NE inhibitor, has strong potential for clinical application, particularly in the treatment of coronavirus disease 2019 (COVID-19). This review discusses the pathophysiological processes associated with NE and the potential clinical applications of sivelestat.
Collapse
|
253
|
Thorgersen EB, Asvall J, Schjalm C, McAdam KE, Bruland ØS, Larsen SG, Mollnes TE. Effect of Intraperitoneal 224Radium-Labelled Microparticles on Compartmentalized Inflammation After Cytoreductive Surgery and Hypertherm Intraperitoneal Chemotherapy. Technol Cancer Res Treat 2023; 22:15330338231192902. [PMID: 37574949 PMCID: PMC10426314 DOI: 10.1177/15330338231192902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Despite extensive treatment with surgery and chemotherapy many patients with peritoneal metastases from colorectal cancer experience intraperitoneal disease relapse. The α-emitting 224radium-labelled microparticle radionuclide therapeutic Radspherin® is being explored as a novel treatment option for these patients. Radspherin® is specially designed to give local radiation to the surface of the peritoneal cavity and potentially kill remaining attached micrometastases as well as free-floating cancer cells, thus preventing future relapse. The effect of Radspherin® on the immune system is not known. Systemic and local inflammatory responses were analyzed in plasma, intraperitoneal fluid and urine collected prospectively as part of a phase 1 dose-escalation study of intraperitoneal instillation of the α-emitting therapeutic radiopharmaceutical Radspherin®, at baseline and the first 7 postoperative days from nine patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. All patients additionally received intraperitoneal instillation of Radspherin® on postoperative day 2. Complement activation products C3bc and the terminal complement complex were analyzed using enzyme-linked immunosorbent assay. Cytokines (n = 27), including interleukins, chemokines, interferons and growth factors, were analyzed using multiplex technique. The time course and magnitude of the postoperative cytokine response after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy displayed a modest systemic response in plasma, in contrast to a substantial local intraperitoneal response. After administration of Radspherin®, a significant increase (P < 0.05) in TNF and MIP-1β was observed in both plasma and peritoneal fluid, whereas IL-9 increased only in plasma and IFNγ and IL1-RA only in peritoneal fluid. Only minor changes were seen for the majority of the inflammatory markers after Radspherin® administration. Our study showed a predominately local rather than systemic inflammatory response to cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Radspherin® had overall modest impact on the inflammation.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of Gastroenterological Surgery, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Jørund Asvall
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schjalm
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Karin Ekholt McAdam
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital, The Radium Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| |
Collapse
|
254
|
Liang Y, Su Z, Mao X, Wan S, Luo L. Editorial: Ferroptosis as a novel therapeutic target for inflammation-related diseases. Front Pharmacol 2023; 14:1152326. [PMID: 36874022 PMCID: PMC9978696 DOI: 10.3389/fphar.2023.1152326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Yongyi Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Zhenyi Su
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
255
|
Scott K, Phan TT, Boukelmoune N, Heijnen CJ, Dantzer R. Chronic restraint stress impairs voluntary wheel running but has no effect on food-motivated behavior in mice. Brain Behav Immun 2023; 107:319-329. [PMID: 36349643 PMCID: PMC9729455 DOI: 10.1016/j.bbi.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Chronic restraint stress is known to cause significant alterations of mitochondrial biology. However, its effects on effort-based behavior and the sensitivity of these effects to treatments that restore mitochondrial function have not been assessed. Based on the hypothesis that the behavioral consequences of this stressor should be more severe for an energy demanding activity than for an energy procuring activity, we compared the effects of chronic restraint stress on the performance of male mice trained to use a running wheel or to nose poke for a food reward in an operant conditioning cage. In accordance with our hypothesis, we observed that exposure of mice to 2-hour daily restraint sessions for 14 to 16 days during the light phase of the cycle reliably decreased voluntary wheel running but had no effect on working for food in a fixed ratio 10 schedule of food reinforcement or in a progressive ratio schedule of food reinforcement. This dissociation between the two types of behavioral activities could reflect an adaptive response to the constraint imposed by chronic restraint stress on mitochondria function and its negative consequences on energy metabolism. To determine whether it is the case, we administered mesenchymal stem cells intranasally to chronically restrained mice to repair the putative mitochondrial dysfunction induced by chronic restraint stress. This intervention had no effect on wheel running deficits. Assessment of mitochondrial gene expression in the brain of mice submitted to chronic restraint stress revealed an increase in the expression of genes involved in mitochondrial biology that showed habituation with repetition of daily sessions of restraint stress. These original findings can be interpreted to indicate that chronic restraint stress induces behavioral and mitochondrial adjustments that contribute to metabolic adaptation to this stressor and maintain metabolic flexibility.
Collapse
Affiliation(s)
- Kiersten Scott
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thien Trong Phan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nabila Boukelmoune
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cobi J Heijnen
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
256
|
Noé JP, de Souza-Ferro JN, da Silva-Rodrigues ÉE, da Silva-Júnior EF, Alexandre-Moreira MS, de Araújo-Junior JX, Barreto E. LQM10, a guanylhydrazone derivative, reduces nociceptive and inflammatory responses in mice. Fundam Clin Pharmacol 2022; 37:619-628. [PMID: 36579760 DOI: 10.1111/fcp.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
In the present study, we examined the antinociceptive and anti-inflammatory activities of a guanylhydrazone derivative, (E)-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-guanylhydrazone hydrochloride (LQM10), in mice. The antinociceptive effect was determined by assessing behavioural responses in different pain models, while anti-inflammatory activity was examined in carrageenan-induced pleurisy. Intraperitoneal LQM10 administration reduced the acetic acid-induced nociceptive behaviour, a phenomenon that was unaltered by pretreatment with yohimbine, atropine, naloxone or glibenclamide. In the formalin assay, LQM10 reduced nociceptive behaviour only in the second phase, indicating an inhibitory effect on inflammatory pain. LQM10 did not alter the pain latency in the hot plate assay and did not impact the locomotor activity of mice in the rotarod assay. In the carrageenan-induced pleurisy assay, LQM10 treatment inhibited critical events involved in inflammatory responses, namely, leucocyte recruitment, plasma leakage and increased inflammatory mediators (tumour necrosis factor Like Properties of Chalchones and Flavonoid Derivatives [TNF]-α and interleukin [IL]-1β) in the pleural exudate. Overall, these results indicate that LQM10 exhibits antinociceptive effects associated with peripheral mechanisms and anti-inflammatory activity mediated via a reduction in leucocyte migration and proinflammatory mediators, rendering this compound a promising candidate for treating pain and inflammatory process.
