251
|
Fendl B, Eichhorn T, Weiss R, Tripisciano C, Spittler A, Fischer MB, Weber V. Differential Interaction of Platelet-Derived Extracellular Vesicles With Circulating Immune Cells: Roles of TAM Receptors, CD11b, and Phosphatidylserine. Front Immunol 2018; 9:2797. [PMID: 30619243 PMCID: PMC6297748 DOI: 10.3389/fimmu.2018.02797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Secretion and exchange of biomolecules by extracellular vesicles (EVs) are crucial in intercellular communication and enable cells to adapt to alterations in their microenvironment. EVs are involved in a variety of cellular processes under physiological conditions as well as in pathological settings. In particular, they exert profound effects on the innate immune system, and thereby are also capable of modulating adaptive immunity. The mechanisms underlying their interaction with their recipient cells, particularly their preferential association with monocytes and granulocytes in the circulation, however, remain to be further clarified. Surface molecules exposed on EVs are likely to mediate immune recognition and EV uptake by their recipient cells. Here, we investigated the involvement of Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors and of integrin CD11b in the binding of platelet-derived EVs, constituting the large majority of circulating EVs, to immune cells in the circulation. Flow cytometry and Western Blotting demonstrated a differential expression of TAM receptors and CD11b on monocytes, granulocytes, and lymphocytes, as well as on monocyte subsets. Of the TAM receptors, only Axl and Mer were detected at low levels on monocytes and granulocytes, but not on lymphocytes. Likewise, CD11b was present on circulating monocytes and granulocytes, but remained undetectable on lymphocytes. Differentiation of monocytes into classical, intermediate, and non-classical monocyte subsets revealed distinct expression patterns of Mer and activated CD11b. Co-incubation of isolated monocytes and granulocytes with platelet-derived EVs showed that the binding of EVs to immune cells was dependent on Ca++. Our data do not support a particular role for TAM receptors or for activated CD11b in the association of platelet-derived EVs with monocytes and granulocytes in the circulation, as anti-TAM antibodies did not interfere with EV binding to isolated immune cells, as binding was not dependent on the presence of TIM4 acting synergistically with TAM receptors, and as neither low levels of Gas6, required as a linker between phosphatidylserine (PS) on the EV surface and TAM receptors on immune cells, nor masking of PS on the EV surface did interfere with EV binding.
Collapse
Affiliation(s)
- Birgit Fendl
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Tanja Eichhorn
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - René Weiss
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Michael B Fischer
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Krems, Austria
| |
Collapse
|
252
|
Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int J Mol Sci 2018; 19:E3968. [PMID: 30544664 PMCID: PMC6321583 DOI: 10.3390/ijms19123968] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial⁻mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called "tumor niches" in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.
Collapse
Affiliation(s)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
253
|
The promising role of miR-296 in human cancer. Pathol Res Pract 2018; 214:1915-1922. [DOI: 10.1016/j.prp.2018.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/08/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
|
254
|
Wang B, Wang X, Hou D, Huang Q, Zhan W, Chen C, Liu J, You R, Xie J, Chen P, Huang H. Exosomes derived from acute myeloid leukemia cells promote chemoresistance by enhancing glycolysis-mediated vascular remodeling. J Cell Physiol 2018; 234:10602-10614. [PMID: 30417360 DOI: 10.1002/jcp.27735] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of leukemia in adults. AML cells secrete angiogenic factors to remodel vasculature and acquire chemoresistance; however, antiangiogenic drugs are often ineffective in AML treatment. Cancer cell-derived exosomes can induce angiogenesis, but their role in vascular remodeling during AML is unclear. Here, we found that exosomes secreted by AML cells promoted proliferation and migration and tube-forming activity of human umbilical vein endothelial cells (HUVECs), whereas HUVECs conferred chemoresistance to AML cells. AML cell-derived exosomes contained vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) messenger RNA and induced VEGFR expression in HUVECs. Furthermore, they enhanced glycolysis, which correlated with HUVEC proliferation, tube formation, and resistance to apoptosis. Thus, AML cells secrete VEGF/VEGFR-containing exosomes that induce glycolysis in HUVECs leading to vascular remodeling and acquisition of chemoresistance. These findings may contribute to the development of novel therapeutic strategies targeting exosomes in AML.
Collapse
Affiliation(s)
- Bin Wang
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoting Wang
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Diyu Hou
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qian Huang
- Department of Hepatobiliary Disease, Fuzhou General Hospital, Fujian Medical University, Fuzhou, China
| | - Weiwu Zhan
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Canwei Chen
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Clinical Laboratory, The Hospital of Nanan City, Nanan, China
| | - Jingru Liu
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruolan You
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jieqiong Xie
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ping Chen
- Department of Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huifang Huang
- Department of Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
255
|
Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040218. [PMID: 30404188 PMCID: PMC6321407 DOI: 10.3390/pharmaceutics10040218] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
The similarities between exosomes and liposomes, together with the high organotropism of several types of exosomes, have recently prompted the development of engineered-exosomes or exosome-mimetics, which may be artificial (liposomal) or cell-derived vesicles, as advanced platforms for targeted drug delivery. Here, we provide the current state-of-the-art of using exosome or exosome-inspired systems for drug delivery. We review the various approaches investigated and the shortcomings of each approach. Finally the challenges which have been identified to date in this field are summarized.
Collapse
|
256
|
Ding L, Ren J, Zhang D, Li Y, Huang X, Hu Q, Wang H, Song Y, Ni Y, Hou Y. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis 2018; 39:397-406. [PMID: 29346528 DOI: 10.1093/carcin/bgy006] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Stromal carcinoma-related fibroblasts (CAFs) are the main type of non-immune cells in the tumor microenvironment (TME). CAFs interact with cancer cells to promote tumor proliferation. Long non-coding RNAs (lncRNAs) are known to regulate cell growth, apoptosis and metastasis of cancer cells, but their role in stromal cells is unclear. Using RNA sequencing, we identified a stromal lncRNA signature during the transformation of CAFs from normal fibroblasts (NFs) in oral squamous cell carcinoma (OSCC). We uncovered an uncharacterized lncRNA, FLJ22447, which was remarkably up-regulated in CAFs, referred to LncRNA-CAF (Lnc-CAF) hereafter. Interleukin-33 (IL-33) was mainly located in the stroma and positively co-expressed with Lnc-CAF to elevate the expression of CAF markers (α-SMA, vimentin and N-cadherin) in fibroblasts. In a co-culture system, IL-33 knockdown impaired Lnc-CAF-mediated stromal fibroblast activation, leading to decreased proliferation of tumor cells. Mechanistically, Lnc-CAF up-regulated IL-33 levels and prevented p62-dependent autophagy-lysosome degradation of IL-33, which was independent of LncRNA-protein scaffold effects. Treatment with the autophagy inducer, rapamycin, impaired the proliferative effect of Lnc-CAF/IL-33 by promoting IL-33 degradation. In turn, tumor cells further increased Lnc-CAF levels in stromal fibroblasts via exosomal Lnc-CAF. In patients with OSCC, high Lnc-CAF/IL-33 expression correlated with high TNM stage (n = 140). Moreover, high Lnc-CAF expression predicted poor prognosis. In vivo, Lnc-CAF knockdown restricted tumor growth and was associated with decreased Ki-67 expression and α-SMA+ CAF in the stroma. In conclusion, we identified a stromal lncRNA signature, which reprograms NFs to CAFs via Lnc-CAF/IL-33 and promotes OSCC development.
Collapse
Affiliation(s)
- Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Dongya Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Xiaofeng Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Qingang Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Hui Wang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yanhong Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology and Hospital of Stomatology, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Nanjing University, Nanjing, PR China
| |
Collapse
|
257
|
Mastocytosis-derived extracellular vesicles exhibit a mast cell signature, transfer KIT to stellate cells, and promote their activation. Proc Natl Acad Sci U S A 2018; 115:E10692-E10701. [PMID: 30352845 DOI: 10.1073/pnas.1809938115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been implicated in the development and progression of hematological malignancies. We thus examined serum samples from patients with systemic mastocytosis (SM) and found EVs with a mast cell signature including the presence of tryptase, FcεRI, MRGX2, and KIT. The concentration of these EVs correlated with parameters of disease including levels of serum tryptase, IL-6, and alkaline phosphatase and physical findings including hepatosplenomegaly. Given reports that EVs from one cell type may influence another cell's behavior, we asked whether SM-EVs might affect hepatic stellate cells (HSCs), based on the abnormal liver pathology associated with mastocytosis. We found that KIT was transferred from SM-EVs into an HSC line eliciting proliferation, cytokine production, and differentiation, processes that have been associated with liver pathology. These effects were reduced by KIT inhibition or neutralization and recapitulated by enforced expression of KIT or constitutively active D816V-KIT, a gain-of-function variant associated with SM. Furthermore, HSCs in liver from mice injected with SM-EVs had increased expression of α-SMA and human KIT, particularly around portal areas, compared with mice injected with EVs from normal individuals, suggesting that SM-EVs can also initiate HSC activation in vivo. Our data are thus consistent with the conclusion that SM-EVs have the potential to influence cells outside the hematological compartment and that therapeutic approaches for treatment of SM may be effective in part through inhibition of effects of EVs on target tissues, findings important both to understanding complex disease pathology and in developing interventional agents for the treatment of hematologic diseases.
