251
|
Sleijfer S, Seynaeve C, Wiemer E, Verweij J. Practical aspects of managing gastrointestinal stromal tumors. Clin Colorectal Cancer 2007; 6 Suppl 1:S18-23. [PMID: 17101064 DOI: 10.3816/ccc.2006.s.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare tumors of the digestive tract. Despite their rarity, GISTs are of great importance for oncology. Gastrointestinal stromal tumors are one of the first solid tumor types in which specific factors responsible for malignant behavior have been elucidated and for which drugs specifically targeting these factors form the mainstay of treatment in advanced-stage disease. This review addresses several aspects of the current management of GIST as well as some novel developments.
Collapse
Affiliation(s)
- Stefan Sleijfer
- Department of Medical Oncology, Erasmus University Medical Centre, Daniel den Hoed Cancer Centre, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
252
|
Jiang X, Smith C, Eaves A, Eaves C. The challenges of targeting chronic myeloid leukemia stem cells. ACTA ACUST UNITED AC 2007; 7 Suppl 2:S71-80. [PMID: 17382016 DOI: 10.3816/clm.2007.s.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic myeloid leukemia (CML) is sustained by a clonally amplified population of Bcr Abl-positive pluripotent stem cells. Persistence of a large, functionally intact yet suppressed residual normal hematopoietic stem cell population in most patients with CML has made it possible to aim at the development of curative therapies. However, achieving this goal requires the identification of agents that will eradicate the leukemic stem cell population. Several potent Bcr-Abl-targeted drugs have now been introduced into clinical practice with remarkable effects. Nevertheless, accumulating data indicate that the leukemic CML stem cells in patients with chronic phase CML are less responsive to these agents than the bulk of the neoplastic cells. In this article, we review emerging evidence that CML stem cells have a number of unusual properties that underlie their relative insensitivity to treatment, including those that specifically target the Bcr-Abl oncoprotein. The biology of the neoplastic stem cells in patients with CML is clearly important to the future attainment of cures and might also prove a paradigm relevant to other types of malignancies that are sustained by transformed stem cell populations.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/analysis
- Benzamides
- Cell Differentiation
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Genomic Instability
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Philadelphia Chromosome
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | | | | |
Collapse
|
253
|
Vasconcelos FC, Cavalcanti GB, Silva KL, de Meis E, Kwee JK, Rumjanek VM, Maia RC. Contrasting features of MDR phenotype in leukemias by using two fluorochromes: Implications for clinical practice. Leuk Res 2007; 31:445-54. [PMID: 16979236 DOI: 10.1016/j.leukres.2006.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/23/2006] [Accepted: 07/01/2006] [Indexed: 11/19/2022]
Abstract
The expression and activity of P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) were analyzed in 178 leukemia samples. Rhodamine-123 (Rho-123) and DiOC(2) were used as substrate to evaluate efflux pump activity. Chronic myeloid leukemia (CML) exhibited a higher percentage of positivity using Rho-123 than DiOC(2) (p=0.000) as compared to other types of leukemia. Moreover, Rho-123 was able to detected Pgp positive cells in a higher proportion of samples than DiOC(2) samples (p=0.004). Similarly, MRP1 positive cells were best detected by Rho-123 as opposed to DiOC(2) (p=0.003). The co-functionality of Rho-123 and DiOC(2) was observed in 26 out of 105 (24.8%) leukemic samples. Co-expression between Pgp and MRP1 was detected in 30 out of 56 (53.6%) samples. As a whole, when the same samples were analyzed, Rho-123 was able to detect Pgp positive cells in a higher proportion of samples than DiOC(2) (p=0.000). Similarly, MRP1 positive cells were best detected by Rho-123 as opposed to DiOC(2) (p=0.007). Our results support the idea that Rho-123 is the substrate of choice for leukemic cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Carbocyanines/metabolism
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Flow Cytometry
- Fluorescent Dyes/metabolism
- Humans
- Leukemia/drug therapy
- Leukemia/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Multidrug Resistance-Associated Proteins/metabolism
- Phenotype
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Rhodamine 123/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Flavia C Vasconcelos
- Laboratório de Hematologia Celular e Molecular, Serviço de Hematologia, Hospital do Câncer (HC-I), Instituto Nacional de Câncer (INCA), Rio de Janeiro-RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
254
|
Widmer N, Decosterd LA, Csajka C, Leyvraz S, Duchosal MA, Rosselet A, Rochat B, Eap CB, Henry H, Biollaz J, Buclin T. Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br J Clin Pharmacol 2007. [PMID: 16842382 DOI: 10.1111/j.1365-2125.2006.02719.x;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AIMS The aims of this observational study were to assess the variability in imatinib pharmacokinetics and to explore the relationship between its disposition and various biological covariates, especially plasma alpha1-acid glycoprotein concentrations. METHODS A population pharmacokinetic analysis was performed using NONMEM based on 321 plasma samples from 59 patients with either chronic myeloid leukaemia or gastrointestinal stromal tumours. The influence of covariates on oral clearance and volume of distribution was examined. Furthermore, the in vivo intracellular pharmacokinetics of imatinib was explored in five patients. RESULTS A one-compartment model with first-order absorption appropriately described the data, giving a mean (+/-SEM) oral clearance of 14.3 l h-1 (+/-1.0) and a volume of distribution of 347 l (+/-62). Oral clearance was influenced by body weight, age, sex and disease diagnosis. A large proportion of the interindividual variability (36% of clearance and 63% of volume of distribution) remained unexplained by these demographic covariates. Plasma alpha1-acid glycoprotein concentrations had a marked influence on total imatinib concentrations. Moreover, we observed an intra/extracellular ratio of 8, suggesting substantial uptake of the drug into the target cells. CONCLUSION Because of the high pharmacokinetic variability of imatinib and the reported relationships between its plasma concentration and efficacy and toxicity, the usefulness of therapeutic drug monitoring as an aid to optimizing therapy should be further investigated. Ideally, such an approach should take account of either circulating alpha1-acid glycoprotein concentrations or free imatinib concentrations.
Collapse
Affiliation(s)
- N Widmer
- Division of ClinicAl Pharmacology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Widmer N, Decosterd LA, Csajka C, Leyvraz S, Duchosal MA, Rosselet A, Rochat B, Eap CB, Henry H, Biollaz J, Buclin T. Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br J Clin Pharmacol 2007; 62:97-112. [PMID: 16842382 PMCID: PMC1885072 DOI: 10.1111/j.1365-2125.2006.02719.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS The aims of this observational study were to assess the variability in imatinib pharmacokinetics and to explore the relationship between its disposition and various biological covariates, especially plasma alpha1-acid glycoprotein concentrations. METHODS A population pharmacokinetic analysis was performed using NONMEM based on 321 plasma samples from 59 patients with either chronic myeloid leukaemia or gastrointestinal stromal tumours. The influence of covariates on oral clearance and volume of distribution was examined. Furthermore, the in vivo intracellular pharmacokinetics of imatinib was explored in five patients. RESULTS A one-compartment model with first-order absorption appropriately described the data, giving a mean (+/-SEM) oral clearance of 14.3 l h-1 (+/-1.0) and a volume of distribution of 347 l (+/-62). Oral clearance was influenced by body weight, age, sex and disease diagnosis. A large proportion of the interindividual variability (36% of clearance and 63% of volume of distribution) remained unexplained by these demographic covariates. Plasma alpha1-acid glycoprotein concentrations had a marked influence on total imatinib concentrations. Moreover, we observed an intra/extracellular ratio of 8, suggesting substantial uptake of the drug into the target cells. CONCLUSION Because of the high pharmacokinetic variability of imatinib and the reported relationships between its plasma concentration and efficacy and toxicity, the usefulness of therapeutic drug monitoring as an aid to optimizing therapy should be further investigated. Ideally, such an approach should take account of either circulating alpha1-acid glycoprotein concentrations or free imatinib concentrations.
Collapse
Affiliation(s)
- N Widmer
- Division of ClinicAl Pharmacology, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Bihorel S, Camenisch G, Lemaire M, Scherrmann JM. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 2007; 24:1720-8. [PMID: 17380257 DOI: 10.1007/s11095-007-9278-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 02/20/2007] [Indexed: 01/02/2023]
Abstract
PURPOSE The selective protein tyrosine kinase inhibitor, imatinib, inhibits the growth of glioma cells in preclinical models, but its poor brain distribution limits its efficacy in patients. P-glycoprotein (P-gp, rodent Mdr1a/1b or Abcb1a/1b) and Breast cancer resistance protein (rodent Bcrp1 or Abcg2) were suggested to restrict the delivery of imatinib to the brain. This study evaluates the effect of administering selective inhibitors of these transporters together with imatinib on the systemic and cerebral disposition of imatinib in mice. MATERIALS AND METHODS Wild-type, Mdr1a/1b(-/-) and Bcrp1(-/-) mice were given imatinib intravenously, either alone, or with valspodar, zosuquidar (P-gp inhibitors), or elacridar (a P-gp and Bcrp1 inhibitor). The blood and brain concentrations of [(14)C]imatinib and its radioactive metabolites were determined. RESULTS The blockade of P-gp by valspodar or zosuquidar (>3 mg/kg) enhanced the brain uptake of imatinib ( approximately 4-fold) in wild-type mice, but not that of its metabolites. Blockade of both P-gp and Bcrp1 by elacridar (>3 mg/kg) produced significantly greater brain penetration of imatinib (9.3-fold) and its metabolites (2.8-fold). In contrast, only the lack of P-gp enhanced imatinib brain penetration (6.4-fold) in knockout mice. These results of brain uptake correlated reasonably well with those obtained previously by our group using in situ brain perfusion. CONCLUSIONS Imatinib and its metabolites penetrate into the brain poorly and their penetration is limited by P-gp and (probably) Bcrp1. Administering imatinib together with P-gp (and Bcrp1) transporter inhibitors such as elacridar may improve the delivery of imatinib to the brain, making it potentially more effective against malignant gliomas.
