251
|
Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, Unruh H, Halayko AJ. beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J Cell Sci 2010; 123:3061-70. [PMID: 20736308 DOI: 10.1242/jcs.066712] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The dystrophin-glycoprotein complex (DGC) links the extracellular matrix and actin cytoskeleton. Caveolae form membrane arrays on smooth muscle cells; we investigated the mechanism for this organization. Caveolin-1 and beta-dystroglycan, the core transmembrane DGC subunit, colocalize in airway smooth muscle. Immunoprecipitation revealed the association of caveolin-1 with beta-dystroglycan. Disruption of actin filaments disordered caveolae arrays, reduced association of beta-dystroglycan and caveolin-1 to lipid rafts, and suppressed the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release. We generated novel human airway smooth muscle cell lines expressing shRNA to stably silence beta-dystroglycan expression. In these myocytes, caveolae arrays were disorganized, caveolae structural proteins caveolin-1 and PTRF/cavin were displaced, the signaling proteins PLCbeta1 and G(alphaq), which are required for receptor-mediated Ca2+ release, were absent from caveolae, and the sensitivity and responsiveness of methacholine-induced intracellular Ca2+ release, was diminished. These data reveal an interaction between caveolin-1 and beta-dystroglycan and demonstrate that this association, in concert with anchorage to the actin cytoskeleton, underpins the spatial organization and functional role of caveolae in receptor-mediated Ca2+ release, which is an essential initiator step in smooth muscle contraction.
Collapse
Affiliation(s)
- Pawan Sharma
- Department of Physiology, University of Manitoba, Winnipeg, MB R3A1R8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. Gene Ther 2010; 17:1476-83. [PMID: 20720575 DOI: 10.1038/gt.2010.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The IκB kinase (IKKα, β and the regulatory subunit IKKγ) complex regulates nuclear factor of κB (NF-κB) transcriptional activity, which is upregulated in many chronic inflammatory diseases. NF-κB signaling promotes inflammation and limits muscle regeneration in Duchenne muscular dystrophy (DMD), resulting in fibrotic and fatty tissue replacement of muscle that exacerbates the wasting process in dystrophic muscles. Here, we examined whether dominant-negative forms of IKKα (IKKα-dn) and IKKβ (IKKβ-dn) delivered by adeno-associated viral (AAV) vectors to the gastrocnemius (GAS) and tibialis anterior (TA) muscles of 1, 2 and 11-month-old mdx mice, a murine DMD model, block NF-κB activation and increase muscle regeneration. At 1 month post-treatment, the levels of nuclear NF-κB in locally treated muscle were decreased by gene transfer with either AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn, but not by IKK wild-type controls (IKKα and β) or phosphate-buffered saline (PBS). Although treatment with AAV-IKKα-dn or AAV-IKKβ-dn vectors had no significant effect on muscle regeneration in young mdx mice treated at 1 and 2 months of age and collected 1 month later, treatment of old (11 months) mdx with AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn significantly increased levels of muscle regeneration. In addition, there was a significant decrease in myofiber necrosis in the AAV-IKKα-dn- and AAV-IKKβ-dn-treated mdx muscle in both young and old mice. These results demonstrate that inhibition of IKKα or IKKβ in dystrophic muscle reduces the adverse effects of NF-κB signaling, resulting in a therapeutic effect. Moreover, these results clearly demonstrate the therapeutic benefits of inhibiting NF-κB activation by AAV gene transfer in dystrophic muscle to promote regeneration, particularly in older mdx mice, and block necrosis.
Collapse
|
253
|
De Arcangelis V, Serra F, Cogoni C, Vivarelli E, Monaco L, Naro F. β1-syntrophin modulation by miR-222 in mdx mice. PLoS One 2010; 5:e12098. [PMID: 20856896 PMCID: PMC2938373 DOI: 10.1371/journal.pone.0012098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/18/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND In mdx mice, the absence of dystrophin leads to the deficiency of other components of the dystrophin-glycoprotein complex (DAPC), making skeletal muscle fibers more susceptible to necrosis. The mechanisms involved in the disappearance of the DAPC are not completely understood. The muscles of mdx mice express normal amounts of mRNA for the DAPC components, thus suggesting post-transcriptional regulation. METHODOLOGY/PRINCIPAL FINDINGS We investigated the hypothesis that DAPC reduction could be associated with the microRNA system. Among the possible microRNAs (miRs) found to be upregulated in the skeletal muscle tissue of mdx compared to wt mice, we demonstrated that miR-222 specifically binds to the 3'-UTR of β1-syntrophin and participates in the downregulation of β1-syntrophin. In addition, we documented an altered regulation of the 3'-UTR of β1-syntrophin in muscle tissue from dystrophic mice. CONCLUSION/SIGNIFICANCE These results show the importance of the microRNA system in the regulation of DAPC components in dystrophic muscle, and suggest a potential role of miRs in the pathophysiology of dystrophy.
Collapse
Affiliation(s)
| | - Filippo Serra
- Department of Histology and Medical Embryology, University Sapienza, Rome, Italy
| | - Carlo Cogoni
- Department of Cellular Biotechnology and Ematology, University Sapienza, Rome, Italy
| | - Elisabetta Vivarelli
- Department of Histology and Medical Embryology, University Sapienza, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Fabio Naro
- Department of Histology and Medical Embryology, University Sapienza, Rome, Italy
- IIM, Pavia, Italy
| |
Collapse
|
254
|
Wissing ER, Millay DP, Vuagniaux G, Molkentin JD. Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul Disord 2010; 20:753-60. [PMID: 20637615 DOI: 10.1016/j.nmd.2010.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 11/29/2022]
Abstract
Muscular dystrophy results in the progressive wasting and necrosis of skeletal muscle. Glucocorticoids such as prednisone have emerged as a front-line treatment for many forms of this disease. Recently, Debio-025, a cyclophilin inhibitor that desensitizes the mitochondrial permeability pore and subsequent cellular necrosis, was shown to improve pathology in three different mouse models of muscular dystrophy. However it is not known if Debio-025 can work in conjunction with prednisone, or how it compares against prednisone in mitigating disease in dystrophic mouse models. Here we show that Debio-025 reduced the variations in myofiber cross-sectional areas, decreased fibrosis, and decreased infiltration of activated macrophages more efficiently than prednisone. However the use of prednisone and Debio-025 together had no additional effect on these histopathological indexes. Orally administered Debio-025 also reduced creatine kinase blood levels and improved grip strength in mdx mice after 6 weeks of treatment, and the combination of Debio-025 with prednisone increased muscle function slightly better than prednisone alone. Thus, our results suggest that Debio-025 is as, effective as or slightly better than, prednisone in mitigating muscular dystrophy in the mdx mouse model of disease.
Collapse
Affiliation(s)
- Erin R Wissing
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
255
|
Fry LT, Stemple JC, Andreatta RD, Harrison AL, Andrade FH. Effect of dystrophin deficiency on selected intrinsic laryngeal muscles of the mdx mouse. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2010; 53:633-647. [PMID: 20008680 DOI: 10.1044/1092-4388(2009/09-0010)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
BACKGROUND Intrinsic laryngeal muscles (ILM) show biological differences from the broader class of skeletal muscles. Yet most research regarding ILM specialization has been completed on a few muscles, most notably the thyroarytenoid and posterior cricoarytenoid. Little information exists regarding the biology of other ILM. Early evidence suggests that the interarytenoid (IA) and cricothyroid (CT) may be more similar to classic skeletal muscle than their associated laryngeal muscles. Knowledge of the IA and CT's similarity or dissimilarity to typical skeletal muscle may hold implications for the treatment of dysphonia. PURPOSE The purpose of this study was to further define IA and CT biology by examining their response to the biological challenge of dystrophin deficiency. METHOD Control and dystrophin-deficient superior cricoarytenoid (SCA; mouse counterpart of IA) and CT muscles were examined for fiber morphology, sarcolemmal integrity, and immunohistochemical detection of dystrophin. RESULTS Despite the absence of dystrophin, experimental muscles did not show disease markers. CONCLUSIONS The SCA and the CT appear spared in dystrophin-deficient mouse models. These laryngeal muscles possess specializations that separate them from typical skeletal muscle. Considered in light of previous research, the CT and IA may represent transitional form of muscle, evidencing properties of typical and specialized skeletal muscle.
