251
|
Jöst M, Esfeld K, Burian A, Cannarozzi G, Chanyalew S, Kuhlemeier C, Assefa K, Tadele Z. Semi-dwarfism and lodging tolerance in tef (Eragrostis tef) is linked to a mutation in the α-Tubulin 1 gene. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:933-944. [PMID: 25399019 PMCID: PMC4321551 DOI: 10.1093/jxb/eru452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.
Collapse
Affiliation(s)
- Moritz Jöst
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Agata Burian
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Solomon Chanyalew
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Kebebew Assefa
- Ethiopian Institute of Agricultural Research, Debre Zeit Agricultural Research Center, PO Box 32, Debre Zeit, Ethiopia
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| |
Collapse
|
252
|
Ku L, Zhang L, Tian Z, Guo S, Su H, Ren Z, Wang Z, Li G, Wang X, Zhu Y, Zhou J, Chen Y. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.). Mol Genet Genomics 2015; 290:1223-33. [DOI: 10.1007/s00438-014-0987-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022]
|
253
|
Arisha MH, Shah SNM, Gong ZH, Jing H, Li C, Zhang HX. Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:399. [PMID: 26089827 PMCID: PMC4454883 DOI: 10.3389/fpls.2015.00399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/18/2015] [Indexed: 05/10/2023]
Abstract
This study was conducted to enhance genetic variability in peppers (Capsicum annuum, cv B12) using ethyl methanesulphonate (EMS). Exposure to an EMS concentration of 0.6%, v/v for 12 h was used to mutagenize 2000 seeds for the first generation (M1). It was observed that the growth behaviors including plant height, flowering date, and number of seeds per first fruit were different in the M1 generation than in wild type (WT) plants. In addition one phenotypic mutation (leaf shape and plant architecture) was observed during the M1 generation. During the seedling stage in the M2 generation, the observed changes were in the form of slow growth or chlorophyll defect (e.g., albino, pale green, and yellow seedlings). At maturity, there were three kinds of phenotypic mutations observed in three different families of the mutant population. The first observed change was a plant with yellow leaf color, and the leaves of this mutant plant contained 62.19% less chlorophyll a and 64.06% less chlorophyll b as compared to the wild-type. The second mutation resulted in one dwarf plant with a very short stature (6 cm), compact internodes and the leaves and stem were rough and thick. The third type of mutation occurred in four plants and resulted in the leaves of these plants being very thick and longer than those of WT plants. Furthermore, anatomical observations of the leaf blade section of this mutant plant type contained more xylem and collenchyma tissue in the leaf midrib of the mutant plant than WT. In addition, its leaf blade contained thicker palisade and spongy tissue than the WT.
Collapse
Affiliation(s)
- Mohamed H. Arisha
- College of Horticulture, Northwest A&F University, YanglingChina
- State Key Laboratories for Stress Biology of Arid Region Crop, Northwest A&F University, YanglingChina
- Department of Horticulture, Faculty of Agriculture, Zagazig University, ZagazigEgypt
| | - Syed N. M. Shah
- College of Horticulture, Northwest A&F University, YanglingChina
- State Key Laboratories for Stress Biology of Arid Region Crop, Northwest A&F University, YanglingChina
- Department of Horticulture, Faculty of Agriculture, Gomal University, Dera Ismail KhanPakistan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, YanglingChina
- State Key Laboratories for Stress Biology of Arid Region Crop, Northwest A&F University, YanglingChina
- *Correspondence: Zhen-Hui Gong, College of Horticulture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi Province 712100, China
| | - Hua Jing
- College of Horticulture, Northwest A&F University, YanglingChina
| | - Chao Li
- College of Horticulture, Northwest A&F University, YanglingChina
| | - Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, YanglingChina
| |
Collapse
|
254
|
Wu Q, Li D, Li D, Liu X, Zhao X, Li X, Li S, Zhu L. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2015; 6:833. [PMID: 26500670 PMCID: PMC4597119 DOI: 10.3389/fpls.2015.00833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/23/2015] [Indexed: 05/05/2023]
Abstract
Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding.
Collapse
Affiliation(s)
- Qi Wu
- Rice Research Institute, Sichuan Agricultural UniversityChengdu, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Shigui Li, Rice Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Lihuang Zhu, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
255
|
Genetic dissection of internode length above the uppermost ear in four RIL populations of maize (Zea mays L.). G3-GENES GENOMES GENETICS 2014; 5:281-9. [PMID: 25538101 PMCID: PMC4321036 DOI: 10.1534/g3.114.016378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The internode length above the uppermost ear (ILAU) is an important influencing factor for canopy architecture in maize. Analyzing the genetic characteristics of internode length is critical for improving plant population structure and increasing photosynthetic efficiency. However, the genetic control of ILAU has not been determined. In this study, quantitative trait loci (QTL) for internode length at five positions above the uppermost ear were identified using four sets of recombinant inbred line (RIL) populations in three environments. Genetic maps and initial QTL were integrated using meta-analyses across the four populations. Seventy QTL were identified: 16 in population 1; 14 in population 2; 25 in population 3; and 15 in population 4. Individual effects ranged from 5.36% to 26.85% of phenotypic variation, with 27 QTL >10%. In addition, the following common QTL were identified across two populations: one common QTL for the internode length of all five positions; one common QTL for the internode length of three positions; and one common QTL for the internode length of one position. In addition, four common QTL for the internode length of four positions were identified in one population. The results indicated that the ILAU at different positions above the uppermost ear could be affected by one or several of the same QTL. The traits may also be regulated by many different QTL. Of the 70 initial QTL, 46 were integrated in 14 meta-QTL (mQTLs) by meta-analysis, and 17 of the 27 initial QTL with R2 >10% were integrated in 7 mQTLs. Four of the key mQTLs (mQTL2-2, mQTL3-2, mQTL5-1, mQTL5-2, and mQTL9) in which the initial QTL displayed R2 >10% included four to 11 initial QTL for an internode length of four to five positions from one or two populations. These results may provide useful information for marker-assisted selection to improve canopy architecture.
Collapse
|
256
|
Singh J, Pandey P, James D, Chandrasekhar K, Achary VMM, Kaul T, Tripathy BC, Reddy MK. Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1217-30. [PMID: 25196090 DOI: 10.1111/pbi.12246] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/14/2014] [Accepted: 07/20/2014] [Indexed: 05/05/2023]
Abstract
Despite the declarations and collective measures taken to eradicate hunger at World Food Summits, food security remains one of the biggest issues that we are faced with. The current scenario could worsen due to the alarming increase in world population, further compounded by adverse climatic conditions, such as increase in atmospheric temperature, unforeseen droughts and decreasing soil moisture, which will decrease crop yield even further. Furthermore, the projected increase in yields of C3 crops as a result of increasing atmospheric CO2 concentrations is much less than anticipated. Thus, there is an urgent need to increase crop productivity beyond existing yield potentials to address the challenge of food security. One of the domains of plant biology that promises hope in overcoming this problem is study of C3 photosynthesis. In this review, we have examined the potential bottlenecks of C3 photosynthesis and the strategies undertaken to overcome them. The targets considered for possible intervention include RuBisCO, RuBisCO activase, Calvin-Benson-Bassham cycle enzymes, CO2 and carbohydrate transport, and light reactions among many others. In addition, other areas which promise scope for improvement of C3 photosynthesis, such as mining natural genetic variations, mathematical modelling for identifying new targets, installing efficient carbon fixation and carbon concentrating mechanisms have been touched upon. Briefly, this review intends to shed light on the recent advances in enhancing C3 photosynthesis for crop improvement.
