251
|
Antonacopoulou AG, Palli M, Marousi S, Dimitrakopoulos FI, Kyriakopoulou U, Tsamandas AC, Scopa CD, Papavassiliou AG, Kalofonos HP. Prion protein expression and the M129V polymorphism of the PRNP gene in patients with colorectal cancer. Mol Carcinog 2010; 49:693-9. [PMID: 20564346 DOI: 10.1002/mc.20642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The prion protein, PrP(C), is known mostly for its involvement in neurodegenerative spongiform encephalopathies. However, a role for this molecule in cancer is becoming increasingly recognized partly because it promotes cell proliferation and inhibits apoptosis. Moreover, the codon 129 polymorphism (M129V) of the PRNP gene (the PrP(C)-encoding gene) has been associated with neurodegenerative disease development and severity, while no information is available regarding its role in colorectal cancer (CRC) incidence and disease progression. We have previously reported that expression levels of PRNP may have a prognostic value in CRC, suggesting a role for the prion protein in CRC. The aim of this study was to investigate retrospectively the possible role of M129V and PrP(C) expression in patients with CRC. The M129V single nucleotide polymorphism was genotyped by real time polymerase chain reactions in 110 patients with CRC and 124 healthy donors. Moreover, protein expression was assessed by immunohistochemistry in 68 patients with CRC. Allele frequencies were similar in patients and healthy controls indicating that the M129V polymorphism is not a risk factor for CRC. Furthermore, it did not correlate with any clinicopathological parameters. By contrast, PrP(C) expression was highly elevated in neoplastic compared to normal tissue and differed depending on the primary site. Interestingly, protein levels were correlated with disease recurrence (P = 0.007). Conclusively, PrP(C) overexpression may constitute a prognostic marker for disease recurrence and potentially a new target for anticancer therapy. However, further studies are needed to evaluate prospectively the role of PrP(C) expression in patients with CRC.
Collapse
|
252
|
Obrador-Hevia A, Chin SF, González S, Rees J, Vilardell F, Greenson JK, Cordero D, Moreno V, Caldas C, Capellá G. Oncogenic KRAS is not necessary for Wnt signalling activation in APC-associated FAP adenomas. J Pathol 2010; 221:57-67. [PMID: 20196079 DOI: 10.1002/path.2685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/beta-catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, beta-catenin immunostaining, and qRT-PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity. Increased cytoplasmic and/or nuclear beta-catenin staining was seen in 94% and 80% of the adenomas. beta-Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on beta-catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis.
Collapse
Affiliation(s)
- Antònia Obrador-Hevia
- Cancer Cell Biology Group, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS)-Universitat de les Illes Balears, Mallorca, Illes Balears, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Femia AP, Luceri C, Toti S, Giannini A, Dolara P, Caderni G. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats. BMC Cancer 2010; 10:194. [PMID: 20459814 PMCID: PMC2877689 DOI: 10.1186/1471-2407-10-194] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 05/11/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. METHODS For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 x 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 x 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). RESULTS Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFalpha/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. CONCLUSION The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to note that one of the alterations concerned Apc, a key gene in colorectal carcinogenesis. The fact that many of the molecular alterations described in this study are documented in human colon tumours confirms the relevance of DMH-induced cancers as a powerful tool for the study of colon carcinogenesis and chemoprevention.
Collapse
Affiliation(s)
- Angelo Pietro Femia
- Department of Pharmacology, University of Florence, 6 Viale Pieraccini, 50139 Florence, Italy
| | | | | | | | | | | |
Collapse
|
254
|
Abstract
The advances in genomics and proteomics have led to identification of numerous differentially expressed cancer-related genes. The current challenge in the field of cancer research is to screen the crucial molecules in carcinogenesis from the vast amounts of data. These crucial molecules can be applied as the targets for cancer prevention and therapy. In addition, identification of these crucial molecules is helpful in understanding the mechanism of carcinogenesis. Cross-species strategy refers to identification of crucial molecules in carcinogenesis by exploring the similarity between cancer-related gene expression profiles of human beings and other species. This paper reviews the recent advances in the application of this new cancer research strategy.
Collapse
|
255
|
Comparison of gene expression in hepatocellular carcinoma, liver development, and liver regeneration. Mol Genet Genomics 2010; 283:485-92. [PMID: 20358383 DOI: 10.1007/s00438-010-0530-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/04/2010] [Indexed: 12/11/2022]
Abstract
Proliferation of liver cells can be observed in hepatocarcinogenesis, at different stages of liver development, and during liver regeneration after an injury. Does it imply that they share similar molecular mechanisms? Here, the transcriptional profiles of hepatocellular carcinoma (HCC), liver development, and liver regeneration were systematically compared as a preliminary attempt to answer this question. From the comparison, we found that advanced HCC mimics early development in terms of deprived normal liver functions and activated cellular proliferation, but advanced HCC and early development differ in expressions of cancer-related genes and their transcriptional controls. HCC and liver regeneration demonstrate different expression patterns as a whole, but regeneration is similar to dysplasia (pre-stage of HCC) in terms of their proximity to the normal state. In summary, of these three important processes, the carcinogenic progress carries the highest variance in expression; HCC pre-stage shares some resemblance with liver regeneration; and advanced HCC stage displays similarity with early development.
Collapse
|
256
|
Wood PA, Yang X, Hrushesky WJM. The Role of Circadian Rhythm in the Pathogenesis of Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2010. [DOI: 10.1007/s11888-010-0045-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
257
|
Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR, Beauchamp RD, Coffey RJ, Goldenring JR. Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 2010; 120:840-9. [PMID: 20197623 DOI: 10.1172/jci40728] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 12/16/2009] [Indexed: 12/14/2022] Open
Abstract
Transformation of epithelial cells is associated with loss of cell polarity, which includes alterations in cell morphology as well as changes in the complement of plasma membrane proteins. Rab proteins regulate polarized trafficking to the cell membrane and therefore represent potential regulators of this neoplastic transition. Here we have demonstrated a tumor suppressor function for Rab25 in intestinal neoplasia in both mice and humans. Human colorectal adenocarcinomas exhibited reductions in Rab25 expression independent of stage, with lower Rab25 expression levels correlating with substantially shorter patient survival. In wild-type mice, Rab25 was strongly expressed in cells luminal to the proliferating cells of intestinal crypts. While Rab25-deficient mice did not exhibit gross pathology, ApcMin/+ mice crossed onto a Rab25-deficient background showed a 4-fold increase in intestinal polyps and a 2-fold increase in colonic tumors compared with parental ApcMin/+ mice. Rab25-deficient mice had decreased beta1 integrin staining in the lateral membranes of villus cells, and this pattern was accentuated in Rab25-deficient mice crossed onto the ApcMin/+ background. Additionally, Smad3+/- mice crossed onto a Rab25-deficient background demonstrated a marked increase in colonic tumor formation. Taken together, these results suggest that Rab25 may function as a tumor suppressor in intestinal epithelial cells through regulation of protein trafficking to the cell surface.