Collapse
Affiliation(s)
- Lisa T Fry
- Department of Communication Disorders, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | | | | | | | | |
Collapse
|
256
|
Ghahramani Seno MM, Trollet C, Athanasopoulos T, Graham IR, Hu P, Dickson G. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization. BMC Genomics 2010; 11:345. [PMID: 20515474 PMCID: PMC2890566 DOI: 10.1186/1471-2164-11-345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 06/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. RESULTS Using RNA interference (RNAi) to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1), or cardiomyopathy (Obscurin, Tcap). In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. CONCLUSION Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage. Therefore, it becomes apparent that any gene therapy approaches for DMD should target early stages in muscle development to attain a maximum clinical benefit. With a clear and specific definition of the transcriptome of dystrophin deficiency, manipulation of identified dysregulated molecules downstream of dystrophin may lead to novel ameliorative approaches for DMD.
Collapse
|
257
|
Matsumoto H, Sasazaki S, Fujiwara A, Ichihara N, Kikuchi T, Mannen H. Accumulation of caveolin-3 protein is limited in damaged muscle in chicken muscular dystrophy. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:68-72. [PMID: 20451648 DOI: 10.1016/j.cbpa.2010.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 01/08/2023]
Abstract
Members of the caveolin family are the main component of caveolae, and caveolin-3 is a muscle-specific protein. Caveolin-3 deficiency induces a muscular dystrophic phenotype, while its overexpression is also harmful to muscle cells. Increased caveolae were observed in chicken muscular dystrophy; however, the underlying mechanism causing the onset remains unclear. Therefore, the current study analyzes the expression of caveolin-3 and other caveola-related proteins in dystrophic chickens. Western blotting and semi-quantitative RT-PCR analysis revealed that (1) caveolin-3 is highly expressed in the damaged muscle of dystrophic chickens (7.12-fold); (2) the amount of caveolin-3 protein is regulated in posttranslational modification, since no significant increase is observed at the mRNA level (1.09-fold); and (3) the expression pattern of other caveola-related proteins is similar to that of caveolin-3. These results suggest that the accumulation of caveolin-3 protein may be associated with the causative process of chicken muscular dystrophy.
Collapse
Affiliation(s)
- Hirokazu Matsumoto
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
258
|
Tang Y, Cummins J, Huard J, Wang B. AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther 2010; 10:395-408. [PMID: 20132060 DOI: 10.1517/14712591003604690] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Muscle-directed gene therapy for genetic muscle diseases can be performed by the recombinant adeno-associated viral (rAAV) vector delivery system to achieve long-term therapeutic gene transfer in all affected muscles. AREAS COVERED IN THIS REVIEW Recent progress in rAAV-vector-mediated muscle-directed gene transfer and associated techniques for the treatment of muscular dystrophies (MD). The review covers literature from the past 2 - 3 years. WHAT THE READER WILL GAIN rAAV-directed muscular dystrophy gene therapy can be achieved by mini-dystrophin replacement and exon-skipping strategies. The additional strategies of enhancing muscle regeneration and reducing inflammation in the muscle micro-environment should be useful to optimize therapeutic efficacy. This review compares the merits and shortcomings of different administration methods, promoters and experimental animals that will guide the choice of the appropriate strategy for clinical trials. TAKE HOME MESSAGE Restoration of muscle histopathology and function has been performed using rAAV systemic gene delivery. In addition, the combination of gene replacement and adjuvant therapies in the future may be beneficial with regard to improving muscle regeneration and decreasing myofiber necrosis. The challenges faced by large animal model studies and in human trials arise from gene transfer efficiency and immune response, which may be overcome by optimizing the rAAV vectors utilized and the administration methods.
Collapse
Affiliation(s)
- Ying Tang
- University of Pittsburgh, Department of Orthopaedic Surgery, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
259
|
Barton ER. Restoration of gamma-sarcoglycan localization and mechanical signal transduction are independent in murine skeletal muscle. J Biol Chem 2010; 285:17263-70. [PMID: 20371873 DOI: 10.1074/jbc.m109.063990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Limb girdle muscular dystrophy 2C is caused by mutations in the gamma-sarcoglycan gene (gsg) that results in loss of this protein, and disruption of the sarcoglycan (SG) complex. Signal transduction after mechanical perturbation is mediated, in part, through the SG complex and leads to phosphorylation of tyrosines on the intracellular portions of the sarcoglycans. This study tested if the Tyr(6) in the intracellular region of gamma-sarcoglycan protein (gamma-SG) was necessary for proper localization of the protein in skeletal muscle membranes or for the normal pattern of ERK1/2 phosphorylation after eccentric contractions. Viral mediated gene transfer of wild type gsg (WTgsg) and mutant gsg lacking Tyr(6) (Y6Agsg) was performed into the muscles of gsg(-/-) mice. Muscles were examined for production and stability of the gamma-SG, as well as the level of ERK1/2 phosphorylation before and after eccentric contraction. Sarcolemmal localization of gamma-SG was achieved regardless of which construct was expressed. However, only expression of WTgsg corrected the aberrant ERK1/2 phosphorylation associated with the absence of gamma-SG, whereas Y6Agsg failed to have any effect. This study shows that localization of gamma-SG does not require Tyr(6), but localization alone is insufficient for restoration of normal signal transduction patterns after mechanical perturbation.
Collapse
Affiliation(s)
- Elisabeth R Barton
- Department of Anatomy and Cell Biology, School of Dental Medicine, and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
260
|
Fayssoil A, Nardi O, Orlikowski D, Annane D. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail Rev 2010; 15:103-7. [PMID: 19943106 DOI: 10.1007/s10741-009-9156-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by the absence of dystrophin, a sarcolemmal protein which links the cytoskeleton to the extracellular matrix by interacting with a large number of proteins. Heart failure is a classic complication of this disease. The authors review the pathogenesis and therapeutics of cardiac involvement in DMD.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- University of Medicine and Dentistry of New Jersey, Camden, NJ, USA.
| | | | | | | |
Collapse
|
261
|
Telfer WR, Busta AS, Bonnemann CG, Feldman EL, Dowling JJ. Zebrafish models of collagen VI-related myopathies. Hum Mol Genet 2010; 19:2433-44. [PMID: 20338942 PMCID: PMC2876888 DOI: 10.1093/hmg/ddq126] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Collagen VI is an integral part of the skeletal muscle extracellular matrix, providing mechanical stability and facilitating matrix-dependent cell signaling. Mutations in collagen VI result in either Ullrich congenital muscular dystrophy (UCMD) or Bethlem myopathy (BM), with UCMD being clinically more severe. Recent studies demonstrating increased apoptosis and abnormal mitochondrial function in Col6a1 knockout mice and in human myoblasts have provided the first mechanistic insights into the pathophysiology of these diseases. However, how loss of collagen VI causes mitochondrial dysfunction remains to be understood. Progress is hindered in part by the lack of an adequate animal model for UCMD, as knockout mice have a mild motor phenotype. To further the understanding of these disorders, we have generated zebrafish models of the collagen VI myopathies. Morpholinos designed to exon 9 of col6a1 produced a severe muscle disease reminiscent of UCMD, while ones to exon 13 produced a milder phenotype similar to BM. UCMD-like zebrafish have increased cell death and abnormal mitochondria, which can be attenuated by treatment with the proton pump modifier cyclosporin A (CsA). CsA improved the motor deficits in UCMD-like zebrafish, but failed to reverse the sarcolemmal membrane damage. In all, we have successfully generated the first vertebrate model matching the clinical severity of UCMD and demonstrated that CsA provides phenotypic improvement, thus corroborating data from knockout mice supporting the use of mitochondrial permeability transition pore modifiers as therapeutics in patients, and providing proof of principle for the utility of the zebrafish as a powerful preclinical model.
