251
|
Juan YS, Chuang SM, Lee YL, Long CY, Wu TH, Chang WC, Levin RM, Liu KM, Huang CH. Green tea catechins decrease oxidative stress in surgical menopause-induced overactive bladder in a rat model. BJU Int 2012; 110:E236-44. [PMID: 22639915 DOI: 10.1111/j.1464-410x.2012.11258.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Ovary hormone deficiency and the age-related changes in post-menopausal women are subjected to a number of urological dysfunctions, including overactive bladder syndrome. Green tea is a popular healthy drink worldwide and its extract catechin has strong anti-inflammatory and antioxidant properties. EGCG, the major type of catechin, is an antioxidant polyphenol flavonoid isolated from green tea. EGCG supplement could prevent ovariectomy-induced bladder dysfunction in a dose-related manner through its anti-oxidant, anti-fibrosis and anti-apoptosis effects. OBJECTIVE To evaluate whether green tea extract, epigallocatechin gallate (EGCG), could prevent ovariectomy-induced overactive bladder (OAB) and to investigate its antioxidant, anti-apoptotic and anti-fibrosis effects. MATERIALS AND METHODS In all, 48 female Sprague-Dawley rats were divided into four groups. After bilateral ovariectomy, the first group served as the ovariectomy control, the second group received EGCG 1 µM/kg daily i.p. injection after ovariectomy surgery, and the third group received EGCG 10 µM/kg daily i.p. injection. The fourth group was taken as the sham without ovariectomy surgery. The rats were killed after 6 months after ovariectomy surgery. Cystometrograms were performed for the measure of bladder overactivity. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling (TUNEL) assay was used to evaluate apoptotic cells. Western immunoblots were performed to determine the expressions of inflammatory markers, apoptosis-associated proteins and oxidative stress markers. RESULTS Long-term ovariectomy significantly increased non-voiding contractions and decreased bladder compliance. Treatment with EGCG significantly increased bladder compliance and diminished non-voiding contractions. Ovariectomy significantly increased apoptotic cells and enhanced interstitial fibrosis in bladders. The expression of caspase-3 significantly increased, while that of Bcl-2 notably decreased after ovariectomy. Inflammatory and fibrosis markers, TGF-β, fibronectin and type I collagen expressions were significantly increased after 6 months of ovariectomy surgery. Treatment with EGCG significantly decreased TGF-β and type I collagen expressions. Oxidative stress markers, nitrotyrosine and protein carbonylation levels were significantly increased in the ovariectomy group. EGCG could attenuate this oxidative damage in dose-dependent fashion. CONCLUSIONS Ovariectomy increased oxidative damage, enhanced voiding frequency and decreased bladder compliance. EGCG could restore ovariectomy-induced bladder dysfunction in a dose-dependent fashion through antioxidant, anti-fibrosis and anti-apoptosis effects.
Collapse
Affiliation(s)
- Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Liu YL, Wang YD, Zhuang F, Xian SL, Fang JY, Su W, Zhang W. Immunosuppression effects of bone marrow mesenchymal stem cells on renal interstitial injury in rats with unilateral ureteral obstruction. Cell Immunol 2012; 276:144-52. [PMID: 22632816 DOI: 10.1016/j.cellimm.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/20/2012] [Accepted: 05/02/2012] [Indexed: 01/16/2023]
Abstract
We investigated the effects of intravenously administered bone marrow mesenchymal stem cells (BMSCs) on renal interstitial inflammation and fibrosis. In unilateral ureteral obstruction (UUO) rats, the CD4(+)CD25(+) regulatory T-cell (Treg) cell, macrophage population and some inflammation related cytokines were tested. In the BMSCs -treated rats, renal exhibited lower renal Masson scores, decreased macrophage infiltration and interferon gamma (IFNγ) expression, and increased forkhead transcription factor (Foxp3) and interleukin-10 (IL-10) expression. No significant differences in the CD4(+)CD25(+) Treg population and renal transforming growth factor-β1 (TGFβ1) expression were observed between BMSCs-treated group and control group (p>0.05). In conclusion, BMSCs infusion leads to an anti-inflammation response in the early stage of UUO which may related to paracine mechanism.
Collapse
Affiliation(s)
- Ying-Li Liu
- The Department of Nephrology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai 200011, China
| | | | | | | | | | | | | |
Collapse
|
253
|
Suzuki S, Fukasawa H, Misaki T, Togawa A, Ohashi N, Kitagawa K, Kotake Y, Liu N, Niida H, Nakayama K, Nakayama KI, Yamamoto T, Kitagawa M. The amelioration of renal damage in Skp2-deficient mice canceled by p27 Kip1 deficiency in Skp2-/- p27-/- mice. PLoS One 2012; 7:e36249. [PMID: 22558406 PMCID: PMC3338689 DOI: 10.1371/journal.pone.0036249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/29/2012] [Indexed: 12/02/2022] Open
Abstract
SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral obstruction (UUO) renal injury associated with renal accumulation of p27 in Skp2(-/-) mice. However, it remains unclear whether the amelioration of renal injury in Skp2(-/-) mice is solely caused by p27 accumulation, since Skp2 targets several other proteins. Using Skp2(-/-)p27(-/-) mice, we investigated whether Skp2 specifically targets p27 in the progressive nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2(-/-) mice, progression of tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fibrosis with increased expression of collagen and α-smooth muscle actin were observed in the obstructed kidneys in Skp2(-/-)p27(-/-) mice. No significant increases in other Skp2 target proteins including p57, p130, TOB1, cyclin A and cyclin D1 were noted in the UUO kidney in Skp2(-/-) mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2(-/-)p27(-/-) mice. These findings suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUO mice.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotaka Fukasawa
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taro Misaki
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akashi Togawa
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naro Ohashi
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yojiro Kotake
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ning Liu
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Keiko Nakayama
- Division of Developmental Genetics, Center for Translational and Advanced Animal Research on Human Diseases, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tatsuo Yamamoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Department of Medicine, Numazu City Hospital, Numazu, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
254
|
TGF-β-activated kinase-1: New insights into the mechanism of TGF-β signaling and kidney disease. Kidney Res Clin Pract 2012; 31:94-105. [PMID: 26889415 PMCID: PMC4715161 DOI: 10.1016/j.krcp.2012.04.322] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that regulates a wide variety of cellular functions, including cell growth, cellular differentiation, apoptosis, and wound healing. TGF-β1, the prototype member of the TGF-β superfamily, is well established as a central mediator of renal fibrosis. In chronic kidney disease, dysregulation of expression and activation of TGF-β1 results in the relentless synthesis and accumulation of extracellular matrix proteins that lead to the development of glomerulosclerosis and tubulointerstitial fibrosis, and ultimately to end-stage renal disease. Therefore, specific targeting of the TGF-β signaling pathway is seemingly an attractive molecular therapeutic strategy in chronic kidney disease. Accumulating evidence demonstrates that the multifunctionality of TGF-β1 is connected with the complexity of its cell signaling networks. TGF-β1 signals through the interaction of type I and type II receptors to activate distinct intracellular pathways. Although the Smad signaling pathway is known as a canonical pathway induced by TGF-β1, and has been the focus of many previous reviews, importantly TGF-β1 also induces various Smad-independent signaling pathways. In this review, we describe evidence that supports current insights into the mechanism and function of TGF-β-activated kinase 1 (TAK1), which has emerged as a critical signaling molecule in TGF-β-induced Smad-independent signaling pathways. We also discuss the functional role of TAK1 in mediating the profibrotic effects of TGF-β1.
Collapse
|
255
|
García IM, Altamirano L, Mazzei L, Fornés M, Molina MN, Ferder L, Manucha W. Role of mitochondria in paricalcitol-mediated cytoprotection during obstructive nephropathy. Am J Physiol Renal Physiol 2012; 302:F1595-605. [PMID: 22492946 DOI: 10.1152/ajprenal.00617.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin D slows the progression of chronic kidney disease. Furthermore, activators of vitamin D receptors (VDR) have suppressant effects on the renin-angiotensin system, as well as anti-inflammatory and antifibrotic actions. This study aimed to evaluate the cytoprotective effects of paricalcitol, a VDR activator, at the mitochondrial level using an obstructive nephropathy model [unilateral ureteral obstruction (UUO)]. Rats subjected to UUO and controls were treated daily with vehicle or paricalcitol. The control group underwent a sham surgery. The treatment was done for 15 days (30 ng/kg). The following were determined: biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; VDR, AT(1) receptor, and NADPH oxidase 4 expression; and NADPH oxidase activity (in total and in mitochondrial fractions from the renal cortex). VDR activation prevented fibrosis (20 ± 5 vs. 60 ± 10%) and the number of TUNEL-positive apoptotic cells (10 ± 3 vs. 25 ± 4) in UUO. Biochemical, histological, and molecular studies suggest mitochondrial injury. Electron microscopy revealed in UUO electronically luminous material in the nucleus. Some mitochondria were increased in size and contained dilated crests and larger than normal spaces in their interiors. These changes were not present with paricalcitol treatment. Additionally, high AT(1)-receptor mRNA and NADPH activity was reverted in mitochondrial fractions from obstructed paricalcitol-treated animals (0.58 ± 0.06 vs. 0.95 ± 0.05 relative densitometry units and 9,000 ± 800 vs. 15,000 ± 1,000 relative fluorescence units·μg protein(-1)·min(-1), respectively). These changes were consistent with an improvement in VDR expression (0.75 ± 0.05 vs. 0.35 ± 0.04 relative densitometry units). These results suggest that paricalcitol confers a protective effect and reveal, as well, a possible AT(1) receptor-dependent protective effect that occurs at the mitochondrial level.