Collapse
|
258
|
Di Marco M, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19103139. [PMID: 30322050 PMCID: PMC6213554 DOI: 10.3390/ijms19103139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and hematological malignancies are often concomitant in patients. A causal bidirectional relationship exists between them. Loss of immunological tolerance with inappropriate activation of the immune system, likely due to environmental and genetic factors, can represent a breeding ground for the appearance of cancer cells and, on the other hand, blood cancers are characterized by imbalanced immune cell subsets that could support the development of the autoimmune clone. Considerable effort has been made for understanding the proteins that have a relevant role in both processes; however, literature advances demonstrate that microRNAs (miRNAs) surface as the epigenetic regulators of those proteins and control networks linked to both autoimmunity and hematological malignancies. Here we review the most up-to-date findings regarding the miRNA-based molecular mechanisms that underpin autoimmunity and hematological malignancies.
Collapse
Affiliation(s)
- Mirco Di Marco
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Science (DMSI), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
259
|
Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 2018; 17:147. [PMID: 30309355 PMCID: PMC6182840 DOI: 10.1186/s12943-018-0897-7] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Exosomes, extracellular vesicles with diameters ranging from 30 to 150 nm, are widely present in various body fluids. Recently, microRNAs (miRNAs) have been identified in exosomes, the biogenesis, release, and uptake of which may involve the endosomal sorting complex required for transport (ESCRT complex) and relevant proteins. After release, exosomes are taken up by neighboring or distant cells, and the miRNAs contained within modulate such processes as interfering with tumor immunity and the microenvironment, possibly facilitating tumor growth, invasion, metastasis, angiogenesis and drug resistance. Therefore, exosomal miRNAs have a significant function in regulating cancer progression. Here, we briefly review recent findings regarding tumor-derived exosomes, including RNA sorting and delivering mechanism. We then describe the intercommunication occurring between different cells via exosomal miRNAs in tumor microenvironmnt, with impacts on tumor proliferation, vascularization, metastasis and other biological characteristics. Finally, we highlight the potential role of these molecules as biomarkers in cancer diagnosis and prognosis and tumor resistance to therapeutics.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ke Shi
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuaixi Yang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guixian Wang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junmin Song
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Li
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhiyong Zhang
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
260
|
Manso BA, Zhang H, Mikkelson MG, Gwin KA, Secreto CR, Ding W, Parikh SA, Kay NE, Medina KL. Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia 2018; 33:638-652. [PMID: 30291337 DOI: 10.1038/s41375-018-0280-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
The consequences of immune dysfunction in B-chronic lymphocytic leukemia (CLL) likely relate to the incidence of serious recurrent infections and second malignancies that plague CLL patients. The well-described immune abnormalities are not able to consistently explain these complications. Here, we report bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients. Numbers of CD34+ BM hematopoietic progenitors responsive in standard colony-forming unit (CFU) assays, including CFU-GM/GEMM and CFU-E, were significantly reduced. Flow cytometry revealed corresponding reductions in frequencies of all hematopoietic stem and progenitor cell (HSPC) subsets assessed in CLL patient marrow. Consistent with the reduction in HSPCs, BM resident monocytes and natural killer cells were reduced, a deficiency recapitulated in blood. Finally, we report increases in protein levels of the transcriptional regulators HIF-1α, GATA-1, PU.1, and GATA-2 in CLL patient BM, providing molecular insight into the basis of HSPC dysfunction. Importantly, PU.1 and GATA-2 were rapidly increased when healthy HSPCs were exposed in vitro to TNFα, a cytokine constitutively produced by CLL B cells. Together, these findings reveal BM hematopoietic dysfunction in untreated CLL patients that provides new insight into the etiology of the complex immunodeficiency state in CLL.
Collapse
Affiliation(s)
- Bryce A Manso
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Henan Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kay L Medina
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
261
|
Jurj A, Pop L, Petrushev B, Pasca S, Dima D, Frinc I, Deak D, Desmirean M, Trifa A, Fetica B, Gafencu G, Selicean S, Moisoiu V, Micu WT, Berce C, Sacu A, Moldovan A, Colita A, Bumbea H, Tanase A, Dascalescu A, Zdrenghea M, Stiufiuc R, Leopold N, Tetean R, Burzo E, Tomuleasa C, Berindan-Neagoe I. Exosome-carried microRNA-based signature as a cellular trigger for the evolution of chronic lymphocytic leukemia into Richter syndrome. Crit Rev Clin Lab Sci 2018; 55:501-515. [PMID: 30238808 DOI: 10.1080/10408363.2018.1499707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Even if considered a cumulative and not a proliferative CD5+ B-cell neoplasm, chronic lymphocytic leukemia (CLL) has a proliferation rate higher than that recognized earlier, especially in the lymphoid tissues. Some patients with CLL develop a clinical syndrome entitled Richter syndrome (RS). Understanding CLL genetics and epigenetics may help to elucidate the molecular basics of the clinical heterogeneity of this type of malignancy. In the present project we aimed to identify a microRNA species that can predict the evolution of therapy-resistant CLL towards RS. In the first phase of our study, microRNA-19b was identified as a possible target, and in the second phase, we transfected three different CLL cell lines with microRNA-19b mimic and inhibitor and assessed the potential role on leukemia cells in vitro. The mechanism by which miR-19b acts were identified as the upregulation of Ki67 and downregulation of p53. This was further supported through RT-PCR and western blotting on CLL cell lines, as well as by next generation sequencing on two patients diagnosed with CLL that evolved into RS.
Collapse
Affiliation(s)
- Ancuta Jurj
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Laura Pop
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Bobe Petrushev
- b Department of Pathology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Sergiu Pasca
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Delia Dima
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Ioana Frinc
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Dalma Deak
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Minodora Desmirean
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Adrian Trifa
- c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Bogdan Fetica
- b Department of Pathology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Grigore Gafencu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Sonia Selicean
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Vlad Moisoiu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Wilhelm-Thomas Micu
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Cristian Berce
- e Center for Experimental Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Alexandra Sacu
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Alin Moldovan
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,f Department of Hematology , Carol Davilla University of Medicine and Pharmacy , Bucharest , Romania
| | - Andrei Colita
- g Department of Hematology , Coltea Hospital , Bucharest , Romania
| | - Horia Bumbea
- f Department of Hematology , Carol Davilla University of Medicine and Pharmacy , Bucharest , Romania.,h Department of Hematology , University Hospital , Bucharest , Romania
| | - Alina Tanase
- h Department of Hematology , University Hospital , Bucharest , Romania.,i Department of Hematology , Fundeni Clinical Hospital , Bucharest , Romania
| | - Angela Dascalescu
- j Department of Hematology , Grigore T. Popa University of Medicine and Pharmacy , Iasi , Romania.,k Department of Hematology , Regional Institute of Oncology , Iasi , Romania
| | - Mihnea Zdrenghea
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Rares Stiufiuc
- d Department of Hematology , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Nicolae Leopold
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania
| | - Romulus Tetean
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania
| | - Emil Burzo
- l Department of Physics , Babes Bolyai University , Cluj Napoca , Romania.,m Romanian Academy , Romania
| | - Ciprian Tomuleasa
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,c Department of Hematology , Ion Chiricuta Oncology Institute , Cluj Napoca , Romania
| | - Ioana Berindan-Neagoe
- a Research Center for Functional Genomic, Biomedicine and Translational Medicine , Iuliu Hatieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| |
Collapse
|
262
|
Cheng H, Sun G, Cheng T. Hematopoiesis and microenvironment in hematological malignancies. CELL REGENERATION 2018; 7:22-26. [PMID: 30671226 PMCID: PMC6326248 DOI: 10.1016/j.cr.2018.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
Adult hematopoietic stem cells (HSCs) and progenitors (HPCs) reside in the bone marrow, a highly orchestrated architecture. In the bone marrow, the process of how HSCs exert self-renewal and differentiation is tightly regulated by the surrounding microenvironment, or niche. Recent advances in imaging technologies and numerous knockout or knockin mouse models have greatly improved our understanding of the organization of the bone marrow niche. This niche compartment includes a complex network of mesenchymal stem cells (MSC), osteolineage cells, endothelial cells (arterioles and sinusoids), sympathetic nerves, nonmyelinating Schwann cells and megakaryocytes. In addition, different types of mediators, such as cytokines/chemokines, reactive oxygen species (ROS) and exosomes play a pivotal role in regulating the function of hematopoietic cells. Therefore, the niche components and the hematopoietic system make up an ecological environment that maintains the homeostasis and responds to stress, damage or disease conditions. On the other hand, the niche compartment can become a traitor that can do harm to normal hematopoietic cells under pathological conditions. Studies on the diseased bone marrow niche have only recently begun to appear in the extant literature. In this short review, we discuss the most recent advances regarding the behaviors of normal hematopoietic cells and their niche alterations in hematological malignancies.
