251
|
Genetics and Pathogenetic Role of Inflammasomes in Philadelphia Negative Chronic Myeloproliferative Neoplasms: A Narrative Review. Int J Mol Sci 2021; 22:ijms22020561. [PMID: 33429941 PMCID: PMC7827003 DOI: 10.3390/ijms22020561] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The last decade has been very important for the quantity of preclinical information obtained regarding chronic myeloproliferative neoplasms (MPNs) and the following will be dedicated to the translational implications of the new biological acquisitions. The overcoming of the mechanistic model of clonal evolution and the entry of chronic inflammation and dysimmunity into the new model are the elements on which to base a part of future therapeutic strategies. The innate immune system plays a major role in this context. Protagonists of the initiation and regulation of many pathological aspects, from cytokine storms to fibrosis, the NLRP3 and AIM2 inflammasomes guide and condition the natural history of the disease. For this reason, MPNs share many biological and clinical aspects with non-neoplastic diseases, such as autoimmune disorders. Finally, cardiovascular risk and disturbances in iron metabolism and myelopoiesis are also closely linked to the role of inflammasomes. Although targeted therapies are already being tested, an increase in knowledge on the subject is desirable and potentially translates into better care for patients with MPNs.
Collapse
|
252
|
Shallis RM, Zeidan AM, Wang R, Podoltsev NA. Epidemiology of the Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2021; 35:177-189. [PMID: 33641862 DOI: 10.1016/j.hoc.2020.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) comprise the BCR-ABL-negative classical myeloproliferative neoplasms (MPNs). These clonal myeloid diseases are principally driven by well-described molecular events; however, factors leading to their acquisition are not well understood. Beyond increasing age, male sex, and race/ethnicity differences, few consistent risk factors for the MPNs are known. PV and ET have an incidence of 0.5 to 4.0 and 1.1 to 2.0 cases per 100,000 person-years, respectively, and predict similar survival. PMF, which has an incidence of about 0.3 to 2.0 cases per 100,000 person-years, is associated with the shortest survival of the MPNs.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, P.O. Box 208028, New Haven, CT 06520-8028, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, P.O. Box 208028, New Haven, CT 06520-8028, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 333 Cedar Street, P.O. Box 208028, New Haven, CT 06520-8028, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, P.O. Box 208028, New Haven, CT 06520-8028, USA.
| |
Collapse
|
253
|
Chia YC, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. WITHDRAWN: Molecular genetics of thrombotic myeloproliferative neoplasms: Implications in precision oncology. Genes Dis 2021. [DOI: 10.1016/j.gendis.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
254
|
Poluben LO, Neumerzhytska LV, Klymenko SV, Fraenkel P, Balk C, Shumeiko OO. MOLECULAR GENETIC ABNORMALITIES IN THE GENOME OF PATIENTS WITH Ph-NEGATIVE MYELOPROLIFERATIVE NEOPLASIA AFFECTED BY IONIZING RADIATION AS A RESULT OF THE CHORNOBYL NUCLEAR ACCIDENT. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 25:362-373. [PMID: 33361847 DOI: 10.33145/2304-8336-2020-25-362-373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE to determine the frequency of major somatic mutations in the JAK2, MPL and CALR genes in the genomeof patients with Ph-negative myeloproliferative neoplasms that occur in individuals who have been exposed to ionizing radiation as a result of the Chornobyl accident. MATERIALS AND METHODS Molecular genetic analysis of genomic DNA samples isolated from blood was performed in90 patients with Ph-negative myeloproliferative neoplasia (MPN) with a history of radiation exposure and 191patients with spontaneous MPN utilizing allele-specific polymerase chain reaction (PCR). RESULTS The presence of major mutations in the genes JAK2, CALR and MPL was revealed in patients with MPN witha history of radiation exposure with a frequency 58.9 % (53 of 90), 12.2 % (11 of 90), and 0 % respectively, and without exposure with frequency 75.4 % (144 of 191), 3.1 % (6 out of 191) and 1.6 % (3 out of 191) respectively.Mutations JAK2 V617F in patients with spontaneous MPN were observed in each clinical form: polycythemia vera (PV),essential thrombocythemia (ET) and primary myelofibrosis (PMF). CALR mutations were detected exclusively inpatients with PMF and ET, significantly more often in groups with a radiation exposure history (18.9 % and 33.3 %,vs. 4.2 % and 6.5 %) than without one. At the same time, the occurence of MPL mutations was determined only inpatients with spontaneous MPN in 1.6 % of casees. Triple negative mutation status of genes JAK2, MPL and CALR prevailed in the group of patients with MPN with a history of radiation exposure and was 27.8 %, against 16.2 % inpatients without radiation exposure (p = 0.05). CONCLUSIONS Genomic research of patients with Ph-negative MPN revealed features of molecular genetic damage inthose patients who were exposed to IR as a result of the Chornobyl accident and those with spontaneous MPN. Thedata obtained by determining of JAK2, MPL and CALR genes mutational status in the genome of patients with MPN isnecessary to expand the understanding of the mechanism of leukogenesis, especially caused by radiation.
Collapse
Affiliation(s)
- L O Poluben
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - L V Neumerzhytska
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - S V Klymenko
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - P Fraenkel
- Bes Israel Dikoness Medical Center, Hematology/Oncology Department, Boston, Massachusetts, USA
| | - C Balk
- Bes Israel Dikoness Medical Center, Hematology/Oncology Department, Boston, Massachusetts, USA
| | - O O Shumeiko
- Bogomolets National Medical University, 13 Tarasa Shevchenka Blvd, Kyiv, 01601, Ukraine
| |
Collapse
|
255
|
Sharma V, Wright KL, Epling-Burnette PK, Reuther GW. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Front Immunol 2020; 11:604142. [PMID: 33329600 PMCID: PMC7734315 DOI: 10.3389/fimmu.2020.604142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023] Open
Abstract
The Janus kinase 2 (JAK2)-driven myeloproliferative neoplasms (MPNs) are associated with clonal myelopoiesis, elevated risk of death due to thrombotic complications, and transformation to acute myeloid leukemia (AML). JAK2 inhibitors improve the quality of life for MPN patients, but these approved therapeutics do not readily reduce the natural course of disease or antagonize the neoplastic clone. An understanding of the molecular and cellular changes requisite for MPN development and progression are needed to develop improved therapies. Recently, murine MPN models were demonstrated to exhibit metabolic vulnerabilities due to a high dependence on glucose. Neoplastic hematopoietic progenitor cells in these mice express elevated levels of glycolytic enzymes and exhibit enhanced levels of glycolysis and oxidative phosphorylation, and the disease phenotype of these MPN model mice is antagonized by glycolytic inhibition. While all MPN-driving mutations lead to aberrant JAK2 activation, these mutations often co-exist with mutations in genes that encode epigenetic regulators, including loss of function mutations known to enhance MPN progression. In this perspective we discuss how altered activity of epigenetic regulators (e.g., methylation and acetylation) in MPN-driving stem and progenitor cells may alter cellular metabolism and contribute to the MPN phenotype and progression of disease. Specific metabolic changes associated with epigenetic deregulation may identify patient populations that exhibit specific metabolic vulnerabilities that are absent in normal hematopoietic cells, and thus provide a potential basis for the development of more effective personalized therapeutic approaches.
Collapse
Affiliation(s)
- Vasundhara Sharma
- Department of Leukemia, Princess Margaret Cancer Center-University Health Network, Toronto, ON, Canada
| | - Kenneth L Wright
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
256
|
Wu JY, Li B, Jia YJ, Zhang PH, Xu ZF, Qin TJ, Qu SQ, Pan LJ, Liu JQ, Yan X, Zhang YD, Chen J, Gong JY, Xiao ZJ. [Genetic characteristics and prognostic values of RAS mutations in patients with myelofibrosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:989-995. [PMID: 33445845 PMCID: PMC7840545 DOI: 10.3760/cma.j.issn.0253-2727.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Objective: To explore the genetic characteristics, clinical features, and prognostic values of RAS mutations in patients with myelofibrosis (MF) . Methods: We analyzed 112-gene targeted sequencing data from 226 patients who had a diagnosis of either primary myelofibrosis (PMF) or post-polycythemia vera/post-essential thrombocythemia (post-PV MF and post-ET MF) from December 2011 to December 2019. A retrospective analysis of the genetic characteristics, clinical features, and prognosis of RAS mutations was performed. Results: Among 266 patients diagnosed PMF or post-PV/ET MF, RAS mutations were found in 14 (6.2%) cases, including 9 (4.0%) cases of NRAS mutations, 8 (3.5%) cases of KRAS mutations, and 3 (1.3%) cases of both NRAS and KRAS mutations. All of the NRAS mutations were located in codons 12 and 13. The median VAFs of RAS mutations were significantly lower than those of the driver mutations, confirming that they represent sub-clonal events that are acquired during the disease course. SETBP1, SRSF2, and MPL tended to be clustered with RAS mutations. Patients with RAS mutations had a higher number of additional oncogenic mutations (median, 3.36 vs 1.17, P<0.001) . RAS mutations had a statistically significant association with elevated monocyte cell counts (P=0.003) , lower platelet counts (P=0.026) , higher bone marrow blasts (P=0.022) , splenomegaly (P=0.005) , and very high-risk (VHR) karyotype abnormality percentage (P=0.031) . In univariate analysis, the OS of patients with NRAS mutations were significantly inferior in the entire MF and PMF cohorts (P=0.001, P=0.008) . In a multivariate model, NRAS retained an independent negative prognostic factor in PMF. Conclusion: RAS gene mutations were constantly related to elevated monocyte cell counts, lower platelet counts, higher bone marrow blasts, and VHR karyotype abnormality percentage that usually defined high-risk disease and often occurred as sub-clonal events. NRAS mutation is an independent poor prognostic factor in PMF.
Collapse
Affiliation(s)
- J Y Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - B Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y J Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - P H Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z F Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - T J Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - S Q Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L J Pan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J Q Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y D Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J Y Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
257
|
Zhou FP, Wang CC, Du HP, Cao SB, Zhang J. Primary myelofibrosis with concurrent CALR and MPL mutations: A case report. World J Clin Cases 2020; 8:5618-5624. [PMID: 33344552 PMCID: PMC7716329 DOI: 10.12998/wjcc.v8.i22.5618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) characterized by recurrent mutations in the JAK2, CALR, and MPL genes. The CALR and MPL co-mutation is very rare. To our knowledge, no more than five cases have been reported. Here, we report a case of PMF in which a CALR and MPL co-mutation was detected by next-generation sequencing (NGS) technology, and a literature review was performed.
CASE SUMMARY A 73-year-old woman was admitted to our hospital in 2018 due to abdominal distension. The patient had splenomegaly, lymphadenopathy, leukopenia, anemia, and immature granulocytes in peripheral blood. There were dacrocytes and atypical megakaryocytes in bone marrow, and megakaryocytic proliferation was very active, accompanied by reticulin fibrosis grade 2. By NGS analysis of the bone marrow sample, we detected mutations in CALR, MPL, and PIK3RI, while JAK2 V617F and BCR-ABL were negative. Therefore, the patient was diagnosed with PMF and received oral ruxolitinib. However, the spleen and hematologic responses were poor. We review the literature, analyze previous reports of the mutation sites in our patient and differences between our patient and other reported cases of co-mutated CALR and MPL genes, and discuss the reason why the CALR and MPL co-mutations are rare and possible mechanisms and their impact on the prognosis of patients.