Collapse
Affiliation(s)
- Isabel Mercedes García
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
256
|
Khalil KI, Shokeir AA, Wafa EW, Gad GEMA, Helmy SA, Nour EM, Sarhan M. Renoprotection against complete unilateral ureteric obstruction: Is there an ultimate choice? Arab J Urol 2012; 10:199-206. [PMID: 26558026 PMCID: PMC4442888 DOI: 10.1016/j.aju.2011.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 12/02/2022] Open
Abstract
Objectives To evaluate and compare the relative contribution of different therapeutic agents for renoprotection against complete unilateral ureteric obstruction (UUO), using a rabbit model sampled at different times. Materials and methods Eighty-four male New Zealand White rabbits were divided into seven groups of 12 rabbits; a sham group, a control (left UUO + no medication) or left UUO and treated with either enalapril, losartan, verapamil, l-arginine or antioxidant (vitamin E and selenium mixture). Rabbits in the control and treated groups were subjected to 3, 10 and 21 days of complete ureteric ligation and then killed humanely. The control and treated groups were evaluated at baseline and at the end of the experiment, by measuring split effective renal plasma flow (ERPF) using diuretic renography, and the split glomerular filtration rate (GFR) using selective creatinine clearance. Renal histopathology was evaluated using a tubulo-interstitial damage score. Results In the sham group there was no significant effect on any of the evaluated variables. For split ERPF, losartan showed the highest renoprotective effect, saving 44% and 77% of ERPF at 3 and 21 days after UUO, respectively. Losartan was also the best renoprotective agent for GFR. For renal histopathology, enalapril showed the earliest and greatest improvement as assessed by the damage score, reaching 60% at 21 days after UUO. l-Arginine was the next best effect to blockade the renin-angiotensin system for renoprotection. Conclusion We suggest that blockade of the renin-angiotensin system provides the best renoprotection against the effects of complete UUO.
Collapse
Key Words
- (U)UO, (unilateral) ureteric obstruction
- ACE inhibitors
- ACE, angiotensin-converting enzyme
- AT, angiotensin II
- Angiotensin receptor blocker
- Antioxidants
- Ccr, creatinine clearance
- ERPF, effective renal plasma flow
- ESRD, end-stage renal disease
- NF, nuclear factor
- NO, nitric oxide
- RAS, renin-angiotensin system
- RB, receptor blocker
- Renoprotection
- Unilateral ureteric obstruction
Collapse
Affiliation(s)
- Khaled I. Khalil
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Corresponding author. Tel.: +20 50 2341603.
| | - Ahmed A. Shokeir
- Department of Urology, Urology & Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Ehab W. Wafa
- Department of Urology, Urology & Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Gad El-Mawla A. Gad
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Soheir A. Helmy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman M. Nour
- Department of Urology, Urology & Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed Sarhan
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
257
|
Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ. TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res 2012; 347:117-28. [PMID: 21638209 PMCID: PMC3188682 DOI: 10.1007/s00441-011-1181-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease constitutes an increasing medical burden affecting 26 million people in the United States alone. Diabetes, hypertension, ischemia, acute injury, and urological obstruction contribute to renal fibrosis, a common pathological hallmark of chronic kidney disease. Regardless of etiology, elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling pathways initiated by angiotensin, glucose, and oxidative stress. Unilateral ureteral obstruction (UUO) is a useful and accessible model to identify mechanisms underlying the progression of renal fibrosis. Plasminogen activator inhibitor-1 (PAI-1), a major effector and downstream target of TGF-β1 in the progression of several clinically important fibrotic disorders, is highly up-regulated in UUO and causatively linked to disease severity. SMAD and non-SMAD pathways (pp60(c-src), epidermal growth factor receptor [EGFR], mitogen-activated protein kinase, p53) are required for PAI-1 induction by TGF-β1. SMAD2/3, pp60(c-src), EGFR, and p53 activation are each increased in the obstructed kidney. This review summarizes the molecular basis and translational significance of TGF-β1-stimulated PAI-1 expression in the progression of kidney disease induced by ureteral obstruction. Mechanisms discussed here appear to be operative in other renal fibrotic disorders and are relevant to the global issue of tissue fibrosis, regardless of organ site.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | - Jessica M. Overstreet
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| |
Collapse
|
258
|
Jung GS, Kim MK, Jung YA, Kim HS, Park IS, Min BH, Lee KU, Kim JG, Park KG, Lee IK. Clusterin attenuates the development of renal fibrosis. J Am Soc Nephrol 2012; 23:73-85. [PMID: 22052058 PMCID: PMC3269926 DOI: 10.1681/asn.2011010048] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/12/2011] [Indexed: 11/03/2022] Open
Abstract
Upregulation of clusterin occurs in several renal diseases and models of nephrotoxicity, but whether this promotes injury or is a protective reaction to injury is unknown. Here, in the mouse unilateral ureteral obstruction model, obstruction markedly increased the expression of clusterin, plasminogen activator inhibitor-1 (PAI-1), type I collagen, and fibronectin. Compared with wild-type mice, clusterin-deficient mice exhibited higher levels of PAI-1, type I collagen, and fibronectin and accelerated renal fibrosis in response to obstruction. In cultured rat tubular epithelium-like cells, adenovirus-mediated overexpression of clusterin inhibited the expression of TGF-β-stimulated PAI-1, type I collagen, and fibronectin. Clusterin inhibited TGF-β-stimulated Smad3 activity via inhibition of Smad3 phosphorylation and its nuclear translocation. Moreover, intrarenal delivery of adenovirus-expressing clusterin upregulated expression of clusterin in tubular epithelium-like cells and attenuated obstruction-induced renal fibrosis. In conclusion, clusterin attenuates renal fibrosis in obstructive nephropathy. These results suggest that upregulation of clusterin during renal injury is a protective response against the development of renal fibrosis.
Collapse
Affiliation(s)
- Gwon-Soo Jung
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Yun-A Jung
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Hye-Soon Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - In-Sun Park
- Department of Anatomy and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, South Korea
| | - Bon-Hong Min
- Department of Pharmacology and BK21 Program for Medical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, South Korea; and
| | - Jung-Guk Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| |
Collapse
|
259
|
Juan YS, Chuang SM, Long CY, Lin RJ, Liu KM, Wu WJ, Huang CH. Protein kinase C inhibitor prevents renal apoptotic and fibrotic changes in response to partial ureteric obstruction. BJU Int 2011; 110:283-92. [DOI: 10.1111/j.1464-410x.2011.10805.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
260
|
The kinase Pyk2 is involved in renal fibrosis by means of mechanical stretch-induced growth factor expression in renal tubules. Kidney Int 2011; 81:449-57. [PMID: 22157654 DOI: 10.1038/ki.2011.403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Unilateral ureteral obstruction is a well-established experimental model of progressive renal fibrosis. We tested whether mechanical stretch and subsequent renal tubular distension might lead to renal fibrosis by first studying renal tubular epithelial cells in culture. We found that mechanical stretch induced reactive oxygen species that in turn activated the cytoplasmic proline-rich tyrosine kinase-2 (Pyk2). This kinase is abundantly expressed in tubular epithelial cells where it is activated by several stimuli. Using mice with deletion of Pyk2 we found that the expression of transforming growth factor-β1 induced by mechanical stretch in renal tubular epithelial cells was significantly reduced. The expression of connective tissue growth factor was also reduced in the Pyk2(-/-) mice. We also found that expression of connective tissue growth factor was independent of transforming growth factor-β1, but dependent on the Rho-associated coiled-coil forming protein kinase pathway. Thus, Pyk2 may be an important initiating factor in renal fibrosis and might be a new therapeutic target for ameliorating renal fibrosis.
Collapse
|
261
|
Cho MH, Jung KJ, Jang HS, Kim JI, Park KM. Orchiectomy attenuates kidney fibrosis after ureteral obstruction by reduction of oxidative stress in mice. Am J Nephrol 2011; 35:7-16. [PMID: 22143161 DOI: 10.1159/000334598] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND/AIMS Men are generally more prone to chronic kidney disease and progression to end-stage renal disease than women. However, the underlying mechanisms remain unclear. In this study, we investigated the role of reactive oxygen species and testosterone in the progression of renal fibrosis in mice with unilateral ureteral obstruction (UUO). METHODS Mice were subjected to either orchiectomy or sham operation 14 days before either UUO or sham surgery. Harvesting of the kidney was performed 7 days after the UUO surgery to measure the production of reactive oxygen species and expression of antioxidants such as catalase, copper-zinc superoxide dismutase, and manganese superoxide dismutase, as well as fibrosis markers including α-smooth muscle actin (α-SMA) and collagen. RESULTS UUO resulted in increased expression of α-SMA and collagen deposition in the kidneys of both female and male mice. These increases were significantly greater in males than females. Orchiectomy significantly reduced increases in α-SMA expression and collagen deposition when compared with intact male. UUO increased the production of hydrogen peroxide and lipid peroxidation along with the decreases in expression of manganese superoxide dismutase, copper-zinc superoxide dismutase, and catalase. These changes induced by UUO were significantly attenuated by orchiectomy. CONCLUSION Males are more susceptible to UUO-induced kidney fibrosis compared with females, and the higher susceptibility of males is obviated by orchiectomy along with reduction in oxidative stress.