Collapse
Affiliation(s)
- Hui Cheng
- State Key Laboratory of Experimental Hematology, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, China.,Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
263
|
Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorgenesis in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:190. [PMID: 30103789 PMCID: PMC6090784 DOI: 10.1186/s13046-018-0863-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exosomes derived from tumor cells (TEXs) are involved in both immune suppression, angiogenesis, metastasis and anticancer stimulatory, but the biological characteristics and role of diffuse large B cell lymphoma (DLBCL)-derived exosomes have been less investigated. METHODS Exosomes (EXOs) were isolated from OCI-LY3, SU-DHL-16, and Raji cells and biological characteristics of EXOs were investigated using electron microscopy, flow cytometry analysis, and Western blot analysis. The protein expression of EXOs was determined by an antibody array. Next, the communication between EXOs and lymphoma cell, stromal cell, dendritic cells (DCs), and T cells was evaluated. Finally, effect of DLBCL TEXs on tumor growth in vivo was investigated. RESULTS We demonstrated that EXOs derived from DLBCL cell lines displayed malignancy molecules such as c-Myc, Bcl-2, Mcl-1, CD19, and CD20. There was a different protein expression pattern between DLBCL TEXs and Burkitt lymphoma TEXs. DLBCL TEXs were easily captured by DCs and lymphoma cells, and mainly acted as an immunosuppressive mediator, evidenced by induction of apoptosis and upregulation of PD-1 in T cells. Furthermore, the TEXs stimulated not only cell proliferation, migration of stromal cells but also angiogenesis. As a result, the TEXs promoted tumor growth in vivo. On other hand, DLBCL TEXs did not induce apoptosis of DCs. After pulsed with the TEXs, DCs could stimulate clonal expansion of T cells, increase the secretion of IL-6 and TNFα, and decrease the production of immunosuppressive cytokine IL-4 and IL-10. The T cells from tumor bearing mice immunized by TEX were shown to possess superior antilymphoma potency relative to immunization of tumor lysates. CONCLUSIONS This study provides the framework for novel immunotherapies targeting TEXs in DLBCL.
Collapse
|
264
|
Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018; 7:cells7080093. [PMID: 30071693 PMCID: PMC6115997 DOI: 10.3390/cells7080093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.
Collapse
Affiliation(s)
- James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
265
|
Role of miRNAs in cell signaling of cancer associated fibroblasts. Int J Biochem Cell Biol 2018; 101:94-102. [DOI: 10.1016/j.biocel.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
|
266
|
Seo N, Akiyoshi K, Shiku H. Exosome-mediated regulation of tumor immunology. Cancer Sci 2018; 109:2998-3004. [PMID: 29999574 PMCID: PMC6172045 DOI: 10.1111/cas.13735] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022] Open
Abstract
Exosomes are representative extracellular vesicles (EV) derived from multivesicular endosomes (MVE) and have been described as new particles in the communication of neighborhood and/or distant cells by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and nucleotides including micro (mi) RNAs. Exosomes from immune cells and tumor cells act in part as a regulator in tumor immunology. CD8+ T cells that show potent cytotoxic activity against tumor cells reside as an inactive naïve form in the T-cell zone of secondary lymphoid organs. Once receiving tumor-specific antigenic stimulation by dendritic cells (DC), CD8+ T cells are activated and differentiated into effector CTL. Subsequently, CTL circulate systemically, infiltrate into tumor lesions through the stromal neovasculature where mesenchymal stromal cells, for example, mesenchymal stem cells (MSC) and cancer-associated fibroblasts (CAF), abundantly exist, destroy mesenchymal tumor stroma in an exosome-mediated way, go into tumor parenchyma, and attack tumor cells by specific interaction. DC-derived and regulatory T (Treg) cell-derived exosomes, respectively, promote and inhibit CTL generation in this setting. In this review, we describe the roles of exosomes from immune cells and tumor cells on the regulation of tumor progression.
Collapse
Affiliation(s)
- Naohiro Seo
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan.,CREST, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Kazunari Akiyoshi
- CREST, Japan Science and Technology Agency (JST), Tokyo, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
267
|
Kumar D, Xu ML. Microenvironment Cell Contribution to Lymphoma Immunity. Front Oncol 2018; 8:288. [PMID: 30101129 PMCID: PMC6073855 DOI: 10.3389/fonc.2018.00288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphoma microenvironment is a complex system composed of stromal cells, blood vessels, immune cells as well as extracellular matrix, cytokines, exosomes, and chemokines. In this review, we describe the function, localization, and interactions between various cellular components. We also summarize their contribution to lymphoma immunity in the era of immunotherapy. Publications were identified from searching Pubmed. Primary literature was carefully evaluated for replicability before incorporating into the review. We describe the roles of mesenchymal stem/stromal cells (MSCs), lymphoma-associated macrophages (LAMs), dendritic cells, cytotoxic T cells, PD-1 expressing CD4+ tumor infiltrating lymphocytes (TILs), T-cells expressing markers of exhaustion such as TIM-3 and LAG-3, regulatory T cells, and natural killer cells. While it is not in itself a cell, we also include a brief overview of the lymphoma exosome and how it contributes to anti-tumor effect as well as immune dysfunction. Understanding the cellular players that comprise the lymphoma microenvironment is critical to developing novel therapeutics that can help block the signals for immune escape and promote tumor surveillance. It may also be the key to understanding mechanisms of resistance to immune checkpoint blockade and immune-related adverse events due to certain types of immunotherapy.
Collapse
Affiliation(s)
- Deepika Kumar
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
268
|
Valcz G, Buzás EI, Szállási Z, Kalmár A, Krenács T, Tulassay Z, Igaz P, Molnár B. Perspective: bidirectional exosomal transport between cancer stem cells and their fibroblast-rich microenvironment during metastasis formation. NPJ Breast Cancer 2018; 4:18. [PMID: 30038960 PMCID: PMC6048124 DOI: 10.1038/s41523-018-0071-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
Carcinomas are complex structures composed of hierarchically organized distinct cell populations such as cancer stem cells and non-stem (bulk) cancer cells. Their genetic/epigenetic makeup and the dynamic interplay between the malignant cell populations and their stromal fibroblasts are important determinants of metastatic tumor invasion. Important mediators of these interactions are the small, membrane-enclosed extracellular vesicles, in particular exosomes. Both cancer cell and fibroblast-derived exosomes carry a set of regulatory molecules, including proteins and different species of RNA, which cooperatively support metastatic tumor spread. Here, we briefly overview potential links between cancer stem cells and the exosome-mediated fibroblast-enriched metastatic niche formation to discuss their role in the promotion of tumor growth and metastatic expansion in breast carcinoma models.
Collapse
Affiliation(s)
- Gábor Valcz
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Edit Irén Buzás
- MTA-SE Immuno-Proteogenomics Extracellular Vesicle Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán Szállási
- Computational Health Informatics Program (CHIP), Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | - Alexandra Kalmár
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Molnár
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
269
|
Ku A, Lim HC, Evander M, Lilja H, Laurell T, Scheding S, Ceder Y. Acoustic Enrichment of Extracellular Vesicles from Biological Fluids. Anal Chem 2018; 90:8011-8019. [PMID: 29806448 PMCID: PMC7556308 DOI: 10.1021/acs.analchem.8b00914] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a rich source of biomarkers providing diagnostic and prognostic information in diseases such as cancer. Large-scale investigations into the contents of EVs in clinical cohorts are warranted, but a major obstacle is the lack of a rapid, reproducible, efficient, and low-cost methodology to enrich EVs. Here, we demonstrate the applicability of an automated acoustic-based technique to enrich EVs, termed acoustic trapping. Using this technology, we have successfully enriched EVs from cell culture conditioned media and urine and blood plasma from healthy volunteers. The acoustically trapped samples contained EVs ranging from exosomes to microvesicles in size and contained detectable levels of intravesicular microRNAs. Importantly, this method showed high reproducibility and yielded sufficient quantities of vesicles for downstream analysis. The enrichment could be obtained from a sample volume of 300 μL or less, an equivalent to 30 min of enrichment time, depending on the sensitivity of downstream analysis. Taken together, acoustic trapping provides a rapid, automated, low-volume compatible, and robust method to enrich EVs from biofluids. Thus, it may serve as a novel tool for EV enrichment from large number of samples in a clinical setting with minimum sample preparation.