Collapse
Affiliation(s)
- Sébastien Bihorel
- INSERM, U705, CNRS, UMR 7157, Université Paris 7, Université Paris 5, Faculté de Pharmacie, Laboratoire de Pharmacocinétique, Paris, France
| | | | | | | |
Collapse
|
257
|
Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S, Ambudkar SV, Wang Y, Wennemuth G, Burchert A, Boudriot U, Neubauer A. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007; 21:1267-75. [PMID: 17519960 DOI: 10.1038/sj.leu.2404638] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The majority of chronic phase chronic myeloid leukemia (CML) patients treated with the tyrosine kinase inhibitor (TKI) imatinib mesylate maintain durable responses to the drug. However, most patients relapse after withdrawal of imatinib and advanced stage patients often develop drug resistance. As CML is considered a hematopoietic stem cell cancer, it has been postulated that inherent protective mechanisms lead to relapse in patients. The ATP binding-cassette transporters ABCB1 (MDR-1; P-glycoprotein) and ABCG2 are highly expressed on primitive hematopoietic stem cells (HSCs) and have been shown to interact with TKIs. Herein we demonstrate a dose-dependent, reversible inhibition of ABCG2-mediated Hoechst 33342 dye efflux in primary human and murine HSC by both imatinib and nilotinib (AMN107), a novel aminopyrimidine inhibitor of BCR-ABL. ABCG2-transduced K562 cells were protected from imatinib and nilotinib-mediated cell death and from downregulation of P-CRKL. Moreover, photoaffinity labeling revealed interaction of both TKIs with ABCG2 at the substrate binding sites as they compete with the binding of [(125)I] IAAP and also stimulate the transporter's ATPase activity. Therefore, our evidence suggests for the role of ABC transporters in resistance to TKI on primitive HSCs and CML stem cells and provides a rationale how TKI resistance can be overcome in vivo.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antineoplastic Agents/pharmacokinetics
- Benzamides
- Binding Sites
- Drug Resistance, Neoplasm
- Hematopoietic Stem Cells
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Piperazines/pharmacokinetics
- Protein Kinase Inhibitors
- Pyrimidines/pharmacokinetics
- Recurrence
- Transduction, Genetic
Collapse
Affiliation(s)
- C Brendel
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstrasse, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, Eaves C. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21:926-35. [PMID: 17330101 DOI: 10.1038/sj.leu.2404609] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The leukemic stem cells in patients with chronic myeloid leukemia (CML) are well known to be clinically resistant to conventional chemotherapy and may also be relatively resistant to BCR-ABL-targeted drugs. Here we show that the lesser effect of imatinib mesylate (IM) on the 3-week output of cells produced in vitro from lin(-)CD34(+)CD38(-) CML (stem) cells compared with cultures initiated with the CD38(+) subset of lin(-)CD34(+) cells is markedly enhanced (>10-fold) when conditions of reduced growth factor stimulation are used. Quantitative analysis of genes expressed in these different CML subsets revealed a differentiation-associated decrease in IL-3 and G-CSF transcripts, a much more profound decrease in expression of BCR-ABL than predicted by changes in BCR expression, decreasing expression of ABCB1/MDR and ABCG2 and increasing expression of OCT1. p210(BCR-ABL) and kinase activity were also higher in the lin(-)CD34(+)CD38(-) cells and formal evidence that increasing BCR-ABL expression decreases IM sensitivity was obtained from experiments with a cell line model. Nevertheless, within the entire CD34(+) subset of CML cells, BCR-ABL expression was not strongly affected by changes in cell cycle status. Taken together, these results provide the first evidence of multiple mechanisms of innate IM resistance in primitive and quiescent CML cells.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/analysis
- Adaptor Proteins, Signal Transducing/metabolism
- Antigens, CD34/analysis
- Antineoplastic Agents/pharmacology
- Benzamides
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Granulocyte Colony-Stimulating Factor/analysis
- Humans
- Imatinib Mesylate
- Interleukin-3/analysis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Nuclear Proteins/metabolism
- Octamer Transcription Factor-1/analysis
- Phosphorylation
- Piperazines/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- X Jiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
259
|
Abstract
Identification of cancer stem cells (CSCs) in both hematological and solid malignancies suggests that CSCs may be a common phenomenon for most malignancies. Similarly to normal stem cells, CSCs can self-renew and differentiate into progeny cancer cells. Almost all current therapy against cancer targets differentiated cancer cells. CSCs are more resistant to therapy secondary to quiescence, increased expression of antiapoptotic proteins and drug efflux transporters. In this article, we review the current status of CSC research and propose the targeting of CSC cell-surface molecules, signal transduction pathways, the stem cell niche, stem cell differentiation and drug resistance.
Collapse
Affiliation(s)
- Chong-Xian Pan
- University of California at Davis Cancer Center, 4501 X Street, Room 3016, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
260
|
McDevitt CA, Callaghan R. How can we best use structural information on P-glycoprotein to design inhibitors? Pharmacol Ther 2007; 113:429-41. [PMID: 17208306 DOI: 10.1016/j.pharmthera.2006.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
This year marks the 30th anniversary of the discovery of the multidrug resistance (MDR) ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp). Since then a considerable research effort has attempted to provide a greater understanding of the biological enigma of "multidrug" efflux. Moreover, the growing correlation between P-gp expression and a negative prognosis or poor outcome for chemotherapy has sparked significant interest in the generation of inhibitors. How close are we to overcoming the unwanted actions of P-gp in resistant cancer following 30 years of research? The initial inhibitors were pre-existing clinically used compounds and exploited the broad specificity of P-gp. Unfortunately, the concentrations required to inhibit P-gp meant that these compounds generated considerable toxicity. Pharmacological investigations progressed to rational design using the 1st generation compounds as a template structure. Inherent toxicity of the drugs was reduced; however, pharmacokinetic interactions with the anticancer drugs were unsustainable. Generation of the most recent of inhibitors employed combinatorial chemistry to produce a handful of potent and selective P-gp inhibitors. Some of these drugs have progressed to clinical trials with poor results or in some cases, undisclosed progress. There remains a clear need for the generation of P-gp inhibitors and this review describes the potential for a structure-based design to facilitate this undertaking. In particular, the plethora of functional data can provide important regions on the protein that could conceivably be exploited as inhibitor targets.
Collapse
Affiliation(s)
- Christopher A McDevitt
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | |
Collapse
|
261
|
Cusatis G, Gregorc V, Li J, Spreafico A, Ingersoll RG, Verweij J, Ludovini V, Villa E, Hidalgo M, Sparreboom A, Baker SD. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 2007; 98:1739-42. [PMID: 17148776 DOI: 10.1093/jnci/djj469] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Gefitinib is an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase with activity in non-small-cell lung cancer. Diarrhea and skin toxicity are prominent gefitinib-related adverse events that potentially limit its use. Gefitinib is a substrate for ABCG2 (ABCP, BCRP, MXR), a polymorphic efflux transporter protein that is highly expressed in the intestines and liver. Here we investigated associations between allelic variants of EGFR, ABCG2, and the transporter protein ABCB1 with diarrhea and skin toxicity in gefitinib-treated patients. One variant, a common functional single-nucleotide polymorphism (SNP) in the ABCG2 gene, was associated with diarrhea in 124 patients treated with oral gefitinib 250 mg once daily; seven (44%) of 16 patients heterozygous for ABCG2 421C>A (Q141K) developed diarrhea, versus only 13 (12%) of 108 patients homozygous for the wild-type sequence (P = .0046). However, this SNP was not associated with skin toxicity (P = .99). The finding suggests that patients with reduced ABCG2 activity due to a common genetic variant are at increased risk for substrate drug-induced diarrhea, with implications for optimizing treatment with such agents.
Collapse
Affiliation(s)
- George Cusatis
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Abstract
Objective clinical responses to anticancer treatments often do not translate into substantial improvements in overall survival. Recent data suggesting many cancers arise from rare self-renewing cells (cancer stem cells) that are biologically distinct from their more numerous differentiated progeny, may explain this paradox. Current anticancer therapies have been developed to target the bulk of the tumor mass (i.e., the differentiated cancer cells). Although treatments directed against the bulk of the cancer may produce dramatic responses, they are unlikely to result in long-term remissions if the rare cancer stem cells are also not targeted. Better understanding the biology of cancer stem cells as well reexamining both our preclinical and clinical drug development paradigms to include the cancer stem cell concept, have the potential to revolutionize the treatment of many cancers.