Collapse
Affiliation(s)
- W R Telfer
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
262
|
Cassano M, Quattrocelli M, Crippa S, Perini I, Ronzoni F, Sampaolesi M. Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J Muscle Res Cell Motil 2010; 30:243-53. [PMID: 20195710 DOI: 10.1007/s10974-010-9204-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/05/2010] [Indexed: 12/21/2022]
Abstract
Skeletal muscle hypertrophy is a result of increased load, such as functional and stretch-overload. Activation of satellite cells and proliferation, differentiation and fusion are required for hypertrophy of overloaded skeletal muscles. On the contrary, a dramatic loss of skeletal muscle mass determines atrophy settings. The epigenetic changes involved in gene regulation at DNA and chromatin level are critical for the opposing phenomena, muscle growth and atrophy. Physiological properties of skeletal muscle tissue play a fundamental role in health and disease since it is the most abundant tissue in mammals. In fact, protein synthesis and degradation are finely modulated to maintain an appropriate muscle mass. When the molecular signaling is altered muscle wasting and weakness occurred, and this happened in most common inherited and acquired disorders such as muscular dystrophies, cachexia, and age-related wasting. To date, there is no accepted treatment to improve muscle size and strength, and these conditions pose a considerable anxiety to patients as well as to public health. Several molecules, including Magic-F1, myostatin inhibitor, IGF, glucocorticoids and microRNAs are currently investigated to interfere positively in the blueprint of skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- Marco Cassano
- Translational Cardiomyology, SCIL Katholieke Universiteit Leuven, Herestraat 49 bus 814, Leuven 3000, Belgium
| | | | | | | | | | | |
Collapse
|
263
|
Kimura A. Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. J Hum Genet 2010; 55:81-90. [PMID: 20075948 DOI: 10.1038/jhg.2009.138] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiomyopathy is caused by functional abnormality of cardiac muscle. The functional abnormality involved in its etiology includes both extrinsic and intrinsic factors, and cardiomyopathy caused by the intrinsic factors is called as idiopathic or primary cardiomyopathy. There are several clinical types of primary cardiomyopathy including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Linkage studies and candidate gene approaches have explored the disease genes for hereditary primary cardiomyopathy. The most notable finding was that mutations in the same disease gene can be found in different clinical types of cardiomyopathy. Functional analyses of disease-related mutations have revealed that characteristic functional alterations are associated with the clinical types, such that increased and decreased Ca(2+) sensitivity due to sarcomere mutations are associated with HCM and DCM, respectively. In addition, our recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere; that is, stiff sarcomere and loose sarcomere, respectively, and hence altered stretch response. More recently, mutations in the components of I region were found in hereditary cardiomyopathy and the functional analyses of the mutations suggested that the altered stress response was associated with cardiomyopathy, further complicating the etiology and pathogenesis. However, elucidation of genetic etiology and functional alterations caused by the mutations shed lights on the new therapeutic approaches to hereditary cardiomyopathy, such that treatment of DCM with a Ca(2+) sensitizer prevented the disease in a mouse model.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
264
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
265
|
Kakarla SK, Rice KM, Katta A, Paturi S, Wu M, Kolli M, Keshavarzian S, Manzoor K, Wehner PS, Blough ER. Possible molecular mechanisms underlying age-related cardiomyocyte apoptosis in the F344XBN rat heart. J Gerontol A Biol Sci Med Sci 2010; 65:147-55. [PMID: 20056683 DOI: 10.1093/gerona/glp203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite advances in treatment, age-related cardiac dysfunction still remains a leading cause of cardiovascular death. Recent data have suggested that increases in cardiomyocyte apoptosis may be involved in the pathological remodeling of heart. Here, we examine the effects of aging on cardiomyocyte apoptosis in 6-, 30-, and 36-month-old Fischer344 x Brown Norway F1 hybrid rats (F344XBN). Compared with 6-month hearts, aged hearts exhibited increased TdT-mediated dUTP nick end labeling-positive nuclei, caspase-3 activation, caspase-dependent cleavage of alpha-fodrin and diminished phosphorylation of protein kinase B/Akt (Thr 308). These age-dependent increases in cardiomyocyte apoptosis were associated with alterations in the composition of the cardiac dystrophin glycoprotein complex and elevated cytoplasmic IgG and albumin immunoreactivity. Immunohistochemical analysis confirmed these data and demonstrated qualitative differences in localization of dystrophin-glycoprotein complex (DGC) molecules with aging. Taken together, these data suggest that aging-related increases in cardiac apoptotic activity model may be due, at least in part, to age-associated changes in DGC structure.
Collapse
Affiliation(s)
- Sunil K Kakarla
- Laboratory of Molecular Physiology, Robert C. Byrd Biotechnology Science Center, Department of Biological Sciences, 1700 3rd Avenue, Marshall University, Huntington, WV 25755-1090, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Solares-Pérez A, Sánchez JA, Zentella-Dehesa A, García MC, Coral-Vázquez RM. Intracellular Ca2+ transients in delta-sarcoglycan knockout mouse skeletal muscle. Biochim Biophys Acta Gen Subj 2009; 1800:373-9. [PMID: 19931597 DOI: 10.1016/j.bbagen.2009.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND delta-Sarcoglycan (delta-SG) knockout (KO) mice develop skeletal muscle histopathological alterations similar to those in humans with limb muscular dystrophy. Membrane fragility and increased Ca(2+) permeability have been linked to muscle degeneration. However, little is known about the mechanisms by which genetic defects lead to disease. METHODS Isolated skeletal muscle fibers of wild-type and delta-SG KO mice were used to investigate whether the absence of delta-SG alters the increase in intracellular Ca(2+) during single twitches and tetani or during repeated stimulation. Immunolabeling, electrical field stimulation and Ca(2+) transient recording techniques with fluorescent indicators were used. RESULTS Ca(2+) transients during single twitches and tetani generated by muscle fibers of delta-SG KO mice are similar to those of wild-type mice, but their amplitude is greatly decreased during protracted stimulation in KO compared to wild-type fibers. This impairment is independent of extracellular Ca(2+) and is mimicked in wild-type fibers by blocking store-operated calcium channels with 2-aminoethoxydiphenyl borate (2-APB). Also, immunolabeling indicates the localization of a delta-SG isoform in the sarcoplasmic reticulum of the isolated skeletal muscle fibers of wild-type animals, which may be related to the functional differences between wild-type and KO muscles. CONCLUSIONS delta-SG has a role in calcium homeostasis in skeletal muscle fibers. GENERAL SIGNIFICANCE These results support a possible role of delta-SG on calcium homeostasis. The alterations caused by the absence of delta-SG may be related to the pathogenesis of muscular dystrophy.
Collapse
Affiliation(s)
- Alhondra Solares-Pérez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, CMN Siglo XXI-IMSS, México, D.F., Mexico
| | | | | | | | | |
Collapse
|
267
|
Bauer R, Blain A, Greally E, Lochmüller H, Bushby K, MacGowan GA, Straub V. Attenuation of adverse cardiac effects in prednisolone-treated delta-sarcoglycan-deficient mice by mineralocorticoid-receptor-antagonism. Neuromuscul Disord 2009; 20:21-8. [PMID: 19913415 DOI: 10.1016/j.nmd.2009.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/29/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
We have tested the hypothesis that the adverse effects of glucocorticoids in the delta-sarcoglycan-deficient (Sgcd-null) mouse are due to additional mineralocorticoid effects. We investigated the effects of spironolactone, an unselective mineralocorticoid-receptor antagonist, on in vivo cardiac haemodynamics, cardiomyocyte damage and fibrosis in prednisolone treated Sgcd-null mice. Oral spironolactone given to 8-week-old Sgcd-null non-steroid treated mice had beneficial effects on systolic function by improving myocardial contractility when assessed by pressure-volume loops. Given in combination with prednisolone, spironolactone prevented steroid-induced deterioration of cardiac haemodynamics and acute sarcolemmal damage but not cardiac fibrosis. This study demonstrates the beneficial effects of oral spironolactone on cardiac haemodynamics in Sgcd-null mice and its ability to prevent some of the adverse effects of glucocorticoids.
Collapse
Affiliation(s)
- Ralf Bauer
- Institute of Human Genetics, Newcastle University, International Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | |
Collapse
|
268
|
Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 2009; 106:19023-8. [PMID: 19864620 DOI: 10.1073/pnas.0906591106] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscular dystrophy is a general term encompassing muscle disorders that cause weakness and wasting, typically leading to premature death. Membrane instability, as a result of a genetic disruption within the dystrophin-glycoprotein complex (DGC), is thought to induce myofiber degeneration, although the downstream mechanism whereby membrane fragility leads to disease remains controversial. One potential mechanism that has yet to be definitively proven in vivo is that unregulated calcium influx initiates disease in dystrophic myofibers. Here we demonstrate that calcium itself is sufficient to cause a dystrophic phenotype in skeletal muscle independent of membrane fragility. For example, overexpression of transient receptor potential canonical 3 (TRPC3) and the associated increase in calcium influx resulted in a phenotype of muscular dystrophy nearly identical to that observed in DGC-lacking dystrophic disease models, including a highly similar molecular signature of gene expression changes. Furthermore, transgene-mediated inhibition of TRPC channels in mice dramatically reduced calcium influx and dystrophic disease manifestations associated with the mdx mutation (dystrophin gene) and deletion of the delta-sarcoglycan (Scgd) gene. These results demonstrate that calcium itself is sufficient to induce muscular dystrophy in vivo, and that TRPC channels are key disease initiators downstream of the unstable membrane that characterizes many types of muscular dystrophy.