CONCLUSION CALR and MPL mutations can be concurrent in MPN, but they are rare. The use of NGS may help to identify more patients with co-mutated CALR and MPL genes. This will help to further explore the mechanism and its impact on these patients to develop appropriate treatment strategies.
Collapse
Affiliation(s)
- Feng-Ping Zhou
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang Province, China
| | | | - Hua-Ping Du
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang Province, China
| | - Shan-Bo Cao
- Acornmed Biotechnology Co., Ltd., Beijing 100176, China
| | - Jin Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
258
|
Steinbrunn T, Zovko J, Kraus S. JAK-Inhibitoren für die Behandlung hämatoonkologischer Erkrankungen. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1285-4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungDie konstitutive Aktivierung des JAK-STAT-Signalwegs ist charakteristisch für die Pathogenese der myeloproliferativen Neoplasien, speziell der primären Myelofibrose, der Polycythaemia vera und der essentiellen Thrombozythämie. Die Einführung von oral verfügbaren JAK-Inhibitoren in die Klinik brachte einen entscheidenden Fortschritt für die pharmakologische Behandlung der Myelofibrose und der Polycythaemia vera, wenngleich damit noch keine Heilung verbunden ist. Im Vordergrund steht die Verbesserung der Lebensqualität der meist älteren Patienten durch Kontrolle krankheitsbedingter konstitutioneller Symptome, Reduktion einer bestehenden Splenomegalie und Vermeidung insbesondere von thromboembolischen Folgekomplikationen. Darüber hinaus kann die Therapie von Myelofibrose-Patienten mit JAK-Inhibitoren jedoch auch deren Krankheitsverlauf verlangsamen und ihr Gesamtüberleben verlängern. Der bislang einzige in Europa zugelassene JAK-Inhibitor Ruxolitinib hemmt die Isoformen JAK1 und JAK2 und besitzt sowohl antiinflammatorisches als auch antiproliferatives Potenzial. Damit zeigt dieser Inhibitor überdies eine gute Wirkung in der Therapie der Graft-versus-Host-Erkrankung nach allogener hämatopoetischer Stammzelltransplantation. Mit Fedratinib, Pacritinib und Momelatinib befinden sich derzeit 3 weitere vielversprechende JAK-Inhibitoren mit etwas unterschiedlichen Wirkprofilen in der klinischen Phase III-Testung. Diese zeigen auch bei Patienten mit unwirksamer oder unverträglicher Vorbehandlung mit Ruxolitinib Wirksamkeit, sodass eine kontinuierliche Weiterentwicklung der entsprechenden Therapiestrategien abzusehen ist.
Collapse
Affiliation(s)
- Torsten Steinbrunn
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| | - Josip Zovko
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| | - Sabrina Kraus
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| |
Collapse
|
259
|
Donada A, Basso-Valentina F, Arkoun B, Monte-Mor B, Plo I, Raslova H. Induced pluripotent stem cells and hematological malignancies: A powerful tool for disease modeling and drug development. Stem Cell Res 2020; 49:102060. [PMID: 33142254 DOI: 10.1016/j.scr.2020.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/12/2023] Open
Abstract
The derivation of human pluripotent stem cell (iPSC) lines by in vitro reprogramming of somatic cells revolutionized research: iPSCs have been used for disease modeling, drug screening and regenerative medicine for many disorders, especially when combined with cutting-edge genome editing technologies. In hematology, malignant transformation is often a multi-step process, that starts with either germline or acquired genetic alteration, followed by progressive acquisition of mutations combined with the selection of one or more pre-existing clones. iPSCs are an excellent model to study the cooperation between different genetic alterations and to test relevant therapeutic drugs. In this review, we will describe the use of iPSCs for pathophysiological studies and drug testing in inherited and acquired hematological malignancies.
Collapse
Affiliation(s)
- A Donada
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - F Basso-Valentina
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - B Arkoun
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - B Monte-Mor
- Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - I Plo
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France
| | - H Raslova
- INSERM, UMR1287, Université Paris Sud, Université Paris Saclay, Gustave Roussy, Equipe Labellisée LNCC, Villejuif, France.
| |
Collapse
|
260
|
Mechanistic basis and efficacy of targeting the β-catenin-TCF7L2-JMJD6-c-Myc axis to overcome resistance to BET inhibitors. Blood 2020; 135:1255-1269. [PMID: 32068780 DOI: 10.1182/blood.2019002922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
The promising activity of BET protein inhibitors (BETi's) is compromised by adaptive or innate resistance in acute myeloid leukemia (AML). Here, modeling of BETi-persister/resistance (BETi-P/R) in human postmyeloproliferative neoplasm (post-MPN) secondary AML (sAML) cells demonstrated accessible and active chromatin in specific superenhancers/enhancers, which was associated with increased levels of nuclear β-catenin, TCF7L2, JMJD6, and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly restored in BETi-P/R sAML cells. CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6 reversed BETi-P/R, whereas ectopic overexpression conferred BETi-P/R in sAML cells, confirming the mechanistic role of the β-catenin-TCF7L2-JMJD6-c-Myc axis in BETi resistance. Patient-derived, post-MPN, CD34+ sAML blasts exhibiting relative resistance to BETi, as compared with sensitive sAML blasts, displayed higher messenger RNA and protein expression of TCF7L2, JMJD6, and c-Myc and following BETi washout exhibited rapid restoration of c-Myc and JMJD6. CRISPR/Cas9 knockout of TCF7L2 and JMJD6 depleted their levels, inducing loss of viability of the sAML blasts. Disruption of colocalization of nuclear β-catenin with TBL1 and TCF7L2 by the small-molecule inhibitor BC2059 combined with depletion of BRD4 by BET proteolysis-targeting chimera reduced c-Myc levels and exerted synergistic lethality in BETi-P/R sAML cells. This combination also reduced leukemia burden and improved survival of mice engrafted with BETi-P/R sAML cells or patient-derived AML blasts innately resistant to BETi. Therefore, multitargeted disruption of the β-catenin-TCF7L2-JMJD6-c-Myc axis overcomes adaptive and innate BETi resistance, exhibiting preclinical efficacy against human post-MPN sAML cells.
Collapse
|
261
|
Bewersdorf JP, Zeidan AM. Novel and combination therapies for polycythemia vera and essential thrombocythemia: the dawn of a new era. Expert Rev Hematol 2020; 13:1189-1199. [PMID: 33076714 DOI: 10.1080/17474086.2020.1839887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Essential thrombocythemia (ET) and polycythemia vera (PV) belong to the BCR-ABL1-negative myeloproliferative neoplasms and are characterized by the clonal proliferation of hematopoietic stem and progenitor cells. The contribution of aberrant immune regulation within the bone marrow microenvironment to ET and PV pathogenesis as well as the underlying molecular landscape is becoming increasingly understood. AREAS COVERED Authors searched PubMed and conference abstracts in August 2020 for preclinical and clinical studies to provide an overview of the immune pathobiology in ET and PV and the rationale for several novel agents. A discussion of recent clinical trials on interferon and ruxolitinib in ET and PV patients is provided followed by an outline of the future challenges in the field particularly for novel therapeutics and an increasingly individualized, molecularly driven approach to treatment selection. Several novel agents are currently being actively evaluated and are reviewed herein as well. EXPERT OPINION While hydroxyurea remains the first-line treatment for cytoreduction in most high-risk ET and PV patients, the disease-modifying potential of IFN is promising and could make it a preferred option for selected patients. Advances in molecular testing will enable a more individualized approach to prognostication and treatment selection.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center , New Haven, CT, USA
| | - Amer M Zeidan
- Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center , New Haven, CT, USA.,Cancer Outcomes, Public Policy and Effectiveness Research (COPPER) Center, Yale Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center , New Haven, CT, USA
| |
Collapse
|
262
|
Rambaldi B, Diral E, Donsante S, Di Marzo N, Mottadelli F, Cardinale L, Dander E, Isimbaldi G, Pioltelli P, Biondi A, Riminucci M, D'Amico G, Elli EM, Pievani A, Serafini M. Heterogeneity of the bone marrow niche in patients with myeloproliferative neoplasms: ActivinA secretion by mesenchymal stromal cells correlates with the degree of marrow fibrosis. Ann Hematol 2020; 100:105-116. [PMID: 33089365 DOI: 10.1007/s00277-020-04306-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023]
Abstract
Mesenchymal stromal cells (MSCs) represent an essential component of the bone marrow (BM) niche and display disease-specific alterations in several myeloid malignancies. The aim of this work was to study possible MSC abnormalities in Philadelphia-negative myeloproliferative neoplasms (MPNs) in relationship to the degree of BM fibrosis. MSCs were isolated from BM of 6 healthy donors (HD) and of 23 MPN patients, classified in 3 groups according to the diagnosis and the grade of BM fibrosis: polycythemia vera and essential thrombocythemia (PV/ET), low fibrosis myelofibrosis (LF-MF), and high fibrosis MF (HF-MF). MSC cultures were established from 21 of 23 MPN patients. MPN-derived MSCs did not exhibit any functional impairment in their adipogenic/osteogenic/chondrogenic differentiation potential and displayed a phenotype similar to HD-derived MSCs but with a decreased expression of CD146. All MPN-MSC lines were negative for the patient-specific hematopoietic clone mutations (JAK2, MPL, CALR). MSCs derived from HF-MF patients displayed a reduced clonogenic potential and a lower growth kinetic compared to MSCs from HD, LF-MF, and PV/ET patients. mRNA levels of hematopoiesis regulatory molecules were unaffected in MSCs from HF-MF compared to HD. Finally, in vitro ActivinA secretion by MSCs was increased in HF-MF compared to LF-MF patients, in association with a lower hemoglobin value. Increased ActivinA immunolabeling on stromal cells and erythroid precursors was also observed in HF-MF BM biopsies. In conclusion, higher grade of BM fibrosis is associated with functional impairment of MSCs and the increased secretion of ActivinA may represent a suitable target for anemia treatment in MF patients.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy.,Department of Hematology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Elisa Diral
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy.,Department of Hematology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy.,Hematology Department, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Noemi Di Marzo
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Federica Mottadelli
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Lucia Cardinale
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Erica Dander
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Isimbaldi
- Department of Pathology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy.,Department of Pathology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Pietro Pioltelli
- Department of Hematology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Giovanna D'Amico
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Elena Maria Elli
- Department of Hematology, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy.
| | - Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
263
|
Josefsson EC, Vainchenker W, James C. Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. Int J Mol Sci 2020; 21:ijms21207591. [PMID: 33066573 PMCID: PMC7589436 DOI: 10.3390/ijms21207591] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/14/2023] Open
Abstract
Blood platelets have important roles in haemostasis, where they quickly stop bleeding in response to vascular damage. They have also recognised functions in thrombosis, immunity, antimicrobal defense, cancer growth and metastasis, tumour angiogenesis, lymphangiogenesis, inflammatory diseases, wound healing, liver regeneration and neurodegeneration. Their brief life span in circulation is strictly controlled by intrinsic apoptosis, where the prosurvival Bcl-2 family protein, Bcl-xL, has a major role. Blood platelets are produced by large polyploid precursor cells, megakaryocytes, residing mainly in the bone marrow. Together with Mcl-1, Bcl-xL regulates megakaryocyte survival. This review describes megakaryocyte maturation and survival, platelet production, platelet life span and diseases of abnormal platelet number with a focus on the role of Bcl-xL during these processes.