Collapse
|
263
|
Garattini S. Pharmacokinetics in cancer chemotherapy. Eur J Cancer 2006; 43:271-82. [PMID: 17174548 DOI: 10.1016/j.ejca.2006.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/30/2006] [Indexed: 11/26/2022]
Affiliation(s)
- Silvio Garattini
- Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milano, Italy.
| |
Collapse
|
264
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 551] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
265
|
The clinical challenge of imatinib resistance in chronic myeloid leukemia: emerging strategies with new targeted agents. Target Oncol 2006. [DOI: 10.1007/s11523-006-0032-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
266
|
Clark R, Kerr ID, Callaghan R. Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter. Br J Pharmacol 2006; 149:506-15. [PMID: 16981002 PMCID: PMC2014674 DOI: 10.1038/sj.bjp.0706904] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND & PURPOSE Drug-resistant cancer cells frequently display efflux pumps such as P-glycoprotein (P-gp), the multidrug resistance associated protein (MRP1) or the transporter ABCG2. These transporters are each capable of mediating the active efflux of numerous anticancer drugs and display relatively distinct substrate preferences. The last, most recently discovered member, ABCG2, plays a major role in resistance in several types of cancer and the precise pharmacology of this multidrug transporter remain unresolved as does the nature of substrate binding. EXPERIMENTAL APPROACH Plasma membranes from insect cells expressing ABCG2 were used to characterise binding of [3H]daunomycin to the multidrug transporter. The kinetics of association and dissociation for this substrate and several other compounds were also determined in this experimental system. KEY RESULTS The dissociation constant for [3H]daunomycin binding was 564 +/- 57 nM and a Hill slope of 1.4 suggested cooperative binding. Doxorubicin, prazosin and daunomycin completely displaced the binding of radioligand, while mitoxantrone and Hoechst 33342 produced only a partial displacement. Analysis of the dissociation rates revealed that [3H]daunomycin and doxorubicin bind to multiple sites on the transporter. CONCLUSIONS Both kinetic and equilibrium data support the presence of at least two symmetric drug binding sites on ABCG2, which is distinct from the asymmetry observed for P-gp. The data provide the first molecular details underlying the mechanism by which this transporter is capable of interacting with multiple substrates.
Collapse
Affiliation(s)
- R Clark
- Nuffield Department of Clinical Laboratory Sciences, University of OxfordUK
| | - I D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of NottinghamUK
| | - R Callaghan
- Nuffield Department of Clinical Laboratory Sciences, University of OxfordUK
- Author for correspondence:
| |
Collapse
|
267
|
de Vries NA, Beijnen JH, Boogerd W, van Tellingen O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 2006; 6:1199-209. [PMID: 16893347 DOI: 10.1586/14737175.6.8.1199] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) is of pivotal importance to maintain homeostasis of the CNS, as it closely regulates the composition of the interstitial fluid in the brain. Unfortunately, malignancies that grow within the CNS may evade chemotherapeutic drugs using the same barrier, making this disease refractory to most chemotherapy regimens. This review will outline the impact of the BBB in brain cancer and discuss the efforts that have been made to enhance the drug exposure of brain tumors. Although this review will focus on the role of the BBB in primary brain cancer (malignant glioma), its impact on brain metastases will also be briefly discussed.
Collapse
Affiliation(s)
- Nienke A de Vries
- The Netherlands Cancer Institute, Department of Clinical Chemistry, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
268
|
Hadnagy A, Gaboury L, Beaulieu R, Balicki D. SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 2006; 312:3701-10. [PMID: 17046749 DOI: 10.1016/j.yexcr.2006.08.030] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/27/2006] [Accepted: 08/31/2006] [Indexed: 02/07/2023]
Abstract
Side populations (SP), as defined by Hoechst exclusion in flow cytometry, have been described a few years ago. While they represent only a small fraction of the whole cell population, their properties confer an important place in several investigations. SP cells express high levels of various members of ABC transporters family, such as MDR1 and BCRP, which are responsible for drug resistance. Targeting SP could improve cancer therapy by blocking these transporters. In addition, SP appear to be enriched in stem cells, cells that play a pivotal role in normal development and cancer biology. Thus, they could provide a useful tool and a readily accessible source for stem cell studies in both the normal and cancerous settings. However, these cells are poorly defined and pose challenges in their identification and isolation, particularly since they are few in number. Thus, better characterization of SP will advance our understanding of stem cells and will provide us an accessible target for drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Annamaria Hadnagy
- Research Centre and Department of Medicine, Hôtel-Dieu du Centre hospitalier de l'Université de Montréal (CHUM), Canada
| | | | | | | |
Collapse
|
269
|
Melo JV, Chuah C. Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett 2006; 249:121-32. [PMID: 16949736 DOI: 10.1016/j.canlet.2006.07.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 02/04/2023]
Abstract
Despite the remarkable results achieved with imatinib for the treatment of chronic myeloid leukaemia, the emergence of resistance to this tyrosine kinase inhibitor has become a significant problem. Much progress has been recently made in elucidating the mechanisms which underlie imatinib resistance. The most common cause of such drug resistance is the selection of leukaemic clones with point mutations in the Abl kinase domain leading to amino acid substitutions which prevent the appropriate binding of the drug. Other mechanisms include genomic amplification of BCR-ABL and modulation of drug efflux or influx transporters. There is a pressing need, therefore, to develop and test novel drugs and strategies. Two such compounds are now being explored in clinical trials. This review will describe the molecular basis of imatinib-resistance and strategies to overcome resistance.
Collapse
Affiliation(s)
- Junia V Melo
- Department of Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | | |
Collapse
|
270
|
|
271
|
Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC. Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108:1370-3. [PMID: 16627755 DOI: 10.1182/blood-2006-02-003145] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Imatinib mesylate (IM) therapy for chronic myeloid leukemia (CML) has transformed the treatment of this disease. However, the vast majority of patients, despite major responses, still harbor Philadelphia chromosome–positive (Ph+) cells. We have described a population of primitive Ph+ cells that are insensitive to IM and may be a source of IM resistance. Cell line studies have suggested that the drug transporter ABCG2 may be a mediator of IM resistance, however there is considerable debate about whether IM is an ABCG2 substrate or inhibitor. We demonstrate here that primitive CML CD34+ cells aberrantly overexpress functional ABCG2 but that cotreatment with IM and an ABCG2 inhibitor does not potentiate the effect of IM. We definitively show that IM is an inhibitor of, but not a substrate for, ABCG2 and that, therefore, ABCG2 does not modulate intracellular concentrations of IM in this clinically relevant cell population.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- Antigens, CD34
- Benzamides
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Male
- Neoplasm Proteins/biosynthesis
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Niove E Jordanides
- Division of Cancer Science & Molecular Pathology, University of Glasgow, UK
| | | | | | | |
Collapse
|
272
|
Rossi F, Ehlers I, Agosti V, Socci ND, Viale A, Sommer G, Yozgat Y, Manova K, Antonescu CR, Besmer P. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor. Proc Natl Acad Sci U S A 2006; 103:12843-8. [PMID: 16908864 PMCID: PMC1568935 DOI: 10.1073/pnas.0511076103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kit receptor-activating mutations are critical in the pathogenesis of gastrointestinal stromal tumors (GIST). We investigated mechanisms of oncogenic Kit signaling and the consequences of therapeutic intervention in a mouse model of human GIST. Treatment of GIST mice with imatinib decreased cell proliferation and increased apoptosis in the tumor. Analysis of tumor tissue from imatinib-treated mice showed diminished phosphatidylinositol 3-kinase (PI3-kinase) and mammalian target of rapamycin (mTOR) signaling suggesting that oncogenic Kit signaling critically contributes to the translational response in GIST. Treatment with RAD001 (everolimus), an mTOR inhibitor, diminished the translational response and cell proliferation in tumor lesions, pointing to mTOR inhibition as a therapeutic approach for imatinib-resistant GIST. Analysis of RNA expression profiles in GIST lesions with and without imatinib treatment showed changes in expression of IFN-inducible genes and cell cycle regulators. These results convincingly show that KitV558Delta/+ mice represent a unique faithful mouse model of human familial GIST, and they demonstrate the utility of these mice for preclinical investigations and to elucidate oncogenic signaling mechanisms by using genetic approaches and targeted pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katia Manova
- Departments of *Developmental Biology and
- Molecular Cytology Facility, Sloan–Kettering Institute, New York, NY 10021; and
| | - Cristina R. Antonescu
- Departments of *Developmental Biology and
- Department of Pathology, Memorial Sloan–Kettering Cancer Center
| | - Peter Besmer
- Departments of *Developmental Biology and
- **Gerstner Sloan–Kettering Graduate School of Biomedical Sciences, and
- Cornell University Weill Graduate School of Medical Sciences, New York, NY 10021
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
273
|
Huang Y, Sadée W. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett 2006; 239:168-82. [PMID: 16169662 DOI: 10.1016/j.canlet.2005.07.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 12/14/2022]
Abstract
Membrane transporters play important roles in mediating chemosensitivity and -resistance of tumor cells. ABC transporters, such as ABCB1/MDR1, ABCC1/MRP1 and ABCG2/BCRP, are frequently associated with decreased cellular accumulation of anticancer drugs and multidrug resistance of tumors. SLC transporters, such as folate, nucleoside, and amino acid transporters, commonly increase chemosensitivity by mediating the cellular uptake of hydrophilic drugs. Ion channels and pumps variably affect sensitivity to anticancer therapy by modulating viability of tumor cells. A pharmacogenomic approach, using correlations between drug potency and transporter gene expression in multiple cancer cell lines, has shown promise for identifying potential drug-transporter relationships and predicting anticancer drug response, in an effort to optimize chemotherapy for individual patients.
