251
|
Petrantonakis PC, Kompatsiaris I. Detection of Mental Task Related Activity in NIRS-BCI systems Using Dirichlet Energy over Graphs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:85-88. [PMID: 30440347 DOI: 10.1109/embc.2018.8512180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near Infrared Spectroscopy (NIRS)-based Brain Computer Interfaces (NIRS-BCI) rely mainly on the mean concentration changes and slope of the hemodynamic responses in separate recording channels to detect the mental-task related brain activity. Nevertheless, spatial patterns across the measurement channels are also present and should be taken into account for reliable evaluation of the aforementioned detection. In this work the Dirichlet Energy of NIRS signals over a graph is considered for the definition of a measure that would take into account the spatial NIRS features and would integrate the activity of multiple NIRS channels for robust mental task related activity detection. The application of the proposed measure on a real NIRS dataset demonstrates the efficiency of the proposed measure.
Collapse
|
252
|
Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of Deep Learning and Reinforcement Learning to Biological Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:2063-2079. [PMID: 29771663 DOI: 10.1109/tnnls.2018.2790388] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.
Collapse
|
253
|
Liu X, Wang J, Li G, Lv H. Effect of combined chondroitinase ABC and hyperbaric oxygen therapy in a rat model of spinal cord injury. Mol Med Rep 2018; 18:25-30. [PMID: 29749479 PMCID: PMC6059675 DOI: 10.3892/mmr.2018.8933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/10/2017] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to investigate the effect of combined hyperbaric oxygen (HBO) and chondroitinase ABC (ChABC) enzyme therapy in a rat model of spinal cord injury (SCI) and to explore the underlying mechanisms. A total of 48 healthy male Wistar rats were randomly divided into six groups: Sham, SCI, vehicle, HBO, ChABC enzyme and HBO + ChABC. Excluding the sham group, SCI was established in rats by a clip compression injury and rats subsequently received HBO treatment for 2 weeks with or without an intraspinal injection of 0.1 U/µl ChABC. Neuromotor functions were examined using the Basso‑Beattie‑Bresnahan locomotor rating scale and the inclined plane assessment at baseline and for 4 weeks following SCI establishment. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were also measured, in addition to the expression of glycogen synthase kinase‑3β (GSK3β) and aquaporin 4 (AQP4). Results revealed that combined HBO and ChABC treatment significantly improved neuromotor function compared with the HBO or ChABC treatments alone. HBO and/or ChABC treatment significantly increased SOD and decreased MDA levels, as well as GSK3β expression, compared with the sham and SCI rats. The combined HBO and ChABC treatment significantly inhibited SCI‑induced AQP4 expression, but ChABC alone did not. Functional recovery in the HBO + ChABC group was significantly increased compared with the HBO or ChABC groups. These results indicate that combined HBO and ChABC treatment is more effective in treating SCI than either therapy alone.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Spine Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jiefeng Wang
- Department of Spine Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Guangkuo Li
- Department of Spine Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Honglin Lv
- Department of Spine Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
254
|
Du M, Xu X, Yang L, Guo Y, Guan S, Shi J, Wang J, Fang Y. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosens Bioelectron 2018; 105:109-115. [DOI: 10.1016/j.bios.2018.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 01/24/2023]
|
255
|
Konerding WS, Froriep UP, Kral A, Baumhoff P. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Sci Rep 2018; 8:3825. [PMID: 29491453 PMCID: PMC5830616 DOI: 10.1038/s41598-018-22051-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
In neuroscience, single-shank penetrating multi-electrode arrays are standard for sequentially sampling several cortical sites with high spatial and temporal resolution, with the disadvantage of neuronal damage. Non-penetrating surface grids used in electrocorticography (ECoG) permit simultaneous recording of multiple cortical sites, with limited spatial resolution, due to distance to neuronal tissue, large contact size and high impedances. Here we compared new thin-film parylene C ECoG grids, covering the guinea pig primary auditory cortex, with simultaneous recordings from penetrating electrode array (PEAs), inserted through openings in the grid material. ECoG grid local field potentials (LFP) showed higher response thresholds and amplitudes compared to PEAs. They enabled, however, fast and reliable tonotopic mapping of the auditory cortex (place-frequency slope: 0.7 mm/octave), with tuning widths similar to PEAs. The ECoG signal correlated best with supragranular layers, exponentially decreasing with cortical depth. The grids also enabled recording of multi-unit activity (MUA), yielding several advantages over LFP recordings, including sharper frequency tunings. ECoG first spike latency showed highest similarity to superficial PEA contacts and MUA traces maximally correlated with PEA recordings from the granular layer. These results confirm high quality of the ECoG grid recordings and the possibility to collect LFP and MUA simultaneously.