Collapse
Affiliation(s)
- Ki Taek Nam
- Nashville Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2733, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Tang J, Le S, Sun L, Yan X, Zhang M, Macleod J, Leroy B, Northrup N, Ellis A, Yeatman TJ, Liang Y, Zwick ME, Zhao S. Copy number abnormalities in sporadic canine colorectal cancers. Genome Res 2010; 20:341-50. [PMID: 20086242 DOI: 10.1101/gr.092726.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human colorectal cancer (CRC) is one of the better-understood systems for studying the genetics of cancer initiation and progression. To develop a cross-species comparison strategy for identifying CRC causative gene or genomic alterations, we performed array comparative genomic hybridization (aCGH) to investigate copy number abnormalities (CNAs), one of the most prominent lesion types reported for human CRCs, in 10 spontaneously occurring canine CRCs. The results revealed for the first time a strong degree of genetic homology between sporadic canine and human CRCs. First, we saw that between 5% and 22% of the canine genome was amplified/deleted in these tumors, and that, reminiscent of human CRCs, the total altered sequences directly correlated to the tumor's progression stage, origin, and likely microsatellite instability status. Second, when mapping the identified CNAs onto syntenic regions of the human genome, we noted that the canine orthologs of genes participating in known human CRC pathways were recurrently disrupted, indicating that these pathways might be altered in the canine CRCs as well. Last, we observed a significant overlapping of CNAs between human and canine tumors, and tumors from the two species were clustered according to the tumor subtypes but not the species. Significantly, compared with the shared CNAs, we found that species-specific (especially human-specific) CNAs localize to evolutionarily unstable regions that harbor more segmental duplications and interspecies genomic rearrangement breakpoints. These findings indicate that CNAs recurrent between human and dog CRCs may have a higher probability of being cancer-causative, compared with CNAs found in one species only.
Collapse
Affiliation(s)
- Jie Tang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 2010; 31:1272-8. [PMID: 20061362 DOI: 10.1093/carcin/bgq004] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stilbenes are phytochemicals present in grapes, berries, peanuts and red wine. A widely studied stilbene, resveratrol (trans-3,5,4'-trihydroxystilbene), has been shown to exert antioxidant, anti-inflammatory, chemopreventive and antiaging effects in a number of biological systems. We reported earlier that pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene), a structurally related stilbene found in blueberries, was effective in reducing the incidence and multiplicity of aberrant crypt foci formation in the colon of rats injected with azoxymethane (AOM). Our present study was to identify the chemopreventive potential of pterostilbene with colonic tumor formation as an end point and further to evaluate the mechanistic action of pterostilbene during colon carcinogenesis. F344 rats were given two AOM injections subcutaneously when they were 7 and 8 weeks old and continuously fed the control or 40 p.p.m. pterostilbene diet for 45 weeks. Overall analyses indicated that pterostilbene reduced colon tumor multiplicity of non-invasive adenocarcinomas, lowered proliferating cell nuclear antigen and downregulated the expression of beta-catenin and cyclin D1. Pterostilbene decreased mucosal levels of the proinflammatory cytokines, tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-4. Colon tumors from pterostilbene-fed animals showed reduced expression of inflammatory markers as well as nuclear staining for phospho-p65, a key molecule in the nuclear factor-kappaB pathway. In HT-29 cells, pterostilbene reduced the protein levels of beta-catenin, cyclin D1 and c-MYC, altered the cellular localization of beta-catenin and inhibited the phosphorylation of p65. Our data with pterostilbene in suppressing colon tumorigenesis, cell proliferation as well as key inflammatory markers in vivo and in vitro suggest the potential use of pterostilbene for colon cancer prevention.
Collapse
Affiliation(s)
- Shiby Paul
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Itadani H, Oshima H, Oshima M, Kotani H. Mouse gastric tumor models with prostaglandin E2 pathway activation show similar gene expression profiles to intestinal-type human gastric cancer. BMC Genomics 2009; 10:615. [PMID: 20015407 PMCID: PMC2805698 DOI: 10.1186/1471-2164-10-615] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 12/17/2009] [Indexed: 11/11/2022] Open
Abstract
Background Gastric cancers are generally classified into better differentiated intestinal-type tumor and poorly differentiated diffuse-type one according to Lauren's histological categorization. Although induction of prostaglandin E2 pathway promotes gastric tumors in mice in cooperation with deregulated Wnt or BMP signalings, it has remained unresolved whether the gastric tumor mouse models recapitulate either of human gastric cancer type. This study assessed the similarity in expression profiling between gastric tumors of transgenic mice and various tissues of human cancers to find best-fit human tumors for the transgenic mice models. Results Global expression profiling initially found gastric tumors from COX-2/mPGES-1 (C2mE)-related transgenic mice (K19-C2mE, K19-Wnt1/C2mE, and K19-Nog/C2mE) resembled gastric cancers among the several tissues of human cancers including colon, breast, lung and gastric tumors. Next, classification of the C2mE-related transgenic mice by a gene signature to distinguish human intestinal- and diffuse-type tumors showed C2mE-related transgenic mice were more similar to intestinal-type compared with diffuse one. We finally revealed that induction of Wnt pathway cooperating with the prostaglandin E2 pathway in mice (K19-Wnt1/C2mE mice) further reproduce features of human gastric intestinal-type tumors. Conclusion We demonstrated that C2mE-related transgenic mice show significant similarity to intestinal-type gastric cancer when analyzed by global expression profiling. These results suggest that the C2mE-related transgenic mice, especially K19-Wnt1/C2mE mice, serve as a best-fit model to study molecular mechanism underlying the tumorigenesis of human gastric intestinal-type cancers.