Collapse
Affiliation(s)
- Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - William Vainchenker
- University Paris-Saclay, INSERM UMR 1270, Gustave Roussy, 94800 Villejuif, France
| | - Chloe James
- University of Bordeaux, INSERM U1034, Biology of Cardiovascular Diseases, 33600 Pessac, France
- Laboratory of Hematology, Bordeaux University Hospital Center, Haut-Leveque Hospital, 33604 Pessac, France
| |
Collapse
|
264
|
Wan Z, Han B. Comparison and Implications of Mutational Profiles of Myelodysplastic Syndromes, Myeloproliferative Neoplasms, and Myelodysplastic/Myeloproliferative Neoplasms: A Meta-Analysis. Front Oncol 2020; 10:579221. [PMID: 33117717 PMCID: PMC7575718 DOI: 10.3389/fonc.2020.579221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Dysplasia and proliferation are histological properties that can be used to diagnose and categorize myeloid tumors in myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). However, these conditions are not exclusive, and overlap between them leads to another classification, MDS/MPN. As well as phenotype continuity, these three conditions may have genetic relationships that have not yet been identified. This study aimed to obtain their mutational profiles by meta-analysis and explore possible similarities and differences. We reviewed screening studies of gene mutations, published from January 2000 to March 2020, from PubMed and Web of Science. Fifty-three articles were eligible for the meta-analysis, and at most 9,809 cases were involved for any gene. The top mutant genes and their pooled mutation rates were as follows: SF3B1 (20.2% [95% CI 11.6-30.5%]) in MDS, TET2 (39.2% [95% CI 21.7-52.0%]) in MDS/MPN, and JAK2 (67.9% [95% CI 64.1-71.6%]) in MPN. Subgroup analysis revealed that leukemic transformation-related genes were more commonly mutated in high-risk MDS (MDS with multilineage dysplasia and MDS with excess blasts) than that in other MDS entities. Thirteen genes including ASXL1, U2AF1, SRSF2, SF3B1, and ZRSR2 had significantly higher mutation frequencies in primary myelofibrosis (PMF) compared with essential thrombocythemia and polycythemia vera; this difference distinguished PMF from MPN and likened it to MDS. Chronic myelomonocytic leukemia and atypical chronic myeloid leukemia were similar entities but showed several mutational differences. A heat map demonstrated that juvenile myelomonocytic leukemia and MDS/MPN with ring sideroblasts and thrombocytosis were two distinct entities, whereas MDS/MPN-unclassifiable was closest to high-risk MDS. Such genetic closeness or difference reflected features in the pathogenesis, diagnosis, treatment, and progression of these conditions, and could inspire future genetic studies.
Collapse
Affiliation(s)
- Ziqi Wan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
265
|
Bewersdorf JP, Giri S, Wang R, Podoltsev N, Williams RT, Rampal RK, Tallman MS, Zeidan AM, Stahl M. Interferon Therapy in Myelofibrosis: Systematic Review and Meta-analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2020; 20:e712-e723. [PMID: 32669244 PMCID: PMC7541411 DOI: 10.1016/j.clml.2020.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myelofibrosis (MF) is a Philadelphia chromosome-negative myeloproliferative neoplasm characterized by progressive bone marrow failure, increased risk of progression to acute myeloid leukemia, and constitutional symptoms. For over 3 decades, various formulations of interferon (IFN) have been used for the treatment of MF, with variable results, and the role of IFN in the treatment of MF is evolving. PATIENTS AND METHODS For this systematic review and meta-analysis, Medline and Embase via Ovid, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science were searched from inception through March 2019 for studies of pegylated IFN (peg-IFN) and non-peg-IFN in MF patients. The primary outcome of overall response rate was defined as a composite of complete response, partial response, complete hematologic response, and partial hematologic response. Random-effects models were used to pool overall response rate, and metaregression analyses were performed to compare peg-IFN and non--peg-IFN formulations. RESULTS Among the 10 studies with 141 MF patients included, the overall response rate was 49.9% (95% confidence interval [CI], 30.4-69.3), and there was no statistically significant difference (P = .99) between peg-IFN (50.0%; 95% CI, 26.2-73.9; I2 = 76.9%) and non-peg-IFN (49.6%; 95% CI, 20.5-79.0; I2 = 56.7%). Treatment discontinuation resulting from adverse events was common with non-peg-IFN at 35.8% (95% CI, 3.5-68.1) per year, and less in the one study on peg-IFN (0.5% per year). CONCLUSION IFN can lead to hematologic improvements in a subset of MF patients, but study quality is limited and heterogenous. Biomarkers predicting response to IFN and formulations with improved tolerability are needed.
Collapse
Affiliation(s)
- Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT
| | - Smith Giri
- Division of Hematology and Oncology, University of Alabama School of Medicine, Birmingham, AL
| | - Rong Wang
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT
| | - Nikolai Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT
| | - Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY
| | - Raajit K Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, CT
| | - Maximilian Stahl
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
266
|
Homaei Hadad E, Pezeshki SMS, Shahrabi S, Saki Malehi A, Saki N. Co-existence of mutations in myeloproliferative neoplasms and their clinical significance: a prognostic approach. Expert Rev Hematol 2020; 13:1289-1301. [PMID: 32886563 DOI: 10.1080/17474086.2020.1819232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Myeloproliferative neoplasms (MPNs) are a group of clonal hematopoietic stem cell disorders that may occur after one or more mutations in hematopoietic progenitor cells. In this study, we will review the co-existence of mutations (especially dual mutations) in MPNs and its effect on the prognosis of patients. METHODS To find relevant published papers, we systematically searched six major international indexing databases, namely PubMed/Medline, EmBase, Cochrane central, ISI web of science, and Scopus from Feb. 2000 until Jan. 2020. We included the following keywords in the analyzes: Myeloproliferative Disorders, Mutation, Co-existence of Mutations, Acute myeloid leukemia. RESULTS Co-existence of several mutations in MPNs is mainly associated with a poor prognosis compared with the unimutated MPN disorders. There are several effective factors such as sequence of mutations, incidence of mutations in one cell or different cells, mutation, and MPN type. CONCLUSION AND EXPERT COMMENTARY It seems that monitoring the status of mutations in MPNs and recognizing the co-existence of mutations (especially dual mutations) in order to determine prognosis and possibility of progression to acute form of leukemia can lead to the prediction of prognosis in MPN patients as well as establishment of better and more reliable therapeutic strategies for patients.
Collapse
Affiliation(s)
- Elham Homaei Hadad
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran.,Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences , Semnan, Iran
| | - Amal Saki Malehi
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
267
|
Li S, Feng J, Wu F, Cai J, Zhang X, Wang H, Fetahu IS, Iwanicki I, Ma D, Hu T, Liu H, Wang B, Shi G, Tan L, Shi YG. TET2 promotes anti-tumor immunity by governing G-MDSCs and CD8 + T-cell numbers. EMBO Rep 2020; 21:e49425. [PMID: 32929842 DOI: 10.15252/embr.201949425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The host immune response is a fundamental mechanism for attenuating cancer progression. Here we report a role for the DNA demethylase and tumor suppressor TET2 in host anti-tumor immunity. Deletion of Tet2 in mice elevates IL-6 levels upon tumor challenge. Elevated IL-6 stimulates immunosuppressive granulocytic myeloid-derived suppressor cells (G-MDSCs), which in turn reduce CD8+ T cells upon tumor challenge. Consequently, systematic knockout of Tet2 in mice leads to accelerated syngeneic tumor growth, which is constrained by anti-PD-1 blockade. Removal of G-MDSCs by the anti-mouse Ly6g antibodies restores CD8+ T-cell numbers in Tet2-/- mice and reboots their anti-tumor activity. Importantly, anti-IL-6 antibody treatment blocks the expansion of G-MDSCs and inhibits syngeneic tumor growth. Collectively, these findings reveal a TET2-mediated IL-6/G-MDSCs/CD8+ T-cell immune response cascade that safeguards host adaptive anti-tumor immunity, offering a cell non-autonomous mechanism of TET2 for tumor suppression.
Collapse
Affiliation(s)
- Shuangqi Li
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiuxing Feng
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feizhen Wu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Birth Defects, Children's Hospital, Fudan University, Shanghai, China
| | - Jiabin Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haikun Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Irfete S Fetahu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabella Iwanicki
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dingailu Ma
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tao Hu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hang Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bingjie Wang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoming Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Tan
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yujiang Geno Shi
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
268
|
Real-world experience with Ropeginterferon-alpha 2b (Besremi) in Philadelphia-negative myeloproliferative neoplasms. J Formos Med Assoc 2020; 120:863-873. [PMID: 32873465 DOI: 10.1016/j.jfma.2020.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND/PURPOSE Ropeginterferon alpha-2b (Ropeg) is a novel pegylated interferon-alpha recently approved for the treatment of polycythemia vera (PV) in Europe. However, other than data from clinical trials, little is known about this agent in real world practice. METHODS A compassionate use program employing Ropeg for treating patients with unmet medical need was initiated in Taiwan in 2017. Herein, we collected clinical data and assessed the safety as well as efficacy of Ropeg in nine patients treated in this program. RESULTS Collectively, among evaluable patients, both the molecular response and complete blood count remission rates were 62.5%. Most therapy-related side effects were mild, and there was no treatment discontinuation attributable to intolerable adverse events. The agent also showed efficacy in symptom amelioration and spleen size reduction. Although no specific patterns of cytokine level alteration could be identified, significantly attenuated plasma levels of inflammation markers were observed in one particular patient who happened to have normalized spleen size and most remarkable reduction in JAK2 mutant allele burden, indicating all-around improvement in every aspect of this case. Furthermore, plasma hepcidin levels increased in two-thirds of PV patients, illustrating the potential of Ropeg to restore normal regulation of erythropoiesis. Using RNA sequencing on pre- and post-treatment samples from one patient, we demonstrated altered expression of genes participating in IFN response, inflammation, apoptosis, and cellular differentiation. CONCLUSION Conclusively, observed signs of efficacy and safety in our real-world experience prove Ropeg as a promising option for the treatment of MPN.
Collapse
|
269
|
Matsuura S, Thompson CR, Belghasem ME, Bekendam RH, Piasecki A, Leiva O, Ray A, Italiano J, Yang M, Merill-Skoloff G, Chitalia VC, Flaumenhaft R, Ravid K. Platelet Dysfunction and Thrombosis in JAK2 V617F-Mutated Primary Myelofibrotic Mice. Arterioscler Thromb Vasc Biol 2020; 40:e262-e272. [PMID: 32814440 DOI: 10.1161/atvbaha.120.314760] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The risk of thrombosis in myeloproliferative neoplasms, such as primary myelofibrosis varies depending on the type of key driving mutation (JAK2 [janus kinase 2], CALR [calreticulin], and MPL [myeloproliferative leukemia protein or thrombopoietin receptor]) and the accompanying mutations in other genes. In the current study, we sought to examine the propensity for thrombosis, as well as platelet activation properties in a mouse model of primary myelofibrosis induced by JAK2V617F (janus kinase 2 with valine to phenylalanine substitution on codon 617) mutation. Approach and Results: Vav1-hJAK2V617F transgenic mice show hallmarks of primary myelofibrosis, including significant megakaryocytosis and bone marrow fibrosis, with a moderate increase in red blood cells and platelet number. This mouse model was used to study responses to 2 models of vascular injury and to investigate platelet properties. Platelets derived from the mutated mice have reduced aggregation in response to collagen, reduced thrombus formation and thrombus size, as demonstrated using laser-induced or FeCl3-induced vascular injury models, and increased bleeding time. Strikingly, the mutated platelets had a significantly reduced number of dense granules, which could explain impaired ADP secretion upon platelet activation, and a diminished second wave of activation. CONCLUSIONS Together, our study highlights for the first time the influence of a hyperactive JAK2 on platelet activation-induced ADP secretion and dense granule homeostasis, with consequent effects on platelet activation properties.