Collapse
Affiliation(s)
- Jitender Singh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Patrick JW, Colyvas K. Crop yield components - photoassimilate supply- or utilisation limited-organ development? FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:893-913. [PMID: 32481043 DOI: 10.1071/fp14048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/18/2014] [Indexed: 06/11/2023]
Abstract
Yield potential is the genome-encoded capacity of a crop species to generate yield in an optimal growth environment. Ninety per cent of plant biomass is derived from the photosynthetic reduction of carbon dioxide to organic carbon (photoassimilates - primarily sucrose). Thus, development of yield components (organ numbers and individual organ masses) can be limited by photoassimilate supply (photosynthesis arranged in series with phloem transport) or by their inherent capacity to utilise imported photoassimilates for growth or storage. To this end, photoassimilate supply/utilisation of crop yield has been quantitatively re-evaluated using published responses of yield components to elevated carbon dioxide concentrations across a selection of key crop species including cereal and pulse grains, fleshy fruits, tubers and sugar storing stems and tap roots. The analysis demonstrates that development of harvested organ numbers is strongly limited by photoassimilate supply. Vegetative branching and, to a lesser extent, flower/pod/fleshy fruit abortion, are the major yield components contributing to sensitivity of organ numbers to photoassimilate supply. In contrast, harvested organ size is partially dependent (eudicots), or completely independent (cereals), of photoassimilate supply. Processes limiting photoassimilate utilisation by harvested organs include membrane transport of soluble sugars and their allocation into polymeric storage products.
Collapse
Affiliation(s)
- John W Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
258
|
DASUMIATI, MIFTAHUDIN, TRIADIATI, HARTANA ALEX, PRONOWO DIBYO. Increasing Hermaphrodite Flowers using Plant Growth Regulators in Andromonoecious Jatropha curcas. HAYATI JOURNAL OF BIOSCIENCES 2014. [DOI: 10.4308/hjb.21.3.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
259
|
Abstract
Grain size is one of the most important factors determining rice yield. As a quantitative trait, grain size is predominantly and tightly controlled by genetic factors. Several quantitative trait loci (QTLs) for grain size have been molecularly identified and characterized. These QTLs may act in independent genetic pathways and, along with other identified genes for grain size, are mainly involved in the signaling pathways mediated by proteasomal degradation, phytohormones, and G proteins to regulate cell proliferation and cell elongation. Many of these QTLs and genes have been strongly selected for enhanced rice productivity during domestication and breeding. These findings have paved new ways for understanding the molecular basis of grain size and have substantial implications for genetic improvement of crops.
Collapse
Affiliation(s)
- Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
| | | |
Collapse
|
260
|
Zuo J, Li J. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Natl Sci Rev 2014. [DOI: 10.1093/nsr/nwt004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Rice is a staple food for more than half of the worldwide population and is also a model species for biological studies on monocotyledons. Through a team effort, Chinese scientists have made rapid and important progresses in rice biology in recent years. Here, we briefly review these advances, emphasizing on the regulatory mechanisms of the complex agronomic traits that affect rice yield and grain quality. Progresses in rice genome biology and genome evolution have also been summarized.
Collapse
Affiliation(s)
- Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
261
|
Janssen PJD, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G. Photosynthesis at the forefront of a sustainable life. Front Chem 2014; 2:36. [PMID: 24971306 PMCID: PMC4054791 DOI: 10.3389/fchem.2014.00036] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/25/2014] [Indexed: 11/13/2022] Open
Abstract
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
Collapse
Affiliation(s)
- Paul J. D. Janssen
- Molecular and Cellular Biology - Unit of Microbiology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre SCK•CENMol, Belgium
| | - Maya D. Lambreva
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Nicolas Plumeré
- Center for Electrochemical Sciences-CES, Ruhr-Universität BochumBochum, Germany
| | - Cecilia Bartolucci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Amina Antonacci
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Katia Buonasera
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| | - Raoul N. Frese
- Division of Physics and Astronomy, Department of Biophysics, VU University AmsterdamAmsterdam, Netherlands
| | | | - Giuseppina Rea
- Institute of Crystallography, National Research Council of ItalyRome, Italy
| |
Collapse
|
262
|
Yang Y, Shi C, Zhou Y, Wu J, Jin X, Shou J. Morphological characteristics and gene mapping of a dense panicle (dp2) mutant in rice (Oryza sativa L.). Genes Genomics 2014. [DOI: 10.1007/s13258-013-0169-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
263
|
Abstract
The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6−9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions.
Collapse
|
264
|
Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:6840-5. [PMID: 24753595 DOI: 10.1073/pnas.1318532111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In angiosperms, after the floral transition, the inflorescence meristem produces floral meristems (FMs). Determinate growth of FMs produces flowers of a particular size and form. This determinate growth requires specification of floral organs and termination of stem-cell divisions. Establishment of the FM and specification of outer whorl organs (sepals and petals) requires the floral homeotic gene APETALA1 (AP1). To determine FM identity, AP1 also prevents the formation of flowers in the axils of sepals. The mechanisms underlying AP1 function in the floral transition and in floral organ patterning have been studied extensively, but how AP1 terminates sepal axil stem-cell activities to suppress axillary secondary flower formation remains unclear. Here we show that AP1 regulates cytokinin levels by directly suppressing the cytokinin biosynthetic gene LONELY GUY1 and activating the cytokinin degradation gene CYTOKININ OXIDASE/DEHYDROGENASE3. Restoring the expression of these genes to wild-type levels in AP1-expressing cells or suppressing cytokinin signaling inhibits indeterminate inflorescence meristem activity caused by ap1 mutation. We conclude that suppression of cytokinin biosynthesis and activation of cytokinin degradation mediates AP1 function in establishing determinate FM. A deeper understanding of axil-lateral meristem activity provides crucial information for enhancing yield by engineering crops that produce more elaborated racemes.
Collapse
|
265
|
Chen F, Jiang L, Zheng J, Huang R, Wang H, Hong Z, Huang Y. Identification of differentially expressed proteins and phosphorylated proteins in rice seedlings in response to strigolactone treatment. PLoS One 2014; 9:e93947. [PMID: 24699514 PMCID: PMC3974870 DOI: 10.1371/journal.pone.0093947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/11/2014] [Indexed: 11/30/2022] Open
Abstract
Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.
Collapse
Affiliation(s)
- Fangyu Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Zonglie Hong
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
- * E-mail: (ZH); (YH)
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- * E-mail: (ZH); (YH)
| |
Collapse
|
266
|
Wang W, Li G, Zhao J, Chu H, Lin W, Zhang D, Wang Z, Liang W. Dwarf Tiller1, a Wuschel-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet 2014; 10:e1004154. [PMID: 24625559 PMCID: PMC3952828 DOI: 10.1371/journal.pgen.1004154] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Unlike many wild grasses, domesticated rice cultivars have uniform culm height and panicle size among tillers and the main shoot, which is an important trait for grain yield. However, the genetic basis of this trait remains unknown. Here, we report that DWARF TILLER1 (DWT1) controls the developmental uniformity of the main shoot and tillers in rice (Oryza sativa). Most dwt1 mutant plants develop main shoots with normal height and larger panicles, but dwarf tillers bearing smaller panicles compared with those of the wild type. In addition, dwt1 tillers have shorter internodes with fewer and un-elongated cells compared with the wild type, indicating that DWT1 affects cell division and cell elongation. Map-based cloning revealed that DWT1 encodes a WUSCHEL-related homeobox (WOX) transcription factor homologous to the Arabidopsis WOX8 and WOX9. The DWT1 gene is highly expressed in young panicles, but undetectable in the internodes, suggesting that DWT1 expression is spatially or temporally separated from its effect on the internode growth. Transcriptomic analysis revealed altered expression of genes involved in cell division and cell elongation, cytokinin/gibberellin homeostasis and signaling in dwt1 shorter internodes. Moreover, the non-elongating internodes of dwt1 are insensitive to exogenous gibberellin (GA) treatment, and some of the slender rice1 (slr1) dwt1 double mutant exhibits defective internodes similar to the dwt1 single mutant, suggesting that the DWT1 activity in the internode elongation is directly or indirectly associated with GA signaling. This study reveals a genetic pathway synchronizing the development of tillers and the main shoot, and a new function of WOX genes in balancing branch growth in rice. Plant architecture is important for crop yield. In most plants, branches grow smaller than the main shoot, largely due to the ‘apical dominance’. However, in several cereal crops, including rice, wheat, and barley, the branches (tillers) have a height and size indistinguishable from the main shoot. The genetic basis of uniform tiller growth has remained elusive. We identified DWARF TILLER1, a WUSCHEL-related homeobox (WOX) transcription factor, as a positive regulator of tiller growth. Most dwt1 mutant plants show normal main shoot but dwarf tillers and reduced panicle size. Tiller growth in dwt1 appears to be inhibited by the main shoot, as removal of the main shoot releases the first tiller. The non-elongating internodes in dwt1 show reduced cell number and cell size, while DWT1 was mainly expressed in the panicles but not internodes, suggesting that DWT1 plays a long distance regulatory role in promoting internode elongation. Genome-wide expression analysis revealed that the expression of genes related to cell division and elongation, as well as to homeostasis and signaling of cytokinin and gibberellin were affected in dwt1 un-elongated internodes. This study reveals that a WOX transcription factor controls the growth uniformity of tillers and the main shoot in rice.