Collapse
Affiliation(s)
- Min Hyun Cho
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | | | | |
Collapse
|
262
|
Lian YG, Zhou QG, Zhang YJ, Zheng FL. VEGF ameliorates tubulointerstitial fibrosis in unilateral ureteral obstruction mice via inhibition of epithelial-mesenchymal transition. Acta Pharmacol Sin 2011; 32:1513-21. [PMID: 21986574 DOI: 10.1038/aps.2011.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Vascular endothelial growth factor (VEGF) has been shown to be a survival factor for renal tubular epithelial cells. In the present study, we investigated whether administration of VEGF ameliorates tubulointerstitial fibrosis in a mouse model of unilateral ureteral obstruction (UUO). METHODS Thirty-six male CD-1 mice were randomly divided into three groups: sham-operation, UUO and UUO+VEGF group. VEGF (50 μg/kg) was subcutaneously injected twice daily from d 1 to d 14. Mice in each group were killed at d 3, 7, or 14 after the operation, and the tubulointerstitial fibrosis was histopathologically evaluated. Human proximal tubular epithelial cells (HK-2) were used for in vitro study. The expression levels of α-SMA, E-cadherin, TGF-β1, CTGF, and BMP-7 in the kidney were determined using Western blot and RT-PCR. RESULTS In the UUO mice, the degree of interstitial fibrosis was dramatically increased in a time-dependent manner. At d 3, 7, and 14, both the mRNA and protein expression levels for α-SMA, TGF-β1, and CTGF were significantly upregulated, whereas those for E-cadherin and BMP-7 were significantly downregulated. At d 3 and 7, VEGF treatment significantly reduced interstitial fibrosis and the expression levels for α-SMA, TGF-β1, and CTGF, while significantly increased the expression of E-cadherin and BMP-7, as compared with the UUO mice. At d 14 after operation, no significant differences were observed in the expression of the examined markers between VEGF-treated mice and UUO mice, with the exception of CTGF. In HK-2 cells, VEGF blocked TGF-β1-induced α-SMA and vimentin expression and restored E-cadherin expression in a dose-dependent manner. CONCLUSION VEGF may ameliorate renal tubulointerstitial fibrosis at the early stage in UUO mice. This effect may be related to inhibition of VEGF on renal tubular epithelial-mesenchymal transition (EMT).
Collapse
|
263
|
Suzuki S, Fukasawa H, Misaki T, Togawa A, Ohashi N, Kitagawa K, Kotake Y, Niida H, Hishida A, Yamamoto T, Kitagawa M. Up-regulation of Cks1 and Skp2 with TNFα/NF-κB signaling in chronic progressive nephropathy. Genes Cells 2011; 16:1110-1120. [PMID: 22017545 DOI: 10.1111/j.1365-2443.2011.01553.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cyclin-dependent kinase (CDK) inhibitor p27 level is associated with progression of renal damage. We previously reported that mRNA of Skp2, a component of Skp/Cullin/F-box (SCF)-ubiquitin ligase which targets to p27, was increased in unilateral ureteral obstructive kidneys in mice and that the nephritis was attenuated in Skp2-deficient mice. However, the details have not been fully clarified. Here, we found that not only Skp2 but also cdc kinase subunit 1 (Cks1), an essential cofactor for the SCF-Skp2 ubiquitin ligase in targeting p27, was increased in another chronic progressive model, anti-thymocyte serum (ATS) rat nephropathy. After induction of ATS nephropathy, Skp2(+) /Cks1(+) /Ki67(+) tubular epithelial cell numbers increased, and p27(+) tubular epithelial cells decreased transiently. Moreover, we found that TNFα was involved in expression of both Skp2 and Cks1 in NRK cell line as well as the in ATS nephropathy. Nuclear accumulations of NF-κB subunits RelB and p52 were increased in the tubular epithelial cells of the nephritic kidney. Both Skp2 and Cks1 were colocalized with RelB in these cells. These data suggest that both Skp2 and Cks1 are up-regulated by the TNFα-RelB/p52 pathway in the early stages of renal damage and are collaboratively involved in down-regulation of p27 in proliferative tubular dilation and the progression of chronic nephropathy.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Department of Biochemistry 1, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Chiang CK, Sheu ML, Lin YW, Wu CT, Yang CC, Chen MW, Hung KY, Wu KD, Liu SH. Honokiol ameliorates renal fibrosis by inhibiting extracellular matrix and pro-inflammatory factors in vivo and in vitro. Br J Pharmacol 2011; 163:586-97. [PMID: 21265825 DOI: 10.1111/j.1476-5381.2011.01242.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis acts as the common pathway leading to the development of end-stage renal disease. The present study investigated, in vivo and in vitro, the anti-fibrotic and anti-inflammatory effects, particularly on the epithelial to mesenchymal transition of renal tubular cells, exerted by honokiol, a phytochemical used in traditional medicine, and mechanisms underlying these effects. EXPERIMENTAL APPROACH Anti-fibrotic effects in vivo were assayed in a rat model of renal fibrosis [the unilateral ureteral obstruction (UUO) model]. A rat tubular epithelial cell line (NRK-52E) was stimulated by transforming growth factor-β1 (TGF-β1) and treated with honokiol to explore possible mechanisms of these anti-fibrotic effects. Gene or protein expression was analysed by Northern or Western blotting. Transcriptional regulation was investigated using luciferase activity driven by a connective tissue growth factor (CTGF) promoter. KEY RESULTS Honokiol slowed development of renal fibrosis both in vivo and in vitro. Honokiol treatment attenuated tubulointerstitial fibrosis and expression of pro-fibrotic factors in the UUO model. Honokiol also decreased expression of the mRNA for the chemokine CCL2 and for the intracellular adhesion molecule-1, as well as accumulation of type I (α1) collagen and fibronectin in UUO kidneys. Phosphorylation of Smad-2/3 induced by TGF-β1 and CTGF luciferase activity in renal tubular cells were also inhibited by honokiol. CONCLUSIONS AND IMPLICATIONS Honokiol suppressed expression of pro-fibrotic and pro-inflammatory factors and of extracellular matrix proteins. Honokiol may become a therapeutic agent to prevent renal fibrosis.
Collapse
Affiliation(s)
- Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Li Z, Xie WB, Escano CS, Asico LD, Xie Q, Jose PA, Chen SY. Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. J Biol Chem 2011; 286:41323-41330. [PMID: 21990365 DOI: 10.1074/jbc.m111.259184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Response gene to complement 32 (RGC-32) is a downstream target of transforming growth factor-β (TGF-β). TGF-β is known to play a pathogenic role in renal fibrosis. In this study, we investigated RGC-32 function in renal fibrosis following unilateral ureteral obstruction (UUO) in mice, a model of progressive tubulointerstitial fibrosis. RGC-32 is normally expressed only in blood vessels of mouse kidney. However, UUO induces RGC-32 expression in renal interstitial cells at the early stage of kidney injury, suggesting that RGC-32 is involved in interstitial fibroblast activation. Indeed, expression of smooth muscle α-actin (α-SMA), an indicator of fibroblast activation, is limited to the interstitial cells at the early stage, and became apparent later in both interstitial and tubular cells. RGC-32 knockdown by shRNA significantly inhibits UUO-induced renal structural damage, α-SMA expression and collagen deposition, suggesting that RGC-32 is essential for the onset of renal interstitial fibrosis. In vitro studies indicate that RGC-32 mediates TGF-β-induced fibroblast activation. Mechanistically, RGC-32 interacts with Smad3 and enhances Smad3 binding to the Smad binding element in α-SMA promoter as demonstrated by DNA affinity assay. In the chromatin setting, Smad3, but not Smad2, binds to α-SMA promoter in fibroblasts. RGC-32 appears to be essential for Smad3 interaction with the promoters of fibroblast activation-related genes in vivo. Functionally, RGC-32 is crucial for Smad3-mediated α-SMA promoter activity. Taken together, we identify RGC-32 as a novel fibrogenic factor contributing to the pathogenesis of renal fibrosis through fibroblast activation.