Collapse
Affiliation(s)
- Shinobu Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute (S.M., C.R.T., A.P., O.L., K.R.), Boston University School of Medicine, MA
| | - Cristal R Thompson
- Department of Medicine and Whitaker Cardiovascular Institute (S.M., C.R.T., A.P., O.L., K.R.), Boston University School of Medicine, MA
| | | | - Roelof H Bekendam
- Department of Medicine (R.H.B.), Boston University School of Medicine, MA
| | - Andrew Piasecki
- Department of Medicine and Whitaker Cardiovascular Institute (S.M., C.R.T., A.P., O.L., K.R.), Boston University School of Medicine, MA
| | - Orly Leiva
- Department of Medicine and Whitaker Cardiovascular Institute (S.M., C.R.T., A.P., O.L., K.R.), Boston University School of Medicine, MA
| | - Anjana Ray
- Department of Medicine, Brigham and Women's Hospital, Boston MA (A.R., J.I.)
| | - Joseph Italiano
- Department of Medicine, Brigham and Women's Hospital, Boston MA (A.R., J.I.)
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.Y., G.M.-S., R.F.)
| | - Glenn Merill-Skoloff
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.Y., G.M.-S., R.F.)
| | - Vipul C Chitalia
- Renal Section, Department of Medicine (V.C.C.), Boston University School of Medicine, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.Y., G.M.-S., R.F.)
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute (S.M., C.R.T., A.P., O.L., K.R.), Boston University School of Medicine, MA
| |
Collapse
|
270
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
271
|
Hautin M, Mornet C, Chauveau A, Bernard DG, Corcos L, Lippert E. Splicing Anomalies in Myeloproliferative Neoplasms: Paving the Way for New Therapeutic Venues. Cancers (Basel) 2020; 12:E2216. [PMID: 32784800 PMCID: PMC7464941 DOI: 10.3390/cancers12082216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of spliceosome mutations in myeloid malignancies, abnormal pre-mRNA splicing, which has been well studied in various cancers, has attracted novel interest in hematology. However, despite the common occurrence of spliceosome mutations in myelo-proliferative neoplasms (MPN), not much is known regarding the characterization and mechanisms of splicing anomalies in MPN. In this article, we review the current scientific literature regarding "splicing and myeloproliferative neoplasms". We first analyse the clinical series reporting spliceosome mutations in MPN and their clinical correlates. We then present the current knowledge about molecular mechanisms by which these mutations participate in the pathogenesis of MPN or other myeloid malignancies. Beside spliceosome mutations, splicing anomalies have been described in myeloproliferative neoplasms, as well as in acute myeloid leukemias, a dreadful complication of these chronic diseases. Based on splicing anomalies reported in chronic myelogenous leukemia as well as in acute leukemia, and the mechanisms presiding splicing deregulation, we propose that abnormal splicing plays a major role in the evolution of myeloproliferative neoplasms and may be the target of specific therapeutic strategies.
Collapse
Affiliation(s)
- Marie Hautin
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
| | - Clélia Mornet
- Laboratoire d’Hématologie, CHU de Brest, F-29200 Brest, France;
| | - Aurélie Chauveau
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
- Laboratoire d’Hématologie, CHU de Brest, F-29200 Brest, France;
| | - Delphine G. Bernard
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
| | - Laurent Corcos
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
| | - Eric Lippert
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (M.H.); (A.C.); (D.G.B.); (L.C.)
- Laboratoire d’Hématologie, CHU de Brest, F-29200 Brest, France;
| |
Collapse
|
272
|
Skov V. Next Generation Sequencing in MPNs. Lessons from the Past and Prospects for Use as Predictors of Prognosis and Treatment Responses. Cancers (Basel) 2020; 12:E2194. [PMID: 32781570 PMCID: PMC7464861 DOI: 10.3390/cancers12082194] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are acquired hematological stem cell neoplasms characterized by driver mutations in JAK2, CALR, or MPL. Additive mutations may appear in predominantly epigenetic regulator, RNA splicing and signaling pathway genes. These molecular mutations are a hallmark of diagnostic, prognostic, and therapeutic assessment in patients with MPNs. Over the past decade, next generation sequencing (NGS) has identified multiple somatic mutations in MPNs and has contributed substantially to our understanding of the disease pathogenesis highlighting the role of clonal evolution in disease progression. In addition, disease prognostication has expanded from encompassing only clinical decision making to include genomics in prognostic scoring systems. Taking into account the decreasing costs and increasing speed and availability of high throughput technologies, the integration of NGS into a diagnostic, prognostic and therapeutic pipeline is within reach. In this review, these aspects will be discussed highlighting their role regarding disease outcome and treatment modalities in patients with MPNs.
Collapse
Affiliation(s)
- Vibe Skov
- Department of Hematology, Zealand University Hospital, Vestermarksvej 7-9, 4000 Roskilde, Denmark
| |
Collapse
|
273
|
Otieno SB, Altahan A, Karri S, Kaweeta F, Lands L, Weir A. CIN or not: An approach to the evaluation and management of chronic idiopathic neutrophilia. Blood Rev 2020; 46:100739. [PMID: 32811689 DOI: 10.1016/j.blre.2020.100739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022]
Abstract
Neutrophilia refers to an increase in the number of circulating neutrophils in the peripheral blood. Some common etiologies include infection, inflammatory conditions, myeloproliferative disorders, malignancies, endocrinopathies, drugs, and anemia. Rare disorders such as leukocyte adhesion deficiency can also cause neutrophilia. In many cases, there is an elevation of neutrophil count that persists for months or even years with no clear underlying cause in an otherwise asymptomatic patient. This is referred to as chronic idiopathic neutrophilia (CIN). Despite being a condition encountered by many physicians, there is a paucity of literature addressing CIN. Certain conditions such as stress, exercise, smoking, obesity, and obstructive sleep apnea have been associated with CIN and may provide explanations for neutrophilia previously thought to be idiopathic. Herein, we present a review of the literature on CIN and propose a systematic approach to this commonly encountered clinical condition.
Collapse
Affiliation(s)
- Steve Biko Otieno
- The University of Tennessee Health Science Center, Department of Hematology/Oncology, 19 S. Manassas, Memphis, TN 38103, USA; The Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA; The West Cancer and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA.
| | - Alaa Altahan
- The University of Tennessee Health Science Center, Department of Hematology/Oncology, 19 S. Manassas, Memphis, TN 38103, USA; The Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA; The West Cancer and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA.
| | - Saradasri Karri
- The University of Tennessee Health Science Center, Department of Hematology/Oncology, 19 S. Manassas, Memphis, TN 38103, USA; The Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA; The West Cancer and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA.
| | - Fnu Kaweeta
- The University of Tennessee Health Science Center, Department of Hematology/Oncology, 19 S. Manassas, Memphis, TN 38103, USA; The Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA; The West Cancer and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA.
| | - Lindsey Lands
- The University of Tennessee Health Science Center, Department of Hematology/Oncology, 19 S. Manassas, Memphis, TN 38103, USA; The Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA.
| | - Alva Weir
- The University of Tennessee Health Science Center, Department of Hematology/Oncology, 19 S. Manassas, Memphis, TN 38103, USA; The Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA; The West Cancer and Research Institute, 7945 Wolf River Blvd, Germantown, TN 38138, USA.
| |
Collapse
|
274
|
Ogasawara K, Xu C, Kanamaluru V, Siebers N, Surapaneni S, Ridoux L, Palmisano M, Krishna G. Excretion balance and pharmacokinetics following a single oral dose of [ 14C]-fedratinib in healthy subjects. Cancer Chemother Pharmacol 2020; 86:307-314. [PMID: 32748109 DOI: 10.1007/s00280-020-04121-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/25/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Fedratinib is an oral and selective kinase inhibitor with activity against wild type and mutationally activated Janus kinase 2 and FMS-like tyrosine kinase 3, for the treatment of adult patients with intermediate-2 or high-risk primary or secondary myelofibrosis. This open-label mass balance study in healthy subjects investigated the excretion balance and systemic exposure of radioactivity after oral administration of [14C]-fedratinib; and the pharmacokinetics of fedratinib and its contribution to overall exposure of radioactivity. METHODS Six healthy males received a single oral dose of 200 mg [14C]-fedratinib base (2.775 MBq, 75 μCi) as a solution. Blood, urine and feces samples were collected for up to 35 day postdose. Urine and feces samples were collected until the 24-h excretion of radioactivity fell below 0.5% of administered dose (at least 14 day postdose). Expired air was collected up to 8-h postdose. Total radioactivity (blood, plasma, urine, feces, and expired air) and fedratinib concentrations (plasma) were measured. RESULTS Approximately 77% (23% unchanged) of fedratinib derived radioactivity was excreted in feces and 5% (3% unchanged) was excreted in urine. Excretion via expired air was negligible. The time to maximum concentration for both total radioactivity and parent drug was similar, with unchanged drug representing the majority of the circulating radioactivity. The ratio of blood to plasma concentration of radioactivity ranged from 0.615 to 0.753 indicating limited distribution of fedratinib and/or its metabolites into red blood cells. CONCLUSIONS Fedratinib derived radioactivity was primarily excreted in feces following a single oral dose of radiolabeled fedratinib to healthy subjects.
Collapse
Affiliation(s)
- Ken Ogasawara
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 556 Morris Ave, Summit, NJ, 07901, USA
| | | | | | | | - Sekhar Surapaneni
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 556 Morris Ave, Summit, NJ, 07901, USA
| | | | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 556 Morris Ave, Summit, NJ, 07901, USA
| | - Gopal Krishna
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, 556 Morris Ave, Summit, NJ, 07901, USA.
| |
Collapse
|
275
|
Longhitano L, Li Volti G, Giallongo C, Spampinato M, Barbagallo I, Di Rosa M, Romano A, Avola R, Tibullo D, Palumbo GA. The Role of Inflammation and Inflammasome in Myeloproliferative Disease. J Clin Med 2020; 9:E2334. [PMID: 32707883 PMCID: PMC7464195 DOI: 10.3390/jcm9082334] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022] Open
Abstract
Polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF) are rare hematological conditions known as myeloproliferative neoplasms (MPNs). They are characterized for being BCR-ABL negative malignancies and affected patients often present with symptoms which can significantly impact their quality of life. MPNs are characterized by a clonal proliferation of an abnormal hematopoietic stem/progenitor cell. In MPNs; cells of all myeloid lineages; including those involved in the immune and inflammatory response; may belong to the malignant clone thus leading to an altered immune response and an overexpression of cytokines and inflammatory receptors; further worsening chronic inflammation. Many of these cytokines; in particular, IL-1β and IL-18; are released in active form by activating the inflammasome complexes which in turn mediate the inflammatory process. Despite this; little is known about the functional effects of stem cell-driven inflammasome signaling in MPN pathogenesis. In this review we focused on the role of inflammatory pathway and inflammasome in MPN diseases. A better understanding of the inflammatory-state-driving MPNs and of the role of the inflammasome may provide new insights on possible therapeutic strategies.