Collapse
|
269
|
Use of pifithrin to inhibit p53-mediated signalling of TNF in dystrophic muscles of mdx mice. Mol Cell Biochem 2009; 337:119-31. [PMID: 19859789 DOI: 10.1007/s11010-009-0291-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Tumour Necrosis Factor (TNF) plays a major role in exacerbating necrosis of dystrophic muscle; however, the precise molecular mechanism underlying this effect of TNF is unknown. This study investigates the role that p53 plays in TNF-mediated necrosis of dystrophic myofibres by inhibiting p53 using pifithrin-alpha and three pifithrin-beta analogues. Tissue culture studies using C2C12 myoblasts established that pifithrin-alpha was toxic to differentiating myoblasts at concentrations greater than 10 muM. While non-toxic concentrations of pifithrin-alpha did not prevent the TNF-mediated inhibition of myoblast differentiation, Western blots indicated that nuclear levels of p53 were higher in TNF-treated myoblasts indicating that TNF does elevate p53. In contrast, in vivo studies in adult mdx mice showed that pifithrin-alpha significantly reduced myofibre necrosis that resulted from voluntary wheel running over 48 h. These results support the hypothesis that p53 plays some role in TNF-mediated necrosis of dystrophic muscle and present a potential new target for therapeutic interventions.
Collapse
|
270
|
Syntrophin-2 is required for eye development in Drosophila. Exp Cell Res 2009; 316:272-85. [PMID: 19836389 DOI: 10.1016/j.yexcr.2009.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/07/2009] [Accepted: 10/07/2009] [Indexed: 11/23/2022]
Abstract
Syntrophins are components of the dystrophin glycoprotein complex (DGC), which is encoded by causative genes of muscular dystrophies. The DGC is thought to play roles not only in linking the actin cytoskeleton to the extracellular matrix, providing stability to the cell membrane, but also in signal transduction. Because of their binding to a variety of different molecules, it has been suggested that syntrophins are adaptor proteins recruiting signaling proteins to membranes and the DGC. However, critical roles in vivo remain elusive. Drosophila Syntrophin-2 (Syn2) is an orthologue of human gamma 1/gamma 2-syntrophins. Western immunoblot analysis here showed Syn2 to be expressed throughout development, with especially high levels in the adult head. Morphological aberrations were observed in Syn2 knockdown adult flies, with lack of retinal elongation and malformation of rhabdomeres. Furthermore, Syn2 knockdown flies exhibited excessive apoptosis in third instar larvae and alterations in the actin localization in the pupal retinae. Genetic crosses with a collection of Drosophila deficiency stocks allowed us to identify seven genomic regions, deletions of which caused enhancement of the rough eye phenotype induced by Syn2 knockdown. This information should facilitate identification of Syn2 regulators in Drosophila and clarification of roles of Syn2 in eye development.
Collapse
|
271
|
Millay DP, Maillet M, Roche JA, Sargent MA, McNally EM, Bloch RJ, Molkentin JD. Genetic manipulation of dysferlin expression in skeletal muscle: novel insights into muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1817-23. [PMID: 19834057 DOI: 10.2353/ajpath.2009.090107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the gene DYSF, which codes for the protein dysferlin, underlie Miyoshi myopathy and limb-girdle muscular dystrophy 2B in humans and produce a slowly progressing skeletal muscle degenerative disease in mice. Dysferlin is a Ca(2+)-sensing, regulatory protein that is involved in membrane repair after injury. To assess the function of dysferlin in healthy and dystrophic skeletal muscle, we generated skeletal muscle-specific transgenic mice with threefold overexpression of this protein. These mice were phenotypically indistinguishable from wild-type, and more importantly, the transgene completely rescued the muscular dystrophy (MD) disease in Dysf-null A/J mice. The dysferlin transgene rescued all histopathology and macrophage infiltration in skeletal muscle of Dysf(-/-) A/J mice, as well as promoted the rapid recovery of muscle function after forced lengthening contractions. These results indicate that MD in A/J mice is autonomous to skeletal muscle and not initiated by any other cell type. However, overexpression of dysferlin did not improve dystrophic symptoms or membrane instability in the dystrophin-glycoprotein complex-lacking Scgd (delta-sarcoglycan) null mouse, indicating that dysferlin functionality is not a limiting factor underlying membrane repair in other models of MD. In summary, the restoration of dysferlin in skeletal muscle fibers is sufficient to rescue the MD in Dysf-deficient mice, although its mild overexpression does not appear to functionally enhance membrane repair in other models of MD.
Collapse
Affiliation(s)
- Douglas P Millay
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, USA
| | | | | | | | | | | | | |
Collapse
|
272
|
Abstract
Sarcoglycanopathies are a group of autosomal recessive muscle-wasting disorders caused by genetic defects in one of four cell membrane glycoproteins, alpha-, beta-, gamma- or delta-sarcoglycan. These four sarcoglycans form a subcomplex that is closely linked to the major dystrophin-associated protein complex, which is essential for membrane integrity during muscle contraction and provides a scaffold for important signalling molecules. Proper assembly, trafficking and targeting of the sarcoglycan complex is of vital importance, and mutations that severely perturb tetramer formation and localisation result in sarcoglycanopathy. Gene defects in one sarcoglycan cause the absence or reduced concentration of the other subunits. Most genetic defects generate mutated proteins that are degraded through the cell's quality control system; however, in many cases, conformational modifications do not affect the function of the protein, yet it is recognised as misfolded and prematurely degraded. Recent evidence shows that misfolded sarcoglycans could be rescued to the cell membrane by assisting their maturation along the ER secretory pathway. This review summarises the etiopathogenesis of sarcoglycanopathies and highlights the quality control machinery as a potential pharmacological target for therapy of these genetic disorders.
Collapse
Affiliation(s)
- Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35121
Padova, Italy
| | - Romeo Betto
- C.N.R. Institute of Neuroscience, Neuromuscular Biology and
Physiopathology, 35121 Padova, Italy
| |
Collapse
|
273
|
Tuffery-Giraud S, Béroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L, Moizard MP, Bernard R, Cossée M, Boisseau P, Blayau M, Creveaux I, Guiochon-Mantel A, de Martinville B, Philippe C, Monnier N, Bieth E, Khau Van Kien P, Desmet FO, Humbertclaude V, Kaplan JC, Chelly J, Claustres M. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 2009; 30:934-45. [PMID: 19367636 DOI: 10.1002/humu.20976] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UMD-DMD France is a knowledgebase developed through a multicenter academic effort to provide an up-to-date resource of curated information covering all identified mutations in patients with a dystrophinopathy. The current release includes 2,411 entries consisting in 2,084 independent mutational events identified in 2,046 male patients and 38 expressing females, which corresponds to an estimated number of 39 people per million with a genetic diagnosis of dystrophinopathy in France. Mutations consist in 1,404 large deletions, 215 large duplications, and 465 small rearrangements, of which 39.8% are nonsense mutations. The reading frame rule holds true for 96% of the DMD patients and 93% of the BMD patients. Quality control relies on the curation by four experts for the DMD gene and related diseases. Data on dystrophin and RNA analysis, phenotypic groups, and transmission are also available. About 24% of the mutations are de novo events. This national centralized resource will contribute to a greater understanding of prevalence of dystrophinopathies in France, and in particular, of the true frequency of BMD, which was found to be almost half (43%) that of DMD. UMD-DMD is a searchable anonymous database that includes numerous newly developed tools, which can benefit to all the scientific community interested in dystrophinopathies. Dedicated functions for genotype-based therapies allowed the prediction of a new multiexon skipping (del 45-53) potentially applicable to 53% of the deleted DMD patients. Finally, such a national database will prove to be useful to implement the international global DMD patients' registries under development.