Collapse
Affiliation(s)
- João Paulo Noé
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, 57072-970, Brazil
| | - Jamylle Nunes de Souza-Ferro
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, 57072-970, Brazil
| | - Érica Erlanny da Silva-Rodrigues
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, 57072-900, Brazil.,Research Group on Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, 57072-970, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Research Group on Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, 57072-970, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, 57072-970, Brazil
| | - João Xavier de Araújo-Junior
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, 57072-900, Brazil
| | - Emiliano Barreto
- Laboratory of Cell Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, 57072-970, Brazil
| |
Collapse
|
257
|
Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med 2022; 20:494. [PMID: 36575472 PMCID: PMC9795790 DOI: 10.1186/s12916-022-02672-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity usually is accompanied by inflammation of fat tissue, with a prominent role of visceral fat. Chronic inflammation in obese fat tissue is of a lower grade than acute immune activation for clearing the tissue from an infectious agent. It is the loss of adipocyte metabolic homeostasis that causes activation of resident immune cells for supporting tissue functions and regaining homeostasis. Initially, the excess influx of lipids and glucose in the context of overnutrition is met by adipocyte growth and proliferation. Eventual lipid overload of hypertrophic adipocytes leads to endoplasmic reticulum stress and the secretion of a variety of signals causing increased sympathetic tone, lipolysis by adipocytes, lipid uptake by macrophages, matrix remodeling, angiogenesis, and immune cell activation. Pro-inflammatory signaling of adipocytes causes the resident immune system to release increased amounts of pro-inflammatory and other mediators resulting in enhanced tissue-protective responses. With chronic overnutrition, these protective actions are insufficient, and death of adipocytes as well as senescence of several tissue cell types is seen. This structural damage causes the expression or release of immunostimulatory cell components resulting in influx and activation of monocytes and many other immune cell types, with a contribution of stromal cells. Matrix remodeling and angiogenesis is further intensified as well as possibly detrimental fibrosis. The accumulation of senescent cells also may be detrimental via eventual spread of senescence state from affected to neighboring cells by the release of microRNA-containing vesicles. Obese visceral fat inflammation can be viewed as an initially protective response in order to cope with excess ambient nutrients and restore tissue homeostasis but may contribute to tissue damage at a later stage.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Düsseldorf, Germany.
| |
Collapse
|
258
|
Ma X, Liu B, Fan L, Liu Y, Zhao Y, Ren T, Li Y, Li Y. Native and engineered exosomes for inflammatory disease. NANO RESEARCH 2022; 16:6991-7006. [PMID: 36591564 PMCID: PMC9793369 DOI: 10.1007/s12274-022-5275-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Exosomes are extracellular vesicles which carry specific molecular information from donor cells and act as an intercellular communication vehicle, which have emerged as a novel cell-free strategy for the treatment of many diseases including inflammatory disease. Recently, rising studies have developed exosome-based strategies for novel inflammation therapy due to their biocompatibility and bioactivity. Researchers not only use native exosomes as therapeutic agents for inflammation, but also strive to make up for the natural defects of exosomes through engineering methods to improve and update the property of exosomes for enhanced therapeutic effects. The engineered exosomes can improve cargo-loading efficiency, targeting ability, stability, etc., to achieve combined and diverse treatment strategies in inflammation diseases. Herein, a comprehensive overview of the recent advances in application studies of native and engineered exosomes as well as the engineered methods is provided. Meanwhile, potential application prospects, possible challenges, and the development of clinical researches of exosome treatment strategy are concluded from plentiful examples, which may be able to provide guidance and suggestions for the future research and application of exosomes.
Collapse
Affiliation(s)
- Xiaoyi Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Bingbing Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Limin Fan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yiqiong Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Tianbin Ren
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
259
|
Resolution Potential of Necrotic Cell Death Pathways. Int J Mol Sci 2022; 24:ijms24010016. [PMID: 36613458 PMCID: PMC9819908 DOI: 10.3390/ijms24010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.
Collapse
|
260
|
Kim DY, Mucida D. A triplex for intestinal protection: Neurons, microbes, and goblet cells. Immunity 2022; 55:2228-2230. [PMID: 36516817 DOI: 10.1016/j.immuni.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diverse intestinal components (e.g., gut-associated neurons, immune cells, gut microbes, and epithelium) are intimately intertwined with each other to maintain homeostasis in the gut. In a recent issue of Cell, Zhang et al. (2022) and Yang et al. (2022) present complementary studies uncovering interactions between nociceptor neurons, gut epithelium, and the microbiome to protect intestinal tissue from inflammation.
Collapse
Affiliation(s)
- Dong-Yoon Kim
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
261
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
262
|
The Biomimetics of Mg 2+-Concentration-Resolved Microenvironment for Bone and Cartilage Repairing Materials Design. Biomimetics (Basel) 2022; 7:biomimetics7040227. [PMID: 36546928 PMCID: PMC9775637 DOI: 10.3390/biomimetics7040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
With the increase in population aging, the tendency of osteochondral injury will be accelerated, and repairing materials are increasingly needed for the optimization of the regenerative processes in bone and cartilage recovery. The local environment of the injury sites and the deficiency of Mg2+ retards the repairing period via inhibiting the progenitor osteogenesis and chondrogenesis cells’ recruitment, proliferation, and differentiation, which results in the sluggish progress in the osteochondral repairing materials design. In this article, we elucidate the Mg2+-concentration specified effect on the cell proliferation, osteochondral gene expression, and differentiation of modeling chondrocytes (extracted from New Zealand white rabbit) and osteoblasts (MC3T3-E1). The concentration of Mg2+ in the culture medium affects the proliferation, chondrogenesis, and osteogenesis: (i) Appropriate concentrations of Mg2+ promote the proliferation of chondrocytes (1.25−10.0 mM) and MC3T3-E1 cells (2.5−30.0 mM); (ii) the optimal concentration of Mg2+ that promotes the gene expression of noncalcified cartilage is 15 mM, calcified cartilage 10 mM, and subchondral bone 5 mM, respectively; (iii) overdosed Mg2+ leads to the inhibition of cell activity for either chondrocytes (>20 mM) or osteoblasts (>30 mM). The biomimetic elucidation for orchestrating the allocation of gradient concentration of Mg2+ in accordance of the physiological condition is crucial for designing the accurate microenvironment in osteochondral injury defects for optimization of bone and cartilage repairing materials in the future.
Collapse
|
263
|
Chen Y, Tang L. The crosstalk between parenchymal cells and macrophages: A keeper of tissue homeostasis. Front Immunol 2022; 13:1050188. [PMID: 36505488 PMCID: PMC9732730 DOI: 10.3389/fimmu.2022.1050188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively perform tissue-specific functions. PCs play significant roles and continuously adjust the intrinsic functions and metabolism of organs. Tissue-resident macrophages (TRMs) are crucial members of native NPCs in tissues and are essential for immune defense, tissue repair and development, and homeostasis maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs dynamically assist PCs in functioning by producing cytokines, inflammatory and anti-inflammatory signals, growth factors, and proteolytic enzymes. Furthermore, the PCs of tissues modulate the functional activity and polarization of TRMs. Dysregulation of the PC-TRM crosstalk axis profoundly impacts many essential physiological functions, including synaptogenesis, gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood filtration, and metabolic homeostasis. This review focuses on the PC-TRM crosstalk in mammalian vital tissues, along with their interactions with tissue homeostasis maintenance and disorders. Thus, this review highlights the fundamental biological significance of the regulatory network of PC-TRM in tissue homeostasis.