Collapse
Affiliation(s)
- Hiraku Itadani
- Oncology Research Department, Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd, Japan.
| | | | | | | |
Collapse
|
261
|
Chang SJ, Wang TY, Tsai CY, Hu TF, Chang MDT, Wang HW. Increased epithelial stem cell traits in advanced endometrial endometrioid carcinoma. BMC Genomics 2009; 10:613. [PMID: 20015385 PMCID: PMC2810306 DOI: 10.1186/1471-2164-10-613] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 12/16/2009] [Indexed: 11/11/2022] Open
Abstract
Background It has been recognized cancer cells acquire characters reminiscent of those of normal stem cells, and the degree of stem cell gene expression correlates with patient prognosis. Lgr5(+) or CD133(+) epithelial stem cells (EpiSCs) have recently been identified and these cells are susceptible to neoplastic transformation. It is unclear, however, whether genes enriched in EpiSCs also contribute in tumor malignancy. Endometrial endometrioid carcinoma (EEC) is a dominant type of the endometrial cancers and is still among the most common female cancers. Clinically endometrial carcinoma is classified into 4 FIGO stages by the degree of tumor invasion and metastasis, and the survival rate is low in patients with higher stages of tumors. Identifying genes shared between advanced tumors and stem cells will not only unmask the mechanisms of tumor malignancy but also provide novel therapeutic targets. Results To identify EpiSC genes in late (stages III-IV) EECs, a molecular signature distinguishing early (stages I-II) and late EECs was first identified to delineate late EECs at the genomics level. ERBB2 and CCR1 were genes activated in late EECs, while APBA2 (MINT2) and CDK inhibitor p16 tumor suppressors in early EECs. MAPK pathway was significantly up in late EECs, indicating drugs targeting this canonical pathway might be useful for treating advanced EECs. A six-gene mini-signature was further identified to differentiate early from advanced EECs in both the training and testing datasets. Advanced, invasive EECs possessed a clear EpiSC gene expression pattern, explaining partly why these tumors are more malignant. Conclusions Our work provides new insights into the pathogenesis of EECs and reveals a previously unknown link between adult stem cells and the histopathological traits of EECs. Shared EpiSC genes in late EECs may contribute to the stem cell-like phenotypes shown by advanced tumors and hold the potential of being candidate therapeutic targets and novel prognosis biomarkers.
Collapse
Affiliation(s)
- Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan.
| | | | | | | | | | | |
Collapse
|
262
|
Arnold SA, Brekken RA. SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3:255-73. [PMID: 19809893 PMCID: PMC2778590 DOI: 10.1007/s12079-009-0072-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature.
Collapse
Affiliation(s)
- Shanna A Arnold
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology and Departments of Surgery and Pharmacology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-8593 USA
| | | |
Collapse
|
263
|
Huttlin EL, Chen X, Barrett-Wilt GA, Hegeman AD, Halberg RB, Harms AC, Newton MA, Dove WF, Sussman MR. Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution. Proc Natl Acad Sci U S A 2009; 106:17235-40. [PMID: 19805096 PMCID: PMC2761368 DOI: 10.1073/pnas.0909282106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Indexed: 12/12/2022] Open
Abstract
The unique biology of a neoplasm is reflected by its distinct molecular profile compared with normal tissue. To understand tumor development better, we have undertaken a quantitative proteomic search for abnormally expressed proteins in colonic tumors from Apc(Min/+) (Min) mice. By raising pairs of Min and wild-type mice on diets derived from natural-abundance or (15)N-labeled algae, we used metabolic labeling to compare protein levels in colonic tumor versus normal tissue. Because metabolic labeling allows internal control throughout sample preparation and analysis, technical error is minimized as compared with in vitro labeling. Several proteins displayed altered expression, and a subset was validated via stable isotopic dilution using synthetic peptide standards. We also compared gene and protein expression among tumor and nontumor tissue, revealing limited correlation. This divergence was especially pronounced for species showing biological change, highlighting the complementary perspectives provided by transcriptomics and proteomics. Our work demonstrates the power of metabolic labeling combined with stable isotopic dilution as an integrated strategy for the identification and validation of differentially expressed proteins using rodent models of human disease.
Collapse
Affiliation(s)
| | - Xiaodi Chen
- McArdle Laboratory for Cancer Research, Department of Oncology
| | | | - Adrian D. Hegeman
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108
| | | | | | | | - William F. Dove
- McArdle Laboratory for Cancer Research, Department of Oncology
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706; and
| | | |
Collapse
|
264
|
Stuckenholz C, Lu L, Thakur P, Kaminski N, Bahary N. FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development. Gastroenterology 2009; 137:1321-32. [PMID: 19563808 PMCID: PMC2785077 DOI: 10.1053/j.gastro.2009.06.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 06/02/2009] [Accepted: 06/18/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS The zebrafish Danio rerio is an excellent model system for mammalian gastrointestinal development. To identify differentially regulated genes important in gastrointestinal organogenesis, we profiled the transcriptome of the zebrafish developing gastrointestinal tract. METHODS Embryos from a transgenic zebrafish line expressing green fluorescent protein (GFP) in the developing intestine, liver, and pancreas were dissociated at 4 developmental time points, their cells sorted based on GFP expression with fluorescence-activated cell sorting (FACS), and analyzed with microarrays. To improve our analysis, we annotated the Affymetrix Zebrafish GeneChip with human orthologs. RESULTS Transcriptional profiling showed significant differences between GFP(+) and GFP(-) cells. Up-regulated genes and pathways were consistent with mammalian gastrointestinal development, such as hepatic nuclear factor gene networks and cancer. We implicate the phosphatidylinositol 3 kinase (PI3K) pathway and show that inhibition with LY294002 causes gastrointestinal defects in zebrafish. We identified novel genes, such as the microRNAs miR-217 and miR-122, the tight junction protein claudin c, the gene fam136a, and a zebrafish tetraspanin. Novel pathways include genes containing a putative transcription factor binding sequence, GGAANCGGAANY, and a nucleolar gene network. The zebrafish microarrays also identify a set of 32 genes that may mediate the effects of gain of chromosome arm 8q in human colon, liver, and pancreatic cancers. CONCLUSIONS We successfully combine FACS and microarray profiling to follow organogenesis throughout development. These experiments identify novel genes and pathways that probably play a role in mammalian gastrointestinal development and are potential targets for therapeutic intervention in the management of gastrointestinal disease and cancer.