Collapse
Affiliation(s)
- W S Konerding
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany.
| | - U P Froriep
- Translational Biomedical Engineering, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - A Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
| | - P Baumhoff
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Stadtfelddamm 34, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
256
|
Abstract
The need for high-throughput, precise, and meaningful methods for measuring behavior has been amplified by our recent successes in measuring and manipulating neural circuitry. The largest challenges associated with moving in this direction, however, are not technical but are instead conceptual: what numbers should one put on the movements an animal is performing (or not performing)? In this review, I will describe how theoretical and data analytical ideas are interfacing with recently-developed computational and experimental methodologies to answer these questions across a variety of contexts, length scales, and time scales. I will attempt to highlight commonalities between approaches and areas where further advances are necessary to place behavior on the same quantitative footing as other scientific fields.
Collapse
Affiliation(s)
- Gordon J Berman
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, 30322, GA, USA.
| |
Collapse
|
257
|
Lazarou I, Nikolopoulos S, Petrantonakis PC, Kompatsiaris I, Tsolaki M. EEG-Based Brain-Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment: A Novel Approach of the 21 st Century. Front Hum Neurosci 2018; 12:14. [PMID: 29472849 PMCID: PMC5810272 DOI: 10.3389/fnhum.2018.00014] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
People with severe neurological impairments face many challenges in sensorimotor functions and communication with the environment; therefore they have increased demand for advanced, adaptive and personalized rehabilitation. During the last several decades, numerous studies have developed brain-computer interfaces (BCIs) with the goals ranging from providing means of communication to functional rehabilitation. Here we review the research on non-invasive, electroencephalography (EEG)-based BCI systems for communication and rehabilitation. We focus on the approaches intended to help severely paralyzed and locked-in patients regain communication using three different BCI modalities: slow cortical potentials, sensorimotor rhythms and P300 potentials, as operational mechanisms. We also review BCI systems for restoration of motor function in patients with spinal cord injury and chronic stroke. We discuss the advantages and limitations of these approaches and the challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Ioulietta Lazarou
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.,1st Department of Neurology, University Hospital "AHEPA", School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| | - Spiros Nikolopoulos
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | | | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Magda Tsolaki
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece.,1st Department of Neurology, University Hospital "AHEPA", School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Association of Alzheimer's Disease and Related Disorders, Thessaloniki, Greece
| |
Collapse
|
258
|
Chen L, Feng Y, Zhang Y, Huang H, Guo X. Multicenter, randomized, double-blind placebo-control intramedullary decompression for acute complete spinal cord contusion injury. JOURNAL OF NEURORESTORATOLOGY 2018. [DOI: 10.26599/jnr.2018.9040016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction: Spinal cord injury is one of the main causes of severe neurological trauma and disability. Intramedullary decompression of acute spinal cord contusion in acute phase is one of the important therapeutic exploration methods. Due to the lack of multicenter, randomized, double-blind, placebo-controlled clinical studies, true effect of this treatment remains controversial. Objective of the study: This design of the study is to explore the safety and neurorestorative effects of intramedullary decompression for acute complete spinal cord contusion injury. Design of the study: We design the prospective, multicenter, randomized, double- blind placebo-controlled trial (MRDPT) for acute (less than 24 hours after injury) spinal cord contusion injury. Sixty patients with acute complete spinal cord contusion injury (20 in cervical 4 to thoracic 1, 20 in thoracic 2 to thoracic 9, and 20 in thoracic 10 to lumbar vertebra 1) are selected according to the selected conditions. All patients receive conventional treatments such as reduction and fixation of spinal fractures and/or spinal spondylolisthesis, bone external decompression relieves spinal cord compression. At the same time, group A (n = 30, 10 of each segment group) undergoes intramedullary decompression surgery and group B (n = 30) does not undergo intramedullary decompression. All relevant functional changes before, after, and during the follow-up period are recorded to ensure objective evaluation of the results of the treatment. Ethics and dissemination: The clinical study protocol and consent form were approved by China Branch of International Association of Neurorestoratology and the ethics committees of the hospitals which join this trial. Registration No. of this study is ChiCTR1800020458. Findings will be published in peer-reviewed journals.