Collapse
Affiliation(s)
- Anson Ku
- Department of Translational Medicine, Lund University, SE-202 13 Malmö, Sweden
| | - Hooi Ching Lim
- Division of Molecular Hematology and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Mikael Evander
- Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, SE-202 13 Malmö, Sweden
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, U.K., OX3 9DU
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, SE-221 84 Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
- Department of Hematology, Skåne University Hospital, SE-221-85, Lund, Sweden
| | - Yvonne Ceder
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81 Lund, Sweden
| |
Collapse
|
270
|
Galán-Díez M, Cuesta-Domínguez Á, Kousteni S. The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harb Perspect Med 2018; 8:a031328. [PMID: 28963115 PMCID: PMC6027930 DOI: 10.1101/cshperspect.a031328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) interact dynamically with an intricate network of cells in the bone marrow (BM) microenvironment or niche. These interactions provide instructive cues that influence the production and lineage determination of different types of blood cells and maintenance of HSC quiescence. They also contribute to hematopoietic deregulation and hematological myeloid malignancies. Alterations in the BM niche are commonly observed in myeloid malignancies and contribute to the aberrant function of myelodysplastic and leukemia-initiating stem cells. In this work, we review how different components of the BM niche affect normal hematopoiesis, the molecular signals that govern this interaction, and how genetic changes in stromal cells or alterations in remodeled malignant BM niches contribute to myeloid malignancies. Understanding the intricacies between normal and malignant niches and their modulation may provide insights into developing novel therapeutics for blood disorders.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Álvaro Cuesta-Domínguez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
271
|
Dörsam B, Bösl T, Reiners KS, Barnert S, Schubert R, Shatnyeva O, Zigrino P, Engert A, Hansen HP, von Strandmann EP. Hodgkin Lymphoma-Derived Extracellular Vesicles Change the Secretome of Fibroblasts Toward a CAF Phenotype. Front Immunol 2018; 9:1358. [PMID: 29967610 PMCID: PMC6015880 DOI: 10.3389/fimmu.2018.01358] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Secretion of extracellular vesicles (EVs) is a ubiquitous mechanism of intercellular communication based on the exchange of effector molecules, such as growth factors, cytokines, and nucleic acids. Recent studies identified tumor-derived EVs as central players in tumor progression and the establishment of the tumor microenvironment (TME). However, studies on EVs from classical Hodgkin lymphoma (cHL) are limited. The growth of malignant Hodgkin and Reed–Sternberg (HRS) cells depends on the TME, which is actively shaped by a complex interaction of HRS cells and stromal cells, such as fibroblasts and immune cells. HRS cells secrete cytokines and angiogenic factors thus recruiting and inducing the proliferation of surrounding cells to finally deploy an immunosuppressive TME. In this study, we aimed to investigate the role of tumor cell-derived EVs within this complex scenario. We observed that EVs collected from Hodgkin lymphoma (HL) cells were internalized by fibroblasts and triggered their migration capacity. EV-treated fibroblasts were characterized by an inflammatory phenotype and an upregulation of alpha-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts. Analysis of the secretome of EV-treated fibroblast revealed an enhanced release of pro-inflammatory cytokines (e.g., IL-1α, IL-6, and TNF-α), growth factors (G-CSF and GM-CSF), and pro-angiogenic factors such as VEGF. These soluble factors are known to promote HL progression. In line, ingenuity pathway analysis identified inflammatory pathways, including TNF-α/NF-κB-signaling, as key factors directing the EV-dependent phenotype changes in fibroblasts. Confirming the in vitro data, we demonstrated that EVs promote α-SMA expression in fibroblasts and the expression of proangiogenic factors using a xenograft HL model. Collectively, we demonstrate that HL EVs alter the phenotype of fibroblasts to support tumor growth, and thus shed light on the role of EVs for the establishment of the tumor-promoting TME in HL.
Collapse
Affiliation(s)
- Bastian Dörsam
- Clinic for Hematology, Oncology and Immunology, Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Teresa Bösl
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Katrin S Reiners
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sabine Barnert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs-University, Freiburg, Germany
| | - Olga Shatnyeva
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology, University Hospital of Cologne, Cologne, Germany
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Clinic for Hematology, Oncology and Immunology, Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.,Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
272
|
Geyer MB, Rivière I, Sénéchal B, Wang X, Wang Y, Purdon TJ, Hsu M, Devlin SM, Halton E, Lamanna N, Rademaker J, Sadelain M, Brentjens RJ, Park JH. Autologous CD19-Targeted CAR T Cells in Patients with Residual CLL following Initial Purine Analog-Based Therapy. Mol Ther 2018; 26:1896-1905. [PMID: 29910179 DOI: 10.1016/j.ymthe.2018.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with residual chronic lymphocytic leukemia (CLL) following initial purine analog-based chemoimmunotherapy exhibit a shorter duration of response and may benefit from novel therapeutic strategies. We and others have previously described the safety and efficacy of autologous T cells modified to express anti-CD19 chimeric antigen receptors (CARs) in patients with relapsed or refractory B cell acute lymphoblastic leukemia and CLL. Here we report the use of CD19-targeted CAR T cells incorporating the intracellular signaling domain of CD28 (19-28z) as a consolidative therapy in 8 patients with residual CLL following first-line chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab. Outpatients received low-dose conditioning therapy with cyclophosphamide (600 mg/m2), followed by escalating doses of 3 × 106, 1 × 107, or 3 × 107 19-28z CAR T cells/kg. An objective response was observed in 3 of 8 patients (38%), with a clinically complete response lasting more than 28 months observed in two patients. Self-limited fevers were observed post-CAR T cell infusion in 4 patients, contemporaneous with elevations in interleukin-6 (IL-6), IL-10, IL-2, and TGF-α. None developed severe cytokine release syndrome or neurotoxicity. CAR T cells were detectable post-infusion in 4 patients, with a longest observed persistence of 48 days by qPCR. Further strategies to enhance CAR T cell efficacy in CLL are under investigation.
Collapse
Affiliation(s)
- Mark B Geyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brigitte Sénéchal
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yongzeng Wang
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meier Hsu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Halton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Lamanna
- Department of Medicine, Columbia University, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Jurgen Rademaker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jae H Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
273
|
Oushy S, Hellwinkel JE, Wang M, Nguyen GJ, Gunaydin D, Harland TA, Anchordoquy TJ, Graner MW. Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0477. [PMID: 29158308 DOI: 10.1098/rstb.2016.0477] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating tumour with abysmal prognoses. We desperately need novel approaches to understand GBM biology and therapeutic vulnerabilities. Extracellular vesicles (EVs) are membrane-enclosed nanospheres released locally and systemically by all cells, including tumours, with tremendous potential for intercellular communication. Tumour EVs manipulate their local environments as well as distal targets; EVs may be a mechanism for tumourigenesis in the recurrent GBM setting. We hypothesized that GBM EVs drive molecular changes in normal human astrocytes (NHAs), yielding phenotypically tumour-promoting, or even tumourigenic, entities. We incubated NHAs with GBM EVs and examined the astrocytes for changes in cell migration, cytokine release and tumour cell growth promotion via the conditioned media. We measured alterations in intracellular signalling and transformation capacity (astrocyte growth in soft agar). GBM EV-treated NHAs displayed increased migratory capacity, along with enhanced cytokine production which promoted tumour cell growth. GBM EV-treated NHAs developed tumour-like signalling patterns and exhibited colony formation in soft agar, reminiscent of tumour cells themselves. GBM EVs modify the local environment to benefit the tumour itself, co-opting neighbouring astrocytes to promote tumour growth, and perhaps even driving astrocytes to a tumourigenic phenotype. Such biological activities could have profound impacts in the recurrent GBM setting.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Soliman Oushy
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin E Hellwinkel
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Wang
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ger J Nguyen
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dicle Gunaydin
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa A Harland
- University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
274
|
Ohyashiki JH, Umezu T, Ohyashiki K. Extracellular vesicle-mediated cell-cell communication in haematological neoplasms. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0484. [PMID: 29158313 DOI: 10.1098/rstb.2016.0484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 01/05/2023] Open
Abstract
Crosstalk between bone marrow tumour cells and surrounding cells, including bone marrow mesenchymal stromal cells (BM-MSCs), endothelial cells and immune cells, is important for tumour growth in haematological neoplasms. In addition to conventional signalling pathways, extracellular vesicles (EVs), which are endosome-derived vesicles containing proteins, mRNAs, lipids and miRNAs, can facilitate modulation of the bone marrow microenvironment without directly contacting non-tumourous cells. In this review, we discuss the current understanding of EV-mediated cell-cell communication in haematological neoplasms, particularly leukaemia and multiple myeloma. We highlight the actions of tumour and BM-MSC EVs in multiple myeloma. The origin of EVs, their tropism and mechanism of EV transfer are emerging issues that need to be addressed in EV-mediated cell-cell communication in haematological neoplasms.This article is part of the discussion meeting issue 'Extracellular vesicles and the tumour microenvironment'.