Collapse
|
264
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|
265
|
Hodel F, Naret O, Bonnet C, Brenner N, Bender N, Waterboer T, Marques-Vidal P, Vollenweider P, Fellay J. The combined impact of persistent infections and human genetic variation on C-reactive protein levels. BMC Med 2022; 20:416. [PMID: 36320076 PMCID: PMC9623937 DOI: 10.1186/s12916-022-02607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
Multiple human pathogens establish chronic, sometimes life-long infections. Even if they are often latent, these infections can trigger some degree of local or systemic immune response, resulting in chronic low-grade inflammation. There remains an incomplete understanding of the potential contribution of both persistent infections and human genetic variation on chronic low-grade inflammation. We searched for potential associations between seropositivity for 13 persistent pathogens and the plasma levels of the inflammatory biomarker C-reactive protein (CRP), using data collected in the context of the UK Biobank and the CoLaus|PsyCoLaus Study, two large population-based cohorts. We performed backward stepwise regression starting with the following potential predictors: serostatus for each pathogen, polygenic risk score for CRP, and demographic and clinical factors known to be associated with CRP. We found evidence for an association between Chlamydia trachomatis (P-value = 5.04e - 3) and Helicobacter pylori (P-value = 8.63e - 4) seropositivity and higher plasma levels of CRP. We also found an association between pathogen burden and CRP levels (P-value = 4.12e - 4). These results improve our understanding of the relationship between persistent infections and chronic inflammation, an important determinant of long-term morbidity in humans.
Collapse
Affiliation(s)
- Flavia Hodel
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Naret
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Clara Bonnet
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicole Brenner
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Noemi Bender
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
266
|
Denk D, Greten FR. Inflammation: the incubator of the tumor microenvironment. Trends Cancer 2022; 8:901-914. [PMID: 35907753 DOI: 10.1016/j.trecan.2022.07.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022]
Abstract
An inflammatory microenvironment, either conferred by an underlying chronic overt or smoldering inflammatory condition constitutes a prerequisite and fuel to essentially all cancers. The complex reciprocal interplay of different cell types in the tumor microenvironment (TME) determines patient outcome. Apart from the actual tumor cells, local and recruited nonmalignant cells as well as the intestinal microbiome actively shape polarization and plasticity of cells in the TME, thereby augmenting protumorigenic and prometastatic inflammatory processes. Here, we address the universality of inflammation in carcinogenesis, review distinct forms of tumor related inflammation and highlight critical processes in the TME actively sustaining a nurturing incubator for cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Dominic Denk
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; Department of Medicine 1, Goethe-University Hospital Frankfurt, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt/Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt/Main, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
267
|
Vivas W, Weis S. Tidy up - The unfolded protein response in sepsis. Front Immunol 2022; 13:980680. [PMID: 36341413 PMCID: PMC9632622 DOI: 10.3389/fimmu.2022.980680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pathogens, their toxic byproducts, and the subsequent immune reaction exert different forms of stress and damage to the tissue of the infected host. This stress can trigger specific transcriptional and post-transcriptional programs that have evolved to limit the pathogenesis of infectious diseases by conferring tissue damage control. If these programs fail, infectious diseases can take a severe course including organ dysfunction and damage, a phenomenon that is known as sepsis and which is associated with high mortality. One of the key adaptive mechanisms to counter infection-associated stress is the unfolded protein response (UPR), aiming to reduce endoplasmic reticulum stress and restore protein homeostasis. This is mediated via a set of diverse and complementary mechanisms, i.e. the reduction of protein translation, increase of protein folding capacity, and increase of polyubiquitination of misfolded proteins and subsequent proteasomal degradation. However, UPR is not exclusively beneficial since its enhanced or prolonged activation might lead to detrimental effects such as cell death. Thus, fine-tuning and time-restricted regulation of the UPR should diminish disease severity of infectious disease and improve the outcome of sepsis while not bearing long-term consequences. In this review, we describe the current knowledge of the UPR, its role in infectious diseases, regulation mechanisms, and further clinical implications in sepsis.
Collapse
Affiliation(s)
- Wolfgang Vivas
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- *Correspondence: Wolfgang Vivas,
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
- Institute for Infectious Disease and Infection Control, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
268
|
Ricardo-Gonzalez RR, Kotas ME, O'Leary CE, Singh K, Damsky W, Liao C, Arouge E, Tenvooren I, Marquez DM, Schroeder AW, Cohen JN, Fassett MS, Lee J, Daniel SG, Bittinger K, Díaz RE, Fraser JS, Ali N, Ansel KM, Spitzer MH, Liang HE, Locksley RM. Innate type 2 immunity controls hair follicle commensalism by Demodex mites. Immunity 2022; 55:1891-1908.e12. [PMID: 36044899 PMCID: PMC9561030 DOI: 10.1016/j.immuni.2022.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/27/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.
Collapse
Affiliation(s)
- Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Maya E Kotas
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Claire E O'Leary
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Katelyn Singh
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Chang Liao
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth Arouge
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology and Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology and Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew W Schroeder
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jarish N Cohen
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Marlys S Fassett
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jinwoo Lee
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott G Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roberto Efraín Díaz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Niwa Ali
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew H Spitzer
- Department of Otolaryngology and Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
269
|
Lu L, Xiong Y, Lin Z, Chu X, Panayi AC, Hu Y, Zhou J, Mi B, Liu G. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front Pharmacol 2022; 13:1009550. [PMID: 36267286 PMCID: PMC9576948 DOI: 10.3389/fphar.2022.1009550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Extensive research has implicated inflammation and oxidative stress in the development of multiple diseases, such as diabetes, hepatitis, and arthritis. Kinsenoside (KD), a bioactive glycoside component extracted from the medicinal plant Anoectochilus roxburghii, has been shown to exhibit potent anti-inflammatory and anti-oxidative abilities. In this review, we summarize multiple effects of KD, including hepatoprotection, pro-osteogenesis, anti-hyperglycemia, vascular protection, immune regulation, vision protection, and infection inhibition, which are partly responsible for suppressing inflammation signaling and oxidative stress. The protective action of KD against dysfunctional lipid metabolism is also associated with limiting inflammatory signals, due to the crosstalk between inflammation and lipid metabolism. Ferroptosis, a process involved in both inflammation and oxidative damage, is potentially regulated by KD. In addition, we discuss the physicochemical properties and pharmacokinetic profiles of KD. Advances in cultivation and artificial synthesis techniques are promising evidence that the shortage in raw materials required for KD production can be overcome. In addition, novel drug delivery systems can improve the in vivo rapid clearance and poor bioavailability of KD. In this integrated review, we aim to offer novel insights into the molecular mechanisms underlying the therapeutic role of KD and lay solid foundations for the utilization of KD in clinical practice.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
270
|
Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol 2022; 77:1136-1160. [PMID: 35750137 DOI: 10.1016/j.jhep.2022.06.012] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).