Collapse
Affiliation(s)
- Ying Huang
- Food and Drug Administration, Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | |
Collapse
|
274
|
Hassan NJ, Pountney DJ, Ellis C, Mossakowska DE. BacMam recombinant baculovirus in transporter expression: A study of BCRP and OATP1B1. Protein Expr Purif 2006; 47:591-8. [PMID: 16481201 DOI: 10.1016/j.pep.2005.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 02/06/2023]
Abstract
Human BCRP and OATP1B1 have recently been identified as important transporters in the absorption, distribution, and elimination of clinically significant drugs. In this report, we illustrate the use of modified baculoviruses, termed BacMam viruses for the expression of functional BCRP and OATP1B1 in mammalian cells. We show a variety of host cells efficiently transduced to express BCRP including HEK 293, LLC-PK, and U-2 OS, where protein levels on the cell-surface were modulated by titrating different amounts of viral inoculum. In addition, using the BODIPY-prazosin efflux assay and the BacMam reagent we illustrate inhibition of BCRP activity with GF120918 or Fumitremorgin C. Furthermore, we present data demonstrating simultaneous expression of BCRP and OATP1B1 in BacMam transduced mammalian cells by simply adding viral inoculum of each transporter. Thus these results indicate that BacMam mediated gene delivery provides a novel and efficient research tool for the investigation of single or multiple transporters in vitro.
Collapse
Affiliation(s)
- Namir J Hassan
- Department of Gene Expression and Protein Biochemistry, GlaxoSmithKline, Harlow, UK.
| | | | | | | |
Collapse
|
275
|
Asashima T, Hori S, Ohtsuki S, Tachikawa M, Watanabe M, Mukai C, Kitagaki S, Miyakoshi N, Terasaki T. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res 2006; 23:1235-42. [PMID: 16715370 DOI: 10.1007/s11095-006-0067-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 01/25/2006] [Indexed: 01/16/2023]
Abstract
PURPOSE The purpose of this study was to clarify the localization and function of the ATP-binding cassette transporter G2 (ABCG2; BCRP/MXR/ABCP) in retinal capillary endothelial cells, which form the inner blood-retinal barrier, as an efflux transport system. METHODS The expression was determined by reverse transcriptase polymerase chain reaction and Western blotting. The localization was identified by immunostaining. The transport function of ABCG2 was measured by flow cytometry. RESULTS Western blotting indicated that ABCG2 was expressed as a glycosylated disulfide-linked complex in the mouse retina and in peripheral tissues, including liver, kidney, and small intestine. Double immunolabeling of ABCG2 and glucose transporter 1 suggested that ABCG2 was localized on the luminal membrane of mouse retinal capillary endothelial cells. ABCG2 mRNA and protein were found to be expressed in a conditionally immortalized rat retinal capillary endothelial cell line, TR-iBRB, and rat retina. Treatment with Ko143, an ABCG2 inhibitor, restored the accumulation of pheophorbide a and protoporphyrin IX in TR-iBRB cells. CONCLUSION ABCG2 is expressed on the luminal membrane of retinal capillary endothelial cells, where ABCG2 acts as the efflux transporter for photosensitive toxins such as pheophorbide a and protoporphyrin IX. ABCG2 could play an important role at the inner blood-retinal barrier in restricting the distribution of phototoxins and xenobiotics in retinal tissue.
Collapse
Affiliation(s)
- Tomoko Asashima
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Huff CA, Matsui WH, Smith BD, Jones RJ. Strategies to eliminate cancer stem cells: clinical implications. Eur J Cancer 2006; 42:1293-7. [PMID: 16644203 DOI: 10.1016/j.ejca.2006.01.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 12/31/2022]
Abstract
Over the past two decades, major advances in our understanding of cancer have translated into only modest increments in survival for the majority of cancer patients. Recent data suggesting cancers arise from rare self-renewing stem cells that are biologically distinct from their more numerous differentiated progeny may explain this paradox. Current anticancer therapies have been developed to decrease the bulk of the tumour mass (i.e. the differentiated cancer cells). Although treatments directed against the bulk of the cancer may produce dramatic responses, they are unlikely to result in long-term remissions if the rare cancer stem cells are also not targeted. Conversely, treatments that selectively attack cancer stem cells will not immediately eliminate the differentiated cancer cells, and might therefore be prematurely abandoned if clinical activity is judged solely by traditional response criteria that reflect changes in the bulk of the tumour. Re-examining both our pre-clinical and clinical drug development paradigms to include the cancer stem cell concept has the potential to revolutionize the treatment of many cancers.
Collapse
Affiliation(s)
- Carol Ann Huff
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bunting-Blaustein Cancer Research Building, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
277
|
White DL, Saunders VA, Dang P, Engler J, Zannettino ACW, Cambareri AC, Quinn SR, Manley PW, Hughes TP. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006; 108:697-704. [PMID: 16597591 DOI: 10.1182/blood-2005-11-4687] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic sensitivity of newly diagnosed chronic myeloid leukemia (CML) patients to imatinib (IC50(imatinib)) correlates with molecular response. IC50(imatinib) is defined as the in vitro concentration of drug required to reduce phosphorylation of the adaptor protein Crkl by 50%. We now show that interpatient variability in IC50(imatinib) is mainly due to differences in the efficiency of imatinib intracellular uptake and retention (IUR). In 25 untreated CML patients, the IC50(imatinib) strongly correlated (R (2) = -0.484, P = .014 at 2 muM imatinib) with the IUR of [(14)C]imatinib. The addition of prazosin, a potent inhibitor of OCT-1 cellular transporter, reduced the IUR and eliminated interpatient variability. IC50 values for the more potent BCR-ABL inhibitor nilotinib (AMN107) did not correlate with IC50(imatinib) (R(2) =-0.0561, P > .05). There was also no correlation between IC50(nilotinib) and the IUR for [(14)C]nilotinib (R (2) = 0.457, P > .05). Prazosin had no effect on nilotinib IUR, suggesting that influx of nilotinib is not mediated by OCT-1. In conclusion, whereas OCT-1-mediated influx may be a key determinant of molecular response to imatinib, it is unlikely to impact on cellular uptake and patient response to nilotinib. Determining interpatient and interdrug differences in cellular uptake and retention could allow individual optimization of kinase inhibitor therapy.
Collapse
Affiliation(s)
- Deborah L White
- Division of Hematology, Institute of Medical and Veterinary Science (IMVS) & Hanson Institute, Adelaide, South Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos 2006; 34:690-5. [PMID: 16434544 DOI: 10.1124/dmd.105.008219] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter that extrudes xenotoxins from cells in intestine, liver, mammary gland, and other organs, affecting the pharmacological and toxicological behavior of many compounds, including their secretion into the milk. The purpose of this study was to determine whether three widely used fluoroquinolone antibiotics (ciprofloxacin, ofloxacin, and norfloxacin) are substrates of Bcrp1/BCRP and to investigate the possible role of this transporter in the in vivo pharmacokinetic profile of these compounds and their secretion into the milk. Using polarized cell lines, we found that ciprofloxacin, ofloxacin, and norfloxacin are transported by mouse Bcrp1 and human BCRP. In vivo pharmacokinetic studies showed that the ciprofloxacin plasma concentration was more than 2-fold increased in Bcrp1(-/-) compared with wild-type mice (1.77 +/- 0.73 versus 0.85 +/- 0.39 microg/ml, p < 0.01) after oral administration of ciprofloxacin (10 mg/kg). The area under the plasma concentration-time curve in Bcrp1(-/-) mice was 1.5-fold higher than that in wild-type mice (48.63 +/- 5.66 versus 33.10 +/- 4.68 min x microg/ml, p < 0.05) after i.v. administration (10 mg/kg). The milk concentration and milk/plasma ratio of ciprofloxacin were 2-fold higher in wild-type than in Bcrp1(-/-) lactating mice. We conclude that Bcrp1 is one of the determinants for the bioavailability of fluoroquinolones and their secretion into the milk.
