251
|
Meyrelles SS, Peotta VA, Pereira TMC, Vasquez EC. Endothelial dysfunction in the apolipoprotein E-deficient mouse: insights into the influence of diet, gender and aging. Lipids Health Dis 2011; 10:211. [PMID: 22082357 PMCID: PMC3247089 DOI: 10.1186/1476-511x-10-211] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023] Open
Abstract
Since the early 1990s, several strains of genetically modified mice have been developed as models for experimental atherosclerosis. Among the available models, the apolipoprotein E-deficient (apoE⁻/⁻) mouse is of particular relevance because of its propensity to spontaneously develop hypercholesterolemia and atherosclerotic lesions that are similar to those found in humans, even when the mice are fed a chow diet. The main purpose of this review is to highlight the key achievements that have contributed to elucidating the mechanisms pertaining to vascular dysfunction in the apoE⁻/⁻ mouse. First, we summarize lipoproteins and atherosclerosis phenotypes in the apoE⁻/⁻ mouse, and then we briefly discuss controversial evidence relative to the influence of gender on the development of atherosclerosis in this murine model. Second, we discuss the main mechanisms underlying the endothelial dysfunction of conducting vessels and resistance vessels and examine how this vascular defect can be influenced by diet, aging and gender in the apoE⁻/⁻ mouse.
Collapse
Affiliation(s)
- Silvana S Meyrelles
- Departament of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
252
|
Clauser S, Meilhac O, Bièche I, Raynal P, Bruneval P, Michel JB, Borgel D. Increased secretion of Gas6 by smooth muscle cells in human atherosclerotic carotid plaques. Thromb Haemost 2011; 107:140-9. [PMID: 22072012 DOI: 10.1160/th11-05-0368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/04/2011] [Indexed: 12/14/2022]
Abstract
Vitamin K-dependent protein Gas6 (growth-arrest specific gene 6) plays a role in vascular smooth muscle cell (VSMC) survival and migration, as well as in endothelium and leukocyte activation, and could therefore be involved in atherosclerosis. However, the study of mouse models has led to contradictory results regarding the pro- or anti-atherogenic properties of Gas6, and relatively few data are available in human pathophysiology. To better understand the implication of Gas6 in human atherosclerosis, we studied Gas6 expression and secretion in vitro in human VSMC, and analysed the effect of Gas6 on inflammatory gene expression in these cells. We show that Gas6 secretion in VSMC is strongly induced by the anti-inflammatory cytokine transforming growth factor (TGF)β, and that VSMC stimulation by recombinant Gas6 decreases the expression of inflammatory genes tumour necrosis factor (TNF)α and intracellular adhesion molecule (ICAM)-1. The study of Gas6 expression in human carotid endarterectomy samples revealed that Gas6 is mainly expressed by VSMC at all stages of human atherosclerosis, but is not detected in normal vessel wall. Analysis of plaque secretomes showed that Gas6 secretion is markedly higher in non-complicated plaques than in complicated plaques, and that TGFβ secretion pattern mirrors that of Gas6. We conclude that Gas6 is secreted in human atherosclerotic plaques by VSMC following stimulation by TGFβ, and that Gas6 secretion decreases with plaque complication. Therefore, we propose that Gas6 acts as a protective factor, in part by reducing the pro-inflammatory phenotype of VSMC.
Collapse
|
253
|
Mercier N, Kiviniemi TO, Saraste A, Miiluniemi M, Silvola J, Jalkanen S, Yegutkin GG. Impaired ATP-induced coronary blood flow and diminished aortic NTPDase activity precede lesion formation in apolipoprotein E-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:419-28. [PMID: 22074736 DOI: 10.1016/j.ajpath.2011.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 02/02/2023]
Abstract
Intravascular ATP and ADP are important regulators of vascular tone, thrombosis, inflammation, and angiogenesis. This study was undertaken to evaluate the contribution of purinergic signaling to disturbed vasodilation and vascular remodeling during atherosclerosis progression. We used apolipoprotein E-deficient (Apoe(-/-)) mice as an appropriate experimental model for atherosclerosis. Noninvasive transthoracic Doppler echocardiography imaging with adenosine, ATP, and other nucleotides and nonhydrolyzable P2 receptor agonists and antagonists suggests that ATP regulates coronary blood flow in mice through activation of P2Y (most likely, endothelial ATP/UTP-selective P2Y(2)) receptors, rather than via its dephosphorylation to adenosine. Strikingly, compared to age-matched wild-type controls, young (10- to 15-week-old) Apoe(-/-) mice displayed diminished coronary reactivity in response to ATP but not adenosine. The impaired hyperemic response to ATP persisted in older (20- to 30-week-old) Apoe(-/-) mice, which were additionally characterized by mild atherosclerosis (as ascertained by aortic Oil Red O staining) and a systemic increase in plasma ATP and ADP levels. Concurrent thin-layer chromatographic analysis of nucleoside triphosphate diphosphohydrolase (NTPDase) and ecto-5'-nucleotidase/CD73 activities in thoracic aortas, lymph nodes, spleen, and serum revealed that aortic NTPDase was decreased by 40% to 50% in a tissue-specific manner both in young and mature Apoe(-/-) mice. Collectively, disordered purinergic signaling in Apoe(-/-) mice may serve as important prerequisite for impaired blood flow, local accumulation of ATP and ADP at sites of atherogenesis, and eventually, the exacerbation of atherosclerosis.
Collapse
Affiliation(s)
- Nathalie Mercier
- Medicity Research Laboratory and the Department of Medical Microbiology, University of Turku, Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
254
|
Pello OM, Silvestre C, De Pizzol M, Andrés V. A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 2011; 216:1172-6. [DOI: 10.1016/j.imbio.2011.05.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/16/2011] [Indexed: 12/22/2022]
|
255
|
Bartelt A, Orlando P, Mele C, Ligresti A, Toedter K, Scheja L, Heeren J, Di Marzo V. Altered endocannabinoid signalling after a high-fat diet in Apoe(-/-) mice: relevance to adipose tissue inflammation, hepatic steatosis and insulin resistance. Diabetologia 2011; 54:2900-10. [PMID: 21847582 DOI: 10.1007/s00125-011-2274-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/11/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Apolipoprotein E (ApoE) deficiency is associated with reduced fat accumulation in white adipose tissue (WAT) and high liver triacylglycerol content. Elevated levels of endocannabinoids and cannabinoid receptor type 1 (CB(1)) receptors in the liver and in epididymal vs subcutaneous WAT are associated with fatty liver, visceral adipose tissue, inflammatory markers and insulin resistance. METHODS We investigated, in Apoe (-/-) and wild-type (WT) mice, the effect of a high-fat diet (HFD) on: (1) subcutaneous and epididymal WAT accumulation, liver triacylglycerols, phospholipid-esterified fatty acids, inflammatory markers in WAT and liver, and insulin resistance; and (2) endocannabinoid levels, and the gene expression levels of the Cb ( 1 ) receptor and endocannabinoid metabolic enzymes in liver and WAT. RESULTS After a 16 week HFD, Apoe (-/-) mice exhibited lower body weight, WAT accumulation and fasting leptin, glucose and insulin levels, and higher hepatic steatosis, than WT mice. Glucose clearance and insulin-mediated glucose disposal following the HFD were slower in WT than Apoe (-/-) mice, which exhibited higher levels of mRNA encoding inflammatory markers (tumour necrosis factor-α [TNF-α], monocyte chemoattractant protein-1 [MCP-1], cluster of differentiation 68 [CD68] and EGF-like module-containing mucin-like hormone receptor-like 1 [EMR1]) in the liver, but lower levels in epididymal WAT. HFD-induced elevation of endocannabinoid levels in the liver or epididymal WAT was higher or lower, respectively, in Apoe (-/-) mice, whereas HFD-induced decrease of subcutaneous WAT endocannabinoid and CB(1) receptor levels was significantly less marked. Alterations in endocannabinoid levels reflected changes in endocannabinoid catabolic enzymes in WAT, or the availability of phospholipid precursors in the liver. CONCLUSIONS/INTERPRETATION Liver and adipose tissue endocannabinoid tone following an HFD is altered on Apoe deletion and strongly associated with inflammation, insulin resistance and hepatic steatosis, or lack thereof.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Apolipoproteins E/genetics
- Apolipoproteins E/physiology
- Cannabinoid Receptor Modulators/metabolism
- Cells, Cultured