Collapse
Affiliation(s)
- Zuguo Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Wei-Bing Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Crisanto S Escano
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, D. C. 20010
| | - Laureano D Asico
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, D. C. 20010
| | - Qiyun Xie
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Pedro A Jose
- Center for Molecular Physiology Research, Children's National Medical Center, Washington, D. C. 20010; Georgetown University Medical Center, Washington, D. C. 20007
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
266
|
Veerappan A, Reid AC, O'Connor N, Mora R, Brazin JA, Estephan R, Kameue T, Chen J, Felsen D, Seshan SV, Poppas DP, Maack T, Silver RB. Mast cells are required for the development of renal fibrosis in the rodent unilateral ureteral obstruction model. Am J Physiol Renal Physiol 2011; 302:F192-204. [PMID: 21957176 DOI: 10.1152/ajprenal.00562.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mast cells are associated with inflammation and fibrosis. Whether they protect against or contribute to renal fibrosis is unclear. Based on our previous findings that mast cells can express and secrete active renin, and that angiotensin (ANG II) is profibrotic, we hypothesized that mast cells play a critical role in tubulointerstitial fibrosis. We tested this hypothesis in the 14-day unilateral ureteral obstruction (UUO) model in rats and mast cell-deficient (MCD) mice (WBB6F1-W/Wv) and their congenic controls (CC). In the 14-day UUO rat kidney, mast cell number is increased and they express active renin. Stabilizing mast cells in vivo with administration of cromolyn sodium attenuated the development of tubulointerstitial fibrosis, which was confirmed by measuring newly synthesized pepsin-soluble collagen and blind scoring of fixed trichrome-stained kidney sections accompanied by spectral analysis. Fibrosis was absent in UUO kidneys from MCD mice unlike that observed in the CC mice. Losartan treatment reduced the fibrosis in the CC UUO kidneys. The effects of mast cell degranulation and renin release were tested in the isolated, perfused kidney preparation. Mast cell degranulation led to renin-dependent protracted flow recovery. This demonstrates that mast cell renin is active in situ and the ensuing ANG II can modulate intrarenal vascular resistance in the UUO kidney. Collectively, the data demonstrate that mast cells are critical to the development of renal fibrosis in the 14-day UUO kidney. Since renin is present in human kidney mast cells, our work identifies potential targets in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Arul Veerappan
- Dept. of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., Box 75, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Chuang YH, Chuang WL, Huang SP, Liu CK, Huang CH. Atorvastatin ameliorates tissue damage of obstructed ureter in rats. Life Sci 2011; 89:795-805. [PMID: 21971118 DOI: 10.1016/j.lfs.2011.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 08/18/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
AIMS To investigate the effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor on the tissue damage and fibrosis of obstructed ureters, 80 rats were studied. MAIN METHODS Atorvastatin, a HMG-CoA reductase inhibitor, was administered to 40 rats at the dose of 20 mg/kg per day 1day before unilateral ligation of ureters and every day thereafter. The other rats served as controls. Eight rats from each group were sacrificed for examination on days 7, 14, 21, 28 and 42 after ligation, respectively. The expressions of transforming growth factor-β1 (TGF-β1), Interleukine-1β (IL-1β), Interleukine-6 (IL-6), tumor necrosis factor-alpha (TNF-α), proliferation cell nuclear antigen (PCNA), and the apoptotic cells in the ureteric smooth muscle were examined. KEY FINDINGS Hydroureter and fibrosis of the muscle layer became progressively aggravated in the ligated ureters of the atorvastatin-treated group and control group. The severities of hydroureter and muscle layer fibrosis in the ligated ureters of the treated group were significantly less than in the control group. The atorvastatin administration also decreased the expression of TGF-β1, IL-1β, IL-6, TNF-α, PCNA and the labeling index of apoptotic cells in the smooth muscle layer of ligated ureters in the treated group. SIGNIFICANCE We concluded that atorvastatin might ameliorate the tissue damage of obstructed ureters, at least partially, via the inhibition on TGF-β1) expression and by diminishing the effects of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yen-Hwang Chuang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
268
|
Matsuda H, Lavoie JL, Gaboury L, Hamet P, Tremblay J. HCaRG accelerates tubular repair after ischemic kidney injury. J Am Soc Nephrol 2011; 22:2077-89. [PMID: 21921141 DOI: 10.1681/asn.2010121265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The repair of the kidney after ischemia/reperfusion injury involves proliferation of proximal tubular epithelial cells as well as cell migration and differentiation. Immediately after reperfusion, expression of hypertension-related calcium-regulated gene (HCaRG/COMMD5) decreases, but its expression increases even higher than baseline during repair. HCaRG inhibits proliferation and accelerates wound healing and differentiation in cultured cells, but whether HCaRG can stimulate renal repair after ischemia/reperfusion injury is unknown. Here, transgenic mice overexpressing human HCaRG survived longer and recovered renal function faster than littermate controls after ischemia/reperfusion (64% versus 25% survival at 7 days). Proliferation of proximal tubular epithelial cells stopped earlier after ischemia/reperfusion injury, E-cadherin levels recovered more rapidly, and vimentin induction abated faster in transgenic mice. HCaRG overexpression also reduced macrophage infiltration and inflammation after injury. Taken together, these data suggest that HCaRG accelerates repair of renal proximal tubules by modulating cell proliferation of resident tubular epithelial cells and by facilitating redifferentiation.
Collapse
Affiliation(s)
- Hiroyuki Matsuda
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
269
|
Ingraham SE, McHugh KM. Current perspectives on congenital obstructive nephropathy. Pediatr Nephrol 2011; 26:1453-61. [PMID: 21327776 DOI: 10.1007/s00467-011-1799-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/20/2010] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Abstract
Congenital obstructive nephropathy is the leading cause of chronic renal disease in children. As a result, it represents a tremendous societal burden in terms of morbidity and mortality, as well as in health care expenses of caring for children with chronic kidney disease and end-stage renal disease. The various diagnostic, prognostic, and therapeutic challenges associated with congenital obstructive nephropathy highlight the importance of developing effective experimental models for studying this disease process. In this review, we define the clinical entity that is congenital obstructive nephropathy, outline the current standards of diagnosis and care, and discuss the utilization of current experimental models designed to help clarify some of the clinical conundrums associated with this important disease.
Collapse
Affiliation(s)
- Susan E Ingraham
- Section of Nephrology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | |
Collapse
|
270
|
Chiang CK, Hsu SP, Wu CT, Huang JW, Cheng HT, Chang YW, Hung KY, Wu KD, Liu SH. Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol Med 2011; 17:1295-305. [PMID: 21863214 DOI: 10.2119/molmed.2011.00131] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 08/18/2011] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress-associated apoptosis plays a role in organ remodeling after insult. The effect of ER stress on renal tubular damage and fibrosis remains controversial. This study aims to investigate whether ER stress is involved in tubular destruction and interstitial fibrosis in vivo. Renal cell apoptosis was proven by terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) stain and poly-ADP ribose polymerase expression in the unilateral ureteral obstruction (UUO) kidney. ER stress was evoked and confirmed by the upregulation of glucose-regulated protein 78 (GRP78) and the common Lys-Asp-Glu-Leu (KDEL) motif of ER retention proteins after UUO. ER stress-associated proapoptotic signals, including B-cell chronic lymphocytic leukemia (CLL)/lymphoma 2-associated × protein (BAX) expression, caspase-12 and c-Jun N-terminal kinase (JNK) phosphorylation, were activated in the UUO kidney. Prolonged ER stress attenuated both unsplicing and splicing X-box binding protein 1 (XBP-1) protein expression, but continued to activate inositol-requiring 1α (IRE1α)-JNK phosphorylation, protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2α subunit (eIF2α), activating transcription factor (ATF)-4, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleavage activating transcription factor 6 (cATF6)-CHOP signals, which induce ER stress-related apoptosis but attenuate adaptive unfolded protein responses in UUO kidneys. However, renal apoptosis and fibrosis were attenuated in candesartan-treated UUO kidney. Candesartan was associated with maintenance of XBP-1 expression and attenuated ATF4, cATF6 and CHOP protein expression. Taken together, results show that overwhelming ER stress leads to renal cell apoptosis and subsequent fibrosis; and candesartan, at least in part, restores renal integrity by blocking ER stress-related apoptosis. Reducing ER stress may present a way to attenuate renal fibrosis.
Collapse
Affiliation(s)
- Chih-Kang Chiang
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Sun D, Ma Y, Han H, Yin Z, Liu C, Feng J, Zhou X, Li X, Xiao A, Yu R. Thrombospondin-1 short hairpin RNA suppresses tubulointerstitial fibrosis in the kidney of ureteral obstruction by ameliorating peritubular capillary injury. Kidney Blood Press Res 2011; 35:35-47. [PMID: 21860248 DOI: 10.1159/000330718] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/05/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Thrombospondin-1 (TSP-1), a naturally occurring inhibitor of angiogenesis, is an important mediator of renal fibrosis in clinical and experimental kidney disease. Increasing evidence shows that the microvasculature plays a critical role in progressive renal disease. The present study was undertaken to investigate whether interstitial fibrosis could be prevented by abolishing TSP-1 function in unilateral ureteral obstruction (UUO)-induced renal fibrosis. METHODS AND RESULTS A short hairpin RNA vector, designated Thbs-1, significantly suppressed TSP-1 in both transcriptional and translational levels in in vitro-cultured cells and in vivo fibrosis-induced mouse kidney. Furthermore, TSP-1 RNA interference increased the protein level of vascular endothelial growth factor (VEGF) and the density of peritubular capillaries (PTCs), reduced the expression of hypoxia-inducible factor-1α in tubulointerstitial cells, and collagen III and the connective tissue growth factor expression were markedly reduced from day 7 after UUO-induced fibrosis, but un- or vector-treated mice maintained their expression. TSP-1 shRNA suppressed the protein level of TSP-1, increased VEGF expression and PTC density and alleviated the development of renal interstitial fibrosis in UUO mice. CONCLUSION These data suggest that inhibition of TSP-1 expression prevented tubulointerstitial fibrosis through ameliorating PTC injury.
Collapse
Affiliation(s)
- Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
The peroxisome proliferator-activated receptor-α agonist, BAY PP1, attenuates renal fibrosis in rats. Kidney Int 2011; 80:1182-97. [PMID: 21814170 DOI: 10.1038/ki.2011.254] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have shown renoprotective effects of the peroxisome proliferator-activated receptor-α (PPAR-α), but its role in kidney fibrosis is unknown. In order to gain insight into this, we examined the effect of a novel PPAR-α agonist, BAY PP1, in two rat models of renal fibrosis: unilateral ureteral obstruction and the 5/6 nephrectomy. In healthy animals, PPAR-α was expressed in tubular but not in interstitial cells. Upon induction of fibrosis, PPAR-α was significantly downregulated, and treatment with BAY PP1 significantly restored its expression. During ureteral obstruction, treatment with BAY PP1 significantly reduced tubulointerstitial fibrosis, proliferation of interstitial fibroblasts, and TGF-β(1) expression. Treatment with a less potent PPAR-α agonist, fenofibrate, had no effects. Treatment with BAY PP1, initiated in established disease in the 5/6 nephrectomy, halted the decline of renal function and significantly ameliorated renal fibrosis. In vitro, BAY PP1 had no direct effect on renal fibroblasts but reduced collagen, fibronectin, and TGF-β(1) expression in tubular cells. Conditioned media of BAY PP1-treated tubular cells reduced fibroblast proliferation. Thus, renal fibrosis is characterized by a reduction of PPAR-α expression, and treatment with BAY PP1 restores PPAR-α expression and ameliorates renal fibrosis by modulating the cross-talk between tubular cells and fibroblasts. Hence, potent PPAR-α agonists might be useful in the treatment of renal fibrosis.