Collapse
Affiliation(s)
- Gracia Merino
- Department of Physiology, Faculty of Veterinary Medicine, University of Léon, Campus de Vegazana, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
279
|
Copland M, Jørgensen HG, Holyoake TL. Evolving molecular therapy for chronic myeloid leukaemia--are we on target? ACTA ACUST UNITED AC 2006; 10:349-59. [PMID: 16203604 DOI: 10.1080/10245330500234195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukaemia (CML) is a clonal disease of stem cell origin that develops when a single pluripotent haemopoietic stem cell acquires the Philadelphia (Ph) chromosome. The unique fusion gene product translated, p210 (Bcr-Abl), is a constitutively active tyrosine kinase that is specific to, and has a central role in the pathogenesis of, CML, making it an atractive target for drug therapy. Imatinib mesylate (IM) is one such therapy that also targets Abl, c-kit and PDGF-R tyrosine kinases. Although IM induces a much higher rate of complete cytogenetic remission (CCR), with improved tolerability and better progression free survival compared to other licensed therapies, resistance is a significant clinical problem. The most common mechanism of IM resistance is mutation of the Bcr-Abl kinase catalytic domain. In addition, molecular persistence in patients in CCR is most likely attributable to persisting Ph(+) stem cells that are insensitive to IM by unknown mechanisms and this is a major focus of current research interest. Current results from pre-clinical in vitro work on novel agents and combination strategies as well as clinical trials including immunotherapy approaches are reviewed. Despite the widespread use of molecularly targeted therapies and the development of new therapeutic drugs and strategies, it is our belief that there is a requirement for further research into and development of stem cell-directed therapies to overcome molecular persistence. It is likely that a combination of molecularly targeted therapies or treatment modalities will finally eliminate the quiescent stem cell population, leading to a "molecular cure" of CML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Combined Modality Therapy/methods
- Combined Modality Therapy/trends
- Drug Design
- Drug Resistance, Neoplasm/drug effects
- Drug Therapy/methods
- Drug Therapy/trends
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/pathology
Collapse
Affiliation(s)
- Mhairi Copland
- Section of Experimental Haematology and Haemopoietic Stem Cells, Division of Cancer Sciences & Molecular Pathology, University of Glasgow, UK
| | | | | |
Collapse
|
280
|
Nakanishi T, Shiozawa K, Hassel BA, Ross DD. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 2006; 108:678-84. [PMID: 16543472 DOI: 10.1182/blood-2005-10-4020] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Imatinib, a potent tyrosine kinase inhibitor, is effluxed from cells by the breast cancer resistance protein (BCRP/ABCG2), yet published studies to date fail to demonstrate resistance to imatinib cytotoxicity in BCRP-overexpressing cells in vitro. We investigated cellular resistance to imatinib in BCR-ABL-expressing cells transduced and selected to overexpress BCRP (K562/BCRP-MX10). These cells exhibited a 2- to 3-fold increase in resistance to imatinib (P < .05) and a 7- to 12-fold increase in resistance to mitoxantrone, a known BCRP substrate. Resistance to imatinib was completely abolished by the specific BCRP inhibitor fumitremorgin C. Studies of the mechanism of the diminished resistance to imatinib compared with mitoxantrone revealed that imatinib decreased the expression of BCRP in K562/BCRP-MX10 cells without affecting mRNA levels. BCRP levels in cells that do not express BCR-ABL were not affected by imatinib. Loss of BCRP expression was accompanied by imatinib-induced reduction of phosphorylated Akt in the BCRP-expressing K562 cells. The phosphoinositol-3 kinase (PI3K) inhibitor LY294002 also decreased BCRP levels in K562/BCRP-MX10 cells. These studies show that BCRP causes measurable imatinib resistance, but this effect is attenuated by imatinib-mediated inhibition of BCR-ABL, which in turn downregulates overall BCRP levels posttranscriptionally via the PI3K-Akt pathway.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Benzamides
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- Imatinib Mesylate
- Indoles/pharmacology
- K562 Cells
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/pathology
- Mitoxantrone/pharmacokinetics
- Mitoxantrone/pharmacology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Piperazines/pharmacokinetics
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrimidines/pharmacokinetics
- Pyrimidines/pharmacology
- RNA, Messenger/analysis
- Signal Transduction
- Transduction, Genetic
Collapse
Affiliation(s)
- Takeo Nakanishi
- Program in Experimental Therapeutics, University of Maryland Marlene and Stewart Greenebaum Cancer Center (UMGCC), Baltimore, 21201, USA
| | | | | | | |
Collapse
|
281
|
Ahmed-Belkacem A, Pozza A, Macalou S, Pérez-Victoria JM, Boumendjel A, Di Pietro A. Inhibitors of cancer cell multidrug resistance mediated by breast cancer resistance protein (BCRP/ABCG2). Anticancer Drugs 2006; 17:239-43. [PMID: 16520651 DOI: 10.1097/00001813-200603000-00001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer resistance protein (BCRP/ABCG2) belongs to the ATP-binding cassette (ABC) transporter superfamily. It is able to efflux a broad range of anti-cancer drugs through the cellular membrane, thus limiting their anti-proliferative effects. Due to its relatively recent discovery in 1998, and in contrast to the other ABC transporters P-glycoprotein (MDR1/ABCB1) and multidrug resistance-associated protein (MRP1/ABCC1), only a few BCRP inhibitors have been reported. This review summarizes the known classes of inhibitors that are either specific for BCRP or also inhibit the other multidrug resistance ABC transporters. Information is presented on structure-activity relationship aspects and how modulators may interact with BCRP.
Collapse
Affiliation(s)
- Abdelhakim Ahmed-Belkacem
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université de Lyon, IFR128 BioSciences Lyon-Gerland, Lyon, France
| | | | | | | | | | | |
Collapse
|
282
|
Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y. Functional SNPs of the breast cancer resistance protein ‐ therapeutic effects and inhibitor development. Cancer Lett 2006; 234:73-80. [PMID: 16303243 DOI: 10.1016/j.canlet.2005.04.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/20/2005] [Indexed: 01/16/2023]
Abstract
Breast cancer resistance protein (BCRP) is a half-molecule ATP-binding cassette transporter that pumps out various anticancer agents such as 7-ethyl-10-hydroxycamptothecin, topotecan and mitoxantrone. We have previously identified three polymorphisms within the BCRP gene, G34A (substituting Met for Val-12), C376T (substituting a stop codon for Gln-126) and C421A (substituting Lys for Gln-141). C421A BCRP-transfected murine fibroblast PA317 cells showed markedly decreased protein expression and low-level drug resistance when compared with wild-type BCRP-transfected cells. In contrast, G34A BCRP-transfected PA317 cells showed a similar protein expression and drug resistance profile to wild-type. The C376T polymorphism would be expected to have a considerable impact as active BCRP protein will not be expressed from a T376 allele. Hence, people with C376T and/or C421A polymorphisms may express low levels of BCRP, resulting in hypersensitivity of normal cells to BCRP-substrate anticancer agents. Estrogens, estrone and 17beta-estradiol, were previously found to restore drug sensitivity levels in BCRP-transduced cells by increasing the cellular accumulation of anticancer agents. BCRP transports sulfated estrogens but not free estrogens and in a series of screening experiments for synthesized and natural estrogenic compounds, several tamoxifen derivatives and phytoestrogens/flavonoids were identified that effectively circumvent BCRP-mediated drug resistance. The kinase inhibitors gefitinib and imatinib mesylate also interact with BCRP. Gefitinib, an inhibitor of epidermal growth factor receptor-tyrosine kinase, inhibits its transporter function and reverses BCRP-mediated drug resistance both in vitro and in vivo. BCRP-transfected human epidermoid carcinoma A431 cells and BCRP-transfected human non-small cell lung cancer PC-9 cells show gefitinib resistance. Imatinib, an inhibitor of BCR-ABL tyrosine kinase, also inhibits BCRP-mediated drug transport. Hence, both functional SNPs and inhibitors of BCRP reduce its transporter function and thus modulate substrate pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Kae Yanase
- Department of Chemotherapy, Kyoritsu University of Pharmacy, 1-5-30 Shibakoen, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
283
|
Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, Barow M, Mountford JC, Holyoake TL. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107:4532-9. [PMID: 16469872 DOI: 10.1182/blood-2005-07-2947] [Citation(s) in RCA: 476] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dasatinib (BMS-354825), a novel dual SRC/BCR-ABL kinase inhibitor, exhibits greater potency than imatinib mesylate (IM) and inhibits the majority of kinase mutations in IM-resistant chronic myeloid leukemia (CML). We have previously demonstrated that IM reversibly blocks proliferation but does not induce apoptosis of primitive CML cells. Here, we have attempted to overcome this resistance with dasatinib. Primitive IM-resistant CML cells showed only single-copy BCR-ABL but expressed significantly higher BCR-ABL transcript levels and BCR-ABL protein compared with more mature CML cells (P = .031). In addition, CrKL phosphorylation was higher in the primitive CD34(+)CD38(-) than in the total CD34(+) population (P = .002). In total CD34(+) CML cells, IM inhibited phosphorylation of CrKL at 16 but not 72 hours, consistent with enrichment of an IM-resistant primitive population. CD34(+)CD38(-) CML cells proved resistant to IM-induced inhibition of CrKL phosphorylation and apoptosis, whereas dasatinib led to significant inhibition of CrKL phosphorylation. Kinase domain mutations were not detectable in either IM or dasatinib-resistant primitive CML cells. These data confirm that dasatinib is more effective than IM within the CML stem cell compartment; however, the most primitive quiescent CML cells appear to be inherently resistant to both drugs.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Antigens, CD34
- Benzamides
- Dasatinib
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Gene Dosage
- HL-60 Cells
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/drug effects
- Nuclear Proteins/metabolism
- Phosphorylation
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- RNA, Neoplasm/analysis
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- Mhairi Copland
- Division of Cancer Sciences and Molecular Pathology, University of Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Walz C, Sattler M. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol 2006; 57:145-64. [PMID: 16213151 DOI: 10.1016/j.critrevonc.2005.06.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 02/06/2023] Open
Abstract
Imatinib mesylate (Gleevec) was developed as the first molecularly targeted therapy that specifically inhibits the BCR-ABL tyrosine kinase activity in patients with Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML). Due to its excellent hematologic and cytogenetic responses, particularly in patients with chronic phase CML, imatinib has moved towards first-line treatment for newly diagnosed CML. Nevertheless, resistance to the drug has been frequently reported and is attributed to the fact that transformation of hematopoietic stem cells by BCR-ABL is associated with genomic instability. Point mutations within the ABL tyrosine kinase of the BCR-ABL oncoprotein are the major cause of resistance, though overexpression of the BCR-ABL protein and novel acquired cytogenetic aberrations have also been reported. A variety of strategies derived from structural studies of the ABL-imatinib complex have been developed, resulting in the design of novel ABL inhibitors, including AMN107, BMS-354825, ON012380 and others. The major goal of these efforts is to create new drugs that are more potent than imatinib and/or more effective against imatinib-resistant BCR-ABL clones. Some of these drugs have already been successfully tested in preclinical studies where they show promising results. Additional approaches are geared towards targeting the expression or stability of the BCR-ABL kinase itself or targeting signaling pathways that are chronically activated and required for transformation. In this review, we will discuss the underlying mechanisms of resistance to imatinib and novel targeted approaches to overcome imatinib resistance in CML.