- Dietary Fats/adverse effects
- Endocannabinoids
- Fatty Liver/immunology
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Gene Expression Regulation
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Inflammation Mediators/metabolism
- Insulin Resistance
- Lipid Metabolism
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Panniculitis/immunology
- Panniculitis/metabolism
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction
- Subcutaneous Fat/immunology
- Subcutaneous Fat/metabolism
Collapse
Affiliation(s)
- A Bartelt
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Striker GE, Grosjean F, Vlassara H. Phosphate and CVD: it's all in what's on the table. Arterioscler Thromb Vasc Biol 2011; 31:1951-2. [PMID: 21849702 DOI: 10.1161/atvbaha.111.231928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
257
|
Teng B, Mustafa SJ. A(2A) adenosine receptor-mediated increase in coronary flow in hyperlipidemic APOE-knockout mice. J Exp Pharmacol 2011; 2011:59-68. [PMID: 21847356 PMCID: PMC3155850 DOI: 10.2147/jep.s18945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Adenosine-induced coronary vasodilation is predominantly A2A adenosine receptor (AR)-mediated, whereas A1 AR is known to negatively modulate the coronary flow (CF). However, the coronary responses to adenosine in hyperlipidemia and atherosclerosis are not well understood. Using hyperlipidemic/atherosclerotic apolipoprotein E (APOE)–knockout mice, CF responses to nonspecific adenosine agonist (5′-N-ethylcarboxamide adenosine, NECA) and specific adenosine agonists (2-chloro-N6-cyclopentyl-adenosine [CCPA, A1 AR-specific] and CGS-21680, A2A AR-specific) were assessed using isolated Langendorff hearts. Western blot analysis was performed in the aorta from APOE and their wild-type (WT) control (C57BL/6J). Baseline CF (expressed as mL/min/g heart weight) was not different among WT (13.23 ± 3.58), APOE (13.22 ± 2.78), and APOE on high-fat diet (HFD) for 12 weeks (APOE-HFD, 12.37 ± 4.76). Concentration response curves induced by CGS-21680 were significantly shifted to the left in APOE and APOE-HFD when compared with WT. CCPA induced an increase in CF only at 10−6 M in all groups and the effect was reversed by the addition of a selective A2A AR antagonist, SCH-58261 (10−6 M), and a significant decrease in CF from baseline was observed. Western blot analysis showed a significant upregulation of A2A AR in the aorta from APOE and APOE-HFD. This study provides the first evidence that CF responses to A2A AR stimulation were upregulated in hyperlipidemic/atherosclerotic animals. The speculation is that the use of A2A AR-specific agonist for myocardial perfusion imaging (such as regadenoson) could overestimate the coronary reserve in coronary artery disease patients.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV, USA
| | | |
Collapse
|
258
|
CD34⁺/M-cadherin⁺ bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE⁻/⁻ mice. PLoS One 2011; 6:e20673. [PMID: 21677770 PMCID: PMC3108984 DOI: 10.1371/journal.pone.0020673] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/10/2011] [Indexed: 01/29/2023] Open
Abstract
Background Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34+/M-cad+ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34+/M-cad+ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD. Methods and Findings Colony-forming cell assays and flow cytometry analysis showed that CD34+/M-cad+ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE−/− mice, CD34+/M-cad+ BMCs alleviated ischemia and significantly improved blood flow compared with CD34+/M-cad− BMCs, CD34−/M-cad+ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34+/M-cad+ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP+ CD34+/M-cad+ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP+ CD34+/M-cad+ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34+/M-cad+ progenitor cells. A cytokine antibody array revealed that CD34+/M-cad+ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34+/M-cad− cell-conditioned medium. The proangiogenic cytokines secreted by CD34+/M-cad+ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34+/M-cad− cells during hypoxia. Conclusion CD34+/M-cad+ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE−/− mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34+/M-cad+ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors.
Collapse
|
259
|
Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Invest Radiol 2011; 45:702-7. [PMID: 20829703 DOI: 10.1097/rli.0b013e3181f16e5a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inflammation within atherosclerotic lesions increases the risk for plaque rupture and thrombosis. A functional approach to plaque analysis is the intravenous administration of ultrasmall superparamagnetic particles of iron oxide (USPIO) that enables visualization of macrophages residing in the plaques. In this study, we sought to characterize the age-related inflammatory status associated with atherosclerosis lesion progression in ApoE mice using USPIO-enhanced magnetic resonance imaging (MRI). MATERIALS AND METHODS A total of 24 ApoE mice were divided in 4 groups (N = 6) and were given a high cholesterol diet from 6 weeks of age to the end of the protocol. One group per MR time point was investigated at 10, 16, 24, and 34 weeks of age. Each MR examination was performed on a 4.7 T scanner and consisted of baseline and 48 hours post-USPIO administration imaging sessions. P904, a USPIO contrast agent (Guerbet, Paris, France) with a potential for plaque macrophage targeting, was used.Vessel wall area measurements were performed on high resolution spin echo transverse images. Multi-echo gradient-echo images acquired with the same geometry were used to calculate T2* maps of the vessel wall using a pixel-by-pixel monoexponential fit. A one-way analysis of variance was performed to characterize the temporal variation of vessel wall area, susceptibility artifact area, baseline, and post-USPIO T2* values. MR measurements were correlated with the histologic findings. RESULTS A significant increase was found in the aortic wall area from 1.4 ± 0.2 at 10 weeks to 2.0 ± 0.3 mm at 34 weeks of age (P < 0.05). Concerning the post-USPIO MRI, signal loss regions, with patterns spanning from focal to the complete disappearance of the vessel wall, were observed on all postcontrast images. A significant increase in the size of the susceptibility artifact was observed from 0.5 ± 0.2 to 2.4 ± 1.0 at 24 weeks (P < 0.05) and to 2.0 ± 0.9 mm at 34 weeks (P < 0.05).The T2* values calculated on the 48 hours post-USPIO images were shorter compared with baseline. The decrease was 34% ± 16% at 10 weeks, 57% ± 11% at 16 weeks, 57% ± 16% at 24 weeks, and 48% ± 13% at 34 weeks.The Pearson's correlation test between measurement of aortic wall area performed on both MR images and histologic analysis showed a statistically significant correlation (r = 0.695 and P < 0.05). A correlation was also obtained between the signal loss area and the macrophages covered area (r = 0.68 and P < 0.05). CONCLUSIONS This study demonstrated the feasibility of USPIO-enhanced MRI in assessing the inflammatory status related to the temporal progression of the atherosclerosis plaque in ApoE transgenic mice model of atherosclerosis. In our experimental conditions, the vascular inflammation peak, for the ApoE mice feeding high-fat/high-cholesterol diet is measured between 16 and 24 weeks of age.
Collapse
|
260
|
Abstract
It is well-known that nephrotic syndrome and chronic renal failure are associated with lipid and lipoprotein abnormalities. For a long time, it has been thought that hyperlipidemia is a secondary and insignificant condition of these renal injuries. Recently, it has been shown that dyslipidaemia may contribute to the development and progression of chronic kidney disease. Apolipoprotein E (apoE) null mice are a very popular model for studying spontaneous hypercholesterolemia, but only limited data are available for the role of apolipoprotein E in kidney disease. The purpose of this study is to evaluate kidney disease in apolipoprotein E deficient mice. For this study, apoE null mice and control mice at different ages (6 weeks and 15 months) were used. Kidney morphological damage and proteins involved in oxidative stress and aging (TNF-α and NF-kB) were analyzed. ApoE deficient mice have morphological alterations that are the hallmark of kidney pathogenesis, which increase with the age of the animals. In apoE null mice kidneys, there is also increased oxidative stress as compared to control mice at the same age and fewer antioxidant enzymes. Our findings add to the growing list of protective effects that apoE possesses.