Collapse
Affiliation(s)
- Lucia Longhitano
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Giovanni Li Volti
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Cesarina Giallongo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Mariarita Spampinato
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Ignazio Barbagallo
- Section of Biochemistry, Department of Drug Sciences, University of Catania, 95123 Catania, Italy;
| | - Michelino Di Rosa
- Section of Human Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandra Romano
- Division of Hematology, Department of General Surgery and Medical-Surgical Specialties, A.O.U. “Policlinico-Vittorio Emanuele”, University of Catania, 95123 Catania, Italy;
| | - Roberto Avola
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Daniele Tibullo
- Section of Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (L.L.); (G.L.V.); (M.S.); (R.A.)
| | - Giuseppe Alberto Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
276
|
Kepp O, Liu P, Zhao L, Plo I, Kroemer G. Surface-exposed and soluble calreticulin: conflicting biomarkers for cancer prognosis. Oncoimmunology 2020; 9:1792037. [PMID: 32923154 PMCID: PMC7458660 DOI: 10.1080/2162402x.2020.1792037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increased exposure of calreticulin (CALR) on malignant cells is associated with therapy-relevant adaptive immune responses and superior therapeutic outcome in solid tumors and haemato-oncological diseases, because surface-exposed CALR acts as an ‘eat-me’ signal facilitating the phagocytosis of stressed and dying cancer cells by immature dendritic cells, thus favoring antitumor immune responses. On the contrary, mutations of the CALR gene that cause the omission of the C-terminal KDEL endoplasmic reticulum retention motif from CALR protein, resulting in its secretion from cells, act as oncogenic drivers in myeloproliferative neoplasms via the autocrine activation of the thrombopoietin receptor. We recently showed that soluble CALR inhibited the phagocytosis of cancer cells by dendritic cells, thus dampening anticancer immune responses. Furthermore, systemic elevations of soluble CALR that is secreted from tumors or that is artificially supplied by injection of the recombinant protein decreased the efficacy of immunotherapy. Thus, depending on its location, CALR can have immunostimulatory or immunosuppressive functions.
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Isabelle Plo
- INSERM UMR1287, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
277
|
Tan YX, Xu N, Huang JX, Wu WE, Liu L, Zhou LL, Liu XL, Yin CX, Xu D, Zhou X. [Analysis of gene mutations and clinic features in 108 patients with myeloproliferative neoplasm]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:576-582. [PMID: 32810965 PMCID: PMC7449771 DOI: 10.3760/cma.j.issn.0253-2727.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/14/2023]
Abstract
Objective: To analyze the genetic mutations and clinical features of the subtypes of classical BCR-ABL-negative myeloproliferative neoplasm (MPN) . Methods: Mutations of 108 newly diagnosed BCR-ABL-negative MPN patients [including 55 patients with essential thrombocytopenia (ET) , 24 with polycythemia vera (PV) , and 29 with primary myelofibrosis (PMF) ] were identified using next-generation sequencing with 127-gene panel, and the relationship between gene mutations and clinical features were analyzed. Results: Total 211 mutations in 32 genes were detected in 100 MPN patients (92.59% ) , per capita carried (1.96±1.32) mutations. 85.19% (92/108) patients carried the driver gene (JAK2, CALR, MPL) mutations, 69.56% (64/92) of these patients carried at least 1 additional gene mutation. In descending order of mutation frequency, the highest frequency was for activation signaling pathway genes (42.2% , 89/211) , methylation genes (17.6% , 36/211) , and chromatin-modified genes (16.1% , 34/211) . There was a significant difference in the number of mutations in the activation signaling pathway genes, epigenetic regulatory genes, spliceosomes, and RNA metabolism genes among the three MPN subgroups. The average number of additional mutations in PMF patients was higher than that in ET and PV patients (1.69±1.39, 0.67±0.70, 0.87±1.22, χ(2)=13.445, P=0.001) . MPN-SAF-TSS (MPN 10 score) (P=0.006) and myelofibrosis level (P=0.015) in patients with ≥ 3 mutant genes were higher and the HGB level (P=0.002) was lower than in those with<3 mutations. Twenty-six patients (24.1% ) carried high-risk mutation (HMR) , and patients with HMR had lower PLT (P=0.017) , HGB levels (P<0.001) , and higher myelofibrosis level (P=0.010) and MPN10 score (P<0.001) . The frequency of ASXL1 mutations was higher in PMF than in PV patients (34.5% vs. 4.2% , P=0.005) . PMF patients with ASXL1 had lower levels of PLT and HGB (P=0.029 and 0.019) . Conclusion: 69.56% of MPN patients carry at least one additional mutation, and 24.1% patients had HMR. Each subgroup had different mutation patterns. PMF patients had a higher average number of additional gene mutations, especially a higher frequency of ASXL1 mutation; PLT and HGB levels were lower in ASXL1 mutation PMF patients.
Collapse
Affiliation(s)
- Y X Tan
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Xu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J X Huang
- Department of Hematology, Yuebei People's Hospital, Shaoguan 512025, China
| | - W E Wu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Liu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L L Zhou
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X L Liu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - C X Yin
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - D Xu
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| | - X Zhou
- Department of Hematology, Nan fang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
278
|
Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 2020; 35:1-17. [PMID: 32647323 PMCID: PMC7787977 DOI: 10.1038/s41375-020-0954-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023]
Abstract
Myeloproliferative neoplasm (MPN)-associated myelofibrosis (MF) is characterized by cytopenias, marrow fibrosis, constitutional symptoms, extramedullary hematopoiesis, splenomegaly, and shortened survival. Constitutive activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in MF leads to cell proliferation, inhibition of cell death, and clonal expansion of myeloproliferative malignant cells. Fedratinib is a selective oral JAK2 inhibitor recently approved in the United States for treatment of adult patients with intermediate-2 or high-risk MF. In mouse models of JAK2V617F-driven myeloproliferative disease, fedratinib blocked phosphorylation of STAT5, increased survival, and improved MF-associated disease features, including reduction of white blood cell counts, hematocrit, splenomegaly, and fibrosis. Fedratinib exerts off-target inhibitory activity against bromodomain-containing protein 4 (BRD4); combination JAK/STAT and BRD4 inhibition was shown to synergistically block NF-kB hyperactivation and inflammatory cytokine production, attenuating disease burden and reversing bone marrow fibrosis in animal models of MPNs. In patients, fedratinib is rapidly absorbed and dosed once daily (effective half-life 41 h). Fedratinib showed robust clinical activity in JAK-inhibitor-naïve patients and in patients with MF who were relapsed, refractory, or intolerant to prior ruxolitinib therapy. Fedratinib is effective regardless of JAK2 mutation status. Onset of spleen and symptom responses are typically seen within the first 1–2 months of treatment. The most common adverse events (AEs) with fedratinib are grades 1–2 gastrointestinal events, which are most frequent during early treatment and decrease over time. Treatment discontinuation due to hematologic AEs in clinical trials was uncommon (~3%). Suspected cases of Wernicke’s encephalopathy were reported during fedratinib trials in ~1% of patients; thiamine levels should be monitored before and during fedratinib treatment as medically indicated. Phase III trials are ongoing to assess fedratinib effects on long-term safety, efficacy, and overall survival. The recent approval of fedratinib provides a much-needed addition to the limited therapeutic options available for patients with MF.
Collapse
|
279
|
Higgins A, Shah MV. Genetic and Genomic Landscape of Secondary and Therapy-Related Acute Myeloid Leukemia. Genes (Basel) 2020; 11:E749. [PMID: 32640569 PMCID: PMC7397259 DOI: 10.3390/genes11070749] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
A subset of acute myeloid leukemia (AML) arises either from an antecedent myeloid malignancy (secondary AML, sAML) or as a complication of DNA-damaging therapy for other cancers (therapy-related myeloid neoplasm, t-MN). These secondary leukemias have unique biological and clinical features that distinguish them from de novo AML. Over the last decade, molecular techniques have unraveled the complex subclonal architecture of sAML and t-MN. In this review, we compare and contrast biological and clinical features of de novo AML with sAML and t-MN. We discuss the role of genetic mutations, including those involved in RNA splicing, epigenetic modification, tumor suppression, transcription regulation, and cell signaling, in the pathogenesis of secondary leukemia. We also discuss clonal hematopoiesis in otherwise healthy individuals, as well as in the context of another malignancy, and how it challenges the conventional notion of sAML/t-MN. We conclude by summarizing the current and emerging treatment strategies, including allogenic transplant, in these complex scenarios.
Collapse
|
280
|
Shin E, Jeong JG, Chung H, Jung H, Park C, Yoon SR, Kim TD, Lee SJ, Choi I, Noh JY. The Gata1 murine megakaryocyte–erythroid progenitor cells expand robustly and alter differentiation potential. Biochem Biophys Res Commun 2020; 528:46-53. [DOI: 10.1016/j.bbrc.2020.04.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022]
|
281
|
Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci 2020; 111:2682-2688. [PMID: 32462673 PMCID: PMC7419020 DOI: 10.1111/cas.14503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 01/14/2023] Open
Abstract
Deregulation of cytokine signaling is frequently associated with various pathological conditions, including malignancies. In patients with myeloproliferative neoplasms (MPNs), recurrent somatic mutations in the calreticulin (CALR) gene, which encodes a molecular chaperone that resides in the endoplasmic reticulum, have been reported. Studies have defined mutant CALR as an oncogene promoting the development of MPN, and deciphered a novel molecular mechanism by which mutant CALR constitutively activates thrombopoietin receptor MPL and its downstream molecules to induce cellular transformation. The mechanism of interaction and activation of MPL by mutant CALR is unique, not only due to the latter forming a homomultimeric complex through a novel mutant‐specific sequence generated by frameshift mutation, but also for its ability to interact with immature asparagine‐linked glycan for eventual engagement with immature MPL in the endoplasmic reticulum. The complex formed between mutant CALR and MPL is then transported to the cell surface, where it induces constitutive activation of downstream kinase JAK2 bound to MPL. Refined structural and cell biological studies can provide an in‐depth understanding of this unusual mechanism of receptor activation by a mutant molecular chaperone. Mutant CALR is also involved in modulation of the immune response, transcription, and intracellular homeostasis, which could contribute to the development of MPN. In the present article, we comprehensively review the current understanding of the underlying molecular mechanisms for mutant molecular chaperone‐induced cellular transformation.
Collapse
Affiliation(s)
- Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
282
|
Abstract
Myeloproliferative diseases, including myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS), are driven by genetic abnormalities and increased inflammatory signaling and are at high risk to transform into acute myeloid leukemia (AML). Myeloid-derived suppressor cells were reported to enhance leukemia immune escape by suppressing an effective anti-tumor immune response. MPNs are a potentially immunogenic disease as shown by their response to interferon-α treatment and allogeneic hematopoietic stem-cell transplantation (allo-HSCT). Novel immunotherapeutic approaches such as immune checkpoint inhibition, tumor vaccination, or cellular therapies using target-specific lymphocytes have so far not shown strong therapeutic efficacy. Potential reasons could be the pro-inflammatory and immunosuppressive microenvironment in the bone marrow of patients with MPN, driving tumor immune escape. In this review, we discuss the biology of MPNs with respect to the pro-inflammatory milieu in the bone marrow (BM) and potential immunotherapeutic approaches.