Collapse
Affiliation(s)
- Carsten Stuckenholz
- Department of Medicine, Division of Hematology/Oncology University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Lili Lu
- Department of Medicine, Division of Hematology/Oncology University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Prakash Thakur
- Department of Medicine, Division of Hematology/Oncology University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Naftali Kaminski
- Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease, Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Nathan Bahary
- Department of Medicine, Division of Hematology/Oncology University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania,Department of Microbiology and Molecular Genetics University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
265
|
Chimploy K, Díaz GD, Li Q, Carter O, Dashwood WM, Mathews CK, Williams DE, Bailey GS, Dashwood RH. E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. Int J Cancer 2009; 125:2086-94. [PMID: 19585502 DOI: 10.1002/ijc.24559] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chlorophyllin (CHL) is a water-soluble derivative of chlorophyll that exhibits cancer chemopreventive properties, but which also has been studied for its possible cancer therapeutic effects. We report here that human colon cancer cells treated with CHL accumulate in S-phase of the cell cycle, and this is associated with reduced expression levels of p53, p21, and other G(1)/S checkpoint controls. At the same time, E2F1 and E2F4 transcription factors become elevated and exhibit increased DNA binding activity. In CHL-treated colon cancer cells, bromodeoxyuridine pulse-chase experiments provided evidence for the inhibition of DNA synthesis. Ribonucleotide reductase (RR), a pivotal enzyme for DNA synthesis and repair, was reduced at the mRNA and protein level after CHL treatment, and the enzymatic activity was inhibited in a concentration-dependent manner both in vitro and in vivo. Immunoblotting revealed that expression levels of RR subunits R1, R2, and p53R2 were reduced by CHL treatment in HCT116 (p53(+/+)) and HCT116 (p53(-/-)) cells, supporting a p53-independent mechanism. Prior studies have shown that reduced levels of RR small subunits can increase the sensitivity of colon cancer cells to clinically used DNA-damaging agents and RR inhibitors. We conclude that by inhibiting R1, R2, and p53R2, CHL has the potential to be effective in the clinical setting, when used alone or in combination with currently available cancer therapeutic agents.
Collapse
Affiliation(s)
- Korakod Chimploy
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Lee D, Yu M, Lee E, Kim H, Yang Y, Kim K, Pannicia C, Kurie JM, Threadgill DW. Tumor-specific apoptosis caused by deletion of the ERBB3 pseudo-kinase in mouse intestinal epithelium. J Clin Invest 2009; 119:2702-13. [PMID: 19690388 DOI: 10.1172/jci36435] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/24/2009] [Indexed: 01/12/2023] Open
Abstract
Pharmacologic blockade of EGFR or the closely related receptor ERBB2 has modest efficacy against colorectal cancers in the clinic. Although the upregulation of ERBB3, a pseudo-kinase member of the EGFR/ERBB family, is known to contribute to EGFR inhibitor resistance in other cancers, its functions in normal and malignant intestinal epithelium have not been defined. We have shown here that the intestinal epithelium of mice with intestine-specific genetic ablation of Erbb3 exhibits no cytological abnormalities but does exhibit loss of expression of ERBB4 and sensitivity to intestinal damage. By contrast, intestine-specific Erbb3 ablation resulted in almost complete absence of intestinal tumors in the ApcMin mouse model of colon cancer. Unlike nontransformed epithelium lacking ERBB3, intestinal tumors lacking ERBB3 had reduced PI3K/AKT signaling, which led to attenuation of tumorigenesis via a tumor-specific increase in caspase-3-mediated apoptosis. Consistent with the mouse data, which suggest that ERBB3-ERBB4 heterodimers contribute to colon cancer survival, experimentally induced loss of ERBB3 in a KRAS mutant human colon cancer cell line was associated with loss of ERBB4 expression, and siRNA knockdown of either ERBB3 or ERBB4 resulted in elevated levels of apoptosis. These results indicate that the ERBB3 pseudo-kinase has essential roles in supporting intestinal tumorigenesis and suggest that ERBB3 may be a promising target for the treatment of colorectal cancers.
Collapse
Affiliation(s)
- Daekee Lee
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Durkee BY, Weichert JP, Halberg RB. Small animal micro-CT colonography. Methods 2009; 50:36-41. [PMID: 19651214 DOI: 10.1016/j.ymeth.2009.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 01/01/2023] Open
Abstract
Microcomputed tomography colonography (mCTC) is a new method for detecting colonic tumors in living animals and estimating their volume, which allows investigators to determine the spontaneous fate of individually annotated tumors as well as their response to chemotherapeutics. This imaging platform was developed using the Min mouse, but is applicable to any murine model of human colorectal cancer. MicroCT is capable of 20 micron resolution, however, 100 microns is sufficient for this application. Scan quality is primarily dependent on animal preparation with the most critical parameters being proper anesthesia, bowel cleansing, and sufficient insufflation. The detection of colonic tumors is possible by both 2D and 3D rendering of image data. Tumor volume is estimated using a semi-automated five-step process which is based on three algorithms within the Amira software package. The estimates are precise, accurate and reproducible enabling changes in volume as small as 16% to be readily observed. Confirmation of mCTC observations by gross examination and histology is sometimes useful in this otherwise non-invasive protocol. Finally, mCTC is compared to other newly developed small animal imaging platforms including microMRI and microoptical colonoscopy. A major advantage of these platforms is that investigators can be perform longitudinal studies, which often have much greater statistical power than traditional cross-sectional studies; consequently, fewer animals are required for testing.
Collapse
Affiliation(s)
- Benjamin Y Durkee
- Department of Medical Physics, University of Wisconsin-Madison, United States
| | | | | |
Collapse
|
268
|
Simon KW, Roberts PC, Vespremi MJ, Manchen S, Schmelz EM. Regulation of beta-catenin and connexin-43 expression: targets for sphingolipids in colon cancer prevention. Mol Nutr Food Res 2009; 53:332-40. [PMID: 18837472 DOI: 10.1002/mnfr.200800102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingolipid metabolites are generated throughout the intestinal tract after hydrolysis of orally administered complex sphingolipids and significantly suppress colon cancer in carcinogen-treated CF1 mice. In the present study, the mechanisms of tumor suppression by dietary sphingolipids were investigated. Changes in select genes that are critical in early stages of colon cancer were analyzed in the colonic mucosa of dimethylhydrazine-treated CF1 mice fed AIN76A diet with or without 0.05% sphingomyelin (SM). Supplementation with SM did not significantly alter mRNA levels of most of the selected genes. However, a downregulation of beta-catenin (p = 0.007) and increased protein levels of connexin-43 (p = 0.017) and Bcl-2 (p = 0.033) were observed in SM-fed animals. This suggests that sphingolipids may be regulating specific post-transcriptional events to reverse aberrant expression of individual proteins. Since the dysregulation of beta-catenin metabolism and its transcriptional activity in addition to a decreased intercellular communication has been causally linked to the development of colon cancer while a low Bcl-2 expression is associated with a worse prognosis in colon cancer, the reversal of these early changes may be important events in the prevention of colon cancer by orally administered sphingolipids, and may provide specific molecular biomarkers for sphingolipid efficacy in vivo.