Collapse
|
261
|
Farris SD, Hu JH, Krishnan R, Emery I, Chu T, Du L, Kremen M, Dichek HL, Gold E, Ramsey SA, Dichek DA. Mechanisms of urokinase plasminogen activator (uPA)-mediated atherosclerosis: role of the uPA receptor and S100A8/A9 proteins. J Biol Chem 2011; 286:22665-77. [PMID: 21536666 DOI: 10.1074/jbc.m110.202135] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Data from clinical studies, cell culture, and animal models implicate the urokinase plasminogen activator (uPA)/uPA receptor (uPAR)/plasminogen system in the development of atherosclerosis and aneurysms. However, the mechanisms through which uPA/uPAR/plasminogen stimulate these diseases are not yet defined. We used genetically modified, atherosclerosis-prone mice, including mice with macrophage-specific uPA overexpression and mice genetically deficient in uPAR to elucidate mechanisms of uPA/uPAR/plasminogen-accelerated atherosclerosis and aneurysm formation. We found that macrophage-specific uPA overexpression accelerates atherosclerosis and causes aortic root dilation in fat-fed Ldlr(-/-) mice (as we previously reported in Apoe(-/-) mice). Macrophage-expressed uPA accelerates atherosclerosis by stimulation of lesion progression rather than initiation and causes disproportionate lipid accumulation in early lesions. uPA-accelerated atherosclerosis and aortic dilation are largely, if not completely, independent of uPAR. In the absence of uPA overexpression, however, uPAR contributes modestly to both atherosclerosis and aortic dilation. Microarray studies identified S100A8 and S100A9 mRNA as the most highly up-regulated transcripts in uPA-overexpressing macrophages; up-regulation of S100A9 protein in uPA-overexpressing macrophages was confirmed by Western blotting. S100A8/A9, which are atherogenic in mice and are expressed in human atherosclerotic plaques, are also up-regulated in the aortae of mice with uPA-overexpressing macrophages, and macrophage S100A9 mRNA is up-regulated by exposure of wild-type macrophages to medium from uPA-overexpressing macrophages. Macrophage microarray data suggest significant effects of uPA overexpression on cell migration and cell-matrix interactions. Our results confirm in a second animal model that macrophage-expressed uPA stimulates atherosclerosis and aortic dilation. They also reveal uPAR independence of these actions and implicate specific pathways in uPA/Plg-accelerated atherosclerosis and aneurysmal disease.
Collapse
Affiliation(s)
- Stephen D Farris
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Evans VC, Graham IR, Athanasopoulos T, Galley DJ, Jackson CL, Simons JP, Dickson G, Owen JS. Adeno-associated virus serotypes 7 and 8 outperform serotype 9 in expressing atheroprotective human apoE3 from mouse skeletal muscle. Metabolism 2011; 60:491-8. [PMID: 20580777 DOI: 10.1016/j.metabol.2010.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/11/2010] [Accepted: 04/19/2010] [Indexed: 11/21/2022]
Abstract
Intramuscular injection of adeno-associated viral (AAV) vectors is potentially a safe, minimally invasive procedure for the long-term gene expression of circulating antiatherogenic proteins. Here, we compare secretion and atheroprotective effects of human apoE3 after injection of 3 pseudotyped AAV vectors (AAV2/7, AAV2/8, or AAV2/9), driven by the CMV enhancer/chicken β-actin (CAG) promoter, into skeletal muscle of hyperlipidemic apolipoprotein E-deficient (apoE⁻/⁻) mice. Vector viabilities were verified by transducing cultured C2C12 mouse myotubes and assessing secretion of human apoE3 protein. Both hind limb tibialis anterior muscles of female C57BL/6 apoE⁻/⁻ mice, 2 months old and fed a high-fat diet, were each injected with 1 x 10¹⁰ vector genomes of AAV vector. Identical noninjected mice served as controls; and blood was collected at weeks 0, 1, 2, 4, and 13. At termination (13 weeks), the brachiocephalic artery was excised; and after staining sections, plaque morphometry and fractional lipid content were quantified by computerized image analysis. Intramuscular injection of AAV2/7 and AAV2/8 vectors produced up to 2 μg human apoE3 per milliliter plasma, just below the threshold to reverse dyslipoproteinemia. AAV2/9 was notably less effective, mice having a 3-fold lower level of plasma apoE3 at 13 weeks and a 50% greater burden of atherosclerotic plaque lipid in their brachiocephalic arteries. We conclude that although vector refinement is needed to exploit fully apoE3 atheroprotective functions, AAV2/7 and AAV2/8 are promising gene transfer vectors for muscle-based expression of antiatherogenic circulating proteins.
Collapse
|
263
|
Xie C, Kang J, Burris R, Ferguson ME, Schauss AG, Nagarajan S, Wu X. Açaí juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atherosclerosis 2011; 216:327-33. [PMID: 21411096 DOI: 10.1016/j.atherosclerosis.2011.02.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Açaí fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE(-/-)) mice. METHODS AND RESULTS ApoE(-/-) mice were fed AIN-93G diet (CD) or CD formulated to contain 5% freeze-dried açaí juice powder (AJ) for 20 weeks. The mean lesion areas in the aorta for apoE(-/-) mice fed AJ were 58% less (P<0.001) compared to that for CD fed mice. HDL-cholesterol was higher in AJ fed mice. Biomarkers of lipid peroxidation, including F(2)-isoprostanes and isomers of hydroxyoctadecadienoic acids and hydroxyeicosatetraenoic acids were significantly lower in serum and in liver of AJ fed mice. Expression of the two antioxidant enzyme genes, Gpx3 and Gsr, were significantly up-regulated in the aorta from AJ fed mice. The activity of GPX, GSR and PON1 increased in serum and/or liver of mice fed AJ. In the second experiment, ApoE(-/-) mice were fed CD or AJ for 5 weeks. Serum levels, gene expression and protein levels of the two proinflammatory cytokines TNF-α and IL-6 in the resident macrophages with or without LPS stimulation were lower in mice fed AJ. SEAP reporter assay determined that AJ reduced NF-κB activation. CONCLUSION Reducing lipid peroxidation through boosting antioxidant enzymes and inhibiting pro-inflammatory cytokine production are proposed as major underlying mechanisms for the athero-protective effects of the açaí juice tested in these experimental in vivo models.
Collapse
Affiliation(s)
- Chenghui Xie
- USDA Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, 15 Children's Way, Little Rock, AR 72202, USA
| | | | | | | | | | | | | |
Collapse
|
264
|
Animal models of cardiovascular diseases. J Biomed Biotechnol 2011; 2011:497841. [PMID: 21403831 PMCID: PMC3042667 DOI: 10.1155/2011/497841] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/04/2011] [Accepted: 01/17/2011] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.
Collapse
|
265
|
Otero-Losada M, McLoughlin S, Rodríguez-Granillo GA, Muller A, Ottaviano G, Milei J. Chronological changes of aortic and hepatic lesions in apolipoprotein E deficient mice☆. Artery Res 2011. [DOI: 10.1016/j.artres.2011.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
266
|
Raman KG, Gandley RE, Rohland J, Zenati MS, Tzeng E. Early hypercholesterolemia contributes to vasomotor dysfunction and injury associated atherogenesis that can be inhibited by nitric oxide. J Vasc Surg 2010; 53:754-63. [PMID: 21163611 DOI: 10.1016/j.jvs.2010.09.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Atherosclerosis results in vasomotor dysfunction, in part, through impairment of nitric oxide (NO) dependent vasodilation. It is unclear whether blood vessels are dysfunctional in an early environment of hypercholesterolemia alone and if this contributes to the vascular injury response. We hypothesize that early hypercholesterolemia, prior to gross vascular changes, contributes to vasomotor dysfunction and the vascular injury response. The efficacy of NO therapy to protect against the injury response in this setting was also assessed. METHODS The effect of oxidized low density lipoprotein (oxLDL) and inducible NO synthase (iNOS) gene transfer on rat aortic smooth muscle cell (SMC) proliferation was measured with (3)H-thymidine incorporation. Common carotid arteries (CCA) from wild-type C57BL6 (WT or C57) and apolipoprotein E deficient (ApoE KO) mice fed normal or Western diets for 6 to 8 weeks were tested for vasomotor function using an arteriograph system. Studies were repeated after CCA injury. The effect of iNOS gene transfer on morphometry by histology and vasomotor responses in injured CCAs in ApoE KO was examined. RESULTS OxLDL increased SMC proliferation by >50%. In SMC expressing iNOS, NO production was unaffected by oxLDL and reduced oxLDL and still inhibited SMC proliferation. Endothelium dependent vasorelaxation was reduced in uninjured CCAs from ApoE KO and C57 mice on the Western vs normal diet (ApoE 39% ± 2% vs 55% ± 13%; C57 50% ± 13% vs 76% ± 5%, P < .001) and was increased with longer durations of hypercholesterolemia. Endothelium-dependent and independent vasodilator responses were severely disrupted in C57 and ApoE KO mice 2 weeks following CCA injury but both recovered by 4 weeks. CCA injury in ApoE KO mice resulted in the formation of atheromatous lesions while C57 mice showed no change (intima 27,795 ± 1829 vs 237 ± 28 μm(2); media 46,306 ± 2448 vs 11,714 ± 392 μm(2), respectively; P < .001). This structural change in the ApoE KO reduced distensibility and increased stiffness. Finally, iNOS gene transfer to injured CCA in ApoE KO mice dramatically reduced atheromatous neointimal lesion formation. CONCLUSIONS Early hypercholesterolemia impairs endothelial function, with severity being related to duration and magnitude of hypercholesterolemia. Severe hypercholesterolemia leads to atheromatous lesion formation following injury and stresses the role of vascular injury in atherogenesis and suggests different mechanisms are involved in endothelial dysfunction and the injury response. Despite these changes, iNOS gene transfer still effectively inhibits atheroma formation. These findings support early correction of hypercholesterolemia and emphasize the potential role for NO based therapies in disease states.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/etiology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Atherosclerosis/prevention & control