Collapse
|
283
|
Rumi E, Sant'Antonio E, Cavalloni C, Comolli G, Ferretti VV, Cassaniti I, Pietra D, Trotti C, Ciboddo M, Furione M, Vanni D, Casetti IC, Favaron C, Baldanti F, Arcaini L, Cazzola M. Impaired virus-specific T cell responses in patients with myeloproliferative neoplasms treated with ruxolitinib. Hematol Oncol 2020; 38:554-559. [PMID: 32583904 DOI: 10.1002/hon.2769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/14/2023]
Abstract
Ruxolitinib is effective in myeloproliferative neoplasms (MPN) but can cause reactivation of silent infections. We aimed at evaluating viral load and T-cell responses to human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) in a cohort of 25 MPN patients treated with ruxolitinib. EBV-DNA and HCMV-DNA were quantified monthly using real-time polimerase chain reaction (PCR) on peripheral blood samples, and T-cell subsets were analyzed by flowcytometry. HCMV and EBV-directed T-cell responses were evaluated using the IFN-γ ELISPOT assay. Most patients had CD4+ and/or CD8+ T-cells below the normal range; these reductions were related to the duration of ruxolitinib treatment. In fact, reduced T-lymphocytes' subsets were found in 93% of patients treated for ≥5 years and in 45% of those treated for <5 years (P = .021). The former also had lower median numbers of CD4+ and CD8+ cells. Subclinical reactivation of EBV and HCMV occurred in 76% and 8% of patients. We observed a trend to an inverse relationship between EBV and CMV-specific CD4+ and CD8+ T-cell responses and viral load, and a trend to an inverse correlation with ruxolitinib dose. Therefore, our data suggest that the ruxolitinib treatment may interfere with immunosurveillance against EBV and HCMV.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Chiara Cavalloni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuditta Comolli
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Experimental Research Laboratories, Biotechnology Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniela Pietra
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Trotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michele Ciboddo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Milena Furione
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Daniele Vanni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Cristina Favaron
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Luca Arcaini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
284
|
Matsuura S, Thompson CR, Ng SK, Ward CM, Karagianni A, Mazzeo C, Malara A, Balduini A, Ravid K. Adhesion to fibronectin via α5β1 integrin supports expansion of the megakaryocyte lineage in primary myelofibrosis. Blood 2020; 135:2286-2291. [PMID: 32294178 PMCID: PMC7316217 DOI: 10.1182/blood.2019004230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) is a hallmark of bone marrow (BM) milieu in primary myelofibrosis (PMF). Because cells have the ability to adhere to the surrounding ECM through integrin receptors, we examined the hypothesis that an abnormal ECM-integrin receptor axis contributes to BM megakaryocytosis in JAK2V617F+ PMF. Secretion of ECM protein fibronectin (FN) by BM stromal cells from PMF patients correlates with fibrosis and disease severity. Here, we show that Vav1-hJAK2V617F transgenic mice (JAK2V617F+) have high BM FN content associated with megakaryocytosis and fibrosis. Further, megakaryocytes from JAK2V617F+ mice have increased cell surface expression of the α5 subunit of the α5β1 integrin, the major FN receptor in megakaryocytes, and augmented adhesion to FN compared with wild-type controls. Reducing adhesion to FN by an inhibitory antibody to the α5 subunit effectively reduces the percentage of CD41+ JAK2V617F+ megakaryocytes in vitro and in vivo. Corroborating our findings in mice, JAK2V617F+ megakaryocytes from patients showed elevated expression of α5 subunit, and a neutralizing antibody to α5 subunit reduced adhesion to FN and megakaryocyte number derived from CD34+ cells. Our findings reveal a previously unappreciated contribution of FN-α5β1 integrin to megakaryocytosis in JAK2V617F+ PMF.
Collapse
Affiliation(s)
- Shinobu Matsuura
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Cristal Reyna Thompson
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Seng Kah Ng
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Christina Marie Ward
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | - Aikaterini Karagianni
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Carla Mazzeo
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA; and
| | - Katya Ravid
- Department of Medicine-Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA
- Departments of Biochemistry and Biology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
285
|
Jang MA, Seo MY, Choi KJ, Hong DS. A Rare Case of Essential Thrombocythemia with Coexisting JAK2 and MPL Driver Mutations. J Korean Med Sci 2020; 35:e168. [PMID: 32537949 PMCID: PMC7295601 DOI: 10.3346/jkms.2020.35.e168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/13/2020] [Indexed: 01/14/2023] Open
Abstract
Philadelphia-negative (Ph-) classical myeloproliferative neoplasms (MPNs) include polycythemia vera, essential thrombocythemia (ET), and primary myelofibrosis. Somatic driver mutations in the JAK2, CALR, and MPL genes serve as major diagnostic criteria of the Ph- MPNs and these mutations occur in a mutually exclusive manner. In this report, we describe the first case of ET harboring double mutations in JAK2 V617F and MPL. For MPL, the patient had multiple clones of MPL mutations: c.1543_1546delinsAGGG (p.Trp515_Gln516delinsArgGlu) and c.1546C>G (p.Gln516Glu). The JAK2 V617F allele burden in our patient is very low (4%) compared to the relatively high (17%-78%) allele frequency of MPL mutations. The low JAK2 mutant burden might be explained by preexisting clonal hematopoiesis before overt signs of MPNs, followed by the acquisition of a second oncogenic mutation of CALR or MPL leading to the MPN phenotype. This highlights that screening for a second driver mutation should be considered in patients with a low JAK2 mutant burden by reporting a 57-year-old Korean man with ET.
Collapse
Affiliation(s)
- Mi Ae Jang
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| | - Mi Yeon Seo
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Kyoung Jin Choi
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Dae Sik Hong
- Division of Hematology & Oncology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| |
Collapse
|
286
|
Genomic characterization and prognostication applied to a Brazilian cohort of patients with myelofibrosis. Int J Hematol 2020; 112:361-368. [PMID: 32535855 DOI: 10.1007/s12185-020-02906-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Genomic characterization of patients with myeloproliferative neoplasms (MPN) may lead to better diagnostic classification, prognostic assessment, and treatment decisions. These goals are particularly important in myelofibrosis (MF). We performed target Next Generation Sequencing for a panel of 255 genes and Chromosome Microarray Analysis (CMA) in 27 patients with MF. Patients were classified according to genomic findings and we compared the performance of a personalized prognostication system with IPSS, MIPSS70 and MIPSS70 + v2. Twenty-six patients presented mutations: 11.1% had single driver mutations in either JAK2, CALR or MPL; 85.2% had mutations in non-restricted genes (median: 2 per patient). CMA was abnormal in 91.7% of the 24 cases with available data. Copy-Number-Neutral Loss-of-Heterozygosity was the most common finding (66.7%). Del13q was the most frequent copy number variation, and we could define a 2.4 Mb minimally affected region encompassing RB1, SUCLA2 and CLLS2 loci. The largest genomic subgroup consisted of patients with mutations in genes involved with chromatin organization and splicing control (40.7%) and the personalized system showed better concordance and accuracy than the other prognostic systems. Comprehensive genomic characterization reveals the striking genetic complexity of MF and, when combined with clinical data, led, in our cohort, to better prognostication performance.
Collapse
|
287
|
Song J, Hussaini M, Qin D, Zhang X, Shao H, Zhang L, Gajzer D, Basra P, Moscinski L, Zhang H. Comparison of SF3B1/DNMT3A Comutations With DNMT3A or SF3B1 Mutation Alone in Myelodysplastic Syndrome and Clonal Cytopenia of Undetermined Significance. Am J Clin Pathol 2020; 154:48-56. [PMID: 32112088 DOI: 10.1093/ajcp/aqaa016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To compare the clinical significance of SF3B1/DNMT3A Comutations with SF3B1 or DNMT3A mutation alone in myelodysplastic syndrome (MDS) and clonal cytopenia of undetermined significance (CCUS). METHODS We identified and compared 31 patients with only DNMT3A mutation, 48 patients with only SF3B1 mutation, and 16 patients with only SF3B1/DNMT3A comutations. RESULTS SF3B1/DNMT3A comutations were found to be more common in MDS, whereas DNMT3A mutation alone was more common in CCUS. The patients with SF3B1/DNMT3A comutations were less likely to have poor cytogenetics than patients with DNMT3A mutation alone. Patients with SF3B1/DNMT3A comutations showed significantly longer median survival time and better overall survival than patients with DNMT3A mutation alone. CONCLUSIONS Patients with SF3B1/DNMT3A comutations appear to have better clinical outcomes than patients with isolated DNMT3A mutation. These findings suggest that the favorable prognosis of SF3B1 mutation in is not abrogated by the concurrent presence of a DNMT3A mutation.
Collapse
Affiliation(s)
- Jinming Song
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Mohammad Hussaini
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Dahui Qin
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Xiaohui Zhang
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Haipeng Shao
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ling Zhang
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - David Gajzer
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Pukhraz Basra
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Lynn Moscinski
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Hailing Zhang
- Department of Hematopathology and Lab Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
288
|
Goyal H, Chachoua I, Pecquet C, Vainchenker W, Constantinescu SN. A p53-JAK-STAT connection involved in myeloproliferative neoplasm pathogenesis and progression to secondary acute myeloid leukemia. Blood Rev 2020; 42:100712. [PMID: 32660739 DOI: 10.1016/j.blre.2020.100712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 01/14/2023]
Abstract
Since the discovery of JAK2 V617F as a highly prevalent somatic acquired mutation in the majority of myeloproliferative neoplasms (MPNs), it has become clear that these diseases are driven by pathologic activation of JAK2 and eventually of STAT5 and other members of the STAT family. The concept was strengthened by the discovery of the other activating driver mutations in MPL (thrombopoietin receptor, TpoR) and in calreticulin gene, which all lead to persistent activation of wild type JAK2. Although with a rare frequency, MPNs can evolve to secondary acute myeloid leukemia (sAML), a condition that is resistant to treatment. Here we focus on the role of p53 in this transition. In sAML mutations in TP53 or amplification in genes coding for negative regulators of p53 are much more frequent than in de novo AML. We review studies that explore a signaling and biochemical interaction between activated STATs and p53 in MPNs and other cancers. With the development of advanced sequencing efforts, strong evidence has been presented for dominant negative effects of mutated p53 in leukemia. In other studies, gain of function effects have been described that might be cell type specific. A more profound understanding of the potential interaction between p53 and activated STATs is necessary in order to take full advantage of novel p53-targeted therapies.