Collapse
Affiliation(s)
- Wenfei Wang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Huangwei Chu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
267
|
Abstract
Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formidable challenge. To address this challenge, we measured the plant height, ear height, flowering time, and node counts of plants grown in >64,500 plots across 13 environments. These plots contained >7300 inbreds representing most publically available maize inbreds in the United States and families of the maize Nested Association Mapping (NAM) panel. Joint-linkage mapping of quantitative trait loci (QTL), fine mapping in near isogenic lines (NILs), genome-wide association studies (GWAS), and genomic best linear unbiased prediction (GBLUP) were performed. The heritability of maize height was estimated to be >90%. Mapping NAM family-nested QTL revealed the largest explained 2.1 ± 0.9% of height variation. The effects of two tropical alleles at this QTL were independently validated by fine mapping in NIL families. Several significant associations found by GWAS colocalized with established height loci, including brassinosteroid-deficient dwarf1, dwarf plant1, and semi-dwarf2. GBLUP explained >80% of height variation in the panels and outperformed bootstrap aggregation of family-nested QTL models in evaluations of prediction accuracy. These results revealed maize height was under strong genetic control and had a highly polygenic genetic architecture. They also showed that multiple models of genetic architecture differing in polygenicity and effect sizes can plausibly explain a population’s variation in maize height, but they may vary in predictive efficacy.
Collapse
|
268
|
Li R, Li J, Li S, Qin G, Novák O, Pěnčík A, Ljung K, Aoyama T, Liu J, Murphy A, Gu H, Tsuge T, Qu LJ. ADP1 affects plant architecture by regulating local auxin biosynthesis. PLoS Genet 2014; 10:e1003954. [PMID: 24391508 PMCID: PMC3879159 DOI: 10.1371/journal.pgen.1003954] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/26/2013] [Indexed: 01/30/2023] Open
Abstract
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. Plant architecture is one of the key factors that affect plant survival and productivity. It is well established that the plant hormone auxin plays an essential role in organ initiation and pattern formation, thus affecting plant architecture. We found that a putative MATE (multidrug and toxic compound extrusion) transporter, ADP1, which was expressed in the meristematic regions, through regulating the level of auxin biosynthesis, controls lateral organ outgrowth so as to maintain normal architecture in Arabidopsis. The more ADP1 was expressed, the less levels of local auxin were detected in the meristematic regions of the plant, resulting in increased growth rate and a greater number of axillary branches and flowers. The reduction of auxin levels is probably due to decreased level of auxin biosynthesis in the local meristematic regions. Down-regulated expression of ADP1 and its three closely related genes caused plants to grow slower and to produce less lateral organs. Our results indicated that ADP1-mediated regulation of the local auxin levels in meristematic regions is an essential determinant for plant architecture by restraining the outgrowth of lateral organs.
Collapse
Affiliation(s)
- Ruixi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jieru Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shibai Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 21, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Angus Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
- * E-mail: (TT); (LJQ)
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
- * E-mail: (TT); (LJQ)
| |
Collapse
|
269
|
Li R, Xia J, Xu Y, Zhao X, Liu YG, Chen Y. Characterization and genetic mapping of a Photoperiod-sensitive dwarf 1 locus in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:241-50. [PMID: 24158250 DOI: 10.1007/s00122-013-2213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/04/2013] [Indexed: 05/03/2023]
Abstract
Plant height is an important agronomic trait for crop architecture and yield. Most known factors determining plant height function in gibberellin or brassinosteroid biosynthesis or signal transduction. Here, we report a japonica rice (Oryza sativa ssp. japonica) dominant dwarf mutant, Photoperiod-sensitive dwarf 1 (Psd1). The Psd1 mutant showed impaired cell division and elongation, and a severe dwarf phenotype under long-day conditions, but nearly normal growth in short-day. The plant height of Psd1 mutant could not be rescued by gibberellin or brassinosteroid treatment. Genetic analysis with R1 and F2 populations determined that Psd1 phenotype was controlled by a single dominant locus. Linkage analysis with 101 tall F2 plants grown in a long-day season, which were derived from a cross between Psd1 and an indica cultivar, located Psd1 locus on chromosome 1. Further fine-mapping with 1017 tall F2 plants determined this locus on an 11.5-kb region. Sequencing analysis of this region detected a mutation site in a gene encoding a putative lipid transfer protein; the mutation produces a truncated C-terminus of the protein. This study establishes the genetic foundation for understanding the molecular mechanisms regulating plant cell division and elongation mediated by interaction between genetic and environmental factors.
Collapse
Affiliation(s)
- Riqing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | | | | | |
Collapse
|
270
|
Liang WH, Shang F, Lin QT, Lou C, Zhang J. Tillering and panicle branching genes in rice. Gene 2013; 537:1-5. [PMID: 24345551 DOI: 10.1016/j.gene.2013.11.058] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 11/08/2013] [Accepted: 11/27/2013] [Indexed: 11/19/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks.
Collapse
Affiliation(s)
- Wei-hong Liang
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China; Key Laboratory for Microorganisms and Functional Molecules, University of Henan Province, Xinxiang, Henan 453007, PR China.
| | - Fei Shang
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| | - Qun-ting Lin
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| | - Chen Lou
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| | - Jing Zhang
- College of Life Science, Henan Normal University, Jianshe Rd., Xinxiang, Henan 453007, PR China
| |
Collapse
|
271
|
DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 2013; 504:401-5. [PMID: 24336200 DOI: 10.1038/nature12870] [Citation(s) in RCA: 562] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/06/2013] [Indexed: 01/05/2023]
Abstract
Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCF(D3) ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCF(D3) ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.
Collapse
|
272
|
Bernier G. My favourite flowering image: the role of cytokinin as a flowering signal. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5795-9. [PMID: 21586428 DOI: 10.1093/jxb/err114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
My favourite flowering image shows a section in a shoot apical meristem of Sinapis alba undertaking the very first step of its transition to flowering. This step is the activation of the SaSOC1 gene, the Sinapis orthologue of Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), in a few central cells of the meristem. Hidden behind this picture is my long quest of physiological signals controlling flowering. Milestones of this story are briefly recounted here and this gives me an opportunity to raise a number of questions about the nature and function of florigen.
Collapse
Affiliation(s)
- Georges Bernier
- Laboratory of Plant Physiology, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
273
|
Claßen-Bockhoff R, Bull-Hereñu K. Towards an ontogenetic understanding of inflorescence diversity. ANNALS OF BOTANY 2013; 112:1523-42. [PMID: 23445936 PMCID: PMC3828942 DOI: 10.1093/aob/mct009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/12/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS AND AIMS Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. METHODS Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. KEY RESULTS Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. 'flowering shoot systems' (FSS), 'inflorescences' sensu stricto and 'floral units' (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While 'inflorescence meristems' (IMs) share acropetal primordia production with vegetative meristems, 'floral unit meristems' (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. CONCLUSIONS The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear terms and allows homology statements. Transitional forms are an explicit part of the concept, illustrating the ontogenetic potential for character transformation in evolution.