Collapse
|
271
|
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid- Vibrio Symbiosis. Microorganisms 2022; 10:microorganisms10101946. [PMID: 36296224 PMCID: PMC9607633 DOI: 10.3390/microorganisms10101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The Vibrionaceae encompasses a cosmopolitan group that is mostly aquatic and possesses tremendous metabolic and genetic diversity. Given the importance of this taxon, it deserves continued and deeper research in a multitude of areas. This review outlines emerging topics of interest within the Vibrionaceae. Moreover, previously understudied research areas are highlighted that merit further exploration, including affiliations with marine plants (seagrasses), microbial predators, intracellular niches, and resistance to heavy metal toxicity. Agarases, phototrophy, phage shock protein response, and microbial experimental evolution are also fields discussed. The squid-Vibrio symbiosis is a stellar model system, which can be a useful guiding light on deeper expeditions and voyages traversing these "seas of interest". Where appropriate, the squid-Vibrio mutualism is mentioned in how it has or could facilitate the illumination of these various subjects. Additional research is warranted on the topics specified herein, since they have critical relevance for biomedical science, pharmaceuticals, and health care. There are also practical applications in agriculture, zymology, food science, and culinary use. The tractability of microbial experimental evolution is explained. Examples are given of how microbial selection studies can be used to examine the roles of chance, contingency, and determinism (natural selection) in shaping Earth's natural history.
Collapse
Affiliation(s)
- William Soto
- Integrated Science Center Rm 3035, Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
272
|
Ramos S, Ademolue TW, Jentho E, Wu Q, Guerra J, Martins R, Pires G, Weis S, Carlos AR, Mahú I, Seixas E, Duarte D, Rajas F, Cardoso S, Sousa AGG, Lilue J, Paixão T, Mithieux G, Nogueira F, Soares MP. A hypometabolic defense strategy against malaria. Cell Metab 2022; 34:1183-1200.e12. [PMID: 35841892 DOI: 10.1016/j.cmet.2022.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
Hypoglycemia is a clinical hallmark of severe malaria, the often-lethal outcome of Plasmodium falciparum infection. Here, we report that malaria-associated hypoglycemia emerges from a non-canonical resistance mechanism, whereby the infected host reduces glycemia to starve Plasmodium. This hypometabolic response is elicited by labile heme, a byproduct of hemolysis that induces illness-induced anorexia and represses hepatic glucose production. While transient repression of hepatic glucose production prevents unfettered immune-mediated inflammation, organ damage, and anemia, when sustained over time it leads to hypoglycemia, compromising host energy expenditure and adaptive thermoregulation. The latter arrests the development of asexual stages of Plasmodium via a mechanism associated with parasite mitochondrial dysfunction. In response, Plasmodium activates a transcriptional program associated with the reduction of virulence and sexual differentiation toward the generation of transmissible gametocytes. In conclusion, malaria-associated hypoglycemia represents a trade-off of a hypometabolic-based defense strategy that balances parasite virulence versus transmission.
Collapse
Affiliation(s)
- Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Elisa Jentho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Qian Wu
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Joel Guerra
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gil Pires
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany; Institute for Infectious Disease and Infection Control, University Hospital Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | | | - Inês Mahú
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Elsa Seixas
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Denise Duarte
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | | | | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Fátima Nogueira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
273
|
Travier L, Singh R, Sáenz Fernández D, Deczkowska A. Microbial and immune factors regulate brain maintenance and aging. Curr Opin Neurobiol 2022; 76:102607. [PMID: 35914431 DOI: 10.1016/j.conb.2022.102607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022]
Abstract
Tissue aging can be viewed as a loss of normal maintenance; in advanced age, the mechanisms which keep the tissue healthy on daily bases fail to manage the accumulating "wear and tear", leading to gradual loss of function. In the brain, maintenance is provided primarily by three components: the blood-brain barrier, which allows the influx of certain molecules into the brain while excluding others, the circulation of the cerebrospinal fluid, and the phagocytic function of microglia. Indeed, failure of these systems is associated with cognitive loss and other hallmarks of brain aging. Interestingly, all three mechanisms are regulated not only by internal conditions within the aging brain, but remain highly sensitive to the peripheral signals, such as cytokines or microbiome-derived molecules, present in the systemic circulation. In this article, we discuss the contribution of such peripheral factors to brain maintenance and its loss in aging.
Collapse
Affiliation(s)
- Laetitia Travier
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, F-75015, Paris, France
| | - Roshani Singh
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, F-75015, Paris, France
| | - Daniel Sáenz Fernández
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, F-75015, Paris, France; Universitat de Barcelona, S-08193, Barcelona, Spain
| | - Aleksandra Deczkowska
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, F-75015, Paris, France.
| |
Collapse
|
274
|
Bilal M, Ashraf S, Zhao X. Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics. Front Nutr 2022; 9:931458. [PMID: 35938108 PMCID: PMC9354043 DOI: 10.3389/fnut.2022.931458] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
A balanced diet with many dietary components maintains immune homeostasis directly by interacting with innate and adaptive immune components or indirectly through gut microbiota and their metabolites. Dietary components may inhibit pro-inflammatory mediators and promote anti-inflammatory functions or vice versa. Western diets with imbalanced dietary components skew the immune balance toward pro-inflammation and induce intestinal inflammation, consequently leading to many intestinal and systemic inflammatory diseases like ulcerative colitis, Crohn's disease, irritable bowel syndrome, cardiovascular problems, obesity, and diabetes. The dietary component-induced inflammation is usually chronic in nature and frequently caused or accompanied by alterations in gut microbiota. Therefore, microbiome-targeted therapies such as probiotics, prebiotics and synbiotics hold great potentials to amend immune dysregulation and gut dysbiosis, preventing and treating intestinal and systemic inflammatory diseases. Probiotics, prebiotics and synbioitcs are progressively being added to foods and beverages, with claims of health benefits. However, the underlining mechanisms of these interventions for preventing and treating dietary component-induced inflammation are still not very clear. In addition, possibly ineffective or negative consequences of some probiotics, prebiotics and synbiotics call for stringent testing and regulation. Here, we will first briefly review inflammation, in terms of its types and the relationship between different dietary components and immune responses. Then, we focus on current knowledge about the direct and indirect effects of probiotics, prebiotics and synbiotics on intestinal and systemic inflammation. Understanding how probiotics, prebiotics and synbiotics modulate the immune system and gut microbiota will improve our strategies for preventing and treating dietary component-induced intestinal inflammation and inflammatory diseases.