- Carotid Artery Injuries/complications
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/physiopathology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Carotid Artery, Common/physiopathology
- Cell Proliferation
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hypercholesterolemia/complications
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Hypercholesterolemia/physiopathology
- Lipoproteins, LDL/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Rats
- Time Factors
- Transfection
- Triglycerides/blood
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Kathleen G Raman
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, Pa 15213, USA
| | | | | | | | | |
Collapse
|
267
|
Abstract
This article focuses on the role of PAPP-A in mammalian aging. It introduces PAPP-A and a little of its history, briefly discusses the function of PAPP-A in the insulin-like growth factor (IGF) system and the regulators of PAPP-A expression, and then reviews data concerning PAPP-A in aging and age-related diseases especially in regard to the PAPP-A knockout (KO) mouse. The PAPP-A KO mouse is a valuable new model to test hypotheses concerning the control of the tissue availability of IGF, independent from systemic levels, on healthspan as well as lifespan.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
268
|
Sheikine Y, Deodato B, Olofsson PS, Söderström LA, Lundberg AM, Bodin I, Rudling M, Theodorsson E, Hansson GK. Activation of VPAC1 receptors aggravates early atherosclerosis in hypercholesterolemic apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2010; 402:471-6. [DOI: 10.1016/j.bbrc.2010.10.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 10/12/2010] [Indexed: 12/30/2022]
|
269
|
Santelices LC, Rutman SJ, Prantil-Baun R, Vorp DA, Ahearn JM. Relative contributions of age and atherosclerosis to vascular stiffness. Clin Transl Sci 2010; 1:62-6. [PMID: 20443820 DOI: 10.1111/j.1752-8062.2008.00014.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
To determine the relative contributions of aging and atherosclerosis to vascular stiffness, we studied aortic stiffness, plaque, and elastin in 8-, 16-, 25-, and 34-week-old male ApoE-KO and C57BL/6J control mice (N = 48). Stiffness increased gradually in both strains up to 25 weeks (p < 0.05), and dramatically between 25 and 34 weeks in ApoE-KO (p < 0.001). Aging ApoE-KO demonstrated increased plaque (p = 0.02), medial thickening (p < 0.001), and severe elastin fragmentation (p < 0.001). We conclude that the contribution of aging to vascular stiffness is relatively minor compared with the influence of atherosclerosis. However, the effect of atherosclerosis on stiffness is significant only with advanced stages of plaque formation.
Collapse
Affiliation(s)
- Linda C Santelices
- Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
270
|
Inhibition of atherosclerotic lesion development in the ApoE-/- mouse by a novel β-oxa polyunsaturated fatty acid. J Cardiovasc Pharmacol 2010; 56:431-9. [PMID: 20930595 DOI: 10.1097/fjc.0b013e3181f1d420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent findings that a novel polyunsaturated fatty acid, β-oxa 23:4n-6, inhibits adhesion molecule expression on vascular endothelial cells and leukocyte adhesion led us to examine its ability to inhibit the development of atherosclerosis in the apoE-deficient (apoE) mouse. The mice were kept on normal chow or a high-fat/high-cholesterol diet for various periods and treated with either vehicle or β-oxa 23:4n-6 by the intraperitoneal route. The hearts and aortae were isolated and lesion development at the aortic root was determined. Morphometric assessment revealed that lesion development was a function of compensatory aortic enlargement, suggesting that measurement of plaque size per se is the appropriate assessment of lesion size. Using this criterion, we found that atherosclerosis development was reduced in response to β-oxa 23:4n-6, plaque size by 74% and aortic cross-sectional area by 62%, under an optimized regime. The number of foam cells per unit tissue area in the lesions of β-oxa 23:4n-6-treated mice was significantly reduced by 37.5%. The blood levels of β-oxa23:4n-6 in these mice exceeded the concentrations previously found to inhibit adhesion molecule expression in cultured endothelial cells. These data show that β-oxa23:4n-6 protects against experimental atherosclerosis, most likely by reducing the number of infiltrating monocytes.
Collapse
|
271
|
Zhu H, Zhang J, Shih J, Lopez-Bertoni F, Hagaman JR, Maeda N, Friedman MH. Differences in aortic arch geometry, hemodynamics, and plaque patterns between C57BL/6 and 129/SvEv mice. J Biomech Eng 2010; 131:121005. [PMID: 20524728 DOI: 10.1115/1.4000168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atherosclerotic plaques are distributed differently in the aortic arches of C57BL/6 (B6) and 129/SvEv (129) apolipoprotein E (apoE)-deficient mice. It is now recognized that hemodynamic wall shear stress (WSS) plays an important role in the localization of atherosclerotic development. Since the blood flow field in the vessel is modulated by the vascular geometry, we quantitatively examined the difference in the aortic arch geometry and hemodynamic WSS between the two corresponding wild-type mouse strains. The three-dimensional (3D) geometry of 14 murine aortic arches, seven from each strain, was characterized using casts and stereo microscopic imaging. Based on the geometry of each cast, an average 3D geometry of the aortic arch for each mouse strain was obtained, and computational fluid dynamic calculations were performed in the two average aortic arches. Many geometric features, including aortic arch shape, vessel diameter, and branch locations, were significantly different at p<0.05 between the two mouse strains. Lower shear stress was found at the inner curvature of the aortic arch in the 129 strain, corresponding to greater involvement in the corresponding apoE-deficient mice relative to the B6 strain. These results support the notion that heritable features of arterial geometry can contribute to individual differences in local susceptibility to arterial disease.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281
| | | | | | | | | | | | | |
Collapse
|
272
|
Wu X, Kang J, Xie C, Burris R, Ferguson ME, Badger TM, Nagarajan S. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J Nutr 2010; 140:1628-32. [PMID: 20660283 DOI: 10.3945/jn.110.123927] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protective effects of blueberries (BB) against atherosclerosis and potential underlying mechanisms in reducing oxidative stress were examined in apoE-deficient (apoE(-/-)) mice. ApoE(-/-) mice were fed an AIN-93G diet (CD) or CD formulated to contain 1% freeze-dried whole BB for 20 wk. The mean lesion area for apoE(-/-) mice fed BB was reduced by 39% (P < 0.001) in the aorta sinus and 58% (P < 0.001) in the descending aorta compared with CD-fed mice. These atheroprotective effects were independent of the serum lipid profile or total antioxidant capacity (as measured by oxygen radical absorbance capacity). The concentration of a biomarker of lipid peroxidation, F(2)-isoprostane, was lower in liver of BB-fed mice (P < 0.05). Genes analyzed by RT-PCR array showed that 4 major antioxidant enzymes in aorta [superoxide dismutase (SOD) 1, SOD2, glutathione reductase (GSR), and thioredoxin reductase 1] were upregulated in BB-fed mice. Enzyme activities of SOD and GSR were greater (P < 0.05) in liver and/or serum of BB-fed mice than those of CD-fed mice. In addition, serum paraoxonase 1 activity in serum of BB-fed mice was also greater than that of CD-fed mice (P < 0.05) at the end of the study. These results suggest a protective effectiveness of BB against atherosclerosis in this apoE(-/-) mouse model. The potential mechanisms may involve reduction in oxidative stress by both inhibition of lipid peroxidation and enhancement of antioxidant defense.