Collapse
Affiliation(s)
- Kirk W Simon
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
269
|
Abstract
Colorectal cancer is one of the most prevalent cancers of humans. To experimentally investigate this common disease, numerous murine models have been established. These models accurately recapitulate the molecular and pathologic characteristics of human colorectal cancers, including activation of the myelocytomatosis oncogene (MYC), which has recently been suggested to be a key mediator of colorectal cancer development. This review focuses on the variety of murine models of human colorectal cancer that are available to the research community and on their use to identify common and distinct characteristics of colorectal cancer.
Collapse
Affiliation(s)
- Joshua M. Uronis
- Curriculum in Genetics and Molecular Biology, Department of Genetics, Lineberger Cancer Center and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill NC 27599 USA
| | - David W. Threadgill
- Curriculum in Genetics and Molecular Biology, Department of Genetics, Lineberger Cancer Center and Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill NC 27599 USA
- Department of Genetics, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
270
|
An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med (Berl) 2009; 87:633-44. [PMID: 19399471 PMCID: PMC2688022 DOI: 10.1007/s00109-009-0467-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/24/2009] [Accepted: 03/27/2009] [Indexed: 11/20/2022]
Abstract
Wiskott–Aldrich syndrome (WAS) predisposes patients to leukemia and lymphoma. WAS is caused by mutations in the protein WASP which impair its interaction with the WIPF1 protein. Here, we aim to identify a module of WIPF1-coexpressed genes and to assess its use as a prognostic signature for colorectal cancer, glioma, and breast cancer patients. Two public colorectal cancer microarray data sets were used for discovery and validation of the WIPF1 co-expression module. Based on expression of the WIPF1 signature, we classified more than 400 additional tumors with microarray data from our own experiments or from publicly available data sets according to their WIPF1 signature expression. This allowed us to separate patient populations for colorectal cancers, breast cancers, and gliomas for which clinical characteristics like survival times and times to relapse were analyzed. Groups of colorectal cancer, breast cancer, and glioma patients with low expression of the WIPF1 co-expression module generally had a favorable prognosis. In addition, the majority of WIPF1 signature genes are individually correlated with disease outcome in different studies. Literature gene network analysis revealed that among WIPF1 co-expressed genes known direct transcriptional targets of c-myc, ESR1 and p53 are enriched. The mean expression profile of WIPF1 signature genes is correlated with the profile of a proliferation signature. The WIPF1 signature is the first microarray-based prognostic expression signature primarily developed for colorectal cancer that is instrumental in other tumor types: low expression of the WIPF1 module is associated with better prognosis.
Collapse
|
271
|
Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:691-705. [PMID: 18542844 DOI: 10.1007/s10555-008-9146-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
272
|
Fujita A, Gomes LR, Sato JR, Yamaguchi R, Thomaz CE, Sogayar MC, Miyano S. Multivariate gene expression analysis reveals functional connectivity changes between normal/tumoral prostates. BMC SYSTEMS BIOLOGY 2008; 2:106. [PMID: 19055846 PMCID: PMC2628381 DOI: 10.1186/1752-0509-2-106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 12/05/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing approximately 25,000 genes. RESULTS Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. CONCLUSION We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.
Collapse
Affiliation(s)
- André Fujita
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Luciana Rodrigues Gomes
- Chemistry Institute, University of São Paulo, Av. Lineu Prestes, 748, São Paulo-SP, 05508-900, Brazil
| | - João Ricardo Sato
- Mathematics, Computation and Cognition Center, Universidade Federal do ABC, Rua Santa Adélia, 166 – Santo André, 09210-170, Brazil
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Carlos Eduardo Thomaz
- Department of Electrical Engineering, Centro Universitário da FEI, Av. Humberto de Alencar Castelo Branco, 3972 – São Bernardo do Campo, 09850-901, Brazil
| | - Mari Cleide Sogayar
- Chemistry Institute, University of São Paulo, Av. Lineu Prestes, 748, São Paulo-SP, 05508-900, Brazil
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
273
|
Gayer CP, Chaturvedi LS, Wang S, Craig DH, Flanigan T, Basson MD. Strain-induced proliferation requires the phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J Biol Chem 2008; 284:2001-11. [PMID: 19047055 DOI: 10.1074/jbc.m804576200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intestinal epithelium is repetitively deformed by shear, peristalsis, and villous motility. Such repetitive deformation stimulates the proliferation of intestinal epithelial cells on collagen or laminin substrates via ERK, but the upstream mediators of this effect are poorly understood. We hypothesized that the phosphatidylinositol 3-kinase (PI3K)/AKT cascade mediates this mitogenic effect. PI3K, AKT, and glycogen synthase kinase-3beta (GSK-3beta) were phosphorylated by 10 cycles/min strain at an average 10% deformation, and pharmacologic blockade of these molecules or reduction by small interfering RNA (siRNA) prevented the mitogenic effect of strain in Caco-2 or IEC-6 intestinal epithelial cells. Strain MAPK activation required PI3K but not AKT. AKT isoform-specific siRNA transfection demonstrated that AKT2 but not AKT1 is required for GSK-3beta phosphorylation and the strain mitogenic effect. Furthermore, overexpression of AKT1 or an AKT chimera including the PH domain and hinge region of AKT2 and the catalytic domain and C-tail of AKT1 prevented strain activation of GSK-3beta, but overexpression of AKT2 or a chimera including the PH domain and hinge region of AKT1 and the catalytic domain and C-tail of AKT2 did not. These data delineate a role for PI3K, AKT2, and GSK-3beta in the mitogenic effect of strain. PI3K is required for both ERK and AKT2 activation, whereas AKT2 is sequentially required for GSK-3beta. Furthermore, AKT2 specificity requires its catalytic domain and tail region. Manipulating this pathway may prevent mucosal atrophy and maintain the mucosal barrier in conditions such as ileus, sepsis, and prolonged fasting when peristalsis and villous motility are decreased and the mucosal barrier fails.