Collapse
Affiliation(s)
- Regine Claßen-Bockhoff
- Institut für Spezielle Botanik und Botanischer Garten, Johannes-Gutenberg Universität Mainz, Germany
- For correspondence. E-mail
| | - Kester Bull-Hereñu
- Escuela de Pedagogica en Biología y Ciencias, Universidad Central de Chile, Santiago de Chile, Chile
- Departamento de Ecologia Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| |
Collapse
|
274
|
Huang X, Ding J, Effgen S, Turck F, Koornneef M. Multiple loci and genetic interactions involving flowering time genes regulate stem branching among natural variants of Arabidopsis. THE NEW PHYTOLOGIST 2013; 199:843-57. [PMID: 23668187 DOI: 10.1111/nph.12306] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/04/2013] [Indexed: 05/02/2023]
Abstract
Shoot branching is a major determinant of plant architecture. Genetic variants for reduced stem branching in the axils of cauline leaves of Arabidopsis were found in some natural accessions and also at low frequency in the progeny of multiparent crosses. Detailed genetic analysis using segregating populations derived from backcrosses with the parental lines and bulked segregant analysis was used to identify the allelic variation controlling reduced stem branching. Eight quantitative trait loci (QTLs) contributing to natural variation for reduced stem branching were identified (REDUCED STEM BRANCHING 1-8 (RSB1-8)). Genetic analysis showed that RSB6 and RSB7, corresponding to flowering time genes FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), epistatically regulate stem branching. Furthermore, FLOWERING LOCUS T (FT), which corresponds to RSB8 as demonstrated by fine-mapping, transgenic complementation and expression analysis, caused pleiotropic effects not only on flowering time, but, in the specific background of active FRI and FLC alleles, also on the RSB trait. The consequence of allelic variation only expressed in late-flowering genotypes revealed novel and thus far unsuspected roles of several genes well characterized for their roles in flowering time control.
Collapse
Affiliation(s)
- Xueqing Huang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
275
|
Petersen R, Krost C. Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica). PLANTA 2013; 238:1-22. [PMID: 23695821 DOI: 10.1007/s00425-013-1898-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/10/2013] [Indexed: 05/23/2023]
Abstract
Plant architecture is regulated by a complex interplay of some key players (often transcription factors), phytohormones and other signaling molecules such as microRNAs. The columnar growth habit of apple trees is a unique form of plant architecture characterized by thick and upright stems showing a compaction of internodes and carrying short fruit spurs instead of lateral branches. The molecular basis for columnar growth is a single dominant allele of the gene Columnar, whose identity, function and gene product are unknown. As a result of marker analyses, this gene has recently been fine-mapped to chromosome 10 at 18.51-19.09 Mb [according to the annotation of the apple genome by Velasco (2010)], a region containing a cluster of quantitative trait loci associated with plant architecture, but no homologs to the well-known key regulators of plant architecture. Columnar apple trees have a higher auxin/cytokinin ratio and lower levels of gibberellins and abscisic acid than normal apple trees. Transcriptome analyses corroborate these results and additionally show differences in cell membrane and cell wall function. It can be expected that within the next year or two, an integration of these different research methodologies will reveal the identity of the Columnar gene. Besides enabling breeders to efficiently create new apple (and maybe related pear, peach, cherry, etc.) cultivars which combine desirable characteristics of commercial cultivars with the advantageous columnar growth habit using gene technology, this will also provide new insights into an elevated level of plant growth regulation.
Collapse
Affiliation(s)
- Romina Petersen
- Department of Molecular Genetics, Johannes Gutenberg-University of Mainz, Johann-Joachim-Becher-Weg 32, 55128 Mainz, Germany.
| | | |
Collapse
|
276
|
Kato H, Takemoto D, Kawakita K. Proteomic analysis of S-nitrosylated proteins in potato plant. PHYSIOLOGIA PLANTARUM 2013; 148:371-86. [PMID: 22924747 DOI: 10.1111/j.1399-3054.2012.01684.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO) has various functions in physiological responses in plants, such as development, hormone signaling and defense. The mechanism of how NO regulates physiological responses has not been well understood. Protein S-nitrosylation, a redox-related modification of cysteine thiol by NO, is known to be one of the important post-translational modifications to regulate activity and interactions of proteins. To elucidate NO function in plants, proteomic analysis of S-nitrosylated proteins in potato (Solanum tuberosum) was performed. Detection and functional analysis of internal S-nitrosylated proteins is technically demanding because of the instability and reversibility of the protein S-nitrosylation. By using a modified biotin switch assay optimized for potato tissues, and nano liquid chromatography combined with mass spectrometry, approximately 80 S-nitrosylated candidate proteins were identified in S-nitrosoglutathione-treated potato leaves and tuber extracts. Identified proteins included redox-related enzymes, defense-related proteins and metabolic enzymes. Some of identified proteins were synthesized in Escherichia coli, and S-nitrosylation of recombinant proteins was confirmed in vitro. Dehydroascorbate reductase 1 (DHAR1, EC 1.8.5.1), one of the identified S-nitrosylated target proteins, showed glutathione-dependent dehydroascorbate-reducing activity. Either point mutation in a target cysteine of S-nitrosylation or treatment with an NO donor, S-nitroso-L-cysteine, significantly reduced the activity of DHAR1, indicating that DHAR1 is negatively regulated by S-nitrosylation of the cysteine residue essential for the enzymatic activity. These results show that the modified method developed in this study can be used to identify proteins regulated by S-nitrosylation in potato tissues.
Collapse
Affiliation(s)
- Hiroaki Kato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
277
|
Song Y, Xu ZF. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to Auxin. Int J Mol Sci 2013; 14:13645-56. [PMID: 23812082 PMCID: PMC3742208 DOI: 10.3390/ijms140713645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
Auxin has pleiotropic effects on plant growth and development. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are short-lived transcriptional regulators that mediate auxin responses through interaction with an auxin receptor, the F-box protein transport inhibitor response 1 (TIR1). Most functions of Aux/IAA proteins have been identified in Arabidopsis by studying the gain-of-function mutants in domain II. In this study, we isolated and identified an Aux/IAA protein gene from rice, OsIAA4, whose protein contains a dominant mutation-type domain II. OsIAA4 has very low expression in the entire life cycle of rice. OsIAA4-overexpressing rice plants show dwarfism, increased tiller angles, reduced gravity response, and are less sensitive to synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D).
Collapse
Affiliation(s)
- Yaling Song
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | | |
Collapse
|
278
|
Wang Y, Deng D, Ding H, Xu X, Zhang R, Wang S, Bian Y, Yin Z, Chen Y. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS One 2013; 8:e66466. [PMID: 23776674 PMCID: PMC3680376 DOI: 10.1371/journal.pone.0066466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
Dwarf stature is introduced to improve lodging resistance and harvest index in crop production. In many crops including maize, mining and application of novel dwarf genes are urgent to overcome genetic bottleneck and vulnerability during breeding improvement. Here we report the characterization and expression profiling analysis of a newly identified maize dwarf mutant Dwarf11 (D11). The D11 displays severely developmental abnormalities and is controlled by a dominant Mendelian factor. The D11 seedlings responds to both GA3 and paclobutrazol (PAC) application, suggesting that dwarf phenotype of D11 is caused by GA biosynthesis instead of GA signaling deficiency. In contrast, two well-characterized maize dominant dwarf plants D8 and D9 are all insensitive to exogenous GA3 stimulation. Additionally, sequence variation of D8 and D9 genes was not identified in the D11 mutant. Microarray and qRT-PCR analysis results demonstrated that transcripts encoding GA biosynthetic and catabolic enzymes ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), and GA 2-oxidase (GA2ox) are up-regulated in D11. Our results lay a foundation for the following D11 gene cloning and functional characterization. Moreover, results presented here may aid in crops molecular improvement and breeding, especially breeding of crops with plant height ideotypes.