Collapse
Affiliation(s)
- Xianli Wu
- USDA Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | |
Collapse
|
273
|
Rivera J, Sobey CG, Walduck AK, Drummond GR. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 2010; 15:50-63. [PMID: 20500986 DOI: 10.1179/174329210x12650506623401] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Elevated reactive oxygen species (ROS) formation in the vascular wall is a key feature of cardiovascular diseases and a likely contributor to oxidative stress, endothelial dysfunction and vascular inflammation. The NADPH oxidases are a family of ROS generating enzymes, of which four members (Nox1, Nox2, Nox4 and Nox5) are expressed in blood vessels. Numerous studies have demonstrated that expression and activity of at least two isoforms of NADPH oxidase - Nox1 and Nox2 - are up-regulated in animal models of hypertension, diabetes and atherosclerosis. However, these observations are merely suggestive of a role for NADPH oxidases in vessel pathology and by no means establish cause and effect. Furthermore, questions surrounding the specificity of current pharmacological inhibitors of NADPH oxidase mean that findings obtained with these compounds must be viewed with caution. Here, we review the literature on studies utilising genetically-modified mouse strains to investigate the roles of NADPH oxidases in experimental models of vascular disease. While several studies on transgenic over-expressing or knockout mice support roles for Nox1- and/or Nox2-containing oxidases as sources of excessive vascular ROS production and causes of endothelial dysfunction in hypertension, atherosclerosis and diabetes, there are still no published reports on the effects of genetic modification of Nox4 or Nox5 in vascular or indeed any other contexts. Further understanding of the roles of specific isoforms of NADPH oxidase in vascular (patho)physiology should provide direction for future programs aimed at developing selective inhibitors of these enzymes as novel therapeutics in cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer Rivera
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
274
|
Pereira TMC, Nogueira BV, Lima LCF, Porto ML, Arruda JA, Vasquez EC, Meyrelles SS. Cardiac and vascular changes in elderly atherosclerotic mice: the influence of gender. Lipids Health Dis 2010; 9:87. [PMID: 20723257 PMCID: PMC2936359 DOI: 10.1186/1476-511x-9-87] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/19/2010] [Indexed: 12/04/2022] Open
Abstract
Background Although advanced age is considered a risk factor for several diseases, the impact of gender on age-associated cardiovascular diseases, such as atherosclerotic processes and valvular diseases, remains not completely clarified. The present study was designed to assess aortic valve morphology and function and vascular damage in elderly using the apolipoprotein E knockout (ApoE KO) mouse. Our hypothesis was that advanced age-related cardiovascular changes are aggravated in atherosclerotic male mice. Methods The grade (0 to 4) of aortic regurgitation was evaluated through angiography. In addition, vascular lipid deposition and senescence were evaluated through histochemical analyses in aged male and female ApoE KO mice, and the results were compared to wild-type C57BL/6J (C57) mice. Results Aortic regurgitation was observed in 92% of the male ApoE KO mice and 100% of the male C57 mice. Comparatively, in age-matched female ApoE KO and C57 mice, aortic regurgitation was observed in a proportion of 58% and 53%, respectively. Histological analysis of the aorta showed an outward (positive) remodeling in ApoE KO mice (female: 1.86 ± 0.15; male: 1.89 ± 0.68) using C57 groups as reference values. Histochemical evaluation of the aorta showed lipid deposition and vascular senescence only in the ApoE KO group, which were more pronounced in male mice. Conclusion The data show that male gender contributes to the progression of aortic regurgitation and that hypercholesterolemia and male gender additively contribute to the occurrence of lipid deposition and vascular senescence in elderly mice.
Collapse
Affiliation(s)
- Thiago M C Pereira
- Laboratory of Transgenes and Cardiovascular Control, Physiological Sciences Graduate Program, Health Sciences Center, Federal University of EspÃrito Santo, Av. Marechal Campos 1468, Vitoria, ES 29043-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
275
|
Evola M, Hall A, Wall T, Young A, Grammas P. Oxidative stress impairs learning and memory in apoE knockout mice. Pharmacol Biochem Behav 2010; 96:181-6. [PMID: 20457176 PMCID: PMC2916228 DOI: 10.1016/j.pbb.2010.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/07/2010] [Accepted: 05/03/2010] [Indexed: 11/29/2022]
Abstract
Cardiovascular risk factors, such as oxidative stress and elevated lipids, are linked to the development of cognitive impairment. A mediator common to both stressors is the apolipoprotein E (apoE). The objectives of this study are to determine the effects of apoE deficiency and diet-induced systemic oxidative stress in mice on vascular expression of inflammatory proteins and on cognitive function. Mice are placed on a diet enriched in homocysteine for fifteen weeks and then assessed for spatial learning using an eight-arm radial maze and for inflammatory protein expression by immunohistochemistry. Our results show that diet-induced oxidative stress does not affect cognitive function in normal mice. In contrast, apoE-/- mice on the homocysteine diet show significantly impaired (p<0. 001) maze performance. ApoE-/- mice also have high cholesterol levels. There is no expression of inflammatory proteins IL-6 and IL-8 in the vasculature of control mice on normal or homocysteine diet and little in apoE-/- mice on normal diet. In contrast, apoE-/- mice on homocysteine diet show pronounced vascular reactivity to IL-6 and IL-8 antibodies. These data show that systemic oxidative stress correlates with expression of inflammatory proteins in the cerebral vasculature and impaired cognitive function. These results are consistent with the hypothesis that an oxidative-inflammatory cycle in the cerebral vasculature could have deleterious consequences for cognition.
Collapse
Affiliation(s)
- Marianne Evola
- Garrison Institute on Aging, Department of Neurology and Department of Pharmacology and Neurosciences Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Allyson Hall
- Garrison Institute on Aging, Department of Neurology and Department of Pharmacology and Neurosciences Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Trevor Wall
- Garrison Institute on Aging, Department of Neurology and Department of Pharmacology and Neurosciences Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Alice Young
- Garrison Institute on Aging, Department of Neurology and Department of Pharmacology and Neurosciences Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Paula Grammas
- Garrison Institute on Aging, Department of Neurology and Department of Pharmacology and Neurosciences Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
276
|
Slätis K, Gåfvels M, Kannisto K, Ovchinnikova O, Paulsson-Berne G, Parini P, Jiang ZY, Eggertsen G. Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice. J Lipid Res 2010; 51:3289-98. [PMID: 20675645 DOI: 10.1194/jlr.m009308] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To investigate the effects of abolished cholic acid (CA) synthesis in the ApoE knockout model [apolipoprotein E (apoE) KO],a double-knockout (DKO) mouse model was created by crossbreeding Cyp8b1 knockout mice (Cyp8b1 KO), unable to synthesize the primary bile acid CA, with apoE KO mice. After 5 months of cholesterol feeding, the development of atherosclerotic plaques in the proximal aorta was 50% less in the DKO mice compared with the apoE KO mice. This effect was associated with reduced intestinal cholesterol absorption, decreased levels of apoB-containing lipoproteins in the plasma, enhanced bile acid synthesis, reduced hepatic cholesteryl esters, and decreased hepatic activity of ACAT2. The upregulation of Cyp7a1 in DKO mice seemed primarily caused by reduced expression of the intestinal peptide FGF15. Treatment of DKO mice with the farnesoid X receptor (FXR) agonist GW4064 did not alter the intestinal cholesterol absorption, suggesting that the action of CA in this process is confined mainly to formation of intraluminal micelles and less to its ability to activate the nuclear receptor FXR. Inhibition of CA synthesis may offer a therapeutic strategy for the treatment of hyperlipidemic conditions that lead to atherosclerosis.
Collapse
Affiliation(s)
- Katharina Slätis
- Unit for Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Pharmacological Inhibition of Cathepsin S Decreases Atherosclerotic Lesions in Apoe-/- Mice. J Cardiovasc Pharmacol 2010; 56:98-105. [DOI: 10.1097/fjc.0b013e3181e23e10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
278
|
Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part one: modeling risk factors. Open Neurol J 2010; 4:26-33. [PMID: 20802809 PMCID: PMC2928914 DOI: 10.2174/1874205x01004020026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is one of the leading causes of long-term disability and death in developed and developing countries. As emerging disease, stroke related mortality and morbidity is going to step up in the next decades. This is both due to the poor identification of risk factors and persistence of unhealthy habits, as well as to the aging of the population. To counteract the estimated increase in stroke incidence, it is of primary importance to identify risk factors, study their effects, to promote primary and secondary prevention, and to extend the therapeutic repertoire that is currently limited to the very first hours after stroke. While epidemiologic studies in the human population are essential to identify emerging risk factors, adequate animal models represent a fundamental tool to dissect stroke risk factors to their molecular mechanism and to find efficacious therapeutic strategies for this complex multi- factorial disorder. The present review is organized into two parts: the first part deals with the animal models that have been developed to study stroke and its related risk factors and the second part analyzes the specific stroke models. These models represent an indispensable tool to investigate the mechanisms of cerebral injury and to develop novel therapies.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Department of Neurology, University Hospital Zurich (USZ), Zurich, Switzerland
| | | | | |
Collapse
|
279
|
Cola MS, Gava AL, Meyrelles SS, Vasquez EC. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice. Lipids Health Dis 2010; 9:51. [PMID: 20482882 PMCID: PMC2886002 DOI: 10.1186/1476-511x-9-51] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 05/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE) mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57) and hypercholesterolemic (ApoE) female mice in both normal and ovariectomized conditions. METHODS Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10(-9) to 2 x 10(-3) mol/L), acetylcholine (ACh) and sodium nitroprusside (SNP) (10(-10) to 10(-3) mol/L) were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. RESULTS ACh-induced relaxation was significantly reduced (P < 0.05) in ApoE compared with C57 animals, as indicated by both the maximal response (37 +/- 4% vs. 72 +/- 1%) and the LogEC50 (-5.67 +/- 0.18 vs. -6.23 +/- 0.09 mol/L). Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 +/- 4%) but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 +/- 5%). SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. CONCLUSION These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient) female mice compared with normal (C57) female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.