Collapse
|
273
|
Tsutsumi T, Adachi M, Nikawadori M, Morishige J, Tokumura A. Presence of bioactive lysophosphatidic acid in renal effluent of rats with unilateral ureteral obstruction. Life Sci 2011; 89:195-203. [DOI: 10.1016/j.lfs.2011.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|
274
|
Yuan Q, Wang R, Peng Y, Fu X, Wang W, Wang L, Zhang F, Peng Z, Ning W, Hu G, Wang Z, Tao L. Fluorofenidone attenuates tubulointerstitial fibrosis by inhibiting TGF-β(1)-induced fibroblast activation. Am J Nephrol 2011; 34:181-94. [PMID: 21791914 DOI: 10.1159/000329080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/30/2011] [Indexed: 12/28/2022]
Abstract
BACKGROUND Novel therapeutic agents are urgently needed to combat renal fibrosis. The purpose of this study was to assess, using complete unilateral ureteral obstruction (UUO) in rats, whether fluorofenidone (AKF-PD) [1-(3-fluorophenyl)-5-methyl-2-(1H)-pyridone] inhibits renal fibrosis, and to determine whether it exerts its inhibitory function on renal fibroblast activation. METHODS Sprague-Dawley rats were randomly divided into 3 groups: sham operation, UUO and UUO/AKF-PD (500 mg/kg/day). Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of TGF-β(1), collagen III, α-SMA, p-Smad2, p-Smad3, p-ERK1/2, p-JNK and p-p38 were measured. In addition, the expressions of α-SMA, fibronectin, CTGF, p-Smad2/3, p-ERK1/2, p-p38 and p-JNK were measured in TGF-β(1)-stimulated normal rat renal fibroblasts (NRK-49F). RESULTS AKF-PD treatment significantly attenuated tubulointerstitium damage, ECM deposition, the expressions of TGF-β(1), collagen III, α-SMA, p-ERK1/2, p-p38 and p-JNK in vivo. In vitro, AKF-PD dose-dependently inhibited expressions of α-SMA, fibronectin and CTGF. Furthermore, AKF-PD did not inhibit Smad2/3 phosphorylation or nuclear accumulation, but rather attenuated ERK, p38 and JNK activation. CONCLUSION AKF-PD treatment inhibits the progression of renal interstitial fibrosis in obstructed kidneys; this is potentially achieved by suppressing fibroblast activation. Therefore, AKF-PD is a special candidate for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Qiongjing Yuan
- Division of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Grande MT, Arévalo M, Núñez A, Cannata-Andía JB, Santos E, López-Novoa JM. Targeted genomic disruption of H-ras and N-ras has no effect on early renal changes after unilateral ureteral ligation. World J Urol 2011; 27:787-97. [PMID: 19288266 DOI: 10.1007/s00345-009-0399-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 02/23/2009] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To assess the contribution of two different Ras monomeric GTPases isoforms H- and N-Ras in the early changes associated to obstructive nephropathy induced by unilateral ureteral obstruction (UUO). METHODS UUO was performed in N-ras (N-ras−/−) and H-ras (H-ras−/−) knock-out mice and control (H-ras+/+/N-ras+/+) mice of C57Bl/6 background. Fibronectin, α-smooth muscle actin, cleaved caspase-3, ki-67, Ras-GTP, pERK, and pAkt expression was analyzed by western blot and/or immunohistochemistry. Ras isoforms activation and caspase activity were determined by both western blot and ELISA. RESULTS Three days after UUO, obstructed (O) kidneys of H-ras−/−, N-ras−/−and H-ras+/+/N-ras+/+mice showed no significant differences in activated total ras, pERK1/2, pAkt, total Akt levels, fibronectin, α-SMA expression, cell proliferation, and activated caspase-3. The morphological alterations in the O kidneys, revealed by histological and immunohistochemical studies, were also similar in H-ras−/−, N-ras−/−, and H-ras+/+/N-ras+/+mice. CONCLUSIONS These data suggest that the activation of H-ras and N-ras isoforms does not play a major role in the early renal damage induced by UUO.
Collapse
Affiliation(s)
- María T Grande
- Departamento de Fisiología y Farmacología, Instituto Reina Sofía de Investigación Nefrológica, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
276
|
Choi DE, Jeong JY, Lim BJ, Chang YK, Na KR, Shin YT, Lee KW. Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice. J Urol 2011; 186:694-701. [PMID: 21683401 DOI: 10.1016/j.juro.2011.03.122] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Indexed: 12/12/2022]
Abstract
PURPOSE Renin-angiotensin system activation is involved in inflammation and fibrosis in the kidney. Aliskiren, a direct renin inhibitor, decreases renin-angiotensin system activation, including plasma renin activity and angiotensin II, but increases the prorenin level, which may promote inflammation and fibrosis in renal tissue. Thus, we evaluated whether inhibiting the renin-angiotensin system by aliskiren would decrease renal inflammation and fibrosis in a mouse model of unilateral ureteral obstruction. MATERIALS AND METHODS Ten-week-old male C57BL/6 mice (Samtako, Kyoung Gi-Do, Korea) weighing 30 to 33 gm were divided into 4 groups, including vehicle or aliskiren treated sham operated and vehicle or aliskiren treated unilateral ureteral obstruction groups. We evaluated plasma renin activity, and plasma renin and renal mRNA expression levels of renin and (pro)renin receptor. To evaluate inflammation and fibrosis renal mRNA expression of monocyte chemotactic protein-1, osteopontin and transforming growth factor-β was measured. Hematoxylin and eosin, Masson's trichrome staining, and immunohistochemical staining for CD68, transforming growth factor-β and α-smooth muscle actin were performed. RESULTS Plasma renin activity was significantly lower in the aliskiren treated obstruction group than in the vehicle treated obstruction group. Aliskiren treatment increased renal mRNA expression of renin. The number of CD68 positive cells, and renal monocyte chemotactic protein-1 and osteopontin mRNA levels were significantly higher in mice with unilateral ureteral obstruction than in sham operated mice. Aliskiren decreased the increased levels of these inflammation markers. Aliskiren also decreased renal transforming growth factor-β mRNA expression, transforming growth factor-β and α-smooth muscle actin immunostaining, and Masson's trichrome stained areas of unilateral ureteral obstruction kidneys. CONCLUSIONS Aliskiren has anti-inflammatory and antifibrotic effects in an experimental unilateral ureteral obstruction mouse model.
Collapse
Affiliation(s)
- Dae Eun Choi
- Department of Nephrology, Chungnam National University Hospital, Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
277
|
Kim J, Padanilam BJ. Loss of poly(ADP-ribose) polymerase 1 attenuates renal fibrosis and inflammation during unilateral ureteral obstruction. Am J Physiol Renal Physiol 2011; 301:F450-9. [PMID: 21613422 DOI: 10.1152/ajprenal.00059.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) contributes to necrotic cell death and inflammation in several disease models; however, the role of PARP1 in fibrogenesis remains to be defined. Here, we tested whether PARP1 was involved in the pathogenesis of renal fibrosis using the unilateral ureteral obstruction (UUO) mouse model. UUO was performed by ligation of the left ureter near the renal pelvis in Parp1-knockout (KO) and wild-type (WT) male mice. After 10 days of UUO, renal PARP1 expression and activation were strongly increased by 6- and 13-fold, respectively. Interstitial fibrosis induced by UUO was significantly attenuated in Parp1-KO kidneys compared with that in WT kidneys at 10 days, but not at 3 days, based on collagen deposition, α-smooth muscle actin (α-SMA), and fibronectin expression. Intriguingly, the UUO kidneys in Parp1-KO mice showed a dramatic decrease in infiltration of neutrophil and reduction in expression of proinflammatory proteins including intercellular adhesion molecule-1, tumor necrosis factor-α, inducible nitric oxide synthase, and toll-like receptor 4 as well as phosphorylation of nuclear factor-κB p65, but not transforming growth factor-β1 (TGF-β1) at both 3 and 10 days. Pharmacological inhibition of PARP1 in rat renal interstitial fibroblast (NRK-49F) cell line or genetic ablation in primary mouse embryonic fibroblast cells did not affect TGF-β1-induced de novo α-SMA expression. Parp1 deficiency significantly attenuated UUO-induced histological damage in the kidney tubular cells, but not apoptosis. These data suggest that PARP1 induces necrotic cell death and contributes to inflammatory signaling pathways that trigger fibrogenesis in obstructive nephropathy.
Collapse
Affiliation(s)
- Jinu Kim
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Center, Omaha, 68198-5850, USA
| | | |
Collapse
|
278
|
Kato N, Kosugi T, Sato W, Ishimoto T, Kojima H, Sato Y, Sakamoto K, Maruyama S, Yuzawa Y, Matsuo S, Kadomatsu K. Basigin/CD147 promotes renal fibrosis after unilateral ureteral obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:572-9. [PMID: 21281789 DOI: 10.1016/j.ajpath.2010.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/03/2010] [Accepted: 10/01/2010] [Indexed: 12/20/2022]
Abstract
Regardless of their primary causes, progressive renal fibrosis and tubular atrophy are the main predictors of progression to end-stage renal disease. Basigin/CD147 is a multifunctional molecule-it induces matrix metalloproteinases and hyaluronan, for example-and has been implicated in organ fibrosis. However, the relationship between basigin and organ fibrosis has been poorly studied. We investigated basigin's role in renal fibrosis using a unilateral ureteral obstruction model. Basigin-deficient mice (Bsg(-/-)) demonstrated significantly less fibrosis after surgery than Bsg(+/+) mice. Fewer macrophages had infiltrated in Bsg(-/-) kidneys. Consistent with these in vivo data, primary cultured tubular epithelial cells from Bsg(-/-) mice produced less matrix metalloproteinase and exhibited less motility on stimulation with transforming growth factor β. Furthermore, Bsg(-/-) embryonic fibro blasts produced less hyaluronan and α-smooth muscle actin after transforming growth factor β stimulation. Together, these results demonstrate for the first time that basigin is a key regulator of renal fibrosis. Basigin could be a candidate target molecule for the prevention of organ fibrosis.