Collapse
Affiliation(s)
- Harsh Goyal
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Ilyas Chachoua
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | - Christian Pecquet
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - William Vainchenker
- INSERM, Unité Mixte de Recherche 1170, Institut Gustave Roussy, Villejuif, France; Paris-Saclay, Unité Mixte de Recherche 1170, Institut Gustave Roussy, Villejuif, France; Gustave Roussy, Unité Mixte de Recherche 1170, Villejuif, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium; Université catholique de Louvain and de Duve Institute, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium.
| |
Collapse
|
289
|
Asher S, McLornan DP, Harrison CN. Current and future therapies for myelofibrosis. Blood Rev 2020; 42:100715. [PMID: 32536371 DOI: 10.1016/j.blre.2020.100715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/21/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Myelofibrosis is classified as a 'Philadelphia-chromosome negative' clonal myeloproliferative disorder. The heterogeneity of this condition and patient population and array of often challenging clinical manifestations can frequently make therapeutic decisions challenging. Despite many advances in therapy with targeted and combination approaches, following an enhanced understanding of underlying disease pathogenesis, cure only remains achievable with allogeneic stem cell transplant. This option is often limited to a small group of younger transplant-eligible patients with more advanced disease who have both a suitable donor and no or few co-morbidities. In this article, we will discuss up-to-date disease prognostication, common clinical challenges associated with myelofibrosis and both standard and novel therapeutic approaches. Increasingly complex prognostic modelling utilises patient-specific, haematological and genomic parameters to improve the accuracy of risk assessment and predict disease progression. We will also focus on difficult clinical scenarios such as disease-associated anaemia, thrombocytopenia and extremes of age. Future and evolving therapies within this field are highly anticipated and novel JAK inhibitor and non-JAK inhibitor-based therapy will also be discussed, including the new challenge of how to switch from one JAK inhibitor therapy to another.
Collapse
Affiliation(s)
- Samir Asher
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| |
Collapse
|
290
|
Epidemiology of the classical myeloproliferative neoplasms: The four corners of an expansive and complex map. Blood Rev 2020; 42:100706. [PMID: 32517877 DOI: 10.1016/j.blre.2020.100706] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
The classical myeloproliferative neoplasms (MPNs), specifically chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF), represent clonal myeloid disorders whose pathogenesis is driven by well-defined molecular abnormalities. In this comprehensive review, we summarize the epidemiological literature and present our own analysis of the most recent the Surveillance, Epidemiology, and End Results (SEER) program data through 2016. Older age and male gender are known risk factors for MPNs, but the potential etiological role of other variables is less established. The incidences of CML, PV, and ET are relatively similar at 1.0-2.0 per 100,000 person-years in the United States, while PMF is rarer with an incidence of 0.3 per 100,000 person-years. The availability of tyrosine kinase inhibitor therapy has dramatically improved CML patient outcomes and yield a life expectancy similar to the general population. Patients with PV or ET have better survival than PMF patients.
Collapse
|
291
|
Kurtovic-Kozaric A, Islamagic E, Komic H, Bilalovic N, Eminovic I, Burekovic A, Uzunovic A, Kurtovic S. The effects of mutational profiles on phenotypic presentation of myeloproliferative neoplasm subtypes in Bosnia: 18 year follow-up. Bosn J Basic Med Sci 2020; 20:236-247. [PMID: 31668145 PMCID: PMC7202189 DOI: 10.17305/bjbms.2019.4391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/25/2019] [Indexed: 11/28/2022] Open
Abstract
The identification of mutually exclusive somatic mutations shared among myeloproliferative neoplasm (MPN) subtypes has provided a powerful tool for studying disease evolution. Clinical features, gene mutations, and survival over 18 years were analyzed in MPN patients. One hundred thirty-eight MPN patients were subcategorized according to MPN subtypes: essential thrombocythemia (ET, n = 41), polycythemia vera (PV, n = 56), primary myelofibrosis (PMF, n = 10), and MPN unclassified (MPN-U, n = 31). Patient characteristics included clinical parameters, overall survival (OS), and mutational status of the Janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL) genes. We compared hematologic and clinical features of JAK2V617F-ET vs. CALR-mutated ET vs. JAK2V617F-PV patients. JAK2V617F-patients had higher values of erythrocytes, hemoglobin, and hematocrit compared to CALR-mutated patients (p < 0.05). The mutant allele burden in JAK2V617F-PV and JAK2V617F-ET patients directly correlated with erythrocyte, hemoglobin, and hematocrit values, but it inversely correlated with platelet count. Thus, mutant allele burden was an indicator of the clinical phenotype in JAK2V617F-MPN patients. OS was not affected by the mutational status. In general, mutated JAK2, CALR, and MPL genes left specific hematological signatures.
Collapse
Affiliation(s)
- Amina Kurtovic-Kozaric
- Department of Clinical Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Erna Islamagic
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Hana Komic
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Nurija Bilalovic
- Department of Clinical Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Izet Eminovic
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Adnan Burekovic
- Department of Internal Medicine, Clinical Hospital, Zenica, Bosnia and Herzegovina
| | - Amna Uzunovic
- Department of Internal Medicine, Clinical Hospital, Zenica, Bosnia and Herzegovina
| | - Sabira Kurtovic
- Department of Hematology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
292
|
Marín Oyarzún CP, Glembotsky AC, Goette NP, Lev PR, De Luca G, Baroni Pietto MC, Moiraghi B, Castro Ríos MA, Vicente A, Marta RF, Schattner M, Heller PG. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients With Essential Thrombocythemia. Front Immunol 2020; 11:705. [PMID: 32425934 PMCID: PMC7203216 DOI: 10.3389/fimmu.2020.00705] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/30/2020] [Indexed: 01/03/2023] Open
Abstract
Essential thrombocythemia (ET) is comprised among chronic myeloproliferative neoplasms (MPN) and is caused by driver mutations in JAK2, CALR, and MPL, which lead to megakaryocyte proliferation and prominent thrombocytosis. Thrombosis remains the main cause of morbidity in ET and is driven by the interplay between blood cells, the endothelium, the clotting cascade, and host-derived inflammatory mediators. Platelet activation plays a key role in the thrombotic predisposition, although the underlying mechanisms remain poorly defined. In addition to their role in hemostasis, platelets participate in innate immunity and inflammation owing to the expression of toll-like receptors (TLR), which recognize inflammatory signals, triggering platelet functional responses. Considering the impact of inflammation on ET procoagulant state, we assessed the contribution of TLR2 and TLR4 to platelet hemostatic and inflammatory properties in ET patients, by using Pam3CSK4 and lipopolysaccharide (LPS) as specific TLR2 and TLR4 ligands, respectively. TLR2 ligation induced increased surface translocation of α-granule-derived P-selectin and CD40L, which mediate platelet interaction with leukocytes and endothelial cells, respectively, and higher levels of dense granule-derived CD63 in patients, whereas PAC-1 binding was not increased and LPS had no effect on these platelet responses. Platelet-neutrophil aggregate formation was elevated in ET at baseline and after stimulation of both TLR2 and TLR4. In addition, ET patients displayed higher TLR2- and TLR4-triggered platelet secretion of the chemokine RANTES (CCL5), whereas von Willebrand factor release was not enhanced, revealing a differential releasate pattern for α-granule-stored inflammatory molecules. TLR-mediated hyperresponsiveness contrasted with impaired or preserved responses to classic platelet hemostatic agonists, such as TRAP-6 and thrombin. TLR2 and TLR4 expression on the platelet surface was normal, whereas phosphorylation of downstream effector ERK1/2 was higher in patients at baseline and after incubation with Pam3CSK4, which may partly explain the enhanced TLR2 response. In conclusion, exacerbated response to TLR stimulation may promote platelet activation in ET, boosting platelet/leukocyte/endothelial interactions and secretion of inflammatory mediators, overall reinforcing the thromboinflammatory state. These findings highlight the role of platelets as inflammatory sentinels in MPN prothrombotic scenario and provide additional evidence for the close intertwining between thrombosis and inflammation in this setting.
Collapse
Affiliation(s)
- Cecilia P Marín Oyarzún
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Ana C Glembotsky
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Nora P Goette
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Paola R Lev
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Geraldine De Luca
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - María C Baroni Pietto
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Beatriz Moiraghi
- Department of Hematology, Hospital General de Agudos José María Ramos Mejía, Buenos Aires, Argentina
| | | | - Angeles Vicente
- Department of Hematology, Hospital Alemán, Buenos Aires, Argentina
| | - Rosana F Marta
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX)- CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Paula G Heller
- Institute of Medical Research A. Lanari, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Department of Hematology Research, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
293
|
JAK2 exon 12 mutations in cases with JAK2V617F-negative polycythemia vera and primary myelofibrosis. Ann Hematol 2020; 99:983-989. [PMID: 32277273 DOI: 10.1007/s00277-020-04004-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/12/2020] [Indexed: 01/14/2023]
Abstract
Molecular detection of JAK2 mutation (V617F or exon 12) is included as a major diagnostic criterion for polycythemia vera (PV) by the WHO 2016 guidelines. JAK2 exon 12 mutations are seen in about 2-5% of JAK2V617F-negative cases of PV. Mutations in JAK2 cause constitutive activation of JAK-STAT pathway which results in variable phenotypes. PV patients with exon 12 mutations in JAK2 present characteristically with erythrocytosis. There are limited reports describing the spectrum of JAK2 exon12 mutations in myeloproliferative neoplasms (MPNs). Here, we describe the characteristics of a series of MPN patients with mutations in exon 12 of JAK2 of which two were novel variants associated with polycythemia. Interestingly, we noted two patients presenting as myelofibrosis having JAK2 exon 12 mutations.
Collapse
|
294
|
Held MA, Greenfest-Allen E, Jachimowicz E, Stoeckert CJ, Stokes MP, Wood AW, Wojchowski DM. Phospho-proteomic discovery of novel signal transducers including thioredoxin-interacting protein as mediators of erythropoietin-dependent human erythropoiesis. Exp Hematol 2020; 84:29-44. [PMID: 32259549 DOI: 10.1016/j.exphem.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
Erythroid cell formation critically depends on signals transduced via erythropoietin (EPO)/EPO receptor (EPOR)/JAK2 complexes. This includes not only core response modules (e.g., JAK2/STAT5, RAS/MEK/ERK), but also specialized effectors (e.g., erythroferrone, ASCT2 glutamine transport, Spi2A). By using phospho-proteomics and a human erythroblastic cell model, we identify 121 new EPO target proteins, together with their EPO-modulated domains and phosphosites. Gene ontology (GO) enrichment for "Molecular Function" identified adaptor proteins as one top EPO target category. This includes a novel EPOR/JAK2-coupled network of actin assemblage modifiers, with adaptors DLG-1, DLG-3, WAS, WASL, and CD2AP as prime components. "Cellular Component" GO analysis further identified 19 new EPO-modulated cytoskeletal targets including the erythroid cytoskeletal targets spectrin A, spectrin B, adducin 2, and glycophorin C. In each, EPO-induced phosphorylation occurred at pY sites and subdomains, which suggests coordinated regulation by EPO of the erythroid cytoskeleton. GO analysis of "Biological Processes" further revealed metabolic regulators as a likewise unexpected EPO target set. Targets included aldolase A, pyruvate dehydrogenase α1, and thioredoxin-interacting protein (TXNIP), with EPO-modulated p-Y sites in each occurring within functional subdomains. In TXNIP, EPO-induced phosphorylation occurred at novel p-T349 and p-S358 sites, and was paralleled by rapid increases in TXNIP levels. In UT7epo-E and primary human stem cell (HSC)-derived erythroid progenitor cells, lentivirus-mediated short hairpin RNA knockdown studies revealed novel pro-erythropoietic roles for TXNIP. Specifically, TXNIP's knockdown sharply inhibited c-KIT expression; compromised EPO dose-dependent erythroblast proliferation and survival; and delayed late-stage erythroblast formation. Overall, new insight is provided into EPO's diverse action mechanisms and TXNIP's contributions to EPO-dependent human erythropoiesis.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | | | - Edward Jachimowicz
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME
| | | | | | | | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH.
| |
Collapse
|
295
|
Kirito K. Myeloid neoplasm with isolated del(5q) and the MPLW515L mutation fulfills the WHO diagnostic criteria for ET. Int J Hematol 2020; 112:238-242. [PMID: 32246278 DOI: 10.1007/s12185-020-02872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022]
Abstract
A 70-year-old male was referred to our hospital for marked thrombocytosis without anemia. The patient simultaneously presented with an MPL W515L mutation, one of the major driver mutations in essential thrombocythemia (ET), and deletion of 5q, a characteristic cytogenetic abnormality in myelodysplastic syndrome (MDS). Bone marrow examination showed a combination of both mature hyperlobulated megakaryocytes, as found in ET, and small hypolobulated megakaryocytes, typically found in MDS with del(5q). The present case is consistent with the recently proposed category of myeloid neoplasms with isolated del(5q) and an MPN driver mutation.