Collapse
Affiliation(s)
- Maine S Cola
- Laboratory of Transgenes and Cardiovascular Control, Physiological Sciences Graduate Program, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | |
Collapse
|
280
|
Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R, Schwarzer M, Tlaskalova-Hogenova H. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 2010; 17:796-804. [PMID: 20379054 DOI: 10.5551/jat.3285] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of our work was to determine the influence of intestinal bacteria on the development of atherosclerotic lesions using apolipoprotein E (ApoE)-deficient knockout mice. METHODS The experiments were performed on ApoE-/--deficient mouse strain C57BL/6, bred under germ-free (GF) conditions for two generations or under conventional conditions with defined microflora (CV). The mice were fed a standard low cholesterol diet or cholesterol-rich diet for 3-4 months. We studied the development of advanced lesions in the thoracic and abdominal aorta by histological, morphometric and immunohistological methods. RESULTS Conventionally reared ApoE-/- mice (containing no pathogenic intestinal microbiota) and fed a standard low cholesterol diet in contrast to a high cholesterol diet did not develop atherosclerotic aortic plaques. In contrast, ApoE-/- mice reared under germfree conditions for 2 generations and fed a low cholesterol diet exhibited atherosclerotic plaques in the aorta. Characteristic lipid deposition with foam cells and macrophages was found in their arterial walls. CONCLUSION In contrast to the absence of atherosclerotic plaques in conventionally reared ApoE-deficient mice, germ-free ApoE-/- mice consuming the same low cholesterol standard diet developed atherosclerotic plaques in the aorta. Differences in atherosclerotic plaques between GF and CV ApoE-/- mice are not so apparent when mice are fed a high cholesterol diet. Our findings thus document the protective effect of microbiota (commensal bacteria) on atherosclerosis development.
Collapse
Affiliation(s)
- Renata Stepankova
- Department of Immunology and Gnotobiology, Institute of Microbiology, vvi, Czech Academy of Sciences, Praque, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
281
|
Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. IGF-1, oxidative stress and atheroprotection. Trends Endocrinol Metab 2010; 21:245-54. [PMID: 20071192 PMCID: PMC2848911 DOI: 10.1016/j.tem.2009.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 01/30/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1.
Collapse
Affiliation(s)
- Yusuke Higashi
- Tulane University School of Medicine, 1430 Tulane Avenue, SL 48, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
282
|
Rovati GE, Sala A, Capra V, Dahlén SE, Folco G. Dual COXIB/TP antagonists: a possible new twist in NSAID pharmacology and cardiovascular risk. Trends Pharmacol Sci 2010; 31:102-7. [DOI: 10.1016/j.tips.2009.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/23/2009] [Accepted: 11/24/2009] [Indexed: 11/30/2022]
|
283
|
Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D. Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. GENES AND NUTRITION 2010; 5:343-53. [PMID: 21189870 DOI: 10.1007/s12263-010-0171-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/25/2010] [Indexed: 12/30/2022]
Abstract
UNLABELLED Intake of anthocyanin-rich foods has been associated with a reduced risk of cardiovascular diseases. Supplementation with anthocyanin-rich extracts from black rice or purple sweet potato was reported to attenuate atherosclerotic lesion development in apolipoprotein E-deficient (apo E(-/-)) mice. However, the mechanism(s) of their preventive action are not completely understood. Previous studies revealed that anthocyanins altered mRNA levels of genes related to atherosclerosis in cultured macrophages and endothelial cells, but in vivo studies remain scarce. The aim of the study was to investigate the impact of bilberry anthocyanin-rich extract (BE) supplementation on gene expression in the liver of apo E(-/-) mice, the widely used model of atherosclerosis. The liver was chosen because it is the main site of lipid metabolism. Apo E(-/-) mice received for 2 weeks a standard diet supplemented with a nutritional dose of BE (0.02%). This study focused on the early stage of atherosclerosis development for better assessment of anthocyanin action on initiation mechanisms of this pathology. The results showed that a 2-week supplementation significantly reduced plasmatic total cholesterol and hepatic triglyceride levels, whereas the plasmatic antioxidant status remained unchanged. Transcriptional analysis, using microarrays, revealed that the expression of 2,289 genes was significantly altered. BE over-expressed genes involved in bile acid synthesis and cholesterol uptake into the liver and down-regulated the expression of pro-inflammatory genes. These results suggest an anti-atherogenic effect of BE through the regulation of cholesterol metabolism and liver inflammation and provide a global integrated view of the mechanisms involved in the preventive action of this extract. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12263-010-0171-0) contains supplementary material, which is available to authorized users.
Collapse
|
284
|
D609 Inhibits Progression of Preexisting Atheroma and Promotes Lesion Stability in Apolipoprotein E
−/−
Mice. Arterioscler Thromb Vasc Biol 2010; 30:411-8. [DOI: 10.1161/atvbaha.109.195768] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective—
Atherosclerosis is considered to be a chronic inflammatory disease. Previous research has demonstrated that phosphatidylcholine-specific phospholipase C (PC-PLC) plays critical roles in various inflammatory responses. However, the association between PC-PLC and atherosclerosis is undetermined. Therefore, we sought to investigate whether PC-PLC was implicated in atherosclerosis.
Methods and Results—
Immunofluorescence analysis revealed an upregulation of PC-PLC in the aortic endothelium from apolipoprotein E-deficient (apoE
−/−
) mice. PC-PLC level and activity were also increased in human umbilical vein endothelial cells in response to oxidized low-density lipoprotein treatment. Pharmacological blockade of PC-PLC by D609 inhibited the progression of preexisting atherosclerotic lesions in apoE
−/−
mice and changed the lesion composition into a more stable phenotype. Using a combination of pharmacological inhibition, polyclonal antibodies, confocal laser scanning microscopy and Western blotting, we demonstrated that PC-PLC was required for endothelial expression of lectin-like oxidized low-density lipoprotein receptor-1. In addition, D609 treatment significantly decreased the aortic endothelial expression of the vascular cell adhesion molecule-1 and the intercellular adhesion molecule-1. Furthermore, inhibition of PC-PLC in human umbilical vein endothelial cells reduced the oxidized low-density lipoprotein induced expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and monocyte chemotactic protein-1.
Conclusion—
Our data suggest that PC-PLC contributes to the progression of atherosclerosis.
Collapse
|
285
|
Guns PJDF, Hendrickx J, Van Assche T, Fransen P, Bult H. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice. Br J Pharmacol 2009; 159:326-36. [PMID: 20050854 DOI: 10.1111/j.1476-5381.2009.00497.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. EXPERIMENTAL APPROACH mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE(-/-)) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE(-/-) mice. KEY RESULTS P2Y(6) receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y(2) receptor expression remained unchanged. Expression of P2Y(1) or P2Y(4) receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y(6) mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y(6)-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y(6) receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y(6)-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100-300 microM) or pyridoxal-phosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS, 10-30 microM). Finally, 4-week treatment of cholesterol-fed apoE(-/-) mice with suramin or PPADS (50 and 25 mg.kg(-1).day(-1) respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. CONCLUSIONS AND IMPLICATIONS These results suggest involvement of nucleotide receptors, particularly P2Y(6) receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y(6) receptor-deficient mice.