Collapse
Affiliation(s)
- Christoph Walz
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
285
|
Abstract
PURPOSE OF REVIEW Over the past few years, a revolution has transformed the oncology field. This revolution is characterized by two main features. The first is the introduction of the concept of individualized cancer therapy. The second is the development of drugs targeting molecules selectively altered in tumours. This review analyses these aspects by looking at the role that altered kinases and their inhibitors have played in this historical process. RECENT FINDINGS Tumour progression is the result of the sequential accumulation of mutations in genes monitoring the rates of cell birth and cell death. The molecular profiling of cancers has shown that protein and lipid kinases are frequently altered in tumour cells. In most cases, these alterations translate in constitutively active proteins, which are amenable of therapeutic targeting. Intriguingly, even 'established' cancer cells remain somewhat 'addicted' to the deregulated activity of mutated kinases. This feature appears to be the basis for the ability of kinase inhibitors in controlling the development of a number of cancers. The therapeutic efficacy of kinase inhibitors is impaired by the emergence of tumour cells carrying 'resistance' mutations. SUMMARY Many oncogenes are mutated kinase genes. In most cases, the mutations result in the constitutive activation of the affected kinase that can be pharmacologically inhibited. Unfortunately, upon treatment with kinase inhibitors, resistant clones develop rapidly, impairing their therapeutic effect. Strategies to overcome resistance are discussed as well as the possibility to target kinases regulating cancer stem cells.
Collapse
Affiliation(s)
- Federica Di Nicolantonio
- Laboratory of Molecular Genetics, The Oncogenomics Center, Institute for Cancer Research and Treatment (IRCC), University of Torino Medical School, Candiolo, Italy
| | | |
Collapse
|
286
|
Hooijberg JH, de Vries NA, Kaspers GJL, Pieters R, Jansen G, Peters GJ. Multidrug resistance proteins and folate supplementation: therapeutic implications for antifolates and other classes of drugs in cancer treatment. Cancer Chemother Pharmacol 2005; 58:1-12. [PMID: 16362298 DOI: 10.1007/s00280-005-0141-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 10/12/2005] [Indexed: 11/25/2022]
Abstract
Over the past decades, numerous reports have covered the crucial role of multidrug resistance (MDR) transporters in the efficacy of various chemotherapeutic drugs. Specific cell membrane-associated transporters mediate drug resistance by effluxing a wide spectrum of toxic agents. Although several excellent reviews have addressed general aspects of drug resistance, this current review aims to highlight implications for the efficacy of folate-based and other types of chemotherapeutic drugs. Folates are vitamins that are daily required for many biosynthetic processes. Folate supplementation in our diet may convey protective effects against several diseases, including cancers, but folate supplementation also makes up an essential part of several current cancer chemotherapeutic regimens. Traditionally, the folate leucovorin, for instance, is used to reduce antifolate toxicity in leukemia or to enhance the effect of the fluoropyrimidine 5-fluorouracil in some solid tumors. More recently, it has also been noted that folic acid has the ability to increase antitumor activity of several structurally unrelated regimens, such as alimta/pemetrexed and cisplatin. Moreover, studies from our laboratory demonstrated that folates could modulate the expression and activity of at least two members of the MDR transporters: MRP1/ABCC1, and the breast cancer resistance protein BCRP/ABCG2. Thus, folate supplementation may have differential effects on chemotherapy: (1) reduction of toxicity, (2) increase of antitumor activity, and (3) induction of MRP1 and BCRP associated cellular drug resistance. In this review the role of MDR proteins is discussed in further detail for each of these three items from the perspective to optimally exploit folate supplementation for enhanced chemotherapeutic efficacy of both antifolate-based chemotherapy and other classes of chemotherapeutic drugs.
Collapse
Affiliation(s)
- J H Hooijberg
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
287
|
Xia CQ, Yang JJ, Gan LS. Breast cancer resistance protein in pharmacokinetics and drug–drug interactions. Expert Opin Drug Metab Toxicol 2005; 1:595-611. [PMID: 16863427 DOI: 10.1517/17425255.1.4.595] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Breast cancer resistance protein (BCRP), also known as ABCG2, ABCP and MXR, is a member of the ATP-binding cassette transporter G family. BCRP functions as a biological barrier that extrudes xenobiotics out of cells. The broad substrate specificity and tissue distributions of BCRP in the body make this transporter one of the major efflux transporters in chemotherapy. Recent studies have demonstrated that BCRP exerts a great impact on drug absorption and disposition. This review focuses on the role of BCRP in pharmacokinetics as well as in vitro and in vivo strategies to evaluate hepatic/intestinal BCRP-mediated drug transports and drug-drug interactions. The impacts of polymorphism and gender difference of BCRP are also discussed.
Collapse
Affiliation(s)
- Cindy Q Xia
- Millennium Pharmaceutics, Inc., DMPK, 45 Sidney St., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
288
|
Théou N, Gil S, Devocelle A, Julié C, Lavergne-Slove A, Beauchet A, Callard P, Farinotti R, Le Cesne A, Lemoine A, Faivre-Bonhomme L, Emile JF. Multidrug Resistance Proteins in Gastrointestinal Stromal Tumors: Site-Dependent Expression and Initial Response to Imatinib. Clin Cancer Res 2005; 11:7593-8. [PMID: 16278376 DOI: 10.1158/1078-0432.ccr-05-0710] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumors (GIST) are the most frequent mesenchymal tumors of the digestive tract and respond poorly to chemotherapy. A tyrosine kinase inhibitor treatment, imatinib mesylate, was recently shown to have antitumor effects in metastatic patients. However, this drug is a substrate for multidrug resistance (MDR) proteins. Therefore, we investigated the expression of ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP) by Western blotting in 21 GISTs and 3 leiomyosarcomas. All the GISTs were positive for either ABCB1 (86% of cases) or ABCC1 expression (62%), but negative for ABCG2. ABCB1 was expressed in all gastric GISTs, but in only 67% of nongastric GISTs. By contrast, ABCC1 expression was more common in nongastric tumors (78% versus 42%). The levels of these MDR proteins in gastric GISTs were higher for ABCB1 (P = 0.007) and lower for ABCC1 (P = 0.004) compared with nongastric GISTs. We found no correlation between MDR protein expression and the risk assessment. None of the six patients treated with imatinib was resistant, although all were positive for at least one MDR protein. These results confirm that gastric and nongastric GISTs have different biological characteristics and suggest that MDR proteins do not impair the initial response of the tumor to imatinib.