Collapse
|
274
|
Pilichou K, Remme CA, Basso C, Campian ME, Rizzo S, Barnett P, Scicluna BP, Bauce B, van den Hoff MJB, de Bakker JMT, Tan HL, Valente M, Nava A, Wilde AAM, Moorman AFM, Thiene G, Bezzina CR. Myocyte necrosis underlies progressive myocardial dystrophy in mouse dsg2-related arrhythmogenic right ventricular cardiomyopathy. ACTA ACUST UNITED AC 2009; 206:1787-802. [PMID: 19635863 PMCID: PMC2722163 DOI: 10.1084/jem.20090641] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations in the cardiac desmosomal protein desmoglein-2 (DSG2) are associated with arrhythmogenic right ventricular cardiomyopathy (ARVC). We studied the explanted heart of a proband carrying the DSG2-N266S mutation as well as transgenic mice (Tg-NS) with cardiac overexpression of the mouse equivalent of this mutation, N271S-dsg2, with the aim of investigating the pathophysiological mechanisms involved. Transgenic mice recapitulated the clinical features of ARVC, including sudden death at young age, spontaneous ventricular arrhythmias, cardiac dysfunction, and biventricular dilatation and aneurysms. Investigation of transgenic lines with different levels of transgene expression attested to a dose-dependent dominant-negative effect of the mutation. We demonstrate for the first time that myocyte necrosis is the key initiator of myocardial injury, triggering progressive myocardial damage, including an inflammatory response and massive calcification within the myocardium, followed by injury repair with fibrous tissue replacement, and myocardial atrophy. These observations were supported by findings in the explanted heart from the patient. Insight into mechanisms initiating myocardial damage in ARVC is a prerequisite to the future development of new therapies aimed at delaying onset or progression of the disease.
Collapse
Affiliation(s)
- Kalliopi Pilichou
- Department of Medical Diagnostic Sciences and Special Therapies, University of Padua, 35121 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
|
276
|
Field LJ, Shou W, Caldwell RL. 2008 Riley Heart Center Symposium on cardiac development: growth and morphogenesis of the ventricular wall. Pediatr Cardiol 2009; 30:577-9. [PMID: 19340479 DOI: 10.1007/s00246-009-9407-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/26/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Loren J Field
- The Riley Heart Center, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | |
Collapse
|
277
|
Wang Z, Chamberlain JS, Tapscott SJ, Storb R. Gene therapy in large animal models of muscular dystrophy. ILAR J 2009; 50:187-98. [PMID: 19293461 DOI: 10.1093/ilar.50.2.187] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The muscular dystrophies are a group of genetically and phenotypically heterogeneously inherited diseases characterized by progressive muscle wasting, which can lead to premature death in severe forms such as Duchenne muscular dystrophy (DMD). In many cases they are caused by the absence of proteins that are critical components of the dystrophin-glycoprotein complex, which links the cytoskeleton and the basal lamina. There is no effective treatment for these disorders at present, but several novel strategies for replacing or repairing the defective gene are in development, with early encouraging results from animal models. We review these strategies, which include the use of stem cells of different tissue origins, gene replacement therapies mediated by various viral vectors, and transcript repair treatments using exon skipping strategies. We comment on their advantages and on limitations that must be overcome before successful application to human patients. Our focus is on studies in a clinically relevant large canine model of DMD. Recent advances in the field suggest that effective therapies for muscular dystrophies are on the horizon. Because of the complex nature of these diseases, it may be necessary to combine multiple approaches to achieve a successful treatment.
Collapse
Affiliation(s)
- Zejing Wang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center in Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
278
|
Abstract
NOS is a key enzyme in the production of NO, a molecule that directly regulates vasorelaxation and blood supply. Diverse forms of muscle disease have been clinically associated with unusual fatigue after exercise. The localization of neuronal NOS (nNOS) at the plasma membrane of muscle has recently been shown to prevent muscle fatigue after exercise. In this issue of the JCI, Lai et al. show that dystrophin--the structural protein missing in individuals with Duchenne muscular dystrophy--anchors nNOS to the sarcolemma through a direct interaction with dystrophin spectrin-like repeats 16 and 17 (see the related article, doi:10.1172/JCI36612). Furthermore, in another recently reported study of mouse models of muscular dystrophy, phosphodiesterase 5A inhibitors were used to treat the downstream ischemia that is associated with nNOS mislocalization. Collectively, these findings significantly advance our understanding of exercise-induced muscle fatigue and its role in muscle disease.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 S.Maryland, Chicago, IL 60637, USA
| | | |
Collapse
|
279
|
Xiong Y, Zhou Y, Jarrett HW. Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner. J Cell Physiol 2009; 219:402-14. [PMID: 19117013 DOI: 10.1002/jcp.21684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously, we showed that laminin-binding to the dystrophin glycoprotein complex (DGC) of skeletal muscle causes a heterotrimeric G-protein (Galphabetagamma) to bind, changing the activation state of the Gsalpha subunit. Others have shown that laminin-binding to the DGC also leads to Akt activation. Gbetagamma, released when Gsalpha is activated, is known to bind phosphatidylinositol-3-kinase (PI3K), which activates Akt in other cells. Here, we investigate whether muscle Akt activation results from Gbetagamma, using immunoprecipitation and immunoblotting, and purified Gbetagamma. In the presence of laminin, PI3K-binding to the DGC increases and Akt becomes phosphorylated and activated (pAkt), and glycogen synthase kinase is phosphorylated. Antibodies, which specifically block laminin-binding to alpha-dystroglycan, prevent PI3K-binding to the DGC. Purified bovine brain Gbetagamma also caused PI3K and Akt activation. These results show that DGC-Gbetagamma is binding PI3K and activating pAkt in a laminin-dependent manner. Mdx mice, which have greatly diminished amounts of DGC proteins, display elevated pAkt signaling and increased expression of integrin beta1 compared to normal muscle. This integrin binds laminin, Gbetagamma, and PI3K. Collectively, these suggest that PI3K is an important target for the Gbetagamma, which normally binds to DGC syntrophin, and activates PI3K/Akt signaling. Disruption of the DGC in mdx mouse is causing dis-regulation of the laminin-DGC-Gbetagamma-PI3K-Akt signaling and is likely to be important to the pathogenesis of muscular dystrophy. Upregulating integrin beta1 expression and activating the PI3K/Akt pathway in muscular dystrophy may partially compensate for the loss of the DGC. The results suggest new therapeutic approaches to muscle disease.
Collapse
Affiliation(s)
- Yongmin Xiong
- Key Laboratory of Environment and Genes Related to Disease, Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China
| | | | | |
Collapse
|
280
|
Goehringer C, Rutschow D, Bauer R, Schinkel S, Weichenhan D, Bekeredjian R, Straub V, Kleinschmidt JA, Katus HA, Müller OJ. Prevention of cardiomyopathy in delta-sarcoglycan knockout mice after systemic transfer of targeted adeno-associated viral vectors. Cardiovasc Res 2009; 82:404-10. [PMID: 19218289 DOI: 10.1093/cvr/cvp061] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Delta-sarcoglycan is a member of the dystrophin-associated glycoprotein complex linking the cytoskeleton to the extracellular matrix. Similar to patients with defects in the gene encoding delta-sarcoglycan (Sgcd), knockout mice develop cardiomyopathy and muscular dystrophy. The aim of our study was to develop an approach for preventing cardiomyopathy in Sgcd-deficient mice by cardiac expression of the intact cDNA upon systemic delivery of adeno-associated viral (AAV) vectors. METHODS AND RESULTS We packaged the Sgcd cDNA under transcriptional control of a myosin light chain-promoter fused with a cytomegalovirus enhancer into AAV-9 capsids. Vectors carrying either the Sgcd cDNA or an enhanced green fluorescent protein (EGFP) reporter gene were intravenously injected into adult Sgcd knockout mice. After 6 months, immunohistochemistry revealed almost complete reconstitution of the sarcoglycan subcomplex in heart but not skeletal muscle of mice with the Sgcd vector. Furthermore, Sgcd gene transfer resulted in prevention of cardiac fibrosis and significantly increased running distance measured by voluntary wheel running. Left ventricular function remained stable in mice expressing Sgcd while it deteriorated in EGFP controls within 6 months, paralleled by increased expression of brain natriuretic peptide, a molecular marker of heart failure. CONCLUSION Our study establishes an approach to specifically treat hereditary cardiomyopathies by targeting gene expression into the myocardium upon systemic application of AAV vectors.