Collapse
|
275
|
Zuo L, Xu Y, Du S, Li X, Zhao T, Zhang Y, Liu Z, Li S. Diagnostic value of Serum Amyloid A, Interleukin-6 in gravidas with spontaneous preterm birth. Clin Chim Acta 2022; 534:77-80. [PMID: 35853546 DOI: 10.1016/j.cca.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/22/2022] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Spontaneous preterm birth (SPB) can't be predicted accurately nowadays. We aim to investigate the value of serum amyloid A(SAA) and interleukin-6(IL-6) for forecasting the risk of SPB. METHODS A total of 302 pregnant women who completed delivery in our hospital from January 2019 to December 2021 were included. According to gestational days, they were divided into the case group (28-33+6 weeks, 41 cases; 34-36+6 weeks, 96 cases) and the control group (37-42 weeks, 165 cases). The general data of the two groups were analyzed and the values of SAA and IL-6 in speculating the risk of SPB were studied in this study. RESULTS The levels of SAA and IL-6 in the case group were higher than those in the control group(P < 0.05), and the most practical value of SAA and IL-6 access SPB risk were 17.35 mg/L, 112.41 pg/mL respectively. The area under the ROC curve of diagnosis to predict SPB were 0.8849, 0.8664. CONCLUSIONS The assessment of SPB risk by SAA and IL-6 bearscertain clinical value, which could assist clinicians in recognizing and evaluating the potential dangers of SPB.
Collapse
Affiliation(s)
- Luguang Zuo
- Department of Laboratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Yuhuan Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Shuai Du
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Xiaoying Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Tong Zhao
- Department of Ultrasound, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Yuhong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Zhenkui Liu
- Department of Pediatrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Shutie Li
- Department of Geriatrics, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| |
Collapse
|
276
|
Walker KA, Basisty N, Wilson DM, Ferrucci L. Connecting aging biology and inflammation in the omics era. J Clin Invest 2022; 132:e158448. [PMID: 35838044 PMCID: PMC9282936 DOI: 10.1172/jci158448] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is characterized by the accumulation of damage to macromolecules and cell architecture that triggers a proinflammatory state in blood and solid tissues, termed inflammaging. Inflammaging has been implicated in the pathogenesis of many age-associated chronic diseases as well as loss of physical and cognitive function. The search for mechanisms that underlie inflammaging focused initially on the hallmarks of aging, but it is rapidly expanding in multiple directions. Here, we discuss the threads connecting cellular senescence and mitochondrial dysfunction to impaired mitophagy and DNA damage, which may act as a hub for inflammaging. We explore the emerging multi-omics efforts that aspire to define the complexity of inflammaging - and identify molecular signatures and novel targets for interventions aimed at counteracting excessive inflammation and its deleterious consequences while preserving the physiological immune response. Finally, we review the emerging evidence that inflammation is involved in brain aging and neurodegenerative diseases. Our goal is to broaden the research agenda for inflammaging with an eye on new therapeutic opportunities.
Collapse
Affiliation(s)
- Keenan A. Walker
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Nathan Basisty
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - David M. Wilson
- Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
277
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
278
|
Chakarov S, Blériot C, Ginhoux F. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219:213212. [PMID: 35543703 PMCID: PMC9098652 DOI: 10.1084/jem.20211948] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
Abstract
The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in obesity.
Collapse
Affiliation(s)
- Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France.,Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
279
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022. [PMID: 35651325 PMCID: PMC9252895 DOI: 10.5483/bmbrep.2022.55.6.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
280
|
Wang W, Geng J, Wu X, Zhang J, Zheng C, Rao H, Li T, Diao Y, Yang H. Preparation of a miR-155-activating nucleic acid nanoflower to study the molecular mechanism of miR-155 in inflammation. Mol Med 2022; 28:66. [PMID: 35715753 PMCID: PMC9204882 DOI: 10.1186/s10020-022-00495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
At present, the molecular mechanisms underlying inflammation remain unclear. In recent years, research on inflammation has focused on stimulating cell inflammation by using exogenous pro-inflammatory substances such as lipopolysaccharide (LPS) or inflammatory factors. To investigate the molecular mechanism of inflammation from a new perspective, we designed a nucleic acid nanoflowers (NFs) complex to directly activate inflammatory genes to study the inflammatory response without the need for external microbial factors to trigger an inflammatory response. An RNAa-type target gene-activated NFs was designed. Human umbilical vein endothelial cells (HUVECs) were transfected with NFs carrying small activating RNA (saRNAs) to directly co-activate microRNA (miR)-155 and SHIP1 genes. After RNA activation (RNAa)-type NFs were transferred into HUVECs, the expression of miR-155 and pro-inflammatory and cancer-related factors increased, anti-inflammatory factors were reduced, cell proliferation increased, and cell migration was promoted. IL-1β protein levels were decreased and SHIP1 expression was downregulated. When miR-155 and its target SHIP1 were both activated, the expression of both was unaltered, maintaining cell homeostasis. This points towards miR-155 overexpression can trigger inflammation, and that miR-155 and its target genes act as a molecular switch role in the development of inflammation.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Medical, Huaqiao University, Quanzhou, 362021, China
| | - Jie Geng
- Department of Medical, Huaqiao University, Quanzhou, 362021, China
| | - Xiaohan Wu
- Department of Medical, Huaqiao University, Quanzhou, 362021, China
| | - Jianguang Zhang
- Xiamen Institute for Food and Drug Quality Control, Xiamen, China
| | - Chenna Zheng
- Quanzhou Medical College, Quanzhou, 362011, China
| | - Huachun Rao
- Laboratory Medicine, Quanzhou Orthopedic-Traumatological Hospital of Fujian Traditional Chinese Medicine University, Quanzhou, China
| | - Tianyu Li
- Department of Medical, Huaqiao University, Quanzhou, 362021, China
| | - Yong Diao
- Department of Medical, Huaqiao University, Quanzhou, 362021, China
| | - Huiyong Yang
- Department of Medical, Huaqiao University, Quanzhou, 362021, China.
| |
Collapse
|
281
|
Cross-Talk between the Cytokine IL-37 and Thyroid Hormones in Modulating Chronic Inflammation Associated with Target Organ Damage in Age-Related Metabolic and Vascular Conditions. Int J Mol Sci 2022; 23:ijms23126456. [PMID: 35742902 PMCID: PMC9224418 DOI: 10.3390/ijms23126456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammation is considered to be the main mechanism contributing to the development of age-related metabolic and vascular conditions. The phases of chronic inflammation that mediate the progression of target organ damage in these conditions are poorly known, however. In particular, there is a paucity of data on the link between chronic inflammation and metabolic disorders. Based on some of our own results and recent developments in our understanding of age-related inflammation as a whole-body response, we discuss the hypothesis that cross-talk between the cytokine IL-37 and thyroid hormones could be the key regulatory mechanism that justifies the metabolic effects of chronic tissue-related inflammation. The cytokine IL-37 is emerging as a strong natural suppressor of the chronic innate immune response. The effect of this cytokine has been identified in reversing metabolic costs of chronic inflammation. Thyroid hormones are known to regulate energy metabolism. There is a close link between thyroid function and inflammation in elderly individuals. Nonlinear associations between IL-37 and thyroid hormones, considered within the wider clinical context, can improve our understanding of the phases of chronic inflammation that are associated with target organ damage in age-related metabolic and vascular conditions.