Collapse
|
289
|
Sakurai A, Tamura A, Onishi Y, Ishikawa T. Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCG2: therapeutic implications. Expert Opin Pharmacother 2005; 6:2455-73. [PMID: 16259577 DOI: 10.1517/14656566.6.14.2455] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pharmacogenomics, the study of the influence of genetic factors on drug action, is increasingly important for predicting pharmacokinetics profiles and/or adverse reactions to drugs. Drug transporters, as well as drug metabolism play pivotal roles in determining the pharmacokinetic profiles of drugs and their overall pharmacological effects. There is an increasing number of reports addressing genetic polymorphisms of drug transporters. However, information regarding the functional impact of genetic polymorphisms in drug transporter genes is still limited. Detailed functional analysis in vitro may provide clear insight into the biochemical and therapeutic significance of genetic polymorphisms. This review addresses functional aspects of the genetic polymorphisms of human ATP-binding cassette transporters, ABCB1 and ABCG2, which are critically involved in the pharmacokinetics of drugs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/antagonists & inhibitors
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Cardiotonic Agents/pharmacokinetics
- Clinical Trials as Topic
- Cyclosporine/pharmacokinetics
- Digoxin/pharmacokinetics
- Drug Design
- Drug Resistance, Multiple/drug effects
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Gene Frequency
- Humans
- Immunosuppressive Agents/pharmacokinetics
- Models, Molecular
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Novobiocin/pharmacology
- Polymorphism, Single Nucleotide
- Tacrolimus/pharmacokinetics
Collapse
Affiliation(s)
- Aki Sakurai
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-60 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
290
|
Crossman LC, Druker BJ, Deininger MWN, Pirmohamed M, Wang L, Clark RE. hOCT 1 and resistance to imatinib. Blood 2005; 106:1133-4; author reply 1134. [PMID: 16033955 DOI: 10.1182/blood-2005-02-0694] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
291
|
Ishikawa T, Tamura A, Saito H, Wakabayashi K, Nakagawa H. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Naturwissenschaften 2005; 92:451-63. [PMID: 16160819 DOI: 10.1007/s00114-005-0019-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8501 Japan.
| | | | | | | | | |
Collapse
|
292
|
Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Müller-Brüsselbach S, Ottmann OG, Duyster J, Hochhaus A, Neubauer A. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19:1774-82. [PMID: 16136169 DOI: 10.1038/sj.leu.2403898] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BCR/ABL-kinase mutations frequently mediate clinical resistance to the selective tyrosine kinase inhibitor Imatinib mesylate (IM, Gleevec). However, mechanisms that promote survival of BCR/ABL-positive cells before clinically overt IM resistance occurs have poorly been defined so far. Here, we demonstrate that IM-treatment activated the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTor)-pathway in BCR/ABL-positive LAMA-cells and primary leukemia cells in vitro, as well as in a chronic phase CML patient in vivo. In fact, PI3K/Akt-activation critically mediated survival during the early phase of IM resistance development before manifestation of BCR/ABL-dependent strong IM resistance such as through a kinase mutation. Accordingly, inhibition of IM-induced Akt activation using mTor inhibitors and Akt-specific siRNA effectively antagonized development of incipient IM-resistance in vitro. In contrast, IM-resistant chronic myeloid leukemia (CML) patients with BCR/ABL kinase mutations (n=15), and IM-refractory BCR/ABL-positive acute lymphatic leukemia patients (n=2) displayed inconsistent and kinase mutation-independent autonomous patterns of Akt-pathway activation, and mTor-inhibition overcame IM resistance only if Akt was strongly activated. Together, an IM-induced compensatory Akt/mTor activation may represent a novel mechanism for the persistence of BCR/ABL-positive cells in IM-treated patients. Treatment with mTor inhibitors may thus be particularly effective in IM-sensitive patients, whereas Akt-pathway activation variably contributes to clinically overt IM resistance.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Benzamides
- Blotting, Western
- Cell Cycle/drug effects
- Drug Resistance, Neoplasm
- Enzyme Activation/drug effects
- Everolimus
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Immunosuppressive Agents/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mutagenesis
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation/drug effects
- Piperazines/therapeutic use
- Protein Kinases/chemistry
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Pyrimidines/therapeutic use
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Sirolimus/analogs & derivatives
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Burchert
- Klinikum der Philipps Universität Marburg, Klinik für Hämatologie, Onkologie und Immunologie, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Sugimoto Y, Tsukahara S, Ishikawa E, Mitsuhashi J. Breast cancer resistance protein: molecular target for anticancer drug resistance and pharmacokinetics/pharmacodynamics. Cancer Sci 2005; 96:457-65. [PMID: 16108826 PMCID: PMC11158713 DOI: 10.1111/j.1349-7006.2005.00081.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Breast cancer resistance protein (BCRP) is a half-molecule ATP-binding cassette transporter that forms a functional homodimer and pumps out various anticancer agents, such as 7-ethyl-10-hydroxycamptothecin, topotecan, mitoxantrone and flavopiridol, from cells. Estrogens, such as estrone and 17beta-estradiol, have been found to restore drug sensitivity levels in BCRP-transduced cells by increasing the cellular accumulation of such agents. Furthermore, synthetic estrogens, tamoxifen derivatives and phytoestrogens/flavonoids have now been identified that can effectively circumvent BCRP-mediated drug resistance. Transcellular transport experiments have shown that BCRP transports sulfated estrogens and various sulfated steroidal compounds, but not free estrogens. The kinase inhibitor gefitinib inhibited the transporter function of BCRP and reversed BCRP-mediated drug resistance both in vitro and in vivo. BCRP-transduced human epidermoid carcinoma A431 (A431/BCRP) and BCRP-transduced human non-small cell lung cancer PC-9 (PC-9/BCRP) cells showed gefitinib resistance. Physiological concentrations of estrogens (10-100 pM) reduced BCRP protein expression without affecting its mRNA levels. Two functional polymorphisms of the BCRP gene have been identified. The C376T (Q126Stop) polymorphism has a dramatic phenotype as active BCRP protein cannot be expressed from a C376T allele. The C421A (Q141K) polymorphism is also significant as Q141K-BCRP-transfected cells show markedly low protein expression levels and low-level drug resistance. Hence, individuals with C376T or C421A polymorphisms may express low levels of BCRP or none at all, resulting in hypersensitivity of normal cells to BCRP-substrate anticancer agents. In summary, both modulators of BCRP and functional single nucleotide polymorphisms within the BCRP gene affect the transporter function of the protein and thus can modulate drug sensitivity and substrate pharmacokinetics and pharmacodynamics in affected cells and individuals.
Collapse
Affiliation(s)
- Yoshikazu Sugimoto
- Department of Chemotherapy, Kyoritsu University of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | | | | | | |
Collapse
|
294
|
Zong Y, Zhou S, Sorrentino BP. Loss of P-glycoprotein expression in hematopoietic stem cells does not improve responses to imatinib in a murine model of chronic myelogenous leukemia. Leukemia 2005; 19:1590-6. [PMID: 16001089 DOI: 10.1038/sj.leu.2403853] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Selective inhibition of the BCR/ABL tyrosine kinase by imatinib has become a first-line therapy for chronic myelogenous leukemia (CML). However, BCR/ABL-positive progenitors often persist despite treatment, and relapse associated with resistance to imatinib has been described in many patients with advanced disease. Drug efflux by P-glycoprotein (P-gp), as well as point mutations in BCR/ABL oncoprotein, has been implicated in the mechanism of resistance to imatinib. In this study, we established a murine transplantation model of CML-like myeloproliferative disease using Mdr1a/1b-null mice and analyzed the effects of loss of P-gp on resistance to imatinib. We found that mice transplanted with Mdr1a/1b-null bone marrow (BM) that had been transduced with a BCR/ABL retroviral vector displayed similar responses to imatinib, compared with those transplanted with BCR/ABL-transduced wild-type BM. In the absence of P-gp, the incidence and latency of disease in secondary recipients was not changed in imatinib-treated mice, relative to wild-type controls. Furthermore, K562 cells engineered to overexpress P-gp remained sensitive to imatinib-induced growth inhibition and cell death. Together, our findings suggest that P-gp expression in hematopoietic stem cells does not significantly contribute to imatinib resistance in CML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Benzamides
- Bone Marrow Transplantation/methods
- Cell Survival/drug effects
- Cell Transplantation
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Hematopoietic Stem Cells/metabolism
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Mice, Knockout
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- Survival Analysis
Collapse
Affiliation(s)
- Y Zong
- Division of Experimental Hematology, Department of Hematology-Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
295
|
Holtz MS, Forman SJ, Bhatia R. Nonproliferating CML CD34+ progenitors are resistant to apoptosis induced by a wide range of proapoptotic stimuli. Leukemia 2005; 19:1034-41. [PMID: 15815728 DOI: 10.1038/sj.leu.2403724] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Imatinib mesylate, a Bcr-Abl kinase inhibitor, has been very successful in the treatment of chronic myelogenous leukemia (CML). However, the majority of patients achieving cytogenetic remissions with imatinib treatment have molecular evidence of persistent disease, and residual BCR/ABL(+) progenitors can be detected. There is a need to develop new approaches that enhance elimination of malignant progenitors in imatinib-treated patients. Here we show that CML CD34(+) progenitors are sensitive to several apoptosis-inducing stimuli including the chemotherapeutic agents Ara-C and VP-16, radiation, arsenic trioxide, ceramide, growth factor withdrawal, and the death receptor activators TNFalpha and TRAIL. Bcr-Abl kinase inhibition by imatinib did not enhance sensitivity of CML progenitors to Ara-C, VP-16, ceramide, radiation or TRAIL-induced apoptosis but did enhance arsenic and TNFalpha-induced apoptosis. We further demonstrate that apoptosis was restricted to dividing cells, whereas nonproliferating BCR/ABL(+) CD34(+) cells were resistant to apoptosis induced by imatinib, Ara-C or arsenic, either alone or in combination. Resistance of quiescent CML progenitors to imatinib-induced apoptosis could contribute to persistence of residual malignant progenitors in imatinib-treated patients. Combination treatment with Ara-C or arsenic may not enhance targeting of nonproliferating CML progenitors. The assay described here may be useful for identifying agents targeting quiescent CML progenitors.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD34/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Benzamides
- Cell Division/drug effects
- Cell Division/physiology
- Female
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Imatinib Mesylate
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Middle Aged
- Piperazines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- M S Holtz
- Division of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | |
Collapse
|
296
|
Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, Schellens JHM. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005; 65:2577-82. [PMID: 15805252 DOI: 10.1158/0008-5472.can-04-2416] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imatinib mesylate (signal transduction inhibitor 571, Gleevec) is a potent and selective tyrosine kinase inhibitor, which was shown to effectively inhibit platelet-derived growth factor-induced glioblastoma cell growth preclinically. However, in patients, a limited penetration of imatinib into the brain has been reported. Imatinib is transported in vitro and in vivo by P-glycoprotein (P-gp; ABCB1), which thereby limits its distribution into the brain in mice. Previously, imatinib was shown to potently inhibit human breast cancer resistance protein (BCRP; ABCG2). Here, we show that imatinib is efficiently transported by mouse Bcrp1 in transfected Madin-Darby canine kidney strain II (MDCKII) monolayers. Furthermore, we show that the clearance of i.v. imatinib is significantly decreased 1.6-fold in Bcrp1 knockout mice compared with wild-type mice. At t = 2 hours, the brain penetration of i.v. imatinib was significantly 2.5-fold increased in Bcrp1 knockout mice compared with control mice. We tested the hypothesis that P-gp and BCRP inhibitors, such as elacridar and pantoprazole, improve the brain penetration of imatinib. Firstly, we showed in vitro that pantoprazole and elacridar inhibit the Bcrp1-mediated transport of imatinib in MDCKII-Bcrp1 cells. Secondly, we showed that co-administration of pantoprazole or elacridar significantly reduced the clearance of i.v. imatinib in wild-type mice by respectively 1.7-fold and 1.5-fold. Finally, in wild-type mice treated with pantoprazole or elacridar, the brain penetration of i.v. imatinib significantly increased 1.8-fold and 4.2-fold, respectively. Moreover, the brain penetration of p.o. imatinib increased 5.2-fold when pantoprazole was co-administered in wild-type mice. Our results suggest that co-administration of BCRP and P-gp inhibitors may improve delivery of imatinib to malignant gliomas.