Collapse
|
259
|
Abstract
This chapter covers balance, gait, and falls in individuals with spinal cord injury (SCI) from a clinical perspective. First, the consequences of an SCI on functioning are explained, including etiology, clinical presentation, classification, and epidemiologic data. Then, the specific aspects of balance disorders, gait disorders, and falls are discussed with respect to motor complete (cSCI) and incomplete (iSCI) SCI. Typically, these activities are affected by impaired afferent and efferent nerves, but not by central nervous processing. Performance of daily life activities in cSCI depends on the ability to control the interaction between the center of mass and the base of support or limits of stability. In iSCI, impaired proprioception and muscle strength are important factors for completing balancing tasks and for walking. Falls are common in patients with SCI. Subsequent sections describe therapy approaches aimed at modifying balance, gait, and the risk for falls by means of therapeutic exercises, assistive devices like robots or functional electric stimulation, and environmental adaptations. The last part covers recent developments and future directions. These encompass interventions for maximizing residual neural function and regeneration of axons, as well as technical solutions like epidural or intraspinal electric stimulation, powered exoskeletons, and brain computer interfaces.
Collapse
Affiliation(s)
- Markus Wirz
- Institute of Physiotherapy, Zurich University of Applied Sciences ZHAW, Winterthur, Switzerland.
| | - Hubertus J A van Hedel
- Rehabilitation Center Affoltern am Albis, University Children's Hospital Zurich - Eleonore Foundation, Affoltern am Albis, Switzerland
| |
Collapse
|
260
|
Kim CY, Sikkema WKA, Kim J, Kim JA, Walter J, Dieter R, Chung HM, Mana A, Tour JM, Canavero S. Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection. Neural Regen Res 2018; 13:1440-1446. [PMID: 30106057 PMCID: PMC6108198 DOI: 10.4103/1673-5374.235301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A sharply transected spinal cord has been shown to be fused under the accelerating influence of membrane fusogens such as polyethylene glycol (PEG) (GEMINI protocol). Previous work provided evidence that this is in fact possible. Other fusogens might improve current results. In this study, we aimed to assess the effects of PEGylated graphene nanoribons (PEG-GNR, and called “TexasPEG” when prepared as 1wt% dispersion in PEG600) versus placebo (saline) on locomotor function recovery and cellular level in a rat model of spinal cord transection at lumbar segment 1 (L1) level. In vivo and in vitro experiments (n = 10 per experiment) were designed. In the in vivo experiment, all rats were submitted to full spinal cord transection at L1 level. Five weeks later, behavioral assessment was performed using the Basso Beattie Bresnahan (BBB) locomotor rating scale. Immunohistochemical staining with neuron marker neurofilament 200 (NF200) antibody and astrocytic scar marker glial fibrillary acidic protein (GFAP) was also performed in the injured spinal cord. In the in vitro experiment, the effects of TexasPEG application for 72 hours on the neurite outgrowth of SH-SY5Y cells were observed under the inverted microscope. Results of both in vivo and in vitro experiments suggest that TexasPEG reduces the formation of glial scars, promotes the regeneration of neurites, and thereby contributes to the recovery of locomotor function of a rat model of spinal cord transfection.