Collapse
|
282
|
Hildenbrand K, Aschenbrenner I, Franke FC, Devergne O, Feige MJ. Biogenesis and engineering of interleukin 12 family cytokines. Trends Biochem Sci 2022; 47:936-949. [PMID: 35691784 DOI: 10.1016/j.tibs.2022.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Interleukin 12 (IL-12) family cytokines are secreted proteins that regulate immune responses. Each family member is a heterodimer and nature uses shared building blocks to assemble the functionally distinct IL-12 cytokines. In recent years we have gained insights into the molecular principles and cellular regulation of IL-12 family biogenesis. For each of the family members, generally one subunit depends on its partner to acquire its native structure and be secreted from immune cells. If unpaired, molecular chaperones retain these subunits in cells. This allows cells to regulate and control secretion of the highly potent IL-12 family cytokines. Molecular insights gained into IL-12 family biogenesis, structure, and function now allow us to engineer IL-12 family cytokines to develop novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Isabel Aschenbrenner
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Fabian C Franke
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), 75 013 Paris, France.
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
283
|
Im S, Kim H, Jeong M, Yang H, Hong JY. Integrative understanding of immune-metabolic interaction. BMB Rep 2022; 55:259-266. [PMID: 35651325 PMCID: PMC9252895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 02/21/2025] Open
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives. [BMB Reports 2022; 55(6): 259-266].
Collapse
Affiliation(s)
- Seonyoung Im
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hawon Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Myunghyun Jeong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Hyeon Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Young Hong
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
284
|
Pathogenesis of pneumonia and acute lung injury. Clin Sci (Lond) 2022; 136:747-769. [PMID: 35621124 DOI: 10.1042/cs20210879] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.
Collapse
|
285
|
Albers JJ, Pelka K. Listening in on Multicellular Communication in Human Tissue Immunology. Front Immunol 2022; 13:884185. [PMID: 35634333 PMCID: PMC9136009 DOI: 10.3389/fimmu.2022.884185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Immune responses in human tissues rely on the concerted action of different cell types. Inter-cellular communication shapes both the function of the multicellular interaction networks and the fate of the individual cells that comprise them. With the advent of new methods to profile and experimentally perturb primary human tissues, we are now in a position to systematically identify and mechanistically dissect these cell-cell interactions and their modulators. Here, we introduce the concept of multicellular hubs, functional modules of immune responses in tissues. We outline a roadmap to discover multicellular hubs in human tissues and discuss how emerging technologies may further accelerate progress in this field.
Collapse
Affiliation(s)
- Julian J. Albers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karin Pelka
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Gladstone-University of California San Francisco (UCSF) Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, United States
| |
Collapse
|
286
|
Fiocchi C, Iliopoulos D. Inflammatory Bowel Disease Therapy: Beyond the Immunome. Front Immunol 2022; 13:864762. [PMID: 35615360 PMCID: PMC9124778 DOI: 10.3389/fimmu.2022.864762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Claudio Fiocchi
- Department of Inflammation & Immunity, Lerner Research Institute Cleveland, Cleveland, OH, United States
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Claudio Fiocchi,
| | | |
Collapse
|
287
|
Kuang QX, Lei LR, Li QZ, Peng W, Wang YM, Dai YF, Wang D, Gu YC, Deng Y, Guo DL. Investigation of the Anti-Inflammatory Activity of Fusaproliferin Analogues Guided by Transcriptome Analysis. Front Pharmacol 2022; 13:881182. [PMID: 37124719 PMCID: PMC10136769 DOI: 10.3389/fphar.2022.881182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Excessive inflammation results in severe tissue damage as well as serious acute or chronic disorders, and extensive research has focused on finding new anti-inflammatory hit compounds with safety and efficacy profiles from natural products. As promising therapeutic entities for the treatment of inflammation-related diseases, fusaproliferin and its analogs have attracted great interest. However, the underlying anti-inflammatory mechanism is still poorly understood and deserves to be further investigated.Methods: For the estimation of the anti-inflammatory activity of fusaproliferin (1) and its analogs (2-4)in vitro and in vivo, lipopolysaccharide (LPS)-induced RAW264.7 macrophages and zebrafish embryos were employed. Then, transcriptome analysis was applied to guide subsequent western blot analysis of critical proteins in related signaling pathways. Surface plasmon resonance assays (SPR) combined with molecular docking analyses were finally applied to evaluate the affinity interactions between 1-4 and TLR4 and provide a possible interpretation of the downregulation of related signaling pathways.Results: 1-4 significantly attenuated the production of inflammatory messengers, including nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), as well as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in LPS-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the ability of compound 1 to reverse LPS stimulation and the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPKs) signaling pathways contribute to the anti-inflammatory process. Experimental verification at the protein level revealed that 1 can inhibit the activation of inhibitor of NF-κB kinase (IKK), degradation of inhibitor of NF-κB (IκB), and phosphorylation of NF-κB and reduce nuclear translocation of NF-κB. 1 also decreased the phosphorylation of MAPKs, including p38, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). SPR assays and molecular docking results indicated that 1-4 exhibited affinity for the TLR4 protein with KD values of 23.5–29.3 μM.Conclusion: Fusaproliferin and its analogs can be hit compounds for the treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Qi-Xuan Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Rong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Zhou Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wan Peng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Fei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Berkshire, United Kingdom
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yun Deng, ; Da-Le Guo,
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yun Deng, ; Da-Le Guo,
| |
Collapse
|
288
|
Organophosphorus Pesticides as Modulating Substances of Inflammation through the Cholinergic Pathway. Int J Mol Sci 2022; 23:ijms23094523. [PMID: 35562914 PMCID: PMC9104626 DOI: 10.3390/ijms23094523] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphorus pesticides (OPs) are widespread insecticides used for pest control in agricultural activities and the control of the vectors of human and animal diseases. However, OPs’ neurotoxic mechanism involves cholinergic components, which, beyond being involved in the transmission of neuronal signals, also influence the activity of cytokines and other pro-inflammatory molecules; thus, acute and chronic exposure to OPs may be related to the development of chronic degenerative pathologies and other inflammatory diseases. The present article reviews and discusses the experimental evidence linking inflammatory process with OP-induced cholinergic dysregulation, emphasizing the molecular mechanisms related to the role of cytokines and cellular alterations in humans and other animal models, and possible therapeutic targets to inhibit inflammation.