Collapse
Affiliation(s)
- Junko H Ohyashiki
- Department of Molecular Oncology, Institute of Medical Science, Tokyo, Japan
| | - Tomohiro Umezu
- Department of Molecular Oncology, Institute of Medical Science, Tokyo, Japan.,Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
275
|
Wang S, Xu M, Li X, Su X, Xiao X, Keating A, Zhao RC. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol 2018; 11:82. [PMID: 29898759 PMCID: PMC6001126 DOI: 10.1186/s13045-018-0625-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Background The initiation and progression of hepatocellular carcinoma (HCC) are largely dependent on its local microenvironment. Adipocytes are an important component of hepatic microenvironment in nonalcoholic fatty liver disease (NAFLD), which is a significant risk factor for HCC. Given the global prevalence of NAFLD, a better understanding of the interplay between HCC cells and adipocytes is urgently needed. Exosomes, released by malignant cells, represent a novel way of cell-cell interaction and have been shown to play an important role in cancer cell communication with their microenvironment. Here, we explore the role of HCC-derived exosomes in the cellular and molecular conversion of adipocytes into tumor-promoting cells. Methods Exosomes were isolated from HCC cell line HepG2 and added to adipocytes. Transcriptomic alterations of exosome-stimulated adipocytes were analyzed using gene expression profiling, and secretion of inflammation-associated cytokines was detected by RT-PCR and ELISA. In vivo mouse xenograft model was used to evaluate the growth-promoting and angiogenesis-enhancing effects of exosome-treated adipocytes. Protein content of tumor exosomes was analyzed by mass spectrometry. Activated phospho-kinases involved in exosome-treated adipocytes were detected by phospho-kinase antibody array and Western blot. Results Our results demonstrated that HCC cell HepG2-derived exosomes could be actively internalized by adipocytes and caused significant transcriptomic alterations and in particular induced an inflammatory phenotype in adipocytes. The tumor exosome-treated adipocytes, named exo-adipocytes, promoted tumor growth, enhanced angiogenesis, and recruited more macrophages in mouse xenograft model. In vitro, conditioned medium from exo-adipocytes promoted HepG2 cell migration and increased tube formation of human umbilical vein endothelial cells (HUVECs). Mechanistically, we found HepG2 exosomes activated several phopho-kinases and NF-κB signaling pathway in exo-adipocytes. Additionally, a total of 1428 proteins were identified in HepG2 exosomes by mass spectrometry. Conclusions Our results provide new insights into the concept that tumor cell-derived exosomes can educate surrounding adipocytes to create a favorable microenvironment for tumor progression.
Collapse
Affiliation(s)
- Shihua Wang
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Meiqian Xu
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xiaodong Su
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xian Xiao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Armand Keating
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, M5G 2M9, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 2M9, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
276
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
277
|
Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 2018; 155:92-103. [PMID: 29859990 DOI: 10.1016/j.biochi.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Marina Gergues
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
278
|
Masaoutis C, Mihailidou C, Tsourouflis G, Theocharis S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie 2018; 151:27-36. [PMID: 29857182 DOI: 10.1016/j.biochi.2018.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Lung cancer is one of the main causes of cancer-related death worldwide. Despite advances in lung cancer pathophysiology, diagnosis and prognosis, a better understanding of the disease is strongly needed in order to establish novel diagnostic and therapeutic approaches that should improve treatment outcomes. Exosomes are a type of cell-secreted extracellular vesicles, which transfer a wide variety of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, are implicated in intercellular communication and modulate tumor-host interactions. The potential value of exosomes and their contents in lung cancer diagnosis, prognosis and prediction of treatment outcome is supported by ample literature. Growing attention has been drawn specifically to the critical role of exosomal miRNAs in lung cancer pathogenesis and their potential clinical utility, especially due to their ability to modulate gene expression post-transcriptionally. Owing to their universal presence in the blood and other bodily fluids, exosomes are considered candidate biomarkers. Furthermore, their ability to deliver biomolecules and drugs to recipient cells renders them possible drug delivery vehicles in lung cancer. Here we review the pathological functions of exosomes in cancer and discuss their possible clinical utility as biomarkers and therapeutic agents in the management of lung cancer.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
279
|
Abak A, Abhari A, Rahimzadeh S. Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ 2018; 6:e4763. [PMID: 29868251 PMCID: PMC5983002 DOI: 10.7717/peerj.4763] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cancer progression is a polygenic procedure in which the exosomes can function as substantial roles. Exosomes are tiny, phospholipid bilayer membrane nanovesicles of endocytic derivation with a diameter of 40-100 nm. These nanovesicles can transport bioactive molecules containing mRNAs, proteins, DNA fragments, and non-coding RNAs from a donor cell to recipient cells, and cause the alteration in genetic and epigenetic factors and reprogramming of the target cells. Many diverse cell types such as mesenchymal cells, immune cells, and cancer cells can induce the release of exosomes. Increasing evidence illustrated that the exosomes derived from tumor cells might trigger the tumor initiation, tumor cell growth and progression, metastasis, and drug resistance. The secreted nanovesicles of exosomes can play significant roles in cells communicate via shuttling the nucleic acid molecules and proteins to target cells and tissues. In this review, we discussed multiple mechanisms related to biogenesis, load, and shuttle of the exosomes. Also, we illustrated the diverse roles of exosomes in several types of human cancer development, tumor immunology, angiogenesis, and metastasis. The exosomes may act as the promising biomarkers for the prognosis of various types of cancers which suggested a new pathway for anti-tumor therapeutic of these nanovesicles and promoted exosome-based cancer for clinical diagnostic and remedial procedures.
Collapse
Affiliation(s)
- Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Rahimzadeh
- Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
280
|
Extracellular Vesicles: A New Prospective in Crosstalk between Microenvironment and Stem Cells in Hematological Malignancies. Stem Cells Int 2018; 2018:9863194. [PMID: 29977309 PMCID: PMC5994264 DOI: 10.1155/2018/9863194] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
The bone marrow (BM) microenvironment in hematological malignancies (HMs) comprises heterogeneous populations of neoplastic and nonneoplastic cells. Cancer stem cells (CSCs), neoplastic cells, hematopoietic stem cells (HSCs), and mesenchymal stromal/stem cells (MSCs) are all components of this microenvironment. CSCs are the HM initiators and are associated with neoplastic growth and drug resistance, while HSCs are able to reconstitute the entire hematopoietic system; finally, MSCs actively support hematopoiesis. In some HMs, CSCs and neoplastic cells compromise the normal development of HSCs and perturb BM-MSCs. In response, "reprogrammed" MSCs generate a favorable environment to support neoplastic cells. Extracellular vesicles (EVs) are an important cell-to-cell communication type in physiological and pathological conditions. In particular, in HMs, EV secretion participates to unidirectional and bidirectional interactions between neoplastic cells and BM cells. The transfer of EV molecular cargo triggers different responses in target cells; in particular, malignant EVs modify the BM environment in favor of neoplastic cells at the expense of normal HSCs, by interfering with antineoplastic immunity and participating in resistance to treatment. Here, we review the role of EVs in BM cell communication in physiological conditions and in HMs, focusing on the effects of BM niche EVs on HSCs and MSCs.
Collapse
|
281
|
Sato S, Weaver AM. Extracellular vesicles: important collaborators in cancer progression. Essays Biochem 2018; 62:149-163. [PMID: 29666212 PMCID: PMC6377252 DOI: 10.1042/ebc20170080] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane vesicles that are released from cells and mediate cell-cell communication. EVs carry protein, lipid, and nucleic acid cargoes that interact with recipient cells to alter their phenotypes. Evidence is accumulating that tumor-derived EVs can play important roles in all steps of cancer progression. Here, we review recent studies reporting critical roles for EVs in four major areas of cancer progression: promotion of cancer invasiveness and motility, enhancement of angiogenesis and vessel permeability, conditioning premetastatic niches, and immune suppression.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
282
|
Litwińska Z, Łuczkowska K, Machaliński B. Extracellular vesicles in hematological malignancies. Leuk Lymphoma 2018; 60:29-36. [DOI: 10.1080/10428194.2018.1459606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zofia Litwińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
283
|
McAtee CO, Booth C, Elowsky C, Zhao L, Payne J, Fangman T, Caplan S, Henry MD, Simpson MA. Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biol 2018; 78-79:165-179. [PMID: 29753676 DOI: 10.1016/j.matbio.2018.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023]
Abstract
The hyaluronidase Hyal1 is clinically and functionally implicated in prostate cancer progression and metastasis. Elevated Hyal1 accelerates vesicular trafficking in prostate tumor cells, thereby enhancing their metastatic potential in an autocrine manner through increased motility and proliferation. In this report, we found Hyal1 protein is a component of exosomes produced by prostate tumor cell lines overexpressing Hyal1. We investigated the role of exosomally shed Hyal1 in modulating tumor cell autonomous functions and in modifying the behavior of prostate stromal cells. Catalytic activity of Hyal1 was necessary for enrichment of Hyal1 in the exosome fraction, which was associated with increased presence of LC3BII, an autophagic marker, in the exosomes. Hyal1-positive exosome contents were internalized from the culture medium by WPMY-1 prostate stromal fibroblasts. Treatment of prostate stromal cells with tumor exosomes did not affect proliferation, but robustly stimulated their migration in a manner dependent on Hyal1 catalytic activity. Increased motility of exosome-treated stromal cells was accompanied by enhanced adhesion to a type IV collagen matrix, as well as increased FAK phosphorylation and integrin engagement through dynamic membrane residence of β1 integrins. The presence of Hyal1 in tumor-derived exosomes and its ability to impact the behavior of stromal cells suggests cell-cell communication via exosomes is a novel mechanism by which elevated Hyal1 promotes prostate cancer progression.