Collapse
Affiliation(s)
- Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi-ken, 409-3898, Japan.
| |
Collapse
|
296
|
Liu YC, Illar GM, Bailey NG. Clinicopathologic characterisation of myeloid neoplasms with concurrent spliceosome mutations and myeloproliferative-neoplasm-associated mutations. J Clin Pathol 2020; 73:728-736. [PMID: 32217616 DOI: 10.1136/jclinpath-2020-206495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/29/2022]
Abstract
AIMS Spliceosome genes (SF3B1, SRSF2, U2AF1 and ZRSR2) are commonly mutated in myeloid neoplasms, particularly in myelodysplastic syndromes (MDS). JAK2, MPL and CALR mutations are associated with myeloproliferative neoplasms (MPN). Although SF3B1 and MPN-associated mutations frequently co-occur in the rare entity MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T), myeloid neoplasms with concurrent spliceosome and MPN-associated mutations encompass many disease entities and are not well characterised. METHODS Specimens from 2016 to 2019 with concurrent spliceosome and MPN-associated mutations were identified, and the clinicopathologic features were assessed. RESULTS The 36 cases were divided into mutational categories based on their spliceosome mutation. At diagnosis, cases with concurrent U2AF1 and MPN-associated mutations had lower leucocyte counts and platelet counts than did the other groups. Cases with mutant SRSF2 were more likely to have ASXL1 and IDH2 mutations, while U2AF1-mutated neoplasms were more likely to have an abnormal karyotype. The most common SF3B1 K700 and U2AF1 S34 mutational hotspots were underrepresented in our cohort of myeloid neoplasms with concurrent spliceosome and MPN-associated mutations, as SF3B1 and U2AF1 mutations tended to involve other codons. Numerous WHO-defined disease entities were represented in each spliceosome gene category; although MDS/MPN-RS-T were only identified in the group with SF3B1 mutations, they constituted only 1/4 of the neoplasms in the category. CONCLUSIONS Myeloid neoplasms with different mutant splicing factor and concurrent MPN-associated mutations demonstrate somewhat different clinical and pathologic features, but t he association between genotypes and phenotypes in these overlapping neoplasms is not straightforward.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
297
|
Gangat N, Tefferi A. Myelofibrosis biology and contemporary management. Br J Haematol 2020; 191:152-170. [PMID: 32196650 DOI: 10.1111/bjh.16576] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022]
Abstract
Myelofibrosis is an enigmatic myeloproliferative neoplasm, despite noteworthy strides in understanding its genetic underpinnings. Driver mutations involving JAK2, CALR or MPL in 90% of patients mediate constitutive JAK-STAT signaling which, in concert with epigenetic alterations (ASXL1, DNMT3A, SRSF2, EZH2, IDH1/2 mutations), play a fundamental role in disease pathogenesis. Aberrant immature megakaryocytes are a quintessential feature, exhibiting reduced GATA1 protein expression and secreting a plethora of pro-inflammatory cytokines (IL-1 ß, TGF-ß), growth factors (b-FGF, PDGF, VEGF) in addition to extra cellular matrix components (fibronectin, laminin, collagens). The ensuing disrupted interactions amongst the megakaryocytes, osteoblasts, endothelium, stromal cells and myofibroblasts within the bone marrow culminate in the development of fibrosis and osteosclerosis. Presently, prognostic assessment tools for primary myelofibrosis (PMF) are centered on genetics, with incorporation of cytogenetic and molecular information into the mutation-enhanced (MIPSS 70-plus version 2.0) and genetically-inspired (GIPSS) prognostic scoring systems. Both models illustrate substantial clinical heterogeneity in PMF and serve as the crux for risk-adapted therapeutic decisions. A major challenge remains the dearth of disease-modifying drugs, whereas allogeneic transplant offers the chance of long-term remission for some patients. Our review serves to synopsise current appreciation of the pathogenesis of myelofibrosis together with emerging management strategies.
Collapse
|
298
|
Barra GB, Santa Rita TH, Almeida ALSC, Jácomo RH, Nery LFA. Serum Has Higher Proportion of Janus Kinase 2 V617F Mutation Compared to Paired EDTA-Whole Blood Sample: A Model for Somatic Mutation Quantification Using qPCR and the 2 -∆∆Cq Method. Diagnostics (Basel) 2020; 10:E153. [PMID: 32178286 PMCID: PMC7151023 DOI: 10.3390/diagnostics10030153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Detection of the Janus Kinase-2 (JAK2) V617F mutation is a diagnostic criterion for myeloproliferative neoplasms, and high levels of mutant alleles are associated with worse outcomes. This mutation is usually tested on blood DNA by allele-specific qPCR (AS-qPCR) and measured using absolute quantification. However, some automated DNA extractions co-extracts of PCR inhibitors from blood and qPCR absolute quantification need increased efforts in order to maintain standard curves. JAK2 V617F can also be detected in serum using droplet digital PCR (ddPCR), a specimen with less inhibitors and favorable to automated extractions, but ddPCR instruments are not wide available as qPCR thermocyclers. Here, we evaluate whether JAK2 V617F could be accurately quantified by AS-qPCR using the 2-∆∆Cq method on blood DNA and validate the assay using gold-standard molecular diagnostic protocols. Next, we apply the validated method to assess if the mutation could be reliably detected/quantified in serum. JAK2 V617F could be quantified by AS-qPCR using the 2-∆∆Cq method-the assay was highly accurate (bias of 1.91%) compared to a commercial kit, highly precise (total CV% of 0.40%, 1.92%, 11.12% for samples with 93%, 54%, and 2.5% of mutant allele), highly sensitive (limit of detection of 0.15%), and demonstrated a linear detection response from 1.1% to 99.9%. Serum presented a higher mutant allele burden compared to the paired whole blood (mean of 4%), which allows for an increased JAK2 mutant detection rate and favors increased JAK2 V617F high-throughput analysis.
Collapse
Affiliation(s)
- Gustavo Barcelos Barra
- Sabin Medicina Diagnóstica, SAAN, quadra 3, lote 145/185, Brasilia 70632-300, Brazil; (T.H.S.R.); (A.L.S.C.A.); (R.H.J.); (L.F.A.N.)
- Post-Graduation in Health Science, University of Brasilia, Brasilia 70910-900, Brazil
| | - Ticiane Henriques Santa Rita
- Sabin Medicina Diagnóstica, SAAN, quadra 3, lote 145/185, Brasilia 70632-300, Brazil; (T.H.S.R.); (A.L.S.C.A.); (R.H.J.); (L.F.A.N.)
| | - Ana Luisa Santa Cruz Almeida
- Sabin Medicina Diagnóstica, SAAN, quadra 3, lote 145/185, Brasilia 70632-300, Brazil; (T.H.S.R.); (A.L.S.C.A.); (R.H.J.); (L.F.A.N.)
- Post-Graduation in Health Science, University of Brasilia, Brasilia 70910-900, Brazil
| | - Rafael Henriques Jácomo
- Sabin Medicina Diagnóstica, SAAN, quadra 3, lote 145/185, Brasilia 70632-300, Brazil; (T.H.S.R.); (A.L.S.C.A.); (R.H.J.); (L.F.A.N.)
| | - Lídia Freire Abdalla Nery
- Sabin Medicina Diagnóstica, SAAN, quadra 3, lote 145/185, Brasilia 70632-300, Brazil; (T.H.S.R.); (A.L.S.C.A.); (R.H.J.); (L.F.A.N.)
| |
Collapse
|
299
|
Secardin L, Limia CEG, di Stefano A, Bonamino MH, Saliba J, Kataoka K, Rehen SK, Raslova H, Marty C, Ogawa S, Vainchenker W, Monte-Mor BDCR, Plo I. TET2 haploinsufficiency alters reprogramming into induced pluripotent stem cells. Stem Cell Res 2020; 44:101755. [PMID: 32193150 DOI: 10.1016/j.scr.2020.101755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of the Ten-Eleven Translocation (TET) protein family was initiated by the identification of the MLL partner TET1, and of mutations in the TET2 gene in hematological malignancies including myeloproliferative neoplasms (MPN). TET1, 2 and 3 proteins hydroxylate 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC) and further oxidize 5-hmC into 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). Previous studies highlight the involvement of TET proteins in somatic cells reprogramming into induced pluripotent stem cells (iPSC), particularly Tet1 and 2 in mouse and TET1 in human. Here, we asked whether endogenous TET2 knockdown also displays this function. Using different shRNA against TET2, we provide evidence that TET2 strongly decreases the reprogramming of human hematopoietic progenitor cells into iPSC. Importantly, using 2 MPN patients, we observed that TET2 mutations affecting catalytic domain allowed iPSC generation. Instead, using another TET2 and TET3-mutated patient, we could only reprogram IPSC with TET3 mutation alone, suggesting that the type of TET2 mutation and/or the cooperation with TET3 mutations may alter the reprogramming activity. Altogether, this work highlights the importance of endogenous TET in the reprogramming process of human hematopoietic progenitors.
Collapse
Affiliation(s)
- Lise Secardin
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France
| | | | - Antonio di Stefano
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France
| | - Martin Hernan Bonamino
- Brazilian National Cancer Institute, Rio Janeiro, Brazil; FIOCRUZ- Oswaldo Cruz Foundation Institute, Rio de Janeiro 21040-360, Brazil
| | - Joseph Saliba
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Hana Raslova
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - William Vainchenker
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France
| | | | - Isabelle Plo
- INSERM, UMR 1170, Laboratory of Excellence GR-Ex, Villejuif, France; Université Paris XI, UMR 1170, Gustave Roussy, Villejuif, France; UMR U1170,Gustave Roussy, 114 rue Edouard Vaillant, Villejuif 94805, France; Laboratory of Excellence GR-Ex, Villejuif, France.
| |
Collapse
|
300
|
Does the order of mutational acquisition in myeloproliferative neoplasms matter? Evidence from JAK2 exon 12 and DNMT3A co-mutant polycythemia vera. J Hematop 2020. [DOI: 10.1007/s12308-020-00392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|