Collapse
Affiliation(s)
- Caroline Goehringer
- Internal Medicine III, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
281
|
Röder IV, Lissandron V, Martin J, Petersen Y, Di Benedetto G, Zaccolo M, Rudolf R. PKA microdomain organisation and cAMP handling in healthy and dystrophic muscle in vivo. Cell Signal 2009; 21:819-26. [PMID: 19263518 DOI: 10.1016/j.cellsig.2009.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Signalling through protein kinase A (PKA) triggers a multitude of intracellular effects in response to a variety of extracellular stimuli. To guarantee signal specificity, different PKA isoforms are compartmentalised by Akinase anchoring proteins (AKAPs) into functional microdomains. By using genetically encoded fluorescent reporters of cAMP concentration that are targeted to the intracellular sites where PKA type I and PKA type II isoforms normally reside, we directly show for the first time spatially and functionally separate PKA microdomains in mouse skeletal muscle in vivo. The reporters localised into clearly distinct patterns within sarcomers, from where they could be displaced by means of AKAP disruptor peptides indicating the presence of disparate PKA type I and PKA type II anchor sites within skeletal muscle fibres. The functional relevance of such differential localisation was underscored by the finding of mutually exclusive and AKAP-dependent increases in [cAMP] in the PKA type I and PKA type II microdomains upon application of different cAMP agonists. Specifically, the sensors targeted to the PKA type II compartment responded only to norepinephrine, whereas those targeted to the PKA type I compartment responded only to alpha-calcitonin gene-related peptide. Notably, in dystrophic mdx mice the localisation pattern of the reporters was altered and the functional separation of the cAMP microdomains was abolished. In summary, our data indicate that an efficient organisation in microdomains of the cAMP/PKA pathway exists in the healthy skeletal muscle and that such organisation is subverted in dystrophic skeletal muscle.
Collapse
Affiliation(s)
- Ira Verena Röder
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | |
Collapse
|
282
|
Peterson JM, Guttridge DC. Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 2009; 27:375-87. [PMID: 18853344 DOI: 10.1080/08830180802302389] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Signaling through nuclear factor-kappa B (NF-kappaB) is emerging as an important regulator of muscle development, maintenance, and regeneration. Classic signaling modulates early muscle development by enhancing proliferation and inhibiting differentiation, and alternative signaling promotes myofiber maintenance and metabolism. Likewise, NF-kappaB signaling is critical for the development of immunity. Although these processes occur normally, dysregulation of NF-kappaB signaling has prohibitive effects on muscle growth and regeneration and can perpetuate inflammation in muscle diseases. Aberrant NF-kappaB signaling from immune and muscle cells has been detected and implicated in the pathologic progression of numerous dystrophies and myopathies, indicating that targeted NF-kappaB inhibitors may prove clinically beneficial.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Molecular Virology, Immunology, and Medical Genetics, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 23210, USA
| | | |
Collapse
|
283
|
Ayalon G, Davis JQ, Scotland PB, Bennett V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 2009; 135:1189-200. [PMID: 19109891 DOI: 10.1016/j.cell.2008.10.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/11/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023]
Abstract
beta-dystroglycan (DG) and the dystrophin-glycoprotein complex (DGC) are localized at costameres and neuromuscular junctions in the sarcolemma of skeletal muscle. We present evidence for an ankyrin-based mechanism for sarcolemmal localization of dystrophin and beta-DG. Dystrophin binds ankyrin-B and ankyrin-G, while beta-DG binds ankyrin-G. Dystrophin and beta-DG require ankyrin-G for retention at costameres but not delivery to the sarcolemma. Dystrophin and beta-DG remain intracellular in ankyrin-B-depleted muscle, where beta-DG accumulates in a juxta-TGN compartment. The neuromuscular junction requires ankyrin-B for localization of dystrophin/utrophin and beta-DG and for maintenance of its postnatal morphology. A Becker muscular dystrophy mutation reduces ankyrin binding and impairs sarcolemmal localization of dystrophin-Dp71. Ankyrin-B also binds to dynactin-4, a dynactin subunit. Dynactin-4 and a subset of microtubules disappear from sarcolemmal sites in ankyrin-B-depleted muscle. Ankyrin-B thus is an adaptor required for sarcolemmal localization of dystrophin, as well as dynactin-4.
Collapse
Affiliation(s)
- Gai Ayalon
- Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
284
|
Daicho T, Daisho Y, Kojima S, Takano S, Tejima Y, Marunouchi T, Takagi N, Takeo S, Tanonaka K. Alterations in Dystrophin-Related Glycoproteins in Development of Right Ventricular Failure in Rats. J Pharmacol Sci 2009; 111:405-15. [DOI: 10.1254/jphs.09208fp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
285
|
Hirota JA, Nguyen TTB, Schaafsma D, Sharma P, Tran T. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther 2008; 22:370-8. [PMID: 19114115 DOI: 10.1016/j.pupt.2008.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 10/24/2022]
Abstract
Clinical asthma is characterized by reversible airway obstruction which is commonly due to an exaggerated airway narrowing referred to as airway hyperresponsiveness (AHR). Although debate exists on the complex etiology of AHR, it is clear that airway smooth muscle (ASM) mediated airway narrowing is a major contributor to airway dysfunction. More importantly, it is now appreciated that smooth muscle is far from being a simple cell with only contractile ability properties. Rather, it is more versatile with the capacity to exhibit numerous cellular functions as it adapts to the microenvironment to which it is exposed. The emerging ability of individual smooth muscle cells to undergo changes in their phenotype (phenotype plasticity) and function (functional plasticity) in response to physiological and pathological cues is an important and active area of research. This article provides a brief review of the current knowledge and emerging concepts in the field of ASM phenotype and function both under healthy and asthmatic conditions.
Collapse
Affiliation(s)
- Jeremy A Hirota
- Firestone Institute for Respiratory Health, McMaster University, Ontario, Canada
| | | | | | | | | |
Collapse
|
286
|
Campos EC, Romano MMD, Prado CM, Rossi MA. Isoproterenol induces primary loss of dystrophin in rat hearts: correlation with myocardial injury. Int J Exp Pathol 2008; 89:367-81. [PMID: 18808529 DOI: 10.1111/j.1365-2613.2008.00604.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.
Collapse
Affiliation(s)
- Erica C Campos
- Department of Pathology (Cellular and Molecular Cardiology), Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
287
|
Zheng M, Cheng H, Li X, Zhang J, Cui L, Ouyang K, Han L, Zhao T, Gu Y, Dalton ND, Bang ML, Peterson KL, Chen J. Cardiac-specific ablation of Cypher leads to a severe form of dilated cardiomyopathy with premature death. Hum Mol Genet 2008; 18:701-13. [PMID: 19028670 DOI: 10.1093/hmg/ddn400] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating data suggest a link between alterations/deficiencies in cytoskeletal proteins and the progression of cardiomyopathy and heart failure, although the molecular basis for this link remains unclear. Cypher/ZASP is a cytoskeletal protein localized in the sarcomeric Z-line. Mutations in its encoding gene have been identified in patients with isolated non-compaction of the left ventricular myocardium, dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy. To explore the role of Cypher in myocardium and to better understand molecular mechanisms by which mutations in cypher cause cardiomyopathy, we utilized a conditional approach to knockout Cypher, specially in either developing or adult myocardium. Cardiac-specific Cypher knockout (CKO) mice developed a severe form of DCM with disrupted cardiomyocyte ultrastructure and decreased cardiac function, which eventually led to death before 23 weeks of age. A similar phenotype was observed in inducible cardiac-specific CKO mice in which Cypher was specifically ablated in adult myocardium. In both cardiac-specific CKO models, ERK and Stat3 signaling pathways were augmented. Finally, we demonstrate the specific binding of Cypher's PDZ domain to the C-terminal region of both calsarcin-1 and myotilin within the Z-line. In conclusion, our studies suggest that (i) Cypher plays a pivotal role in maintaining adult cardiac structure and cardiac function through protein-protein interactions with other Z-line proteins, (ii) myocardial ablation of Cypher results in DCM with premature death and (iii) specific signaling pathways participate in Cypher mutant-mediated dysfunction of the heart, and may in concert facilitate the progression to heart failure.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Loufrani L, Henrion D. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput 2008; 46:451-60. [PMID: 18246377 DOI: 10.1007/s11517-008-0306-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/10/2008] [Indexed: 11/28/2022]
Abstract
Cytoskeletal proteins determine cell shape and integrity and membrane-bound structures connected to extracellular components allow tissue integrity. These structural elements have an active role in the interaction of blood vessels with their environment. Shear stress due to blood flow is the most important force stimulating the endothelium. The role of cytoskeletal proteins in endothelial responses to flow has been studied in resistance arteries using pharmacological tools and transgenic models. Shear stress activates extracellular "flow sensing" elements associated with a thick glycocalyx communicating the signal to membrane-bound complexes (integrins and/or dystrophin-dystroglycans) and to eNOS through a pathway involving the intermediate filament vimentin, the microtubule network and actin. When blood flow increases chronically the endothelium triggers diameter enlargement and medial hypertrophy. This is facilitated by the genetic absence of the intermediate filaments, vimentin and desmin suggesting that these elements oppose the process.