Collapse
Affiliation(s)
- Pauline Breedveld
- Division of Experimental Therapy, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
297
|
De S, Miller DW, Robinson DH. Effect of Particle Size of Nanospheres and Microspheres on the Cellular-Association and Cytotoxicity of Paclitaxel in 4T1 Cells. Pharm Res 2005; 22:766-75. [PMID: 15906172 DOI: 10.1007/s11095-005-2593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To compare the effect of size of delivery systems on the cell-association and in vitro cytotoxicity of paclitaxel. METHODS Four sizes of PLGA-paclitaxel particles were prepared to study the effect of particle size on the cell-association of paclitaxel in 4T1 monolayer in the presence, and absence, of BCRP inhibitor, endocytic inhibitor, and P-glycoprotein (P-gp) inhibitor. Paclitaxel cell-association studies were repeated in Caco-2, Cor-L23/R, and bovine brain microvessel endothelial cells (BBMECs), as well as the association of etoposide in 4T1 cells. Cytotoxicity of paclitaxel to 4T1 cells delivered in nanospheres was compared to microspheres. RESULTS The concentration of paclitaxel and etoposide associated with 4T1 cells was 4.8 and 29 times greater, respectively, as the size increased from 310 to 2077 nm. Paclitaxel association consistently increased in Caco-2 and Cor-L23/R as the size of the delivery system increased. The endocytic inhibitor, 2-deoxyglucose, significantly decreased the cellular paclitaxel association when delivered by nanospheres but not microspheres. Consistent with the cell-association results, paclitaxel was thrice more cytotoxic to 4T1 cells when delivered in microspheres. CONCLUSIONS Cell-association of paclitaxel increased in 4T1, Caco-2, and Cor-L23/R as particle size increased. Paclitaxel delivered from 1-mum microspheres was thrice more cytotoxic to 4T1 cells compared to the drug delivered from nanospheres or solution.
Collapse
Affiliation(s)
- Sinjan De
- College of Pharmacy, Ohio Northern University, Ada, Ohio, USA
| | | | | |
Collapse
|
298
|
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS JOURNAL 2005; 7:E118-33. [PMID: 16146333 PMCID: PMC2751502 DOI: 10.1208/aapsj070112] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 72-kDa breast cancer resistance protein (BCRP) is the second member of the subfamily G of the human ATP binding cassette (ABC) transporter superfamily and thus also designated as ABCG2. Unlike P-glycoprotein and MRP1, which are arranged in 2 repeated halves, BCRP is a half-transporter consisting of only 1 nucleotide binding domain followed by 1 membrane-spanning domain. Current experimental evidence suggests that BCRP may function as a homodimer or homotetramer. Overexpression of BCRP is associated with high levels of resistance to a variety of anticancer agents, including anthracyclines, mitoxantrone, and the camptothecins, by enhancing drug efflux. BCRP expression has been detected in a large number of hematological malignancies and solid tumors, indicating that this transporter may play an important role in clinical drug resistance of cancers. In addition to its role to confer resistance against chemotherapeutic agents, BCRP actively transports structurally diverse organic molecules, conjugated or unconjugated, such as estrone-3-sulfate, 17beta-estradiol 17-(beta-D-glucuronide), and methotrexate. BCRP is highly expressed in the placental syncytiotrophoblasts, in the apical membrane of the epithelium in the small intestine, in the liver canalicular membrane, and at the luminal surface of the endothelial cells of human brain microvessels. This strategic and substantial tissue localization indicates that BCRP also plays an important role in absorption, distribution, and elimination of drugs that are BCRP substrates. This review summarizes current knowledge of BCRP and its relevance to multidrug resistance and drug disposition.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
299
|
Merino G, van Herwaarden AE, Wagenaar E, Jonker JW, Schinkel AH. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 2005; 67:1765-71. [PMID: 15722455 DOI: 10.1124/mol.105.011080] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter present in the liver and other tissues that affects the pharmacological behavior of many compounds. To assess the possible role of BCRP in sex-dependent pharmacokinetics, we studied the in vivo disposition of several murine Bcrp1 substrates in male and female wild-type and Bcrp1 knockout mice. After oral administration of the antibiotic nitrofurantoin, the area under the plasma concentration-time curve in wild-type female mice was approximately 2-fold higher than in wild-type male mice. Moreover, after i.v. administration of nitrofurantoin, the antiulcerative cimetidine, the anticancer drug topotecan, and the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the plasma levels in wild-type female mice were all significantly higher than those in wild-type male mice. Analysis of the expression of murine Bcrp1 in several pharmacokinetically important tissues showed that only the hepatic Bcrp1 expression was higher in male mice compared with female mice. In line with this difference, the hepatobiliary excretion for nitrofurantoin and PhIP was, respectively, 9-fold higher and approximately 2-fold higher in male compared with female wild-type mice. No significant sex differences were observed in plasma levels or hepatobiliary excretion for any of the tested compounds in Bcrp1-/- mice, indicating that Bcrp1 was the main cause of the sex difference in wild-type mice. Analysis of hepatic expression of human BCRP also indicated a higher expression in men compared with women. In conclusion, sex-dependent expression of BCRP/Bcrp1 in the liver may be a cause of sex-specific variability in the pharmacokinetics of BCRP substrates, with potential impact on the clinical-therapeutic applications and toxicity risks of drugs.
Collapse
Affiliation(s)
- Gracia Merino
- Division of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | |
Collapse
|
300
|
Elkind NB, Szentpétery Z, Apáti A, Ozvegy-Laczka C, Várady G, Ujhelly O, Szabó K, Homolya L, Váradi A, Buday L, Kéri G, Német K, Sarkadi B. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 2005; 65:1770-7. [PMID: 15753373 DOI: 10.1158/0008-5472.can-04-3303] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Iressa (ZD1839, Gefitinib), used in clinics to treat non-small cell lung cancer patients, is a tyrosine kinase receptor inhibitor that leads to specific decoupling of epidermal growth factor receptor (EGFR) signaling. Recent data indicate that Iressa is especially effective in tumors with certain EGFR mutations; however, a subset of these tumors does not respond to Iressa. In addition, certain populations have an elevated risk of side effects during Iressa treatment. The human ABCG2 (BCRP/MXR/ABCP) transporter causes cancer drug resistance by actively extruding a variety of cytotoxic drugs, and it functions physiologically to protect our tissues from xenobiotics. Importantly, ABCG2 modifies absorption, distribution, and toxicity of several pharmacologic agents. Previously, we showed that ABCG2 displays a high-affinity interaction with several tyrosine kinase receptor inhibitors, including Iressa. Here, we show that the expression of ABCG2, but not its nonfunctional mutant, protects the EGFR signaling-dependent A431 tumor cells from death on exposure to Iressa. This protection is reversed by the ABCG2-specific inhibitor, Ko143. These data, reinforced with cell biology and biochemical experiments, strongly suggest that ABCG2 can actively pump Iressa. Therefore, variable expression and polymorphisms of ABCG2 may significantly modify the antitumor effect as well as the absorption and tissue distribution of Iressa.
Collapse
Affiliation(s)
- N Barry Elkind
- National Medical Center, Institute of Haematology and Immunology, Membrane Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|