Collapse
Affiliation(s)
- Yijun Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Geographical variation in growth form traits in Quercus suber and its relation to population evolutionary history. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9660-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
280
|
Liu C, Teo ZWN, Bi Y, Song S, Xi W, Yang X, Yin Z, Yu H. A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 2013; 24:612-22. [PMID: 23537632 DOI: 10.1016/j.devcel.2013.02.013] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/14/2012] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
The spatiotemporal architecture of inflorescences that bear flowers determines plant reproductive success by affecting fruit set and plant interaction with pollinators. The inflorescence architecture that displays great diversity across flowering plants depends on developmental decisions at inflorescence meristems. Here we report a key conserved genetic pathway determining inflorescence architecture in Arabidopsis thaliana and Oryza sativa (rice). In Arabidopsis, four MADS-box genes, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, SHORT VEGETATIVE PHASE, AGAMOUS-LIKE 24, and SEPALLATA 4 act redundantly and directly to suppress TERMINAL FLOWER1 (TFL1) in emerging floral meristems. This is indispensable for the well-known function of APETALA1 in specifying floral meristems and is coupled with a conformational change in chromosome looping at the TFL1 locus. Similarly, we demonstrate that the orthologs of these MADS-box genes in rice determine panicle branching by regulating TFL1-like genes. Our findings reveal a conserved regulatory pathway that determines inflorescence architecture in flowering plants.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Chen M, Zhao Z, Chen L, Zhou F, Zhong Z, Jiang L, Wan J. Genetic analysis and fine mapping of a semi-dwarf gene in a centromeric region in rice (Oryza sativa L.). BREEDING SCIENCE 2013; 63:164-8. [PMID: 23853510 PMCID: PMC3688377 DOI: 10.1270/jsbbs.63.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/01/2012] [Indexed: 05/23/2023]
Abstract
Superior plant architecture is a key means of enhancing yield potential in high yielding varieties. A newly identified recessive gene, named sd-c, controls plant height and tiller number. Genetic analysis of an F2 population from a cross between the semi-dwarf mutant and japonica cv. Houshengheng showed that the sd-c locus was flanked by SSR markers RM27877 and RM277 on chromosome 12. Thirty nine InDel markers were developed in the region and the sd-c gene was further mapped to a 1 cM centromeric region between InDel markers C11 and C12. These sequenced markers can be used to distinguish wild type and mutants and thus can be used in marker-assisted selection. The sd-c mutant decreases culm length by about 26% and doubles the tiller number without changing seed weight. Until now only sd-1 has been used in indica rice breeding programs. The sd-c mutant seems to have no undesirable pleiotropic effects and is therefore a potential genetic resource for breeding semi-dwarf indica rice cultivars.
Collapse
Affiliation(s)
- Mingjiang Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengzheng Zhong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
282
|
Verma V, Sivaraman J, Kumar PP. Expression, purification, and characterization of cytokinin signaling intermediates: Arabidopsis histidine phosphotransfer protein 1 (AHP1) and AHP2. PLANT CELL REPORTS 2013; 32:795-805. [PMID: 23525762 DOI: 10.1007/s00299-013-1424-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/05/2013] [Accepted: 03/10/2013] [Indexed: 06/02/2023]
Abstract
We have expressed, purified, and biophysically characterized recombinant AHP1 and AHP2. Also, using computational homology models for AHP1, ARR7, and AHP1–ARR7 complex, we identified threedimensional positioning of key amino acids. Cytokinin signaling involves activation of Arabidopsis Response Regulators (ARRs) by Arabidopsis Histidine Phosphotransfer Proteins (AHPs) by phosphorylation. Type-A ARRs are key regulators of several developmental pathways, but the mechanism underlying this phosphorylation and activation is not known in plants. In this study, we report the successful expression and purification of recombinant AHP1 and AHP2. Biophysical characterization shows that these two recombinant proteins were purified to homogeneity and possess well-defined secondary structures. Brief attempts to purify recombinant ARR7 posed problems during size-exclusion chromatography. Nevertheless, we generated computational homology models for AHP1, ARR7, and AHP1-ARR7 complex using crystal structures of homologous proteins from other organisms. The homology models helped to identify the three-dimensional positioning of the key conserved residues of AHP1 and ARR7 involved in phosphorylation. The similarity in positioning of these residues to other homologous proteins suggests that AHPs and type-A ARRs could be structurally conserved across kingdoms. Thus, our homology models can serve as valuable tools to gain structural insights into the phosphorylation and activation of cytokinin response regulators in plants.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | | | | |
Collapse
|
283
|
Mehrnia M, Balazadeh S, Zanor MI, Mueller-Roeber B. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:842-57. [PMID: 23616605 PMCID: PMC3668074 DOI: 10.1104/pp.113.214049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were down-regulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3;3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking.
Collapse
|
284
|
Wang W, Chu H, Zhang D, Liang W. Fine mapping and analysis of DWARF TILLER1 in controlling rice architecture. J Genet Genomics 2013; 40:493-5. [PMID: 24053951 DOI: 10.1016/j.jgg.2013.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Wenfei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
285
|
Ortiz-Morea FA, Vicentini R, Silva GF, Silva EM, Carrer H, Rodrigues AP, Nogueira FT. Global analysis of the sugarcane microtranscriptome reveals a unique composition of small RNAs associated with axillary bud outgrowth. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2307-20. [PMID: 23564956 PMCID: PMC3654421 DOI: 10.1093/jxb/ert089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Axillary bud outgrowth determines shoot architecture and is under the control of endogenous hormones and a fine-tuned gene-expression network, which probably includes small RNAs (sRNAs). Although it is well known that sRNAs act broadly in plant development, our understanding about their roles in vegetative bud outgrowth remains limited. Moreover, the expression profiles of microRNAs (miRNAs) and their targets within axillary buds are largely unknown. Here, we employed sRNA next-generation sequencing as well as computational and gene-expression analysis to identify and quantify sRNAs and their targets in vegetative axillary buds of the biofuel crop sugarcane (Saccharum spp.). Computational analysis allowed the identification of 26 conserved miRNA families and two putative novel miRNAs, as well as a number of trans-acting small interfering RNAs. sRNAs associated with transposable elements and protein-encoding genes were similarly represented in both inactive and developing bud libraries. Conversely, sequencing and quantitative reverse transcription-PCR results revealed that specific miRNAs were differentially expressed in developing buds, and some correlated negatively with the expression of their targets at specific stages of axillary bud development. For instance, the expression patterns of miR159 and its target GAMYB suggested that they may play roles in regulating abscisic acid-signalling pathways during sugarcane bud outgrowth. Our work reveals, for the first time, differences in the composition and expression profiles of diverse sRNAs and targets between inactive and developing vegetative buds that, together with the endogenous balance of specific hormones, may be important in regulating axillary bud outgrowth.