Collapse
|
289
|
Abstract
Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
290
|
Increased Indoleamine 2,3-Dioxygenase 1 (IDO-1) Activity and Inflammatory Responses during Chikungunya Virus Infection. Pathogens 2022; 11:pathogens11040444. [PMID: 35456119 PMCID: PMC9028473 DOI: 10.3390/pathogens11040444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) infection causes intense cytokine/chemokine inflammatory responses and debilitating joint pain. Indoleamine2,3–dioxygenase 1 (IDO-1) is an enzyme that initiates the tryptophan degradation that is important in initial host innate immune defense against infectious pathogens. Besides that, IDO-1 activation acts as a regulatory mechanism to prevent overactive host immune responses. In this study, we evaluated IDO-1 activity and cytokine/chemokine patterns in CHIKV patients. Higher IDO-1 (Kyn/Trp ratio) activation was observed during the early acute phase of CHIKV infection and declined in the chronic phase. Importantly, increased concentrations of Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interferon γ (IFN-γ), C-C motif chemokine ligand 2/Monocyte Chemoattractant Protein-1 (CCL2/MCP-1) and C-X-C motif chemokine ligand 10/Interferon Protein-10 (CXCL10/IP-10) were found in the acute phase of infection, while C-C motif chemokine ligand 4/Macrophage Inflammatory Protein 1 β (CCL4/MIP-1β) was found at increased concentrations in the chronic phase. Likewise, CHIKV patients with arthritis had significantly higher concentrations of CCL4/MIP-1β compared to patients without arthritis. Taken together, these data demonstrated increased IDO-1 activity, possibly exerting both antiviral effects and regulating exacerbated inflammatory responses. CCL4/MIP-1β may have an important role in the persistent inflammation and arthritic symptoms following chikungunya infection.
Collapse
|
291
|
Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 2022; 18:232-244. [PMID: 35075294 DOI: 10.1038/s41584-021-00741-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.
Collapse
|
292
|
Forrester JV, Mölzer C, Kuffova L. Immune Privilege Furnishes a Niche for Latent Infection. FRONTIERS IN OPHTHALMOLOGY 2022; 2:869046. [PMID: 38983514 PMCID: PMC11182092 DOI: 10.3389/fopht.2022.869046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 07/11/2024]
Abstract
The microenvironment of the CNS (eye and brain) is fertile ground for infection if the barriers are breached. The result of pathogen invasion is often devastating destruction of tissues. In the eye, inflammation is broadly classified either as "infectious" (i.e. caused by infection) or "non-infectious". However, increasingly, forms of intraocular inflammation (IOI), which clinically appear to be "non-infectious" turn out to be initiated by infectious agents, suggesting that pathogens have been retained in latent or persistent form within ocular tissues and have reactivated to cause overt disease. A similar pathogenesis applies to latent infections in the brain. Not all CNS tissues provide an equally protective niche while different pathogens escape detection using different strategies. This review summarises how immune privilege (IP) in the CNS may be permissive for latent infection and allow the eye and the brain to act as a reservoir of pathogens which often remain undetected for the lifetime of the host but in states of immune deficiency may be activated to cause sight- and life-threatening inflammation.
Collapse
Affiliation(s)
- John V Forrester
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christine Mölzer
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Ocular Immunology Group, Section of Infection and Immunity, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| |
Collapse
|
293
|
Dutta K, Friscic J, Hoffmann MH. Targeting the tissue-complosome for curbing inflammatory disease. Semin Immunol 2022; 60:101644. [PMID: 35902311 DOI: 10.1016/j.smim.2022.101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.
Collapse
Affiliation(s)
- Kuheli Dutta
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jasna Friscic
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus H Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
294
|
Wodzanowski KA, Caplan JL, Kloxin AM, Grimes CL. Multiscale Invasion Assay for Probing Macrophage Response to Gram-Negative Bacteria. Front Chem 2022; 10:842602. [PMID: 35242744 PMCID: PMC8886205 DOI: 10.3389/fchem.2022.842602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 01/21/2023] Open
Abstract
The immune system is a complex network of various cellular components that must differentiate between pathogenic bacteria and the commensal bacteria of the human microbiome, where misrecognition is linked to inflammatory disorders. Fragments of bacterial cell wall peptidoglycan bind to pattern recognition receptors within macrophages, leading to immune activation. To study this complex process, a methodology to remodel and label the bacterial cell wall of two different species of bacteria was established using copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) and strain-promoted azide-alkyne cycloaddition (SPAAC). Additionally, an approach for three-dimensional (3D) culture of human macrophages and their invasion with relevant bacteria in a well-defined hydrogel-based synthetic matrix inspired by the microenvironment of the gut was established. Workflows were developed for human monocyte encapsulation and differentiation into macrophages in 3D culture with high viability. Bacteria invaded into macrophages permitted in situ peptidoglycan labeling. Macrophages exhibited biologically-relevant cytokine release in response to bacteria. This molecularly engineered, multi-dimensional bacteria-macrophage co-culture system will prove useful in future studies to observe immunostimulatory, bacterial fragment production and localization in the cell at the carbohydrate level for insights into how the immune system properly senses bacteria.
Collapse
Affiliation(s)
| | - Jeffrey L. Caplan
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Bioimaging Center, Delaware Biotechnology Institute, Newark, DE, United States
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
295
|
Liver Progenitor Cells in Massive Hepatic Necrosis-How Can a Patient Survive Acute Liver Failure? Biomolecules 2022; 12:biom12010066. [PMID: 35053214 PMCID: PMC8773550 DOI: 10.3390/biom12010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022] Open
Abstract
Massive hepatic necrosis is the most severe lesion in acute liver failure, yet a portion of patients manage to survive and recover from this high-risk and harsh disease syndrome. The mechanisms underlying recovery remain largely unknown to date. Recent research progress highlights a key role of liver progenitor cells, the smallest biliary cells, in the maintenance of liver homeostasis and thus survival. These stem-like cells rapidly proliferate and take over crucial hepatocyte functions in a severely damaged liver. Hence, the new findings not only add to our understanding of the huge regenerative capability of the liver, but also provide potential new targets for the pharmacological management of acute liver failure in clinical practice.