Collapse
|
286
|
Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice. Atherosclerosis 2009; 207:399-404. [DOI: 10.1016/j.atherosclerosis.2009.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/06/2009] [Accepted: 06/11/2009] [Indexed: 11/20/2022]
|
287
|
Apolipoprotein E and its role in aging and survival. Exp Gerontol 2009; 45:149-57. [PMID: 19941948 DOI: 10.1016/j.exger.2009.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/15/2009] [Accepted: 11/17/2009] [Indexed: 12/22/2022]
Abstract
The study of biological aging has seen spectacular progress in the last decade and markers are increasingly employed for understanding physiological processes that change with age. Recently, it has been demonstrated that apolipoprotein E (apoE) has a major impact on longevity, but its mechanisms are still not fully understood. ApoE-deficient (E(o)) mice have proved to be a very popular model for studying spontaneous hypercholesterolemia and the subsequent development of atherosclerotic lesions, but only limited data are available with regard to aging and aging changes. We used this murine model to better characterize the involvement of apoE in aging and to evaluate its role in the maintenance of normal organ morphology. Our results show that E(0) mice at different ages (6, 12, 20 weeks old) developed age-dependent morphological and biochemical alterations, including fibrosis (newly formed collagen), pro-inflammatory cytokine (IL-6 and iNOS), lipofuscin accumulation, and decrease of antioxidant enzymes (superoxide dismutase and catalase) in several organs (kidney, liver and heart). It is significant that the observed degenerative findings in E(0) mice at different ages (6, 12, 20 weeks old) were not identified in control mice (C57BL), at 6, 12 and 20 weeks of age. Consequently, since these mice showed enzymatic and structural alterations, normally linked to the age, such as increase of lipofuscin, pro-inflammatory cytokines and decrease of antioxidant enzymes, we can conclude that apoE is a useful player in studies of longevity and age-related diseases, such as inflammatory status and atherosclerosis that are known risk factors for functional decline and early mortality. Moreover, it is possible that apoE may also play a role in other pathological conditions including, for example, cancer, rheumatoid arthritis and macular degeneration.
Collapse
|
288
|
Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2009; 209:381-6. [PMID: 19897196 DOI: 10.1016/j.atherosclerosis.2009.10.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with increased cardiovascular mortality. This increased risk may be attributable to more extensive or unstable atherosclerotic plaques in subjects with OSA. We studied the effect of chronic IH in atherosclerosis-prone mice. METHODS AND RESULTS Apolipoprotein E-deficient (ApoE(-/-)) mice fed a high cholesterol diet were exposed to 4 or 12 weeks of IH and compared to intermittent air-exposed controls. At 4 weeks, IH increased plaque size in the aortic sinus and the descending aorta. At 12 weeks, atherosclerosis progressed in all groups, but more rapidly in the descending aorta of IH-exposed animals. Plaque composition was similar between IH and controls. Between 4 and 12 weeks, there were progressive increases in blood pressure, with relatively stable increases in serum lipids and arterial stiffness. CONCLUSIONS IH accelerates atherosclerotic plaque growth in ApoE(-/-) mice without affecting plaque composition. The mechanisms may include non-additive increases in serum lipids, and cumulative increases in blood pressure.
Collapse
|
289
|
Rai S, Hare DL, Zulli A. A physiologically relevant atherogenic diet causes severe endothelial dysfunction within 4 weeks in rabbit. Int J Exp Pathol 2009; 90:598-604. [PMID: 19758419 DOI: 10.1111/j.1365-2613.2009.00668.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A physiological atherogenic human diet consists of 0.1% cholesterol, fat, as well as high levels of methionine, which is the precursor to homocysteine. The pathological effects of a diet enriched with physiologically high levels of cholesterol, methionine and fat over a short period on the aorta are unknown. In this regard, we sought to determine the effects of a 0.1% cholesterol diet in combination with a 1% methionine over a 4-week period on endothelial function and artery pathology and the expression of endothelial nitric oxide synthase as well as nitrosative stress by nitrotyrosine (NT), oxidative stress by heat shock protein 70 (HSP70) and endoplasmic reticulum stress by glucose regulated protein 78 (GRP78). Rabbits were fed for 4 weeks a diet supplemented with 1% methionine + 0.1% cholesterol + 5% peanut oil (MC). The endothelial function of the abdominal aorta was examined using organ bath techniques, atherosclerosis determined in each artery by microscopy and eNOS, NT, GRP78 and HSP70 by standard immunohistochemistry. Endothelium dependent relaxation in response to acetylcholine significantly decreased by 63% at 1 muM acetylcholine (P < 0.001) compared with control arteries. There was no evidence of atherosclerosis formation in any artery studied, however, eNOS, NT and GRP78 was clearly present in all arteries studied but HSP70 was not easily detectable. Severe endothelial dysfunction is present in the abdominal aorta of rabbits within 4 weeks of physiological dietary manipulation, possibly due to NT formation and endoplasmic reticulum stress. This model could be used to study the early onset of endothelial dysfunction prior to the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Sudarshan Rai
- Departments of Cardiology and Medicine, University of Melbourne, Austin Health, Australia
| | | | | |
Collapse
|
290
|
Zhao Z, Xu Z, Le K, Azordegan N, Riediger ND, Moghadasian MH. Lack of evidence for antiatherogenic effects of wheat bran or corn bran in apolipoprotein E-knockout mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6455-6460. [PMID: 19601675 DOI: 10.1021/jf900090q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Epidemiological studies have suggested that intake of whole grains is inversely associated with coronary artery disease. The mechanisms, however, are not completely clear. We tested the hypothesis that intake of wheat bran or corn bran would (1) increase the plasma concentration of phenolic antioxidants and (2) reduce atherosclerosis in apo E-knockout mice. Apo E-knockout (E-KO) mice were fed for 18 weeks with a 0.1% cholesterol-supplemented diet in the absence of grain brans or the presence of 1.7% yellow dent corn bran or 3.3% hard red spring wheat bran. The concentration of antioxidant ferulic acid in plasma and urine was measured by HPLC to monitor the bioavailability of grain phenolics. Plasma lipoprotein profiles were determined by a combination of HPLC and online enzymatic methods. Urinary 15-isoprostane F(2t), an in vivo LDL oxidation biomarker, and atherosclerotic lesions were analyzed by ELISA and histological methods, respectively. Dietary supplementation with corn or wheat bran resulted in a 4- and 24-fold increase, respectively, in urinary excretion of ferulic acid. The urinary recovery rate of ferulic acid from the two brans in apo E-KO mice was approximately 1.9-2.9%. Dietary corn bran but not wheat bran also significantly increased the concentration of total ferulic acid in plasma. Nevertheless, the supplementation with either bran product for 18 weeks did not significantly alter the urinary excretion of 15-isoprostane F(2t), change the lipoprotein profiles, nor reduce the atherosclerotic lesion development in this animal model. The results suggest that phenolic antioxidants from the two types of bran may not be sufficient to reduce atherosclerosis in this animal model.
Collapse
Affiliation(s)
- Zhaohui Zhao
- Department of Human Nutritional Sciences, University of Manitoba, and Canadian Center for Agri-food Research in Health and Medicine, St Boniface Hospital Research Center, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
291
|
Abarbanell AM, Herrmann JL, Weil BR, Wang Y, Tan J, Moberly SP, Fiege JW, Meldrum DR. Animal models of myocardial and vascular injury. J Surg Res 2009; 162:239-49. [PMID: 20053409 DOI: 10.1016/j.jss.2009.06.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 01/09/2023]
Abstract
Over the past century, numerous animal models have been developed in an attempt to understand myocardial and vascular injury. However, the successful translation of results observed in animals to human therapy remains low. To understand this problem, we present several animal models of cardiac and vascular injury that are of particular relevance to the cardiac or vascular surgeon. We also explore the potential clinical implications and limitations of each model with respect to the human disease state. Our results underscore the concept that animal research requires an in-depth understanding of the model, animal physiology, and the potential confounding factors. Future outcome analyses with standardized animal models may improve translation of animal research from the bench to the bedside.
Collapse
Affiliation(s)
- Aaron M Abarbanell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
292
|
Nahrendorf M, Waterman P, Thurber G, Groves K, Rajopadhye M, Panizzi P, Marinelli B, Aikawa E, Pittet MJ, Swirski FK, Weissleder R. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 2009; 29:1444-51. [PMID: 19608968 DOI: 10.1161/atvbaha.109.193086] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Proteases are emerging biomarkers of inflammatory diseases. In atherosclerosis, these enzymes are often secreted by inflammatory macrophages, digest the extracellular matrix of the fibrous cap, and destabilize atheromata. Protease function can be monitored with protease activatable imaging probes and quantitated in vivo by fluorescence molecular tomography (FMT). To address 2 major constraints currently associated with imaging of murine atherosclerosis (lack of highly sensitive probes and absence of anatomic information), we compared protease sensors (PS) of variable size and pharmacokinetics and coregistered FMT datasets with computed tomography (FMT-CT). METHODS AND RESULTS Coregistration of FMT and CT was achieved with a multimodal imaging cartridge containing fiducial markers detectable by both modalities. A high-resolution CT angiography protocol accurately localized fluorescence to the aortic root of atherosclerotic apoE(-/-) mice. To identify suitable sensors, we first modeled signal kinetics in-silico and then compared 3 probes with oligo-L-lysine cleavage sequences: PS-5, 5 nm in diameter containing 2 fluorochromes, PS-25, a 25-nm version with an elongated lysine chain and PS-40, a polymeric nanoparticle. Serial FMT-CT showed fastest kinetics for PS-5 but, surprisingly, highest fluorescence in lesions of the aortic root for PS-40. PS-40 robustly reported therapeutic effects of atorvastatin, corroborated by ex vivo imaging and qPCR for the model protease cathepsin B. CONCLUSIONS FMT-CT is a robust and observer-independent tool for noninvasive assessment of inflammatory murine atherosclerosis. Reporter-containing nanomaterials may have unique advantages over small molecule agents for in vivo imaging.