Collapse
Affiliation(s)
- Christopher P Gayer
- Department of Surgery, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48301, USA
| | | | | | | | | | | |
Collapse
|
274
|
Halberg RB, Larsen MC, Elmergreen TL, Ko AY, Irving AA, Clipson L, Jefcoate CR. Cyp1b1 exerts opposing effects on intestinal tumorigenesis via exogenous and endogenous substrates. Cancer Res 2008; 68:7394-402. [PMID: 18794127 DOI: 10.1158/0008-5472.can-07-6750] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 1B1 (Cyp1b1) metabolism contributes to physiologic functions during embryogenesis but also to carcinogenic activation of polycyclic aromatic hydrocarbons (PAH). We generated Cyp1b1-deficient mice carrying the Min allele of the adenomatous polyposis coli gene. These Cyp1b1-deficient Min mice developed twice as many tumors as Min controls, which, however, remained similar in size and histology. Tumors from older (130 days) Cyp1b1-deficient Min mice selectively exhibited focal areas of nuclear atypia associated with less organized epithelia. The metabolism of endogenous substrates by Cyp1b1, therefore, suppresses tumor initiation but also affects progression. Treatment of Min mice with 7,12-dimethylbenzanthracene (DMBA) doubled both tumor multiplicity and size within 20 days but not when mice lacked Cyp1b1. This was paralleled by an abnormal staining of crypts with beta-catenin, phospho-IkappaB kinase, and RelA, which may represent an early stage of tumorigenesis similar to aberrant crypt formation. Cyp1b1 deletion did not affect circulating DMBA and metabolites. Cyp1b1 expression was higher in the tumors compared with normal small intestines. Increased tumorigenesis may, therefore, arise from generation of DMBA metabolites by Cyp1b1 in the developing tumors. Benzo(a)pyrene (BP), which is similarly activated by Cyp1b1 in vitro, did not affect tumorigenesis in Min mice. By contrast, BP and DMBA each suppressed tumor multiplicity in the absence of Cyp1b1. Cyp1b1 metabolism of DMBA and endogenous oxygenation products may each affect a tumor-promoting nuclear factor-kappaB activation, whereas Ah receptor activation by PAH affects suppression. Tumorigenesis may, therefore, depend on activation of PAH by Cyp1b1 and on offsetting suppression by Cyp1b1 of endogenous tumor-enhancing substrates.
Collapse
Affiliation(s)
- Richard B Halberg
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
275
|
Loss of Rb1 in the gastrointestinal tract of Apc1638N mice promotes tumors of the cecum and proximal colon. Proc Natl Acad Sci U S A 2008; 105:15493-8. [PMID: 18832169 DOI: 10.1073/pnas.0802933105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To examine the role of Rb1 in gastrointestinal (GI) tumors, we generated mice with an Apc(1638N) allele, Rb(tm2brn) floxed alleles, and a villin-cre transgene (RBVCA). These animals had exon 19 deleted from Rb1 throughout the GI tract. We have shown previously that Rb1 deficiency is insufficient for GI tumor initiation, with inactivation of an Apc allele capable of overcoming the insufficiency. In this study we demonstrate that RBVCA mice have reduced median survival because of an increase in tumor incidence and multiplicity in the cecum and the proximal colon. Large intestinal tumors are predominantly adenomas, whereas the tumors of the small intestine are a mixture of adenomas and adenocarcinomas. We find truncation mutations to the second Apc allele in tumors of both the large and small intestine. Expression profiles of duodenal and cecal tumors relative to each other show unique gene subsets up and down regulated. Substantial expression patterns compare to human colorectal cancer, including recapitulation of embryonic genes. Our results indicate that Rb1 has significant influence over tumor location in the GI tract, and that both cecal and duodenal tumors initiate through inactivation of Apc. Expression profile analysis indicates the two tumor types differentially regulate distinct sets of genes that are over-expressed in a majority of human colorectal carcinomas.
Collapse
|
276
|
Podhajcer OL, Benedetti L, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:523-37. [PMID: 18459035 DOI: 10.1007/s10555-008-9135-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor growth is essentially the result of an evolving cross-talk between malignant and surrounding stromal cells (fibroblasts, endothelial cells and inflammatory cells). This heterogeneous mass of extracellular matrix and intermingled cells interact through cell-cell and cell-matrix contacts. Malignant cells also secrete soluble proteins that reach neighbor stromal cells, forcing them to provide the soil on which they will grow and metastasize. Different studies including expression array analysis identified the matricellular protein SPARC as a marker of poor prognosis in different cancer types. Further evidence demonstrated that high SPARC levels are often associated with the most aggressive and highly metastatic tumors. Here we describe the most recent evidence that links SPARC with human cancer progression, the controversy regarding its role in certain human cancers and the physiological processes in which SPARC is involved: epithelial-mesenchymal transition, immune surveillance and angiogenesis. Its relevance as a potential target in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Osvaldo L Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, University of Buenos Aires, National Council for Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
277
|
Segditsas S, Sieber O, Deheragoda M, East P, Rowan A, Jeffery R, Nye E, Clark S, Spencer-Dene B, Stamp G, Poulsom R, Suraweera N, Silver A, Ilyas M, Tomlinson I. Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Hum Mol Genet 2008; 17:3864-75. [PMID: 18782851 PMCID: PMC2638572 DOI: 10.1093/hmg/ddn286] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In order to identify new genes with differential expression in early intestinal tumours, we performed mRNA (messenger ribonucleic acid) expression profiling of 16 human and 63 mouse adenomas. All individuals had germline APC mutations to ensure that tumorigenesis was driven by ‘second hits’ at APC. Using stringent filtering to identify changes consistent between humans and mice, we identified 60 genes up-regulated and 151 down-regulated in tumours. For 22 selected genes—including known Wnt targets—expression differences were confirmed by qRT–PCR (quantitative reverse transcription polymerase chain reaction). Most, but not all, differences were also present in colorectal carcinomas. In situ analysis showed a complex picture. Expression of up-regulated genes in adenomas was usually uniform/diffuse (e.g. ITGA6) or prominent in the tumour core (e.g. LGR5); in normal tissue, these genes were expressed at crypt bases or the transit amplifying zone. Down-regulated genes were often undetectable in adenomas, but in normal tissue were expressed in mesenchyme (e.g. GREM1/2) or differentiated cells towards crypt tops (e.g. SGK1). In silico analysis of TCF4-binding motifs showed that some of our genes were probably direct Wnt targets. Previous studies, mostly focused on human tumours, showed partial overlap with our ‘expression signature’, but 37 genes were unique to our study, including TACSTD2, SEMA3F, HOXA9 and IER3 (up-regulated), and TAGLN, GREM1, GREM2, MAB21L2 and RARRES2 (down-regulated). Combined analysis of our and published human data identified additional genes differentially expressed in adenomas, including decreased BMPs (bone morphogenetic proteins) and increased BUB1/BUB1B. Several of the newly identified, differentially expressed genes represent potential diagnostic or therapeutic targets for intestinal tumours.