Collapse
Affiliation(s)
- Noritoshi Kato
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy. Mol Cell Biochem 2011; 354:263-73. [DOI: 10.1007/s11010-011-0826-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/15/2011] [Indexed: 11/26/2022]
|
280
|
Nitta K. [IV. Others: 6. Malignancy and kidney injury]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2011; 100:1330-1335. [PMID: 21702151 DOI: 10.2169/naika.100.1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Japan
| |
Collapse
|
281
|
Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, Takahashi M, Boothman DA, Kuro-O M. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 2011; 286:8655-8665. [PMID: 21209102 PMCID: PMC3048747 DOI: 10.1074/jbc.m110.174037] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 01/04/2011] [Indexed: 01/05/2023] Open
Abstract
Fibrosis is a pathological process characterized by infiltration and proliferation of mesenchymal cells in interstitial space. A substantial portion of these cells is derived from residing non-epithelial and/or epithelial cells that have acquired the ability to migrate and proliferate. The mesenchymal transition is also observed in cancer cells to confer the ability to metastasize. Here, we show that renal fibrosis induced by unilateral ureteral obstruction and metastasis of human cancer xenografts are suppressed by administration of secreted Klotho protein to mice. Klotho is a single-pass transmembrane protein expressed in renal tubular epithelial cells. The extracellular domain of Klotho is secreted by ectodomain shedding. Secreted Klotho protein directly binds to the type-II TGF-β receptor and inhibits TGF-β1 binding to cell surface receptors, thereby inhibiting TGF-β1 signaling. Klotho suppresses TGF-β1-induced epithelial-to-mesenchymal transition (EMT) responses in cultured cells, including decreased epithelial marker expression, increased mesenchymal marker expression, and/or increased cell migration. In addition to TGF-β1 signaling, secreted Klotho has been shown to inhibit Wnt and IGF-1 signaling that can promote EMT. These results have raised the possibility that secreted Klotho may function as an endogenous anti-EMT factor by inhibiting multiple growth factor signaling pathways simultaneously.
Collapse
Affiliation(s)
| | | | - Osamu Togao
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | | - Lei Wang
- From the Departments of Pathology
| | | | | | - Susan Schiavi
- the Genzyme Corporation, Cambridge, Massachusetts 02142, and
| | - Noriaki Yorioka
- the Department of Advanced Nephrology, Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima 734-8551, Japan
| | - Masaya Takahashi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | | | | |
Collapse
|
282
|
Esposito E, Mondello S, Di Paola R, Mazzon E, Italiano D, Paterniti I, Mondello P, Aloisi C, Cuzzocrea S. Glutamine contributes to ameliorate inflammation after renal ischemia/reperfusion injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:493-508. [PMID: 21394482 DOI: 10.1007/s00210-011-0610-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 02/01/2011] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the effects of glutamine in an in vivo rat model of renal ischemia/reperfusion (I/R) injury. Male Wistar rats underwent bilateral renal pedicle clamping for 45 min followed by reperfusion for 6 h. Glutamine (1.5 mg/kg) was administered intraperitoneally (i.p.) 15 min prior to reperfusion. Plasma concentrations of urea, creatinine, γ-glutamyl transferase (γ-GT), and aspartate aminotransferase (AST) were measured for the assessment of renal function and reperfusion injury. Markers of oxidative stress, expression of the pro-inflammatory mediators inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), AT-1 expression, and changes in the oxidative stress-sensitive nuclear factor kappa B (NF-κB) signaling pathway were measured to investigate whether glutamine can reduce the renal dysfunction. Kidney myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels were measured for assessment of polymorphonuclear (PMN) cell infiltration and lipid peroxidation, respectively. Renal sections were used for histologic grading of renal injury and for immunohistochemical localization of nitrotyrosine and poly(ADP-ribose) synthetase (PARS). In vivo, glutamine significantly reduced the increase in urea, creatinine, γ-GT, AST, produced by renal ischemia/reperfusion (I/R), suggesting an improvement in both renal function and injury. Glutamine significantly reduced iNOS and NF-κB, kidney MPO activity and MDA levels, indicating a reduction in PMN infiltration and lipid peroxidation, respectively. Glutamine reduced the histological evidence of renal damage associated with I/R and caused a substantial reduction in the staining for nitrotyrosine and PARS, suggesting reduced nitrosative and oxidative stress. Moreover, glutamine attenuated the reduction of COX-2 expression and prevented the increased AT-1 expression after I/R. Our results suggest that glutamine reduces the renal dysfunction and injury associated with I/R of the kidney.
Collapse
Affiliation(s)
- Emanuela Esposito
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Centro Neurolesi Bonino-Pulejo, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Abstract
Fibrosis of the kidney is caused by the prolonged injury and deregulation of normal wound healing and repair processes, and by an excess deposition of extracellular matrices. Despite intensive research, our current understanding of the precise mechanism of fibrosis is limited. There is a connection between fibrotic events involving inflammatory and non-inflammatory glomerulonephritis, inflammatory cell infiltration, and podocyte loss. The current review will discuss the inflammatory response after renal injury that leads to fibrosis in relation to non-inflammatory mechanisms.
Collapse
|
284
|
Lakshmanan AP, Watanabe K, Thandavarayan RA, Sari FR, Harima M, Giridharan VV, Soetikno V, Kodama M, Aizawa Y. Telmisartan attenuates oxidative stress and renal fibrosis in streptozotocin induced diabetic mice with the alteration of angiotensin-(1–7)masreceptor expression associated with its PPAR-γ agonist action. Free Radic Res 2011; 45:575-84. [DOI: 10.3109/10715762.2011.560149] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
285
|
Kishimoto K, Kinoshita K, Hino S, Yano T, Nagare Y, Shimazu H, Nozaki Y, Sugiyama M, Ikoma S, Funauchi M. Therapeutic effect of retinoic acid on unilateral ureteral obstruction model. Nephron Clin Pract 2011; 118:e69-78. [PMID: 21228601 DOI: 10.1159/000322409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/22/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Retinoic acids, a group of natural and synthetic vitamin A derivatives, have potent anti-proliferative, anti-inflammatory and anti-fibrotic properties. We investigated the therapeutic effect of all-trans-retinoic acid (ATRA) on unilateral ureteral obstruction (UUO) model mice. METHODS First, to evaluate the prophylactic effect, we administered 0.5 mg of ATRA for 3 days before UUO (UUO ATRA). Then, to evaluate the therapeutic effects, we administered 0.5 mg of ATRA 3 days after UUO (Day 3 ATRA). We compared the histological changes and immunostaining of macrophages, α-smooth muscle actin (α-SMA) and collagen I, and mRNA expression of monocyte chemotactic protein-1 (MCP-1), transforming growth factor (TGF)-β(1) and TGF-β R-II by RT-PCR 7 days after UUO. RESULTS In the UUO ATRA and Day 3 ATRA groups, we observed a significant improvement in histological and immunological findings, including macrophage infiltration and improved expression of MCP-1, TGF-β(1), α-SMA and collagen I compared with the UUO Day 7 group. CONCLUSION ATRA treatment is not only an effective prophylactic strategy, but also a therapeutic strategy for the treatment of progressive renal fibrosis in diseased kidneys.
Collapse
Affiliation(s)
- Kazuya Kishimoto
- Department of Nephrology and Rheumatology, Kinki University Faculty of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Klein J, Kavvadas P, Prakoura N, Karagianni F, Schanstra JP, Bascands JL, Charonis A. Renal fibrosis: Insight from proteomics in animal models and human disease. Proteomics 2011; 11:805-15. [DOI: 10.1002/pmic.201000380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/15/2010] [Indexed: 12/31/2022]
|
287
|
Rinaldi Tosi ME, Bocanegra V, Manucha W, Gil Lorenzo A, Vallés PG. The Nrf2-Keap1 cellular defense pathway and heat shock protein 70 (Hsp70) response. Role in protection against oxidative stress in early neonatal unilateral ureteral obstruction (UUO). Cell Stress Chaperones 2011; 16:57-68. [PMID: 20734248 PMCID: PMC3024087 DOI: 10.1007/s12192-010-0221-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 01/21/2023] Open
Abstract
Perturbation of renal tubular antioxidants and overproduction of reactive oxygen species may amplify the proinflammatory state of renal obstruction, culminating in oxidative stress and tubular loss. Here, we analyzed the heat shock protein 70 (Hsp70) response and the function and signal transduction of NF-E2-related protein 2 (Nrf2) transcription factor on oxidative stress modulation in obstruction. Rats were subjected to unilateral ureteral obstruction or sham operation and kidneys harvested at 5, 7, 10, and 14 days after obstruction. Hsp70 expression and Nrf2 activity and its downstream target gene products were assessed. After 10 and 14 days of obstruction, enhanced lipid peroxidation through higher thiobarbituric acid reactive substances levels and increased oxidative stress resulted in reduced total antioxidant activity and enhanced nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity were demonstrated. This was accompanied by decreased inducible Hsp70 expression and a progressive reduction of nuclear Nrf2 and its target gene products glutathione S-transferase A2 (GSTA2) and NADPH/quinone oxidoreductase 1 (NQO1), whereas the Nrf2 repressor Kelch-like ECH-associated protein-1 (Keap1) was upregulated. By contrast, on early obstruction for 7 days, lack of increased oxidative markers associated with higher inducible Hsp70 protein levels and a rapid nuclear accumulation of Nrf2, Keap1 downregulation, and mRNA induction of the identified Nrf2-dependent genes, NQO1 and GSTA2, were shown. For these results, we suggest that the magnitude of cytoprotection in early obstruction depends on the combined contribution of induced activation of Nrf2 upregulating its downstream gene products and Hsp70 response. Impaired ability to mount the biological response to the prevailing oxidative stress leading to renal injury was shown in prolonged obstruction.