Collapse
Affiliation(s)
- Fausto A. Ortiz-Morea
- Centro de Biotecnologia Agricola (CEBTEC), Escola Superior de Agricultura ‘Luiz de Queiroz’, (ESALQ)/USP, Piracicaba, SP, Brazil
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr.,17 s/n. CEP 18618–970 Botucatu, SP, Brazil
- These authors contributed equally to this work
| | - Renato Vicentini
- Centro de Biologia Molecular e Engenharia Genetica (CBMEG), Universidade Estadual de Campinas, Campinas, SP, Brazil
- These authors contributed equally to this work
| | - Geraldo F.F. Silva
- Centro de Biotecnologia Agricola (CEBTEC), Escola Superior de Agricultura ‘Luiz de Queiroz’, (ESALQ)/USP, Piracicaba, SP, Brazil
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr.,17 s/n. CEP 18618–970 Botucatu, SP, Brazil
| | - Eder M. Silva
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr.,17 s/n. CEP 18618–970 Botucatu, SP, Brazil
| | - Helaine Carrer
- Centro de Biotecnologia Agricola (CEBTEC), Escola Superior de Agricultura ‘Luiz de Queiroz’, (ESALQ)/USP, Piracicaba, SP, Brazil
| | - Ana P. Rodrigues
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr.,17 s/n. CEP 18618–970 Botucatu, SP, Brazil
| | - Fabio T.S. Nogueira
- Centro de Biotecnologia Agricola (CEBTEC), Escola Superior de Agricultura ‘Luiz de Queiroz’, (ESALQ)/USP, Piracicaba, SP, Brazil
- Laboratory of Molecular Genetics of Plant Development, Department of Genetics, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Distrito de Rubião Jr.,17 s/n. CEP 18618–970 Botucatu, SP, Brazil
- To whom correspondence should be addressed.
| |
Collapse
|
286
|
Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet 2013; 29:225-32. [DOI: 10.1016/j.tig.2012.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/27/2012] [Accepted: 12/07/2012] [Indexed: 11/19/2022]
|
287
|
Derbyshire P, Byrne ME. MORE SPIKELETS1 is required for spikelet fate in the inflorescence of Brachypodium. PLANT PHYSIOLOGY 2013; 161:1291-302. [PMID: 23355632 PMCID: PMC3585597 DOI: 10.1104/pp.112.212340] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/24/2013] [Indexed: 05/18/2023]
Abstract
Grasses produce florets on a structure called a spikelet, and variation in the number and arrangement of both branches and spikelets contributes to the great diversity of grass inflorescence architecture. In Brachypodium (Brachypodium distachyon), the inflorescence is an unbranched spike with a terminal spikelet and a limited number of lateral spikelets. Spikelets are indeterminate and give rise to a variable number of florets. Here, we provide a detailed description of the stages of inflorescence development in Brachypodium. To gain insight into the genetic regulation of Brachypodium inflorescence development, we generated fast neutron mutant populations and screened for phenotypic mutants. Among the mutants identified, the more spikelets1 (mos1) mutant had an increased number of axillary meristems produced from inflorescence meristem compared with the wild type. These axillary meristems developed as branches with production of higher order spikelets. Using a candidate gene approach, mos1 was found to have a genomic rearrangement disrupting the expression of an ethylene response factor class of APETALA2 transcription factor related to the spikelet meristem identity genes branched silkless1 (bd1) in maize (Zea mays) and FRIZZY PANICLE (FZP) in rice (Oryza sativa). We propose MOS1 likely corresponds to the Brachypodium bd1 and FZP ortholog and that the function of this gene in determining spikelet meristem fate is conserved with distantly related grass species. However, MOS1 also appears to be involved in the timing of initiation of the terminal spikelet. As such, MOS1 may regulate the transition to terminal spikelet development in other closely related and agriculturally important species, particularly wheat (Triticum aestivum).
Collapse
|
288
|
Song Q, Zhang G, Zhu XG. Optimal crop canopy architecture to maximise canopy photosynthetic CO 2 uptake under elevated CO 2 - a theoretical study using a mechanistic model of canopy photosynthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:108-124. [PMID: 32481092 DOI: 10.1071/fp12056] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 11/26/2012] [Indexed: 05/23/2023]
Abstract
Canopy architecture has been a major target in crop breeding for improved yields. Whether crop architectures in current elite crop cultivars can be modified for increased canopy CO2 uptake rate (Ac) under elevated atmospheric CO2 concentrations (Ca) is currently unknown. To study this question, we developed a new model of canopy photosynthesis, which includes three components: (i) a canopy architectural model; (ii) a forward ray tracing algorithm; and (iii) a steady-state biochemical model of C3 photosynthesis. With this model, we demonstrated that the Ac estimated from 'average' canopy light conditions is ~25% higher than that from light conditions at individual points in the canopy. We also evaluated theoretically the influence of canopy architectural on Ac under current and future Ca in rice. Simulation results suggest that to gain an optimal Ac for the examined rice cultivar, the stem height, leaf width and leaf angles can be manipulated to enhance canopy photosynthesis. This model provides a framework for designing ideal crop architectures to gain optimal Ac under future changing climate conditions. A close linkage between canopy photosynthesis modelling and canopy photosynthesis measurements is required to fully realise the potential of such modelling approaches in guiding crop improvements.
Collapse
Affiliation(s)
- Qingfeng Song
- CAS Key Laboratory of Computational Biology and CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guilian Zhang
- CAS Key Laboratory of Computational Biology and CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin-Guang Zhu
- CAS Key Laboratory of Computational Biology and CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
289
|
Bo W, Fu G, Wang Z, Xu F, Shen Y, Xu J, Huang Z, Gai J, Vallejos CE, Wu R. Systems mapping: how to map genes for biomass allocation toward an ideotype. Brief Bioinform 2013; 15:660-9. [PMID: 23428353 DOI: 10.1093/bib/bbs089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recent availability of high-throughput genetic and genomic data allows the genetic architecture of complex traits to be systematically mapped. The application of these genetic results to design and breed new crop types can be made possible through systems mapping. Systems mapping is a computational model that dissects a complex phenotype into its underlying components, coordinates different components in terms of biological laws through mathematical equations and maps specific genes that mediate each component and its connection with other components. Here, we present a new direction of systems mapping by integrating this tool with carbon economy. With an optimal spatial distribution of carbon fluxes between sources and sinks, plants tend to maximize whole-plant growth and competitive ability under limited availability of resources. We argue that such an economical strategy for plant growth and development, once integrated with systems mapping, will not only provide mechanistic insights into plant biology, but also help to spark a renaissance of interest in ideotype breeding in crops and trees.
Collapse
|
290
|
Ma X, Song L, Yang Y, Liu D. A gain-of-function mutation in the ROC1 gene alters plant architecture in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:751-762. [PMID: 23206262 DOI: 10.1111/nph.12056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/21/2012] [Indexed: 05/20/2023]
Abstract
Plant architecture is an important agronomic trait and is useful for identification of plant species. The molecular basis of plant architecture, however, is largely unknown. Forward genetics was used to identify an Arabidopsis mutant with altered plant architecture. Using genetic and molecular approaches, we analyzed the roles of a mutated cyclophilin in the control of plant architecture. The Arabidopsis mutant roc1 has reduced stem elongation and increased shoot branching, and the mutant phenotypes are strongly affected by temperature and photoperiod. Map-based cloning and transgenic experiments demonstrated that the roc1 mutant phenotypes are caused by a gain-of-function mutation in a cyclophilin gene, ROC1. Besides, application of the plant hormone gibberellic acid (GA) further suppresses stem elongation in the mutant. GA treatment enhances the accumulation of mutated but not of wildtype (WT) ROC1 proteins. The roc1 mutation does not seem to interfere with GA biosynthesis or signaling. GA signaling, however, antagonizes the effect of the roc1 mutation on stem elongation. The altered plant architecture may result from the activation of an R gene by the roc1 protein. We also present a working model for the interaction between the roc1 mutation and GA signaling in regulating stem elongation.