Collapse
Affiliation(s)
- Caitlin O McAtee
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christine Booth
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christian Elowsky
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Jeremy Payne
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Teresa Fangman
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Fred and Pamela Buffett Cancer Center, Omaha, NE, United States
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
284
|
Alharthi A, Beck D, Howard DR, Hillmen P, Oates M, Pettitt A, Wagner SD. An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects. BMC Res Notes 2018; 11:280. [PMID: 29739419 PMCID: PMC5941460 DOI: 10.1186/s13104-018-3391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES In vitro culture studies have shown that miR-363 is enriched in extracellular vesicles from chronic lymphocytic leukaemia cells. We wondered whether miR-363 was detectable in plasma, which is an essential precondition for further studies to assess its usefulness as a biomarker. Using samples from two clinical trials: one enrolling patients with advanced disease and the other asymptomatic patients with early stage disease, we determined plasma miR-363 levels and secondly investigated the distribution of this miRNA between plasma and particle bound fractions in patients and normal subjects. RESULTS Advanced disease (n = 95) was associated with higher levels of miR-363 than early stage disease (n = 45) or normal subjects (n = 11) but there was no association with markers of prognosis. The distribution of specific miRNA between particle bound and plasma protein fractions was investigated using size exclusion chromatography on plasma from patients (n = 4) and normal subjects (n = 3). ~ 20% of total miR-16 and miR-363 is particle bound in patients while there was no detectable particle bound material in normal subjects. Our work demonstrates that miR-363 levels are raised in chronic lymphocytic leukaemia patients and raises the possibility that distribution of circulating miRNA between plasma fractions differs in health and disease.
Collapse
Affiliation(s)
- Afaf Alharthi
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| | - Daniel Beck
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| | | | | | - Melanie Oates
- University of Liverpool, Level 6, Duncan Building, Daulby Street, Liverpool, L69 3GA UK
| | - Andrew Pettitt
- University of Liverpool, Level 6, Duncan Building, Daulby Street, Liverpool, L69 3GA UK
| | - Simon D. Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematological Research Unit, University of Leicester, Room 104, Hodgkin Building, Lancaster Road, Leicester, LE1 7HB UK
| |
Collapse
|
285
|
A retinoic acid-dependent stroma-leukemia crosstalk promotes chronic lymphocytic leukemia progression. Nat Commun 2018; 9:1787. [PMID: 29725010 PMCID: PMC5934403 DOI: 10.1038/s41467-018-04150-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), the non-hematopoietic stromal microenvironment plays a critical role in promoting tumor cell recruitment, activation, survival, and expansion. However, the nature of the stromal cells and molecular pathways involved remain largely unknown. Here, we demonstrate that leukemic B lymphocytes induce the activation of retinoid acid synthesis and signaling in the microenvironment. Inhibition of RA-signaling in stromal cells causes deregulation of genes associated with adhesion, tissue organization and chemokine secretion including the B-cell chemokine CXCL13. Notably, reducing retinoic acid precursors from the diet or inhibiting RA-signaling through retinoid-antagonist therapy prolong survival by preventing dissemination of leukemia cells into lymphoid tissues. Furthermore, mouse and human leukemia cells could be distinguished from normal B-cells by their increased expression of Rarγ2 and RXRα, respectively. These findings establish a role for retinoids in murine CLL pathogenesis, and provide new therapeutic strategies to target the microenvironment and to control disease progression. The stromal microenvironment plays a key role in the expansion of chronic lymphocytic leukemia. Here, the authors use the Eµ-TCL1 mouse model to show that leukemic B-cells induce the activation of retinoic acid synthesis in stromal cells of the lymphoid microenvironment, and that impacting on retinoic acid signalling via diet or chemical inhibition prolonged survival by preventing leukemia dissemination and accumulation in lymphoid tissues.
Collapse
|
286
|
Abstract
How the metabolic crosstalk between cancer and stromal cells affects tumour growth is incompletely defined. MYC-activated cancer cells are now shown to secrete exosomal miR-105 , which fuels tumour growth by inducing a MYC-dependent metabolic programme in cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
287
|
Zhou X, Jiao Z, Ji J, Li S, Huang X, Lu X, Zhao H, Peng J, Chen X, Ji Q, Ji Y. Characterization of mouse serum exosomal small RNA content: The origins and their roles in modulating inflammatory response. Oncotarget 2018; 8:42712-42727. [PMID: 28514744 PMCID: PMC5522100 DOI: 10.18632/oncotarget.17448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
In the last decade, although studies on exosomal microRNAs (miRNAs) derived from serum and other body fluids have increased dramatically; the contents and biological significance of serum exosomes under normal conditions remain unclear. In the present study, we profiled the small RNA content of mouse serum exosomes (mSEs) using small RNAseq and found that fragments of transfer RNAs (tRNAs) and miRNAs were the two predominant exosomal RNA species, accounting for approximately 60% and 10% of mapped reads, respectively. Moreover, 466 known and 5 novel miRNAs were identified from two independent experiments, among which the five most abundant miRNAs (miR-486a-5p, miR-22-3p, miR-16-5p, miR-10b-5p and miR-27b-3p) accounted for approximately 60% of all the aligned miRNA sequences. As inferred from the identities of the well known cell- or tissue-specific miRNAs, mSEs were primarily released by RBCs, liver and intestinal cells. Bioinformatics analysis revealed over half of the top 20 miRNAs by abundance were involved in inflammatory responses and further in vitro experiments demonstrated that mSEs potently primed macrophages towards the M2 phenotype. To the best of our knowledge, this is the first study to profile small RNAs from mSEs. In addition to providing a reference for future biomarker studies and extrapolating their origins, our data also suggest the roles of mSEs in maintaining internal homeostasis under normal conditions.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Zinan Jiao
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Shuyuan Li
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Xiaodi Huang
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Xiaoshuang Lu
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Heng Zhao
- Stanford University School of Medicine, Stanford, California, USA
| | - Jingwen Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| | - Xinya Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhua Ji
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
288
|
Giusti I, Di Francesco M, D'Ascenzo S, Palmerini MG, Macchiarelli G, Carta G, Dolo V. Ovarian cancer-derived extracellular vesicles affect normal human fibroblast behavior. Cancer Biol Ther 2018; 19:722-734. [PMID: 29580188 DOI: 10.1080/15384047.2018.1451286] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has become clear that non-tumor cells in the microenvironment, especially fibroblasts, actively participate in tumor progression. Fibroblasts conditioned by tumor cells become "activated" and, as such, are identified as CAFs (cancer-associated fibroblasts). These CAFs remodel the tumor stroma to make it more favourable for cancer progression. The aim of this work was to verify whether EVs (extracellular vesicles - whose role as mediators of information between tumor and stromal cells is well known) released from human ovarian cancer cells were able to activate fibroblasts. EVs isolated from SKOV3 (more aggressive) and CABA I (less aggressive) cells were administered to fibroblasts. The consequent activation was supported by morphological and molecular changes in treated fibroblasts; XTT assays, zymographies, wound healing tests and invasion assays also highlighted higher proliferation, motility, invasiveness and enzyme expression. The secretome of these "activated" fibroblasts was, in turn, able to modulate the responses (proliferation, motility and invasion) of fibroblasts, and of tumor and endothelial cells. These findings support the idea that ovarian cancer cells can modulate fibroblast behaviour through the release of EVs, activating them to a CAFs-like state; the latter are able, in turn, to stimulate the surrounding cells. EVs from SKOV3 rather than from CABA I seem to be more efficient in some processes.