Collapse
Affiliation(s)
- Stefania Segditsas
- Molecular and Population Genetics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3PX, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Naxerova K, Bult CJ, Peaston A, Fancher K, Knowles BB, Kasif S, Kohane IS. Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers. Genome Biol 2008; 9:R108. [PMID: 18611264 PMCID: PMC2530866 DOI: 10.1186/gb-2008-9-7-r108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/31/2008] [Accepted: 07/08/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In recent years, the molecular underpinnings of the long-observed resemblance between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional profiling has revealed similar gene expression signatures in several tumor types and early developmental stages of their tissue of origin. However, it remains unclear whether such a relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental component of different tumor types and to which degree the resemblance between cancer and development is a tissue-specific phenomenon. RESULTS We defined a developmental landscape by summarizing the main features of ten developmental time courses and projected gene expression from a variety of human tumor types onto this landscape. This comparison demonstrates a clear imprint of developmental gene expression in a wide range of tumors and with respect to different, even non-cognate developmental backgrounds. Our analysis reveals three classes of cancers with developmentally distinct transcriptional patterns. We characterize the biological processes dominating these classes and validate the class distinction with respect to a new time series of murine embryonic lung development. Finally, we identify a set of genes that are upregulated in most cancers and we show that this signature is active in early development. CONCLUSION This systematic and quantitative overview of the relationship between the neoplastic and developmental transcriptome spanning dozens of tissues provides a reliable outline of global trends in cancer gene expression, reveals potentially clinically relevant differences in the gene expression of different cancer types and represents a reference framework for interpretation of smaller-scale functional studies.
Collapse
Affiliation(s)
- Kamila Naxerova
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Longwood Avenue, Boston, MA 02115, USA
| | - Carol J Bult
- The Jackson Laboratory, Main Street, Bar Harbor, ME 04609, USA
| | - Anne Peaston
- The Jackson Laboratory, Main Street, Bar Harbor, ME 04609, USA
| | - Karen Fancher
- The Jackson Laboratory, Main Street, Bar Harbor, ME 04609, USA
| | | | - Simon Kasif
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Longwood Avenue, Boston, MA 02115, USA
- Department of Biomedical Engineering, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Isaac S Kohane
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
279
|
Yunker CK, Golembieski W, Lemke N, Schultz CR, Cazacu S, Brodie C, Rempel SA. SPARC-induced increase in glioma matrix and decrease in vascularity are associated with reduced VEGF expression and secretion. Int J Cancer 2008; 122:2735-43. [PMID: 18350569 PMCID: PMC3644882 DOI: 10.1002/ijc.23450] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/27/2007] [Indexed: 11/23/2022]
Abstract
Glioblastomas are heterogeneous tumors displaying regions of necrosis, proliferation, angiogenesis, apoptosis and invasion. SPARC, a matricellular protein that negatively regulates angiogenesis and cell proliferation, but enhances cell deadhesion from matrix, is upregulated in gliomas (Grades II-IV). We previously demonstrated that SPARC promotes invasion while concomitantly decreasing tumor growth, in part by decreasing proliferation of the tumor cells. In other cancer types, SPARC has been shown to influence tumor growth by altering matrix production, and by decreasing angiogenesis via interfering with the VEGF-VEGFR1 signaling pathway. We therefore examined whether the SPARC-induced decrease in glioma tumor growth was also, in part, due to alterations in matrix and/or decreased vascularity, and assessed SPARC-VEGF interactions. The data demonstrate that SPARC upregulates glioma matrix, collagen I is a constituent of the matrix and SPARC promotes collagen fibrillogenesis. Furthermore, SPARC suppressed glioma vascularity, and this was accompanied by decreased VEGF expression and secretion, which was, in part, due to reduced VEGF165 transcript abundance. These data indicate that SPARC modulates glioma growth by altering the tumor microenvironment and by suppressing tumor vascularity through suppression of VEGF expression and secretion. These experiments implicate a novel mechanism, whereby SPARC regulates VEGF function by limiting the available growth factor. Because SPARC is considered to be a therapeutic target for gliomas, a further understanding of its complex signaling mechanisms is important, as targeting SPARC to decrease invasion could undesirably lead to the growth of more vascular and proliferative tumors.
Collapse
Affiliation(s)
- Christopher K Yunker
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - William Golembieski
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Nancy Lemke
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Chad R Schultz
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Simona Cazacu
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Chaya Brodie
- William and Karen Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| | - Sandra A Rempel
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford HospitalDetroit, MI
| |
Collapse
|
280
|
Transcriptional profiles of progestogen effects in the postmenopausal breast. Breast Cancer Res Treat 2008; 114:233-42. [DOI: 10.1007/s10549-008-0003-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
281
|
Gaspar C, Cardoso J, Franken P, Molenaar L, Morreau H, Möslein G, Sampson J, Boer JM, de Menezes RX, Fodde R. Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1363-80. [PMID: 18403596 DOI: 10.2353/ajpath.2008.070851] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression profiling is a well established tool for the genome-wide analysis of human cancers. However, the high sensitivity of this approach combined with the well known cellular and molecular heterogeneity of cancer often result in extremely complex expression signatures that are difficult to interpret functionally. The majority of sporadic colorectal cancers are triggered by mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, leading to the constitutive activation of the Wnt/beta-catenin signaling pathway and formation of adenomas. Despite this common genetic basis, colorectal cancers are very heterogeneous in their degree of differentiation, growth rate, and malignancy potential. Here, we applied a cross-species comparison of expression profiles of intestinal polyps derived from hereditary colorectal cancer patients carrying APC germline mutations and from mice carrying a targeted inactivating mutation in the mouse homologue Apc. This comparative approach resulted in the establishment of a conserved signature of 166 genes that were differentially expressed between adenomas and normal intestinal mucosa in both species. Functional analyses of the conserved genes revealed a general increase in cell proliferation and the activation of the Wnt/beta-catenin signaling pathway. Moreover, the conserved signature was able to resolve expression profiles from hereditary polyposis patients carrying APC germline mutations from those with bi-allelic inactivation of the MYH gene, supporting the usefulness of such comparisons to discriminate among patients with distinct genetic defects.