Collapse
Affiliation(s)
- Xiqing Ma
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Li Song
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaxuan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
291
|
Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. PLANT PHYSIOLOGY 2012; 160:308-18. [PMID: 22791303 PMCID: PMC3440208 DOI: 10.1104/pp.112.197954] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/03/2012] [Indexed: 05/18/2023]
Abstract
Tillering (branching) is a major yield component and, therefore, a target for improving the yield of crops. However, tillering is regulated by complex interactions of endogenous and environmental signals, and the knowledge required to achieve optimal tiller number through genetic and agronomic means is still lacking. Regulatory mechanisms may be revealed through physiological and molecular characterization of naturally occurring and induced tillering mutants in the major crops. Here we characterize a reduced tillering (tin, for tiller inhibition) mutant of wheat (Triticum aestivum). The reduced tillering in tin is due to early cessation of tiller bud outgrowth during the transition of the shoot apex from the vegetative to the reproductive stage. There was no observed difference in the development of the main stem shoot apex between tin and the wild type. However, tin initiated internode development earlier and, unlike the wild type, the basal internodes in tin were solid rather than hollow. We hypothesize that tin represents a novel type of reduced tillering mutant associated with precocious internode elongation that diverts sucrose (Suc) away from developing tillers. Consistent with this hypothesis, we have observed upregulation of a gene induced by Suc starvation, downregulation of a Suc-inducible gene, and a reduced Suc content in dormant tin buds. The increased expression of the wheat Dormancy-associated (DRM1-like) and Teosinte Branched1 (TB1-like) genes and the reduced expression of cell cycle genes also indicate bud dormancy in tin. These results highlight the significance of Suc in shoot branching and the possibility of optimizing tillering by manipulating the timing of internode elongation.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Peter M. Chandler
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Steve M. Swain
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Rod W. King
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Richard A. Richards
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| | - Wolfgang Spielmeyer
- Commonwealth Scientific and Industrial Research Organization Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia (T.H.K., P.M.C., S.M.S., R.W.K., R.A.R., W.S.)
| |
Collapse
|
292
|
Cohen O, Borovsky Y, David-Schwartz R, Paran I. CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4947-57. [PMID: 22859675 PMCID: PMC3427992 DOI: 10.1093/jxb/ers172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In aiming to decipher the genetic control of shoot architecture in pepper (Capsicum spp.), the allelic late-flowering mutants E-252 and E-2537 were identified. These mutants exhibit multiple pleiotropic effects on the organization of the sympodial shoot. Genetic mapping and sequence analysis indicated that the mutants are disrupted at CaJOINTLESS, the orthologue of the MADS-box genes JOINTLESS and SVP in tomato and Arabidopsis, respectively. Late flowering of the primary and sympodial shoots of Cajointless indicates that the gene functions as a suppressor of vegetative growth in all shoot meristems. While CaJOINTLESS and JOINTLESS have partially conserved functions, the effect on flowering time and on sympodial development in pepper, as well as the epistasis over FASCICULATE, the homologue of the major determinant of sympodial development SELF-PRUNING, is stronger than in tomato. Furthermore, the solitary terminal flower of pepper is converted into a structure composed of flowers and leaves in the mutant lines. This conversion supports the hypothesis that the solitary flowers of pepper have a cryptic inflorescence identity that is suppressed by CaJOINTLESS. Formation of solitary flowers in wild-type pepper is suggested to result from precocious maturation of the inflorescence meristem.
Collapse
Affiliation(s)
- Oded Cohen
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
| | - Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
| | - Ilan Paran
- Institute of Plant Science, Agricultural Research Organization, The Volcani CenterP.O. Box 6, Bet Dagan 50250, Israel
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
293
|
Laura M, Borghi C, Regis C, Cassetti A, Allavena A. Ectopic expression of Kxhkn5 in the viviparous species Kalanchoe × Houghtonii induces a novel pattern of epiphyll development. Transgenic Res 2012; 22:59-74. [PMID: 22829336 DOI: 10.1007/s11248-012-9628-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/15/2012] [Indexed: 11/26/2022]
Abstract
KxhKN5 (class 1 KNOX gene) was cloned from Kalanchoe × houghtonii with strong tendency to form epiphylls on leaves. KxhKN5 appear to be homologue of BP of A. thaliana on the basis of phylogeny, expression and phenotype analysis. Beside the modification of several plant and leaf traits, the appearance of epiphylls was drastically reduced by both the silencing and the over-expression of KxhKN5 in most of the generated clones. In silenced clones, epiphyll production followed the morphogenetic pathway of the WT plants: somatic embryos outbreak in the centre of each leaf-pedestal, grown in the notch between leaf indentations and were supported by a suspensor. The connection between the epiphyll and the mother plant did not include any vasculature and as a result, the epiphylls dropped easily from the mother plant. The most represented category of over expressor clones, disclosed a novel pattern of epiphyll development: the leaf-pedestals were absent and single bud outbreaks in each leaf notch. Buds developed into shoots which remained attached to the maternal plant by a strong vascular connection. The leaves supporting shoots, produced a thickened midrib and veins, and their lamina ceased expanding. Finally, the leaf/shoot structure resembles a lateral branch. The ectopic expression of KxhKN5 in K. × houghtonii induces a process comparable to the alternation of leaf and shoot formation in other species and support the idea, that it is the variation in shared molecular and developmental processes which produces the growth of specific structures.
Collapse
Affiliation(s)
- Marina Laura
- Agricultural Research Council, Research Unit for Floriculture and Ornamental Species (CRA-FSO), Corso Inglesi 508, 18038, Sanremo, IM, Italy.
| | | | | | | | | |
Collapse
|
294
|
Gasperini D, Greenland A, Hedden P, Dreos R, Harwood W, Griffiths S. Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4419-36. [PMID: 22791821 PMCID: PMC3421992 DOI: 10.1093/jxb/ers138] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/07/2012] [Accepted: 03/26/2012] [Indexed: 05/18/2023]
Abstract
Over the next decade, wheat grain production must increase to meet the demand of a fast growing human population. One strategy to meet this challenge is to raise wheat productivity by optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene is one of the few, together with the Green Revolution genes, to reduce stature of wheat (Triticum aestivum L.), and improve lodging resistance, without compromising grain yield. Rht8 is widely used in dry environments such as Mediterranean countries where it increases plant adaptability. With recent climate change, its use could become increasingly important even in more northern latitudes. In the present study, the characterization of Rht8 was furthered. Morphological analyses show that the semi-dwarf phenotype of Rht8 lines is due to shorter internodal segments along the wheat culm, achieved through reduced cell elongation. Physiological experiments show that the reduced cell elongation is not due to defective gibberellin biosynthesis or signalling, but possibly to a reduced sensitivity to brassinosteroids. Using a fine-resolution mapping approach and screening 3104 F(2) individuals of a newly developed mapping population, the Rht8 genetic interval was reduced from 20.5 cM to 1.29 cM. Comparative genomics with model genomes confined the Rht8 syntenic intervals to 3.3 Mb of the short arm of rice chromosome 4, and to 2 Mb of Brachypodium distachyon chromosome 5. The very high resolution potential of the plant material generated is crucial for the eventual cloning of Rht8.
Collapse
Affiliation(s)
- Debora Gasperini
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, NorwichNR4 7UHUK
| | - Andy Greenland
- National Institute of Agricultural Botany, Huntingdon Road, CambridgeCB3 0LEUK
| | - Peter Hedden
- Rothamsted Research, Harpenden, HertfordshireAL5 2JQUK
| | - René Dreos
- École Polytechnique Fédérale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland
| | - Wendy Harwood
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, NorwichNR4 7UHUK
| | - Simon Griffiths
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Colney, NorwichNR4 7UHUK
| |
Collapse
|
295
|
Thangasamy S, Chen PW, Lai MH, Chen J, Jauh GY. Rice LGD1 containing RNA binding activity affects growth and development through alternative promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:288-302. [PMID: 22409537 DOI: 10.1111/j.1365-313x.2012.04989.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tiller initiation and panicle development are important agronomical traits for grain production in Oryza sativa L. (rice), but their regulatory mechanisms are not yet fully understood. In this study, T-DNA mutant and RNAi transgenic approaches were used to functionally characterize a unique rice gene, LAGGING GROWTH AND DEVELOPMENT 1 (LGD1). The lgd1 mutant showed slow growth, reduced tiller number and plant height, altered panicle architecture and reduced grain yield. The fewer unelongated internodes and cells in lgd1 led to respective reductions in tiller number and to semi-dwarfism. Several independent LGD1-RNAi lines exhibited defective phenotypes similar to those observed in lgd1. Interestingly, LGD1 encodes multiple transcripts with different transcription start sites (TSSs), which were validated by RNA ligase-mediated rapid amplification of 5' and 3' cDNA ends (RLM-RACE). Additionally, GUS assays and a luciferase promoter assay confirmed the promoter activities of LGD1.1 and LGD1.5. LGD1 encoding a von Willebrand factor type A (vWA) domain containing protein is a single gene in rice that is seemingly specific to grasses. GFP-tagged LGD1 isoforms were predominantly detected in the nucleus, and weakly in the cytoplasm. In vitro northwestern analysis showed the RNA-binding activity of the recombinant C-terminal LGD1 protein. Our results demonstrated that LGD1 pleiotropically regulated rice vegetative growth and development through both the distinct spatiotemporal expression patterns of its multiple transcripts and RNA binding activity. Hence, the study of LGD1 will strengthen our understanding of the molecular basis of the multiple transcripts, and their corresponding polypeptides with RNA binding activity, that regulate pleiotropic effects in rice.