Collapse
Affiliation(s)
- Ilaria Giusti
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Marianna Di Francesco
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Sandra D'Ascenzo
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Maria Grazia Palmerini
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Guido Macchiarelli
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Gaspare Carta
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| | - Vincenza Dolo
- a Department of Life, Health and Environmental Sciences , University of L'Aquila , Via Vetoio, Coppito 2, L'Aquila , Italy
| |
Collapse
|
289
|
Chronic lymphocytic leukemia and mantle cell lymphoma: crossroads of genetic and microenvironment interactions. Blood 2018; 131:2283-2296. [PMID: 29666114 DOI: 10.1182/blood-2017-10-764373] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are 2 well-defined entities that diverge in their basic pathogenic mechanisms and clinical evolution but they share epidemiological characteristics, cells of origin, molecular alterations, and clinical features that differ from other lymphoid neoplasms. CLL and MCL are classically considered indolent and aggressive neoplasms, respectively. However, the clinical evolution of both tumors is very heterogeneous, with subsets of patients having stable disease for a long time whereas others require immediate intervention. Both CLL and MCL include 2 major molecular subtypes that seem to derive from antigen-experienced CD5+ B cells that retain a naive or memory-like epigenetic signature and carry a variable load of immunoglobulin heavy-chain variable region somatic mutations from truly unmutated to highly mutated, respectively. These 2 subtypes of tumors differ in their molecular pathways, genomic alterations, and clinical behavior, being more aggressive in naive-like than memory-like-derived tumors in both CLL and MCL. The pathogenesis of the 2 entities integrates the relevant influence of B-cell receptor signaling, tumor cell microenvironment interactions, genomic alterations, and epigenome modifications that configure the evolution of the tumors and offer new possibilities for therapeutic intervention. This review will focus on the similarities and differences of these 2 tumors based on recent studies that are enhancing the understanding of their pathogenesis and creating solid bases for new management strategies.
Collapse
|
290
|
Sun W, Luo JD, Jiang H, Duan DD. Tumor exosomes: a double-edged sword in cancer therapy. Acta Pharmacol Sin 2018; 39:534-541. [PMID: 29542685 PMCID: PMC5888693 DOI: 10.1038/aps.2018.17] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/24/2018] [Indexed: 12/15/2022]
Abstract
Tumor cells produce and secrete more nucleic acids, proteins and lipids than normal cells. These molecules are transported in the blood or around the cells in membrane-encapsulated exosomes. Tumor-derived or tumor-associated exosomes (usually 30-100 nm in diameter) contain abundant biological contents resembling those of the parent cells along with signaling messengers for intercellular communication involved in the pathogenesis, development, progression, and metastasis of cancer. As these exosomes can be detected and isolated from various body fluids, they have become attractive new biomarkers for the diagnosis and prognosis of cancer. Furthermore, tumor exosomes have also attracted increasing attention due to their potential as novel therapeutic strategies for the treatment of cancers. On the one hand, the lipid bilayer membrane-encapsulated vesicles are promising carriers of drugs and other therapeutic materials targeting specific cancer cells. On the other hand, tumor exosomes are important mediators for modulation of the microenvironment that orchestrates events critical to the growth and metastasis of cancer cells as well as chemoresistance. Here, we summarize the advances in our understanding of tumor-associated or tumor-derived exosomes in recent years, and discuss their roles in cancer development, progression, invasion, and metastasis of cancers and, more importantly, their potential in strategies for precision therapy of various cancers as well as important caveats.
Collapse
Affiliation(s)
- Wei Sun
- Department of Oncology, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Ju-dong Luo
- Department of Oncology, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Hua Jiang
- Department of Oncology, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
291
|
McMullen JRW, Selleck M, Wall NR, Senthil M. Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget 2018; 8:43481-43490. [PMID: 28415645 PMCID: PMC5522163 DOI: 10.18632/oncotarget.16480] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/15/2017] [Indexed: 12/28/2022] Open
Abstract
Peritoneal Carcinomatosis (PC) is a late stage manifestation of several gastrointestinal malignancies including appendiceal, colorectal, and gastric cancer. In PC, tumors metastasize to and deposit on the peritoneal surface and often leave patients with only palliative treatment options. For colorectal PC, median survival is approximately five months, and palliative systemic therapy is able to extend this to approximately 12 months. However, cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) with a curative intent is possible in some patients with limited tumor burden. In well-selected patients undergoing complete cytoreduction, median survival has been reported as high as 63 month. Identifying patients earlier who are either at risk for, or who have recently developed PC may provide them with additional treatment options such as CRS/HIPEC. PC is diagnosed late by imaging findings or often times during an invasive procedures such as laparoscopy or laparotomy. In order to improve the outcomes of PC patients, a minimally invasive, accurate, and specific PC screening method needs to be developed. By utilizing circulating PC biomarkers in the serum of patients, a “liquid biopsy,” may be able to be generated to allow a tailored treatment plan and early intervention. Exosomes, stable patient-derived nanovesicles present in blood, urine, and many other bodily fluids, show promise as a tool for the evaluation of labile biomarkers. If liquid biopsies can be perfected in PC, manifestations of this cancer may be more effectively treated, thus offering improved survival.
Collapse
Affiliation(s)
- James R W McMullen
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Matthew Selleck
- Department of Surgery, Division of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Basic Sciences, Center for Health Disparities & Molecular Medicine, Division of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Maheswari Senthil
- Department of Surgery, Division of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
| |
Collapse
|
292
|
Berenguer J, Lagerweij T, Zhao XW, Dusoswa S, van der Stoop P, Westerman B, de Gooijer MC, Zoetemelk M, Zomer A, Crommentuijn MHW, Wedekind LE, López-López À, Giovanazzi A, Bruch-Oms M, van der Meulen-Muileman IH, Reijmers RM, van Kuppevelt TH, García-Vallejo JJ, van Kooyk Y, Tannous BA, Wesseling P, Koppers-Lalic D, Vandertop WP, Noske DP, van Beusechem VW, van Rheenen J, Pegtel DM, van Tellingen O, Wurdinger T. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. J Extracell Vesicles 2018; 7:1446660. [PMID: 29696074 PMCID: PMC5912193 DOI: 10.1080/20013078.2018.1446660] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/23/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer cells release extracellular vesicles (EVs) that contain functional biomolecules such as RNA and proteins. EVs are transferred to recipient cancer cells and can promote tumour progression and therapy resistance. Through RNAi screening, we identified a novel EV uptake mechanism involving a triple interaction between the chemokine receptor CCR8 on the cells, glycans exposed on EVs and the soluble ligand CCL18. This ligand acts as bridging molecule, connecting EVs to cancer cells. We show that glioblastoma EVs promote cell proliferation and resistance to the alkylating agent temozolomide (TMZ). Using in vitro and in vivo stem-like glioblastoma models, we demonstrate that EV-induced phenotypes are neutralised by a small molecule CCR8 inhibitor, R243. Interference with chemokine receptors may offer therapeutic opportunities against EV-mediated cross-talk in glioblastoma.
Collapse
Affiliation(s)
- Jordi Berenguer
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Xi Wen Zhao
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Sophie Dusoswa
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Petra van der Stoop
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Bart Westerman
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark C de Gooijer
- Department of Bio-Pharmacy/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marloes Zoetemelk
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Anoek Zomer
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matheus H W Crommentuijn
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Bio-Pharmacy/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Laurine E Wedekind
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Àlan López-López
- Department of Physiological Sciences I, University of Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Barcelona, Spain
| | - Alberta Giovanazzi
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Marina Bruch-Oms
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Rogier M Reijmers
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Toin H van Kuppevelt
- Department of Matrix Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juan-Jesús García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - W Peter Vandertop
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor W van Beusechem
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - D Michiel Pegtel
- Department of Matrix Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Olaf van Tellingen
- Department of Bio-Pharmacy/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
293
|
Increased phosphorylation of eIF2α in chronic myeloid leukemia cells stimulates secretion of matrix modifying enzymes. Oncotarget 2018; 7:79706-79721. [PMID: 27802179 PMCID: PMC5346746 DOI: 10.18632/oncotarget.12941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022] Open
Abstract
Recent studies underscore the role of the microenvironment in therapy resistance of chronic myeloid leukemia (CML) cells and leukemia progression. We previously showed that sustained mild activation of endoplasmic reticulum (ER) stress in CML cells supports their survival and resistance to chemotherapy. We now demonstrate, using dominant negative non-phosphorylable mutant of eukaryotic initiation factor 2 α subunit (eIF2α), that phosphorylation of eIF2α (eIF2α-P), which is a hallmark of ER stress in CML cells, substantially enhances their invasive potential and modifies their ability to secrete extracellular components, including the matrix-modifying enzymes cathepsins and matrix metalloproteinases. These changes are dependent on the induction of activating transcription factor-4 (ATF4) and facilitate extracellular matrix degradation by CML cells. Conditioned media from CML cells with constitutive activation of the eIF2α-P/ATF4 pathway induces invasiveness of bone marrow stromal fibroblasts, suggesting that eIF2α-P may be important for extracellular matrix remodeling and thus leukemia cells-stroma interactions. Our data show that activation of stress response in CML cells may contribute to the disruption of bone marrow niche components by cancer cells and in this way support CML progression.