Collapse
Affiliation(s)
- Laurent Loufrani
- Department of Integrated Neurovascular Biology, INSERM, CNRS, CHU d'Angers, France
| | | |
Collapse
|
289
|
Abstract
Cardiomyopathy is defined as a cardiac disease caused by functional abnormality of cardiac muscle, and the etiology of the functional abnormality includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is defined as idiopathic or primary cardiomyopathy, and there are several clinical phenotypes, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The major intrinsic factor is gene mutations, and linkage studies, as well as candidate gene approaches, have deciphered multiple disease genes for hereditary primary cardiomyopathy. Of note is that mutations in the same disease gene can be found in different clinical phenotypes of cardiomyopathy. Functional analyses of disease-related mutations have revealed that characteristic functional alterations are associated with the clinical phenotypes, such that increased and decreased Ca(2+) sensitivity because of sarcomere mutations are associated with HCM and DCM, respectively. In addition, recent data have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of the sarcomere (ie, stiff sarcomere and loose sarcomere, respectively). More recently, mutations in the components of the I region can be found in hereditary cardiomyopathy, further complicating the etiology of primary cardiomyopathy.
Collapse
Affiliation(s)
- Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
290
|
McNally EM, Pytel P. Muscle diseases: the muscular dystrophies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:87-109. [PMID: 18039094 DOI: 10.1146/annurev.pathol.2.010506.091936] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.
Collapse
Affiliation(s)
- Elizabeth M McNally
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
291
|
Wallace GQ, Lapidos KA, Kenik JS, McNally EM. Long-term survival of transplanted stem cells in immunocompetent mice with muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:792-802. [PMID: 18711004 DOI: 10.2353/ajpath.2008.080259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Satellite cells refer to resident stem cells in muscle that are activated in response to damage or disease for the regeneration and repair of muscle fibers. The use of stem cell transplantation to treat muscular diseases has been limited by impaired donor cell survival attributed to rejection and an unavailable stem cell niche. We isolated a population of adult muscle mononuclear cells (AMMCs) from normal, strain-matched muscle and transplanted these cells into delta-sarcoglycan-null dystrophic mice. Distinct from other transplant studies, the recipient mice were immunocompetent with an intact endogenous satellite cell pool. We found that AMMCs were 35 times more efficient at restoring sarcoglycan compared with cultured myoblasts. Unlike cultured myoblasts, AMMC-derived muscle fibers expressed sarcoglycan protein throughout their entire length, consistent with enhanced migratory ability. We examined the capacity of single injections of AMMCs to provide long-term benefit for muscular dystrophy and found persistent regeneration after 6 months, consistent with augmentation of the endogenous stem cell pool. Interestingly, AMMCs were more effectively engrafted into aged dystrophic mice for the regeneration of large clusters of sarcoglycan-positive muscle fibers, which were protected from damage, suggesting that the stem cell niche in older muscle remains permissive.
Collapse
Affiliation(s)
- Gregory Q Wallace
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
292
|
Stum M, Girard E, Bangratz M, Bernard V, Herbin M, Vignaud A, Ferry A, Davoine CS, Echaniz-Laguna A, René F, Marcel C, Molgó J, Fontaine B, Krejci E, Nicole S. Evidence of a dosage effect and a physiological endplate acetylcholinesterase deficiency in the first mouse models mimicking Schwartz-Jampel syndrome neuromyotonia. Hum Mol Genet 2008; 17:3166-79. [PMID: 18647752 DOI: 10.1093/hmg/ddn213] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Schwartz-Jampel syndrome (SJS) is a recessive neuromyotonia with chondrodysplasia. It results from hypomorphic mutations of the gene encoding perlecan, leading to a decrease in the levels of this heparan sulphate proteoglycan in basement membranes (BMs). It has been suggested that SJS neuromyotonia may result from endplate acetylcholinesterase (AChE) deficiency, but this hypothesis has never been investigated in vivo due to the lack of an animal model for neuromyotonia. We used homologous recombination to generate a knock-in mouse strain with one missense substitution, corresponding to a human familial SJS mutation (p.C1532Y), in the perlecan gene. We derived two lines, one with the p.C1532Y substitution alone and one with p.C1532Y and the selectable marker Neo, to down-regulate perlecan gene activity and to test for a dosage effect of perlecan in mammals. These two lines mimicked SJS neuromyotonia with spontaneous activity on electromyogramm (EMG). An inverse correlation between disease severity and perlecan secretion in the BMs was observed at the macroscopic and microscopic levels, consistent with a dosage effect. Endplate AChE levels were low in both lines, due to synaptic perlecan deficiency rather than major myofibre or neuromuscular junction disorganization. Studies of muscle contractile properties showed muscle fatigability at low frequencies of nerve stimulation and suggested that partial endplate AChE deficiency might contribute to SJS muscle stiffness by potentiating muscle force. However, physiological endplate AChE deficiency was not associated with spontaneous activity at rest on EMG in the diaphragm, suggesting that additional changes are required to generate such activity characteristic of SJS.
Collapse
|
293
|
Genomic profiling of left and right ventricular hypertrophy in congenital heart disease. J Card Fail 2008; 14:760-7. [PMID: 18995181 DOI: 10.1016/j.cardfail.2008.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 05/13/2008] [Accepted: 06/02/2008] [Indexed: 11/24/2022]
Abstract
BACKGROUND The right ventricle (RV) has a lower ability than the left ventricle (LV) to adapt to systemic load. The molecular basis of these differences is not known. We compared hypertrophy-signaling pathways between the RV and the LV in patients with congenital heart disease (CHD). METHODS Gene expression was measured using DNA microarrays in myocardium from children with CHD with LV or RV obstructive lesions undergoing surgery. The expression of 175 hypertrophy-signaling genes was compared between the LV (n=7) and the RV (n=11). Hierarchic clustering was performed. RESULTS Seventeen genes (10%) were differentially expressed between the LV and the RV. Expression of genes for angiotensin, adrenergic, G-proteins, cytoskeletal, and contractile components was lower (P < .05) and expression of maladaptive factors (fibroblast growth factors, transforming growth factor-beta, caspases, ubiquitin) was higher in the RV compared with the LV (P < .05). Five of 7 LV samples clustered together. Only 4 of 11 RV samples clustered with the LV. Genes critical to adaptive remodeling correlated with the degree of LV hypertrophy but not RV hypertrophy. CONCLUSION The transcription of pathways of adaptive remodeling was lower in the RV compared with the LV. This may explain the lower ability of the RV to adapt to hemodynamic load in CHD.
Collapse
|
294
|
Budowle SA, Gonzalez S, Budowle B, Eisenberg AJ, Grange RW. A novel SNaPshot assay to detect the mdx mutation. Muscle Nerve 2008; 37:731-5. [PMID: 18506711 DOI: 10.1002/mus.21027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mdx mouse is an animal model for Duchenne muscular dystrophy (DMD). In order to evaluate possible treatments and to carry out genetic studies, it is essential to distinguish between mice that carry the dystrophic (mutant) or wild-type (wt) allele(s). The current amplification-resistant mutation system (ARMS) assay is labor intensive and yields false negatives, which reduces its efficiency as a screening tool. An alternate assay based on single-nucleotide polymorphism (SNP) primer extension technology (i.e., SNaPshot) is described. The SNaPshot assay has been optimized to identify both wild-type and mutant alleles, providing a robust, potentially automatable assay for high-throughput analysis.