Collapse
|
296
|
Cutri L, Nave N, Ami MB, Chayut N, Samach A, Dornelas MC. Evolutionary, genetic, environmental and hormonal-induced plasticity in the fate of organs arising from axillary meristems in Passiflora spp. Mech Dev 2012; 130:61-9. [PMID: 22659398 DOI: 10.1016/j.mod.2012.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
Abstract
Tendrils can be found in different plant species. In legumes such as pea, tendrils are modified leaves produced by the vegetative meristem but in the grape vine, a same meristem is used to either form a tendril or an inflorescence. Passiflora species originated in ecosystems in which there is dense vegetation and competition for light. Thus climbing on other plants in order to reach regions with higher light using tendrils is an adaptive advantage. In Passiflora species, after a juvenile phase, every leaf has a subtending vegetative meristem, and a separate meristem that forms both flowers and a tendril. Thus, flowers are formed once a tendril is formed yet whether or not this flower will reach bloom depends on the environment. For example, in Passiflora edulis flowers do not develop under shaded conditions, so that tendrils are needed to bring the plant to positions were flowers can develop. This separate meristem generally forms a single tendril in different Passiflora species yet the number and position of flowers formed from the same meristem diverges among species. Here we display the variation among species as well as variation within a single species, P. edulis. We also show that the number of flowers within a specific genotype can be modulated by applying Cytokinins. Finally, this separate meristem is capable of transforming into a leaf-producing meristem under specific environmental conditions. Thus, behind what appears to be a species-specific rigid program regarding the fate of this meristem, our study helps to reveal a plasticity normally restrained by genetic, hormonal and environmental constraints.
Collapse
Affiliation(s)
- Lucas Cutri
- Universidade Estadual de Campinas, UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Cidade Universitaria Zeferino Vaz, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
297
|
Jiang F, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S, Li B. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One 2012; 7:e37040. [PMID: 22649507 PMCID: PMC3359370 DOI: 10.1371/journal.pone.0037040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/12/2012] [Indexed: 11/23/2022] Open
Abstract
Background Plant height is an important agronomic trait that affects yield and tolerance to certain abiotic stresses. Understanding the genetic control of plant height is important for elucidating the regulation of maize development and has practical implications for trait improvement in plant breeding. Methodology/Principal Findings In this study, two independent, semi-dwarf maize EMS mutants, referred to as dwarf & irregular leaf (dil1), were isolated and confirmed to be allelic. In comparison to wild type plants, the mutant plants have shorter internodes, shorter, wider and wrinkled leaves, as well as smaller leaf angles. Cytological analysis indicated that the leaf epidermal cells and internode parenchyma cells are irregular in shape and are arranged in a more random fashion, and the mutants have disrupted leaf epidermal patterning. In addition, parenchyma cells in the dil1 mutants are significantly smaller than those in wild-type plants. The dil1 mutation was mapped on the long arm of chromosome 6 and a candidate gene, annotated as an AP2 transcription factor-like, was identified through positional cloning. Point mutations near exon-intron junctions were identified in both dil1 alleles, resulting in mis-spliced variants. Conclusion An AP2 transcription factor-like gene involved in stalk and leaf development in maize has been identified. Mutations near exon-intron junctions of the AP2 gene give mis-spliced transcript variants, which result in shorter internodes and wrinkled leaves.
Collapse
Affiliation(s)
- Fukun Jiang
- National Maize Improvement Center of China, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
- DuPont Agricultural Biotechnology, Wilmington, Delaware, United States of America
| | - Mei Guo
- Pioneer Hi-Bred International, Johnston, Iowa, United States of America
| | - Fang Yang
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, United States of America
| | - Keith Duncan
- DuPont Agricultural Biotechnology, Wilmington, Delaware, United States of America
| | - David Jackson
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, United States of America
| | - Antoni Rafalski
- DuPont Agricultural Biotechnology, Wilmington, Delaware, United States of America
| | - Shoucai Wang
- National Maize Improvement Center of China, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Bailin Li
- DuPont Agricultural Biotechnology, Wilmington, Delaware, United States of America
- * E-mail:
| |
Collapse
|
298
|
Berbel A, Ferrándiz C, Hecht V, Dalmais M, Lund OS, Sussmilch FC, Taylor SA, Bendahmane A, Ellis THN, Beltrán JP, Weller JL, Madueño F. VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat Commun 2012; 3:797. [PMID: 22531182 DOI: 10.1038/ncomms1801] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/22/2012] [Indexed: 11/09/2022] Open
Abstract
Unravelling the basis of variation in inflorescence architecture is important to understanding how the huge diversity in plant form has been generated. Inflorescences are divided between simple, as in Arabidopsis, with flowers directly formed at the main primary inflorescence axis, and compound, as in legumes, where they are formed at secondary or even higher order axes. The formation of secondary inflorescences predicts a novel genetic function in the development of the compound inflorescences. Here we show that in pea this function is controlled by VEGETATIVE1 (VEG1), whose mutation replaces secondary inflorescences by vegetative branches. We identify VEG1 as an AGL79-like MADS-box gene that specifies secondary inflorescence meristem identity. VEG1 misexpression in meristem identity mutants causes ectopic secondary inflorescence formation, suggesting a model for compound inflorescence development based on antagonistic interactions between VEG1 and genes conferring primary inflorescence and floral identity. Our study defines a novel mechanism to generate inflorescence complexity.
Collapse
Affiliation(s)
- Ana Berbel
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
|
300
|
Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 2012; 3:752. [PMID: 22434195 PMCID: PMC3316886 DOI: 10.1038/ncomms1716] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/31/2012] [Indexed: 12/30/2022] Open
Abstract
Rice MONOCULM 1 (MOC1) and its orthologues LS/LAS (lateral suppressor in tomato and Arabidopsis) are key promoting factors of shoot branching and tillering in higher plants. However, the molecular mechanisms regulating MOC1/LS/LAS have remained elusive. Here we show that the rice tiller enhancer (te) mutant displays a drastically increased tiller number. We demonstrate that TE encodes a rice homologue of Cdh1, and that TE acts as an activator of the anaphase promoting complex/cyclosome (APC/C) complex. We show that TE coexpresses with MOC1 in the axil of leaves, where the APC/CTE complex mediates the degradation of MOC1 by the ubiquitin–26S proteasome pathway, and consequently downregulates the expression of the meristem identity gene Oryza sativa homeobox 1, thus repressing axillary meristem initiation and formation. We conclude that besides having a conserved role in regulating cell cycle, APC/CTE has a unique function in regulating the plant-specific postembryonic shoot branching and tillering, which are major determinants of plant architecture and grain yield. The protein complex APC/C is an E3 ubiquitin ligase and its subunit Cdh1 determines substrate recognition. Lin et al. show that the transcriptional regulator MONOCULM1 is a substrate of the rice homologue of Cdh1 and that APC/C-mediated degradation of MONOCULM1 controls rice tillering, a determinant of grain yield.
Collapse
|