Collapse
Affiliation(s)
- Martin E. Rinaldi Tosi
- Área de Farmacología y Toxicología, Departamento de Farmacia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- IMBECU-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza, Argentina
| | - Victoria Bocanegra
- IMBECU-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza, Argentina
| | - Walter Manucha
- IMBECU-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza, Argentina
| | - Andrea Gil Lorenzo
- IMBECU-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza, Argentina
| | - Patricia G. Vallés
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, 5500 Mendoza, Argentina
- Área de Farmacología y Toxicología, Departamento de Farmacia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- IMBECU-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Mendoza, Argentina
| |
Collapse
|
288
|
Abstract
The discussion of renal failure as it relates to urology is largely a discussion of obstructive uropathy. Obstructive uropathy has been identified in multiple series to account for approximately 10% of all cases of renal failure. On a total population scale, autopsy series have shown the prevalence of hydronephrosis in 3% of men and women who are younger than 65 years and 6% of men older than 65 years. When benign prostatic hypertrophy and renal stone disease are considered, obstructive uropathy is also one of the most common indications for surgery. In this review, the different causes of obstructive renal insufficiency and management options available are discussed.
Collapse
Affiliation(s)
- Mohummad Minhaj Siddiqui
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street GRB 1102, Boston, MA 02114, USA.
| | | |
Collapse
|
289
|
Matsusaka T, Kobayashi K, Kon V, Pastan I, Fogo AB, Ichikawa I. Glomerular sclerosis is prevented during urinary tract obstruction due to podocyte protection. Am J Physiol Renal Physiol 2010; 300:F792-800. [PMID: 21177778 DOI: 10.1152/ajprenal.00570.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urine outflow obstruction activates a variety of profibrotic factors, including the intrarenal renin-angiotensin system. However, the obstruction also nullifies the transmural hydraulic pressure difference across the glomerular capillary wall, an established inducer of glomerulosclerosis. In the present study, we investigated whether, and by what mechanism, urine outflow obstruction affects the process of progressive glomerulosclerosis. For this purpose, we tested the effect of unilateral ureteral obstruction (UUO) of 7 days duration in two distinct mouse models of glomerulosclerosis. In the human immunodeficiency virus (HIV) nephropathy model, where HIV-1 genes are selectively expressed in podocytes and develop progressive podocyte damage and glomerulosclerosis, UUO protected against sclerosis with preservation of podocytes morphologically and immunohistochemically. In contrast, the nonobstructed contralateral kidneys of these mice, as well as sham-operated HIV-1 mouse kidneys, developed severe podocyte injury and glomerulosclerosis. The protection against glomerulosclerosis imparted by ureteral obstruction was also documented in the NEP25 model of podocyte injury, in which a single injection of immunotoxin, LMB2, triggers selective podocyte injury followed by glomerulosclerosis, both of which were protected by UUO. Notably, intervention with an angiotensin II type 1 receptor antagonist provided only a partial protective effect in each of the models. These results demonstrate that urine outflow obstruction protects the glomerulus from progressive sclerosis. The results further reveal that this protection occurs at a very early stage of the pathologic process, namely, damage of podocytes.
Collapse
Affiliation(s)
- Taiji Matsusaka
- Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
290
|
Correa-Costa M, Semedo P, Monteiro APFS, Silva RC, Pereira RL, Gonçalves GM, Marques GDM, Cenedeze MA, Faleiros ACG, Keller AC, Shimizu MHM, Seguro AC, Reis MA, Pacheco-Silva A, Câmara NOS. Induction of heme oxygenase-1 can halt and even reverse renal tubule-interstitial fibrosis. PLoS One 2010; 5:e14298. [PMID: 21179206 PMCID: PMC3001459 DOI: 10.1371/journal.pone.0014298] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023] Open
Abstract
Background The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-β protein production was significantly lower in Hemin-treated animals. Conclusion Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.
Collapse
Affiliation(s)
- Matheus Correa-Costa
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Patricia Semedo
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Paula F. S. Monteiro
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Reinaldo C. Silva
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafael L. Pereira
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Giselle M. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
| | - Georgia Daniela Marcusso Marques
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos A. Cenedeze
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana C. G. Faleiros
- Pathology Division, Federal University of Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Alexandre C. Keller
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria H. M. Shimizu
- Nephrology Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Antônio C. Seguro
- Nephrology Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marlene A. Reis
- Pathology Division, Federal University of Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Alvaro Pacheco-Silva
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Niels O. S. Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
291
|
Matsuda H, Mori T, Kurumazuka D, Kitada K, Hayashi T, Nagatoya K, Inoue T, Ukimura A, Matsumura Y, Ishizaka N, Kitaura Y. Inhibitory effects of T/L-type calcium channel blockers on tubulointerstitial fibrosis in obstructed kidneys in rats. Urology 2010; 77:249.e9-15. [PMID: 21071071 DOI: 10.1016/j.urology.2010.07.496] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/23/2010] [Accepted: 07/23/2010] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To examine the effect of L- and T/L-type calcium channel blockers on interstitial fibrosis in chronic unilateral ureteral obstruction (UUO). Tubulointerstitial fibrosis is a common outcome of several progressive renal diseases. Calcium channel blockers are widely used for the treatment of hypertension with renal diseases; however, the direct effect of calcium channel blockers on renal diseases independent of lowering blood pressure has not been fully elucidated. METHODS Sprague-Dawley rats were divided into 3 treatment groups: (1) vehicle control; (2) nifedipine, an L-type calcium channel blockers; and (3) efonidipine, a T/L-type calcium channel blockers. Treatment was initiated 1 day before and continued until 6 days after creation of the UUO. RESULTS Tubulointerstitial fibrosis in the obstructed kidney was significantly increased compared with that in the contralateral unobstructed kidney. Furthermore, the increased fibrosis was accompanied by increased fibrogenic signaling expressed by transforming growth factor β1 and connective tissue growth factor mRNA levels, increased oxidative stress expressed by p22phox, p47phox and gp91phox mRNA level. Moreover, treatment with a nonhypotensive dose of efonidipine but not nifedipine in the obstructed kidney significantly suppressed the fibrogenic signaling and the oxidative stress, resulting in reduced tubulointerstitial fibrosis. The plasma aldosterone level in efonidipine-treated animals was increased compared with vehicle-treated animals, although not significantly. The increased plasma aldosterone level did not increase sgk-1 mRNA level in efonidipine but not in nifedipine treated animals. CONCLUSIONS Treatment with efonidipine improved tubulointerstitial fibrosis more effectively than treatment with nifedipine in UUO. The antifibrogenic effect by efonidipine was obtained through suppression of fibrogenic signaling.
Collapse
Affiliation(s)
- Hirohisa Matsuda
- Department of Internal Medicine III, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Marin EP, Moeckel G, Al-Lamki R, Bradley J, Yan Q, Wang T, Wright PL, Yu J, Sessa WC. Identification and regulation of reticulon 4B (Nogo-B) in renal tubular epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2765-73. [PMID: 20971739 DOI: 10.2353/ajpath.2010.100199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nogo-B is a member of the reticulon family of proteins that has been implicated in diverse forms of vascular injury. Although Nogo-B is expressed in renal tissues, its localization and function in the kidney have not been examined. Here, we report that Nogo-B is expressed specifically in the epithelial cells of the distal nephron segments in the murine kidney. After unilateral ureteral obstruction (UUO) and ischemia/reperfusion, Nogo-B gene and protein levels increased dramatically in the kidney. This increase was driven in part by injury-induced de novo expression in proximal tubules. Examination of Nogo-B immunostaining in human biopsy specimens from patients with acute tubular necrosis showed similar increases in Nogo-B in cortical tubules. Mice genetically deficient in Nogo-A/B were indistinguishable from wild-type (WT) mice based on histological appearance and serum analyses. After UUO, there was a significant delay in recruitment of macrophages to the kidney in the Nogo-A/B-deficient mice. However, measurements of fibrosis, inflammatory gene expression, and histological damage were not significantly different from WT mice. Thus, Nogo-B is highly expressed in murine kidneys in response to experimental injuries and may serve as a marker of diverse forms of renal injury in tissues from mice and humans. Furthermore, Nogo-B may regulate macrophage recruitment after UUO, although it does not greatly affect the degree of tissue injury or fibrosis in this model.