Collapse
Affiliation(s)
- Sarah A Budowle
- Department of Human Nutrition, Food and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | | | |
Collapse
|
295
|
Gastaldello S, D'Angelo S, Franzoso S, Fanin M, Angelini C, Betto R, Sandonà D. Inhibition of proteasome activity promotes the correct localization of disease-causing alpha-sarcoglycan mutants in HEK-293 cells constitutively expressing beta-, gamma-, and delta-sarcoglycan. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:170-81. [PMID: 18535179 PMCID: PMC2438295 DOI: 10.2353/ajpath.2008.071146] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2008] [Indexed: 11/20/2022]
Abstract
Sarcoglycanopathies are progressive muscle-wasting disorders caused by genetic defects of four proteins, alpha-, beta-, gamma-, and delta-sarcoglycan, which are elements of a key transmembrane complex of striated muscle. The proper assembly of the sarcoglycan complex represents a critical issue of sarcoglycanopathies, as several mutations severely perturb tetramer formation. Misfolded proteins are generally degraded through the cell's quality-control system; however, this can also lead to the removal of some functional polypeptides. To explore whether it is possible to rescue sarcoglycan mutants by preventing their degradation, we generated a heterologous cell system, based on human embryonic kidney (HEK) 293 cells, constitutively expressing three (beta, gamma, and delta) of the four sarcoglycans. In these betagammadelta-HEK cells, the lack of alpha-sarcoglycan prevented complex formation and cell surface localization, wheras the presence of alpha-sarcoglycan allowed maturation and targeting of the tetramer. As in muscles of sarcoglycanopathy patients, transfection of betagammadelta-HEK cells with disease-causing alpha-sarcoglycan mutants led to dramatic reduction of the mutated proteins and the absence of the complex from the cell surface. Proteasomal inhibition reduced the degradation of mutants and facilitated the assembly and targeting of the sarcoglycan complex to the plasma membrane. These data provide important insights for the potential development of pharmacological therapies for sarcoglycanopathies.
Collapse
|
296
|
Dystrophin: from non-ischemic cardiomyopathy to ischemic cardiomyopathy. Med Hypotheses 2008; 71:434-8. [PMID: 18562127 DOI: 10.1016/j.mehy.2008.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 04/10/2008] [Accepted: 04/10/2008] [Indexed: 11/21/2022]
Abstract
Dystrophin and its associated proteins form a scaffold underneath the cardiomyocyte membrane and connect the intracellular cytoskeleton to the extracellular matrix. Dystrophin localizes at the X chromosome, whose mutations might result in Duchenne muscular dystrophy, Becker muscular dystrophy and X-linked dilated cardiomyopathy. In addition to these genetic dilated cardiomyopathies, some acquired dilated cardiomyopathy like viral dilated cardiomyopathy is also related to dystrophin disruption or aberrant cleavage. In this review, we summarize the structure and distribution of dystrophin and researches of dystrophin in genetic and viral dilated cardiomyopathy. Moreover, we hypothesize that dystrophin play a critical role in ventricular remodeling in ischemic myocardium and treatment targeting restoration of dystrophin onto membrane could benefit for ischemic cardiomyopathy.
Collapse
|
297
|
The dystrophin Dp186 isoform regulates neurotransmitter release at a central synapse in Drosophila. J Neurosci 2008; 28:5105-14. [PMID: 18463264 DOI: 10.1523/jneurosci.4950-07.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Dystrophin protein is encoded by a gene that, when mutated in humans, can cause Duchenne muscular dystrophy, a disease characterized by progressive muscle wasting. A number of Duchenne patients also exhibit poorly understood mental retardation, likely associated with loss of a brain-specific isoform. Furthermore, although Dystrophin isoforms and the related Utrophin protein have long been known to localize at synapses, their functions remain essentially unknown. In Drosophila, we find that the CNS-specific Dp186 isoform localizes to the embryonic and larval neuropiles, regions rich in synaptic contacts. In the absence of Dp186, evoked but not spontaneous presynaptic release is significantly enhanced. Increased presynaptic release can be fully rescued to wild-type levels by expression of a Dp186 transgene in the postsynaptic motoneuron, indicating that Dp186 likely regulates a retrograde signaling pathway. Potentiation of synaptic currents in the mutant also occurs when cholinergic transmission is inhibited or in the absence of Glass Bottom Boat (Gbb) or Wishful Thinking (Wit), a TGF-beta ligand and receptor, respectively, both previously implicated in synaptic retrograde signaling. These results are consistent with the possibility that Dp186 modulates other non-Gbb/Wit-dependent retrograde signaling pathways required to maintain normal synaptic physiology.
Collapse
|
298
|
Kucherenko MM, Pantoja M, Yatsenko AS, Shcherbata HR, Fischer KA, Maksymiv DV, Chernyk YI, Ruohola-Baker H. Genetic modifier screens reveal new components that interact with the Drosophila dystroglycan-dystrophin complex. PLoS One 2008; 3:e2418. [PMID: 18545683 PMCID: PMC2398783 DOI: 10.1371/journal.pone.0002418] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/14/2008] [Indexed: 11/24/2022] Open
Abstract
The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought.
Collapse
Affiliation(s)
- Mariya M. Kucherenko
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Mario Pantoja
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Andriy S. Yatsenko
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Halyna R. Shcherbata
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Karin A. Fischer
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Dariya V. Maksymiv
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Yaroslava I. Chernyk
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
299
|
Thomas LB, Joseph GL, Adkins TD, Andrade FH, Stemple JC. Laryngeal muscles are spared in the dystrophin deficient mdx mouse. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2008; 51:586-595. [PMID: 18506037 DOI: 10.1044/1092-4388(2008/042)] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
PURPOSE Duchenne muscular dystrophy (DMD) is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the posterior cricoarytenoid and the thyroarytenoid, in the mouse model. METHOD Larynges from dystrophin-deficient mdx and normal mice were examined histologically. RESULTS Results demonstrate that despite the absence of dystrophin in the mdx laryngeal muscles, membrane damage, inflammation, necrosis, and regeneration were not detected in the assays performed. CONCLUSIONS The authors concluded that these muscles are 1 of only a few muscle groups spared in this model of dystrophin deficiency. The muscles may count on intrinsic and adaptive protective mechanisms to cope with the absence of dystrophin. Identifying these protective mechanisms may improve DMD management. The study also highlights the unique aspects of the selected laryngeal skeletal muscles and their dissimilarity to limb skeletal muscle.
Collapse
|
300
|
Bauer R, Macgowan GA, Blain A, Bushby K, Straub V. Steroid treatment causes deterioration of myocardial function in the {delta}-sarcoglycan-deficient mouse model for dilated cardiomyopathy. Cardiovasc Res 2008; 79:652-61. [PMID: 18495669 DOI: 10.1093/cvr/cvn131] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS As oral corticosteroids have a beneficial effect on muscle strength in Duchenne muscular dystrophy, it has been suggested that they may also be a useful treatment in the pathologically related sarcoglycanopathies. The delta-sarcoglycan-deficient mouse (Sgcd-null) is a model for both limb girdle muscular dystrophy 2F (LGMD2F) and dilated cardiomyopathy. METHODS AND RESULTS To study the effect of oral corticosteroids on cardiac function, we treated 8-week-old Sgcd-null mice with prednisolone (1.5 mg/kg body weight/day orally) for 8 weeks. In vivo cardiac function was assessed by pressure-volume loops using a conductance catheter. We found a well-compensated cardiomyopathy at baseline in Sgcd-null mice with decreased myocardial contractility, increased preload, and decreased afterload, maintaining a high cardiac output. Cardiac haemodynamics, surprisingly, did not improve in prednisolone-treated mice, but instead deteriorated with evidence of ventricular stiffening. On histology, after steroid treatment there was increased myocardial cell damage and increased myocardial fibrosis. CONCLUSION Prednisolone led to a decompensation of cardiac haemodynamics in Sgcd-null mice and induced additional cardiac damage. On the basis of these findings, although mouse models may not completely replicate the human situation for LGMD2F, we conclude that careful cardiac monitoring is clearly indicated in patients on long-term corticosteroids.
Collapse
MESH Headings
- Administration, Oral
- Adrenal Cortex Hormones/administration & dosage
- Adrenal Cortex Hormones/adverse effects
- Adrenal Cortex Hormones/pharmacology
- Adrenergic beta-Agonists/administration & dosage
- Animals
- Body Weight/drug effects
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Dobutamine/administration & dosage
- Fibrosis
- Hemodynamics/drug effects
- Infusions, Intravenous
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocardium/pathology
- Prednisolone/administration & dosage
- Prednisolone/adverse effects
- Prednisolone/pharmacology
- RNA, Messenger/metabolism
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Stroke Volume/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- R Bauer
- Institute of Human Genetics, Newcastle University, International Center for Life, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | |
Collapse
|