Collapse
|
296
|
Sirven P, Faucheux L, Grandclaudon M, Michea P, Vincent-Salomon A, Mechta-Grigoriou F, Scholer-Dahirel A, Guillot-Delost M, Soumelis V. Definition of a novel breast tumor-specific classifier based on secretome analysis. Breast Cancer Res 2022; 24:94. [PMID: 36539890 PMCID: PMC9764559 DOI: 10.1186/s13058-022-01590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND During cancer development, the normal tissue microenvironment is shaped by tumorigenic events. Inflammatory mediators and immune cells play a key role during this process. However, which molecular features most specifically characterize the malignant tissue remains poorly explored. METHODS Within our institutional tumor microenvironment global analysis (T-MEGA) program, we set a prospective cohort of 422 untreated breast cancer patients. We established a dedicated pipeline to generate supernatants from tumor and juxta-tumor tissue explants and quantify 55 soluble molecules using Luminex or MSD. Those analytes belonged to five molecular families: chemokines, cytokines, growth factors, metalloproteinases, and adipokines. RESULTS When looking at tissue specificity, our dataset revealed some breast tumor-specific characteristics, as IL-16, as well as some juxta-tumor-specific secreted molecules, as IL-33. Unsupervised clustering analysis identified groups of molecules that were specific to the breast tumor tissue and displayed a similar secretion behavior. We identified a tumor-specific cluster composed of nine molecules that were secreted fourteen times more in the tumor supernatants than the corresponding juxta-tumor supernatants. This cluster contained, among others, CCL17, CCL22, and CXCL9 and TGF-β1, 2, and 3. The systematic comparison of tumor and juxta-tumor secretome data allowed us to mathematically formalize a novel breast cancer signature composed of 14 molecules that segregated tumors from juxta-tumors, with a sensitivity of 96.8% and a specificity of 96%. CONCLUSIONS Our study provides the first breast tumor-specific classifier computed on breast tissue-derived secretome data. Moreover, our T-MEGA cohort dataset is a freely accessible resource to the biomedical community to help advancing scientific knowledge on breast cancer.
Collapse
Affiliation(s)
- Philémon Sirven
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Lilith Faucheux
- INSERM U976, Université de Paris, IRSLHôpital Saint Louis, 75006 Paris, France ,INSERM UMR1153, Université de Paris, ECSTRRA Team, 75006 Paris, France
| | - Maximilien Grandclaudon
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Paula Michea
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Anne Vincent-Salomon
- grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,grid.418596.70000 0004 0639 6384Diagnostic and Theranostic Medicine Division, Institut Curie, Paris, France
| | - Fatima Mechta-Grigoriou
- grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,grid.418596.70000 0004 0639 6384Centre de Recherche, Stress and Cancer Laboratory, U830 Genetics and Biology of Cancers, INSERM, Institut Curie, Paris, France
| | - Alix Scholer-Dahirel
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Maude Guillot-Delost
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France
| | - Vassili Soumelis
- grid.418596.70000 0004 0639 6384INSERM Unit U932, Immunity and Cancer, Institut Curie, Paris, France ,grid.440907.e0000 0004 1784 3645Paris Sciences Lettres (PSL) University, Paris, France ,Center of Clinical Investigation, CIC IGR-Curie 1428, Paris, France ,INSERM U976, Université de Paris, IRSLHôpital Saint Louis, 75006 Paris, France ,grid.413328.f0000 0001 2300 6614Department of Immunology-Histocompatibility, AP-HP, Hôpital Saint-Louis, 75010 Paris, France
| |
Collapse
|
297
|
Colditz IG. Competence to thrive: resilience as an indicator of positive health and positive welfare in animals. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an22061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
298
|
Salvador AFM, Kipnis J. Immune response after central nervous system injury. Semin Immunol 2022; 59:101629. [PMID: 35753867 DOI: 10.1016/j.smim.2022.101629] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Abstract
Traumatic injuries of the central nervous system (CNS) affect millions of people worldwide, and they can lead to severely damaging consequences such as permanent disability and paralysis. Multiple factors can obstruct recovery after CNS injury. One of the most significant is the progressive neuronal death that follows the initial mechanical impact, leading to the loss of undamaged cells via a process termed secondary neurodegeneration. Efforts to define treatments that limit the spread of damage, while important, have been largely ineffectual owing to gaps in the mechanistic understanding that underlies the persisting neuronal cell death. Inflammation, with its influx of immune cells that occurs shortly after injury, has been associated with secondary neurodegeneration. However, the role of the immune system after CNS injury is far more complex. Studies have indicated that the immune response after CNS injury is detrimental, owing to immune cell-produced factors (e.g., pro-inflammatory cytokines, free radicals, neurotoxic glutamate) that worsen tissue damage. Our lab and others have also demonstrated the beneficial immune response that occurs after CNS injury, with the release of growth factors such as brain-derived growth factor (BDNF) and interleukin (IL-10) and the clearance of apoptotic and myelin debris by immune cells1-4. In this review, we first discuss the multifaceted roles of the immune system after CNS injury. We then speculate on how advancements in single-cell RNA technologies can dramatically change our understanding of the immune response, how the spinal cord meninges serve as an important site for hosting immunological processes critical for recovery, and how the origin of peripherally recruited immune cells impacts their function in the injured CNS.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| | - Jonathan Kipnis
- Department of Pathology & Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
299
|
Cantuti-Castelvetri L, Gokce O, Simons M. Reparative inflammation in multiple sclerosis. Semin Immunol 2022; 59:101630. [PMID: 35750551 DOI: 10.1016/j.smim.2022.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
300
|
Markovics A, Rosenthal KS, Mikecz K, Carambula RE, Ciemielewski JC, Zimmerman DH. Restoring the Balance between Pro-Inflammatory and Anti-Inflammatory Cytokines in the Treatment of Rheumatoid Arthritis: New Insights from Animal Models. Biomedicines 2021; 10:44. [PMID: 35052724 PMCID: PMC8772713 DOI: 10.3390/biomedicines10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) and other autoimmune inflammatory diseases are examples of imbalances within the immune system (disrupted homeostasis) that arise from the effects of an accumulation of environmental and habitual insults over a lifetime, combined with genetic predispositions. This review compares current immunotherapies-(1) disease-modifying anti-rheumatic drugs (DMARDs) and (2) Janus kinase (JAK) inhibitors (jakinibs)-to a newer approach-(3) therapeutic vaccines (using the LEAPS vaccine approach). The Ligand Epitope Antigen Presentation System (LEAPS) therapies are capable of inhibiting ongoing disease progression in animal models. Whereas DMARDs ablate or inhibit specific proinflammatory cytokines or cells and jakinibs inhibit the receptor activation cascade for expression of proinflammatory cytokines, the LEAPS therapeutic vaccines specifically modulate the ongoing antigen-specific, disease-driving, proinflammatory T memory cell responses. This decreases disease presentation and changes the cytokine conversation to decrease the expression of inflammatory cytokines (IL-17, IL-1(α or β), IL-6, IFN-γ, TNF-α) while increasing the expression of regulatory cytokines (IL-4, IL-10, TGF-β). This review refocuses the purpose of therapy for RA towards rebalancing the immune system rather than compromising specific components to stop disease. This review is intended to be thought provoking and look forward towards new therapeutic modalities rather than present a final definitive report.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | - Ken S. Rosenthal
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA;
- Department of Integrative Medical Sciences, NE Ohio Medical University, Rootstown, OH 44272, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | | | | | | |
Collapse
|