Collapse
Affiliation(s)
- C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - William K A Sikkema
- Department of Chemistry, Department of Materials Science and NanoEngineering, and The NanoCarbon Center, Rice University, Houston, TX, USA
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jeong Ah Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk, Korea
| | - James Walter
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Raymond Dieter
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Andrea Mana
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - James M Tour
- Department of Chemistry, Department of Materials Science and NanoEngineering, and The NanoCarbon Center, Rice University, Houston, TX, USA
| | - Sergio Canavero
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| |
Collapse
|
261
|
Central nervous system microstimulation: Towards selective micro-neuromodulation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
262
|
Dagaev N, Volkova K, Ossadtchi A. Latent variable method for automatic adaptation to background states in motor imagery BCI. J Neural Eng 2017; 15:016004. [DOI: 10.1088/1741-2552/aa8065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
263
|
Webster-Wood VA, Akkus O, Gurkan UA, Chiel HJ, Quinn RD. Organismal Engineering: Towards a Robotic Taxonomic Key for Devices Using Organic Materials. Sci Robot 2017; 2:eaap9281. [PMID: 31360812 PMCID: PMC6663099 DOI: 10.1126/scirobotics.aap9281] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Can we create robots with the behavioral flexibility and robustness of animals? Engineers often use bio-inspiration to mimic animals. Recent advances in tissue engineering now allow the use of components from animals. By integrating organic and synthetic components, researchers are moving towards the development of engineered organisms whose structural framework, actuation, sensing, and control are partially or completely organic. This review discusses recent exciting work demonstrating how organic components can be used for all facets of robot development. Based on this analysis, we propose a Robotic Taxonomic Key to guide the field towards a unified lexicon for device description.
Collapse
Affiliation(s)
| | - Ozan Akkus
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Umut A. Gurkan
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Hillel J. Chiel
- Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
- Dept. of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Roger D. Quinn
- Dept. of Mech. and Aero. Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
264
|
Fu TM, Hong G, Viveros RD, Zhou T, Lieber CM. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc Natl Acad Sci U S A 2017; 114:E10046-E10055. [PMID: 29109247 PMCID: PMC5703340 DOI: 10.1073/pnas.1717695114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Implantable electrical probes have led to advances in neuroscience, brain-machine interfaces, and treatment of neurological diseases, yet they remain limited in several key aspects. Ideally, an electrical probe should be capable of recording from large numbers of neurons across multiple local circuits and, importantly, allow stable tracking of the evolution of these neurons over the entire course of study. Silicon probes based on microfabrication can yield large-scale, high-density recording but face challenges of chronic gliosis and instability due to mechanical and structural mismatch with the brain. Ultraflexible mesh electronics, on the other hand, have demonstrated negligible chronic immune response and stable long-term brain monitoring at single-neuron level, although, to date, it has been limited to 16 channels. Here, we present a scalable scheme for highly multiplexed mesh electronics probes to bridge the gap between scalability and flexibility, where 32 to 128 channels per probe were implemented while the crucial brain-like structure and mechanics were maintained. Combining this mesh design with multisite injection, we demonstrate stable 128-channel local field potential and single-unit recordings from multiple brain regions in awake restrained mice over 4 mo. In addition, the newly integrated mesh is used to validate stable chronic recordings in freely behaving mice. This scalable scheme for mesh electronics together with demonstrated long-term stability represent important progress toward the realization of ideal implantable electrical probes allowing for mapping and tracking single-neuron level circuit changes associated with learning, aging, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Tian-Ming Fu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Robert D Viveros
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Tao Zhou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138;
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| |
Collapse
|
265
|
Wang X, Liu Y, Li X, Zhang Z, Yang H, Zhang Y, Williams PR, Alwahab NSA, Kapur K, Yu B, Zhang Y, Chen M, Ding H, Gerfen CR, Wang KH, He Z. Deconstruction of Corticospinal Circuits for Goal-Directed Motor Skills. Cell 2017; 171:440-455.e14. [PMID: 28942925 PMCID: PMC5679421 DOI: 10.1016/j.cell.2017.08.014] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/19/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022]
Abstract
Corticospinal neurons (CSNs) represent the direct cortical outputs to the spinal cord and play important roles in motor control across different species. However, their organizational principle remains unclear. By using a retrograde labeling system, we defined the requirement of CSNs in the execution of a skilled forelimb food-pellet retrieval task in mice. In vivo imaging of CSN activity during performance revealed the sequential activation of topographically ordered functional ensembles with moderate local mixing. Region-specific manipulations indicate that CSNs from caudal or rostral forelimb area control reaching or grasping, respectively, and both are required in the transitional pronation step. These region-specific CSNs terminate in different spinal levels and locations, therefore preferentially connecting with the premotor neurons of muscles engaged in different steps of the task. Together, our findings suggest that spatially defined groups of CSNs encode different movement modules, providing a logic for parallel-ordered corticospinal circuits to orchestrate multistep motor skills.