Collapse
Affiliation(s)
- Ethan P Marin
- Department of Nephrology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
López-Novoa JM, Martínez-Salgado C, Rodríguez-Peña AB, Hernández FJL. Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. Pharmacol Ther 2010; 128:61-81. [DOI: 10.1016/j.pharmthera.2010.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 12/17/2022]
|
294
|
Dendooven A, Ishola DA, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA. Oxidative stress in obstructive nephropathy. Int J Exp Pathol 2010; 92:202-10. [PMID: 20804541 DOI: 10.1111/j.1365-2613.2010.00730.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Unilateral ureteric obstruction (UUO) is one of the most commonly applied rodent models to study the pathophysiology of renal fibrosis. This model reflects important aspects of inflammation and fibrosis that are prominent in human kidney diseases. In this review, we present an overview of the factors contributing to the pathophysiology of UUO, highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Amélie Dendooven
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
295
|
Wu WP, Chang CH, Chiu YT, Ku CL, Wen MC, Shu KH, Wu MJ. A reduction of unilateral ureteral obstruction-induced renal fibrosis by a therapy combining valsartan with aliskiren. Am J Physiol Renal Physiol 2010; 299:F929-41. [PMID: 20685818 DOI: 10.1152/ajprenal.00192.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The protective effect of combination therapy with valsartan and aliskiren against renal fibrosis remains to be defined. This study was undertaken to examine the protective effects of the combination of valsartan and aliskiren against renal fibrosis induced by unilateral ureteral obstruction (UUO). Combination therapy with valsartan (15 mg·kg(-1)·day(-1)) and aliskiren (10 mg·kg(-1)·day(-1)), valsartan monotherapy (30 mg·kg(-1)·day(-1)), and aliskiren monotherapy (20 mg·kg(-1)·day(-1)) all significantly ameliorated the increase in blood urea nitrogen and the degree of hydronephrosis determined by the increase in weight and length of the obstructed kidney. The dose titration study and blood pressure measurement confirmed that the combination therapy provided a greater benefit independent of the vasodilatory effect. There were no significant changes in serum levels of creatinine, sodium, and potassium in UUO rats and any treatment groups. Combination therapy also attenuated UUO-related increases in the scores of tubular dilatation, interstitial volume, interstitial collagen deposition, α-smooth muscle actin, the activation of ERK 1/2, the infiltration of monocytes/macrophages, the mRNA expression of snail-1, and transforming growth factor-β1 to a greater extent compared with aliskiren or valsartan used alone. The mRNA expression of renin and the (pro)renin receptor significantly increased after UUO. Combination therapy and monotherapy of valsartan and aliskiren had a comparable enhancing effect on the mRNA expression of renin, whereas all these treatments did not affect the expression of the (pro)renin receptor. In conclusion, a direct renin inhibitor in conjunction with an angiotensin II receptor blocker exerts increased renal protection against renal fibrosis and inflammation during obstruction over either agent alone.
Collapse
Affiliation(s)
- Wen-Pyng Wu
- Graduate Institute of Clinical Medical Science, China Medical University, China
| | | | | | | | | | | | | |
Collapse
|
296
|
Combined rho kinase and renin-angiotensin system inhibition: a new therapeutic perspective for renal and cardiovascular remodeling. Hypertens Res 2010; 33:883-5. [PMID: 20664549 DOI: 10.1038/hr.2010.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
297
|
Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int 2010; 78:668-78. [PMID: 20631674 DOI: 10.1038/ki.2010.214] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obstructive nephropathy leads to chronic kidney disease, characterized by a progressive epithelial-to-mesenchymal cell transition (EMT)-driven interstitial fibrosis. To identify the mechanisms causing EMT, we used the mouse model of unilateral ureteral obstruction and found a rapid and significant increase in serum- and glucocorticoid-regulated kinase-1 (SGK1) expression in the kidneys with an obstructed ureter. Knockout of SGK1 significantly suppressed obstruction-induced EMT, kidney fibrosis, increased glycogen synthase kinase-3β activity, and decreased accumulation of the transcriptional repressor Snail. This caused a reduced expression of the mesenchymal marker α-smooth muscle actin, and collagen deposition in this model. In cultured kidney epithelial cells, mechanical stretch or treatment with transforming growth factor-β not only stimulated the transcription of SGK1, but also stimulated EMT in an SGK1-dependent manner. Activated SGK1 stimulated Snail accumulation and downregulation of the epithelial marker E-cadherin. Hence, our study shows that SGK1 is involved in mediating fibrosis associated with obstructive nephropathy.
Collapse
|
298
|
Pulskens WP, Rampanelli E, Teske GJ, Butter LM, Claessen N, Luirink IK, van der Poll T, Florquin S, Leemans JC. TLR4 promotes fibrosis but attenuates tubular damage in progressive renal injury. J Am Soc Nephrol 2010; 21:1299-308. [PMID: 20595685 DOI: 10.1681/asn.2009070722] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptors (TLRs) can orchestrate an inflammatory response upon activation by pathogen-associated motifs and release of endogenous stress ligands during tissue injury. The kidney constitutively expresses most TLRs, including TLR4. The function of TLR4 during the inflammation, tubular atrophy, and fibrosis that accompany progressive renal injury is unknown. Here, we subjected wild-type (WT) and TLR4-deficient mice to unilateral ureteral obstruction and observed elevated levels of TLR4 mRNA in the kidney after obstruction. One day after unilateral ureteral obstruction, TLR4-deficient mice had fewer proliferating tubular epithelial cells and more tubular damage than WT mice; however, TLR4-deficient mice developed considerably less renal fibrosis despite decreased matrix metalloproteinase activity and without significant differences in myofibroblast accumulation. In vitro, TLR4-deficient primary tubular epithelial cells and myofibroblasts produced significantly less type I collagen mRNA after TGF-beta stimulation than WT cells. The reduced fibrosis in TLR4-deficient mice associated with an upregulation of Bambi, a negative regulator of TGF-beta signaling. In conclusion, TLR4 attenuates tubular damage but promotes renal fibrosis by modulating the susceptibility of renal cells to TGF-beta. These data suggest that TLR4 signaling may be a therapeutic target for the prevention of renal fibrosis.
Collapse
Affiliation(s)
- Wilco P Pulskens
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Kim J, Kim DS, Park MJ, Cho HJ, Zervos AS, Bonventre JV, Park KM. Omi/HtrA2 protease is associated with tubular cell apoptosis and fibrosis induced by unilateral ureteral obstruction. Am J Physiol Renal Physiol 2010; 298:F1332-40. [PMID: 20219823 PMCID: PMC2886814 DOI: 10.1152/ajprenal.00737.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/06/2010] [Indexed: 11/22/2022] Open
Abstract
Kidney fibrosis, a typical characteristic of chronic renal disease, is associated with tubular epithelial cell apoptosis. The results of our recent studies have shown that Omi/HtrA2 (Omi), a proapoptotic mitochondrial serine protease, performs a crucial function in renal tubular epithelial apoptotic cell death in animal models of acute kidney injury, including cisplatin toxicity and ischemia-reperfusion insult. However, the role of Omi in tubulointerstitial disease-associated fibrosis in the kidney remains to be clearly defined. We evaluated the potential function and molecular mechanism of Omi in ureteral obstruction-induced kidney epithelial cell apoptosis and fibrosis. The mice were subjected to unilateral ureteral obstruction (UUO) via the ligation of the left ureter near the renal pelvis. UUO increased the protein level of Omi in the cytosolic fraction of the kidney, with a concomitant reduction in the mitochondrial fraction. UUO reduced the X-linked inhibitor of apoptosis protein (XIAP), a substrate of Omi, and pro-caspase-3, whereas it increased cleaved poly(ADP-ribose) polymerase (cleaved PARP) and the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells. When mice were treated with ucf-101, an inhibitor of the proteolytic activity of Omi (6.19 microg/day ip), on a daily basis beginning 2 days before UUO and continuing until the end of the experiment, the Omi inhibitor protected XIAP cleavage after UUO and reduced the increment of PARP cleavage and the numbers of TUNEL-positive cells. Furthermore, the Omi inhibitor significantly attenuated UUO-induced increases in fibrotic characteristics in the kidney, including the atrophy and dilation of tubules, expansion of the interstitium, and increases in the expression of collagens, alpha-smooth muscle actin, and fibronectin. In conclusion, Omi/HtrA2 is associated with apoptotic signaling pathways in tubular epithelial cells activated by unilateral ureteral obstruction, thereby resulting in kidney fibrosis.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
300
|
Kamdar C, Chou SY, Mooppan UMM, Kim H, Gulmi FA. Atorvastatin protects renal function in the rat with acute unilateral ureteral obstruction. Urology 2010; 75:853-7. [PMID: 20371061 DOI: 10.1016/j.urology.2009.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the effects of atorvastatin on renal hemodynamics and urinary microalbumin levels in rats with acute unilateral ureteral obstruction (UUO). Previous studies have demonstrated that treatment with statins attenuated renal structural damages in rodents with chronic UUO. However, it is not known whether statins afford protection of renal function. METHODS UUO was created by ligation of the left ureter in rats maintained on a regular diet or the same diet but supplemented with atorvastatin (50 mg/kg/d) for 2 weeks. Renal clearance experiments were performed after release of UUO at 1 hour, 6 hours, or 12 hours. RESULTS Atorvastatin treatment lowered plasma triglyceride but not cholesterol levels. Both glomerular filtration rate and effective renal plasma flow were significantly greater in atorvastatintreated rats after release of UUO at 1 hour, 6 hours, and 12 hours. Significant reduction of urinary microalbumin to creatinine ratios occurred in the atorvastatin-treated group at 12 hours but not earlier. CONCLUSIONS Atorvastatin treatment affords protection of renal function in acute UUO and reduces urinary microalbumin levels without lowering cholesterol levels. This pleiotropic action of atorvastatin on preservation of renal hemodynamics may be important in attenuating subsequent renal structural injury in chronic UUO.
Collapse
Affiliation(s)
- Ciamack Kamdar
- Department of Urology, Brookdale University Hospital and Medical Center, Brooklyn, New York 11212, USA
| | | | | | | | | |
Collapse
|