Collapse
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Ketonen J, Merasto S, Paakkari I, Mervaala EMA. High sodium intake increases vascular superoxide formation and promotes atherosclerosis in apolipoprotein E‐deficient mice. Blood Press 2009; 14:373-82. [PMID: 16403692 DOI: 10.1080/08037050500383687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypertension is a major risk factor for atherosclerosis. We tested the hypothesis whether high salt intake aggravates endothelial dysfunction and promotes atherosclerosis in apolipoprotein E-deficient mice (ApoE(-)/(-) mice) and their littermate controls (C57Bl/6 mice). The role of increased oxidative stress was also examined. A high-salt diet (NaCl 7%) for 12 weeks increased blood pressure and induced cardiac hypertrophy and albuminuria more pronouncedly in ApoE(-)/(-) mice compared with C57Bl/6. Endothelium-dependent vascular relaxation in response to acetylcholine was almost maximally impaired in ApoE(-)/(-) mice during a normal sodium diet. A high-salt diet did not further impair NO-mediated vascular relaxation. A high-salt diet also markedly attenuated endothelium-dependent relaxation in C57Bl/6 mice. Preincubation with the superoxide scavenger Tiron normalized endothelial function almost completely in both mice strains indicating the central role of increased oxidative stress in the pathogenesis. Aortic superoxide production and the extent of atherosclerotic lesions were greater in ApoE(-)/(-) mice on a normal-salt diet compared with C57Bl/6. The high-salt diet increased vascular superoxide formation and promoted atherosclerosis in ApoE(-)/(-) mice. Changes in dietary salt intake did not influence serum lipids in either mouse strains. Our findings suggest a detrimental role for high salt intake in the development of atherosclerosis and underscore the importance of increased oxidative stress in the pathogenesis salt-induced vascular damage.
Collapse
Affiliation(s)
- Juha Ketonen
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
294
|
Auclair S, Milenkovic D, Besson C, Chauvet S, Gueux E, Morand C, Mazur A, Scalbert A. Catechin reduces atherosclerotic lesion development in apo E-deficient mice: A transcriptomic study. Atherosclerosis 2009; 204:e21-7. [DOI: 10.1016/j.atherosclerosis.2008.12.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 11/28/2008] [Accepted: 12/05/2008] [Indexed: 11/29/2022]
|
295
|
Catanozi S, Rocha J, Passarelli M, Chiquito F, Quintão E, Nakandakare E. Pitfalls in the assessment of murine atherosclerosis. Braz J Med Biol Res 2009; 42:471-5. [DOI: 10.1590/s0100-879x2009000600001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 03/11/2009] [Indexed: 11/22/2022] Open
|
296
|
Ko KWS, Corry DB, Brayton CF, Paul A, Chan L. Extravascular inflammation does not increase atherosclerosis in apoE-deficient mice. Biochem Biophys Res Commun 2009; 384:93-9. [PMID: 19393222 DOI: 10.1016/j.bbrc.2009.04.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 01/23/2023]
Abstract
There is much speculation whether extravascular inflammation accelerates atherosclerosis. We tested this hypothesis in apoE(-/-) mice using three well-characterized models of non-autoimmune chronic inflammation: croton oil-induced skin inflammation, Aspergillus fumigatus antigen-induced allergic lung disease, and A. fumigatus antigen-induced peritonitis. The croton oil model produced recurrent inflammatory skin ulceration, and marked increases in plasma levels of IL-6 and serum amyloid A (SAA). The allergic lung disease model showed strong local inflammation with eosinophilic infiltration and serum IgE induction. The recurrent peritonitis model was accompanied by mild elevation in plasma SAA levels. Aortic atherosclerosis was quantified by computer-assisted morphometry of en face arteries in apoE(-/-) mice at 34 weeks for the croton oil model, 26 and 42 weeks for the allergic lung disease model, and 26 weeks for the peritonitis model. We found that all three forms of chronic extravascular inflammation had no effect on the rate of atherosclerosis development.
Collapse
Affiliation(s)
- Kerry W S Ko
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
297
|
Guillén N, Acín S, Navarro MA, Carlos Surra J, Arnal C, Manuel Lou-Bonafonte J, Muniesa P, Victoria Martínez-Gracia M, Osada J. Knowledge of the Biological Actions of Extra Virgin Olive Oil Gained From Mice Lacking Apolipoprotein E. ACTA ACUST UNITED AC 2009; 62:294-304. [DOI: 10.1016/s1885-5857(09)71560-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
298
|
Guillén N, Acín S, Navarro MÁ, Carlos Surra J, Arnal C, Manuel Lou-Bonafonte J, Muniesa P, Victoria Martínez-Gracia M, Osada J. Conocimiento de la acción biológica del aceite de oliva virgen extra mediante el uso del ratón carente de la apolipoproteína E. Rev Esp Cardiol 2009. [DOI: 10.1016/s0300-8932(09)70374-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
299
|
Liu X, Shen J, Zhan R, Wang X, Wang X, Zhang Z, Leng X, Yang Z, Qian L. Proteomic analysis of homocysteine induced proliferation of cultured neonatal rat vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:177-84. [DOI: 10.1016/j.bbapap.2008.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|
300
|
González-Navarro H, Vinué A, Vila-Caballer M, Fortuño A, Beloqui O, Zalba G, Burks D, Díez J, Andrés V. Molecular Mechanisms of Atherosclerosis in Metabolic Syndrome. Arterioscler Thromb Vasc Biol 2008; 28:2187-94. [DOI: 10.1161/atvbaha.108.175299] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective—
The mechanisms underlying accelerated atherosclerosis in metabolic syndrome (MetS) patients remain poorly defined. In the mouse, complete disruption of insulin receptor substrate-2 (
Irs2
) causes insulin resistance, MetS-like manifestations, and accelerates atherosclerosis. Here, we performed human, mouse, and cell culture studies to gain insight into the contribution of defective
Irs2
signaling to MetS-associated alterations.
Methods and Results—
In circulating leukocytes from insulin-resistant MetS patients,
Irs2
and
Akt2
mRNA levels inversely correlate with plasma insulin levels and HOMA index and are reduced compared to insulin-sensitive MetS patients. Notably, a moderate reduction in
Irs2
expression in fat-fed
apolipoprotein E-null
mice lacking one allele of
Irs2
(
apoE
−/−
Irs2
+/−
) accelerates atherosclerosis compared to
apoE-null
controls, without affecting plaque composition. Partial
Irs2
inactivation also increases CD36 and SRA scavenger receptor expression and modified LDL uptake in macrophages, diminishes
Akt2
and
Ras
expression in aorta, and enhances expression of the proatherogenic cytokine MCP1 in aorta and primary vascular smooth muscle cells (VSMCs) and macrophages. Inhibition of AKT or ERK1/2, a downstream target of RAS, upregulates
Mcp1
in VSMCs.
Conclusions—
Enhanced levels of MCP1 resulting from reduced IRS2 expression and accompanying defects in AKT2 and Ras/ERK1/2 signaling pathways may contribute to accelerated atherosclerosis in MetS states.
Collapse
Affiliation(s)
- Herminia González-Navarro
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Ángela Vinué
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Marian Vila-Caballer
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Ana Fortuño
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Oscar Beloqui
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Guillermo Zalba
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Deborah Burks
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Javier Díez
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| | - Vicente Andrés
- From the Laboratory of Vascular Biology (H.G.-N., A.V., M.V.-C., V.A.), Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, CSIC, Spain; the Division of Cardiovascular Sciences (A.F., O.B., G.Z., J.D.), Centre for Applied Medical Research; Department of Cardiology and Cardiovascular Surgery, University Clinic (J.D.), School of Medicine, University of Navarra, Pamplona, Spain; and the Centro de Investigación Príncipe Felipe (D.B.), CIBER de Diabetes y
| |
Collapse
|