Collapse
Affiliation(s)
- Xuhua Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yuanyuan Liu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Xinjian Li
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Hengfu Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Philip R Williams
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Noaf S A Alwahab
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kush Kapur
- Clinical Research Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bin Yu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yiming Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mengying Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Haixia Ding
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
266
|
Abstract
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
Collapse
Affiliation(s)
- Wondimu W. Teka
- Indiana University–Purdue University at Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| | - Khaldoun C. Hamade
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Taegyo Kim
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sergey N. Markin
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ilya A. Rybak
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
267
|
Ren S, Liu ZH, Wu Q, Fu K, Wu J, Hou LT, Li M, Zhao X, Miao Q, Zhao YL, Wang SY, Xue Y, Xue Z, Guo YS, Canavero S, Ren XP. Polyethylene glycol-induced motor recovery after total spinal transection in rats. CNS Neurosci Ther 2017; 23:680-685. [PMID: 28612398 DOI: 10.1111/cns.12713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Despite more than a century of research, spinal paralysis remains untreatable via biological means. A new understanding of spinal cord physiology and the introduction of membrane fusogens have provided new hope that a biological cure may soon become available. However, proof is needed from adequately powered animal studies. METHODS AND RESULTS Two groups of rats (n=9, study group, n=6 controls) were submitted to complete transection of the dorsal cord at T10. The animals were randomized to receive either saline or polyethylene glycol (PEG) in situ. After 4 weeks, the treated group had recovered ambulation vs none in the control group (BBB scores; P=.0145). One control died. All animals were studied with somatosensory-evoked potentials (SSEP) and diffusion tensor imaging (DTI). SSEP recovered postoperatively only in PEG-treated rats. At study end, DTI showed disappearance of the transection gap in the treated animals vs an enduring gap in controls (fractional anisotropy/FA at level: P=.0008). CONCLUSIONS We show for the first time in an adequately powered study that the paralysis attendant to a complete transection of the spinal cord can be reversed. This opens the path to a severance-reapposition cure of spinal paralysis, in which the injured segment is excised and the two stumps approximated after vertebrectomy/diskectomies.
Collapse
Affiliation(s)
- Shuai Ren
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Ze-Han Liu
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Qiong Wu
- Department of MRI Diagnosis, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuang Fu
- Department of MRI Diagnosis, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Wu
- Department of Neurology, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Ting Hou
- Department of Anesthesia, the second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Li
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Xin Zhao
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Qing Miao
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Yun-Long Zhao
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Sheng-Yu Wang
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Yan Xue
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Zhen Xue
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Ya-Shan Guo
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China
| | - Sergio Canavero
- HEAVEN/GEMINI International Collaborative Group, Turin, Italy
| | - Xiao-Ping Ren
- Hand and Microsurgery Center, the second Affiliated Hospital of Harbin Medical University, Harbin, China.,State-Province Key Laboratories of Biomedicine-Pharmaceutics, Harbin Medical University, Harbin, China.,Heilongjiang Medical Science Institute, Harbin Medical University, Harbin, China.,Department of Molecular Pharmacology & Therapeutics, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|