Collapse
|
294
|
Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci 2018; 131:131/4/jcs201707. [PMID: 29472498 DOI: 10.1242/jcs.201707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment (BMM) is the 'domicile' of hematopoietic stem cells, as well as of malignant processes that can develop there. Multiple and complex interactions with the BMM influence hematopoietic stem cell (HSC) physiology, but also the pathophysiology of hematological malignancies. Reciprocally, hematological malignancies alter the BMM, in order to render it more hospitable for malignant progression. In this Cell Science at a Glance article and accompanying poster, we highlight concepts of the normal and malignant hematopoietic stem cell niches. We present the intricacies of the BMM in malignancy and provide approaches for targeting the interactions between malignant cells and their BMM. This is done in an effort to augment existing treatment strategies in the future.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - P Sonika Godavarthy
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
295
|
Shao Y, Shen Y, Chen T, Xu F, Chen X, Zheng S. The functions and clinical applications of tumor-derived exosomes. Oncotarget 2018; 7:60736-60751. [PMID: 27517627 PMCID: PMC5312416 DOI: 10.18632/oncotarget.11177] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm. They can be secreted by all cell types and transfer information in the form of their contents, which include proteins, lipids and nucleic acids, to other cells throughout the body. They have roles in normal physiological processes as well as in disease development. Here, we review recent findings regarding tumor-derived exosomes, including methods for their extraction and preservation. We also describe the actions of exosomes in tumorigenesis. The exosomal antigen-presenting effect during antitumor immune responses and its suppressive function in immune tolerance are discussed. Finally, we describe the potential application of exosomes to cancer therapy and liquid biopsy.
Collapse
Affiliation(s)
- Yingkuan Shao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanwei Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuewen Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
296
|
Seo N, Shirakura Y, Tahara Y, Momose F, Harada N, Ikeda H, Akiyoshi K, Shiku H. Activated CD8 + T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun 2018; 9:435. [PMID: 29382847 PMCID: PMC5789986 DOI: 10.1038/s41467-018-02865-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/05/2018] [Indexed: 11/09/2022] Open
Abstract
Fibroblastic tumour stroma comprising mesenchymal stem cells (MSCs) and cancer-associated fibroblasts (CAFs) promotes the invasive and metastatic properties of tumour cells. Here we show that activated CD8+ T cell-derived extracellular vesicles (EVs) interrupt fibroblastic stroma-mediated tumour progression. Activated CD8+ T cells from healthy mice transiently release cytotoxic EVs causing marked attenuation of tumour invasion and metastasis by apoptotic depletion of mesenchymal tumour stromal cells. Infiltration of EV-producing CD8+ T cells is observed in neovascular areas with high mesenchymal cell density, and tumour MSC depletion is associated with preferential engulfment of CD8+ T cell EVs in this setting. Thus, CD8+ T cells have the capacity to protect tumour progression by EV-mediated depletion of mesenchymal tumour stromal cells in addition to their conventional direct cytotoxicity against tumour cells. Immune cells have an important role in tumour progression. Here, the authors show that extracellular vesicles from activated CD8+ T cells attenuate tumour progression by depletion of mesenchymal tumour stromal cells.
Collapse
Affiliation(s)
- Naohiro Seo
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan. .,ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto, 615-8530, Japan.
| | - Yoshitaka Shirakura
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiro Tahara
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto, 615-8530, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Moto-oka, Fukuoka, 819-0395, Japan
| | - Fumiyasu Momose
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan.,ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto, 615-8530, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan.,ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto, 615-8530, Japan
| | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, 852-8523, Japan
| | - Kazunari Akiyoshi
- ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto, 615-8530, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Katsura Int'tech Center, Kyoto University, Nishikyo-ku, Kyoto, 615-8530, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Edobashi, Tsu, Mie, 514-8507, Japan. .,ERATO Bio-Nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto, 615-8530, Japan.
| |
Collapse
|
297
|
Fu F, Jiang W, Zhou L, Chen Z. Circulating Exosomal miR-17-5p and miR-92a-3p Predict Pathologic Stage and Grade of Colorectal Cancer. Transl Oncol 2018; 11:221-232. [PMID: 29367070 PMCID: PMC5789766 DOI: 10.1016/j.tranon.2017.12.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
Exosomes are extracellular membrane vesicles of 50- to 130-nm diameter secreted by most tumor cells. Exosomes can mediate the intercellular transfer of proteins and RNAs, including microRNAs (miRNAs), and promote both tumorigenesis and premetastatic niche formation. In this study, we performed exosomal RNA sequencing to identify candidate exosomal miRNAs that could be associated with colorectal cancer (CRC) and its distant metastasis. The expression profiles of exosomal miRNA, as secreted by isogenic human primary CRC cell line SW480 and highly metastatic cell line SW620, were analyzed and the potential targets related to tumorigenesis and metastatic progression were investigated. We found that 25 miRNAs had been up-regulated and 5 miRNAs had been down-regulated in exosomes purified from SW620 culture supernatant. Candidate miRNAs were further evaluated for CRC diagnosis using quantitative real-time polymerase chain reaction in CRC patients. Higher expression levels of circulating exosomal miR-17-5p and miR-92a-3p were significantly associated with pathologic stages and grades of the CRC patients. CONCLUSIONS Circulating exosomal miR-17-5p and miR-92a-3p may provide a promising noninvasive prognostic biomarker for primary and metastatic CRC.
Collapse
Affiliation(s)
- Fangfang Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310058, China; College of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqin Jiang
- Cancer Biotherapy Center, The First Affiliated Hospital, Zhejiang University, China
| | - Linfu Zhou
- Medical Biotechnology Laboratory, Zhejiang University, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310058, China; College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
298
|
Wang J, Faict S, Maes K, De Bruyne E, Van Valckenborgh E, Schots R, Vanderkerken K, Menu E. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 2018; 7:38927-38945. [PMID: 26950273 PMCID: PMC5122441 DOI: 10.18632/oncotarget.7792] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
The bone marrow (BM) represents a complex microenvironment containing stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which are crucial for the immune response, bone formation, and hematopoiesis. Apart from soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including exosomes, were recently identified as a third mediator for cell communication. Solid evidence has already demonstrated the involvement of various BM-derived cells and soluble factors in the regulation of multiple biological processes whereas the EV-mediated message delivery system from the BM has just been explored in recent decades. These EVs not only perform physiological functions but can also play a role in cancer development, including in Multiple Myeloma (MM) which is a plasma cell malignancy predominantly localized in the BM. This review will therefore focus on the multiple functions of EVs derived from BM cells, the manipulation of the BM by cancer-derived EVs, and the role of BM EVs in MM progression.
Collapse
Affiliation(s)
- Jinheng Wang
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Rik Schots
- Department of Clinical Hematology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussels (VUB), Brussels, Belgium
| |
Collapse
|
299
|
Zhao H, Achreja A, Iessi E, Logozzi M, Mizzoni D, Di Raimo R, Nagrath D, Fais S. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer 2018; 1869:64-77. [PMID: 29175553 PMCID: PMC5800973 DOI: 10.1016/j.bbcan.2017.11.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.
Collapse
Affiliation(s)
- Hongyun Zhao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Abhinav Achreja
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Elisabetta Iessi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy
| | - Deepak Nagrath
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
300
|
Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol 2017; 35:69-79. [PMID: 29289420 DOI: 10.1016/j.smim.2017.12.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are a major component of the tumor microenvironment (TME) and play a key role in promoting tumor progression. The tumor uses exosomes to co-opt MSCs and re-program their functional profile from normally trophic to pro-tumorigenic. These tumor-derived small vesicles called "TEX" carry and deliver a cargo rich in proteins and nucleic acids to MSCs. Upon interactions with surface receptors on MSCs and uptake of the exosome cargo by MSCs, molecular, transcriptional and translational changes occur that convert MSCs into producers of factors that are necessary for tumor growth and that also alter functions of non-tumor cells in the TME. The MSCs re-programmed by TEX become avid producers of their own exosomes that carry and deliver mRNA and miRNA species as well as molecular signals not only back to tumor cells, directly enhancing their growth, but also horizontally to fibroblasts, endothelial cells and immune cells in the TME, indirectly enhancing their pro-tumor functions. TEX-driven cross-talk of MSCs with immune cells blocks their anti-tumor activity and/or converts them into suppressor cells. MSCs re-programmed by TEX mediate pro-angiogenic activity and convert stromal cells into cancer-associated fibroblasts (CAFs). Although MSCs have a potential to exert anti-tumor activities, they largely provide service to the tumor using the multidirectional communication system established by exosomes in the TME. Future therapeutic options consider disruption of this complex vicious cycle by either molecular or gene-regulated silencing of pro-tumor effects mediated by MSCs in the TME.
Collapse
Affiliation(s)
- Theresa L Whiteside
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, 5117 Centre Avenue, Suite 1.27, Pittsburgh, PA, 15213, USA.
| |
Collapse
|