Collapse
Affiliation(s)
- Claudia Gaspar
- Dept. of Pathology, Erasmus MC, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Intestinal adenomagenesis involves core molecular signatures of the epithelial-mesenchymal transition. J Mol Histol 2008; 39:283-94. [PMID: 18327651 DOI: 10.1007/s10735-008-9164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 01/16/2008] [Indexed: 01/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) occurs commonly during carcinoma invasion and metastasis, but not during early tumorigenesis. Microarray data demonstrated elevation of vimentin, a mesenchymal marker, in intestinal adenomas from Apc Min/+ (Min) mice. We have tested the involvement of EMT in early tumorigenesis in mammalian intestines by following EMT-associated markers. Elevated vimentin RNA expression and protein production were detected within neoplastic cells in murine intestinal adenomas. Similarly, vimentin protein was detected in both adenomas and invasive adenocarcinomas of the human colon, but not in the normal colonic epithelium or in hyperplastic polyps. Expression of E-cadherin varied inversely with vimentin. In addition, the expression of fibronectin was elevated while that of E-cadherin decreased. Canonical E-cadherin suppressors, such as Snail, were not elevated in the same tumor. Elevated vimentin expression in the adenoma was not correlated with persistent Ras signaling, but was strongly correlated with reduced proliferation indices, active Wnt signaling, and TGF-beta signaling, as demonstrated by its dependence on Smad3. We designate our observations of expression of only some of the canonical features of EMT as "truncated EMT". These unexpected observations are interpreted as reflecting the involvement of a core of the EMT system during the tissue remodeling of early tumorigenesis.
Collapse
|
283
|
Bilger A, Sullivan R, Prunuske AJ, Clipson L, Drinkwater NR, Dove WF. Widespread hyperplasia induced by transgenic TGFalpha in ApcMin mice is associated with only regional effects on tumorigenesis. Carcinogenesis 2008; 29:1825-30. [PMID: 18310091 DOI: 10.1093/carcin/bgn038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Using a mouse predisposed to neoplasia by a germ line mutation in Apc (Apc(Min)), we tested whether induced hyperplasia is sufficient to increase intestinal tumor multiplicity or size in the intestine. We found that hyperplasia in the jejunum correlated with a significant increase in tumor multiplicity. However, tumor multiplicity was unchanged in the hyperplastic colon. This result indicates that even an intestine predisposed to neoplasia can, in certain regions including the colon, accommodate net increased cell growth without developing more neoplasms. Where hyperplasia correlated with increased tumor multiplicity, it did not increase the size or net growth of established tumors. This result suggests that the event linking hyperplasia and neoplasia in the jejunum is tumor establishment. Two novel observations arose in our study: the multiple intestinal neoplasia (Min) mutation partially suppressed both mitosis and transforming growth factor alpha-induced hyperplasia throughout the intestine; and zinc treatment alone increased tumor multiplicity in the duodenum of Min mice.
Collapse
Affiliation(s)
- Andrea Bilger
- Department of Oncology, McArdle Laboratory for Cancer Research, University ofWisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
284
|
Robbins SH, Walzer T, Dembélé D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 2008; 9:R17. [PMID: 18218067 PMCID: PMC2395256 DOI: 10.1186/gb-2008-9-1-r17] [Citation(s) in RCA: 407] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/19/2007] [Accepted: 01/24/2008] [Indexed: 12/31/2022] Open
Abstract
Genome-wide expression profiling of mouse and human leukocytes reveal conserved transcriptional programs of plasmacytoid or conventional dendritic cell subsets. Background Dendritic cells (DCs) are a complex group of cells that play a critical role in vertebrate immunity. Lymph-node resident DCs (LN-DCs) are subdivided into conventional DC (cDC) subsets (CD11b and CD8α in mouse; BDCA1 and BDCA3 in human) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To gain novel insights into these questions, we sought conserved genetic signatures for LN-DCs and in vitro derived granulocyte-macrophage colony stimulating factor (GM-CSF) DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes. Results We show through clustering analysis that all LN-DC subsets form a distinct branch within the leukocyte family tree, and reveal a transcriptomal signature evolutionarily conserved in all LN-DC subsets. Moreover, we identify a large gene expression program shared between mouse and human pDCs, and smaller conserved profiles shared between mouse and human LN-cDC subsets. Importantly, most of these genes have not been previously associated with DC function and many have unknown functions. Finally, we use compendium analysis to re-evaluate the classification of interferon-producing killer DCs, lin-CD16+HLA-DR+ cells and in vitro derived GM-CSF DCs, and show that these cells are more closely linked to natural killer and myeloid cells, respectively. Conclusion Our study provides a unique database resource for future investigation of the evolutionarily conserved molecular pathways governing the ontogeny and functions of leukocyte subsets, especially DCs.
Collapse
Affiliation(s)
- Scott H Robbins
- CIML (Centre d'Immunologie de Marseille-Luminy), Université de la Méditerranée, Parc scientifique de Luminy case 906, Marseille F-13288, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Chen X, Ehrhardt WM, Halberg RB, Aronow BJ, Dove WF. Cellular expression patterns of genes upregulated in murine and human colonic neoplasms. J Histochem Cytochem 2008; 56:433-41. [PMID: 18180384 DOI: 10.1369/jhc.7a7359.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Markers overexpressed in colonic tumors of the multiple intestinal neoplasia (Min) mouse have been recently identified by cDNA subtractive hybridization and by microarray analysis. The significance of such a marker depends on its expression in tumor vs stromal lineages and on its expression pattern in normal tissue. From 34 differentially expressed markers, 14 were found to be expressed from supporting lineages. The markers expressed in the tumor lineage were grouped into three classes on the basis of ISH in mouse models and IHC in human adenomas. The first class includes markers expressed both in neoplastic cells and in the proliferating cells residing at the bottom of normal colonic crypts. The second class of markers shows elevated expression in neoplastic cells and also in the postmitotic Paneth cells of the small intestine. Finally, the third class of marker shows detectable intestinal expression only within tumors but not in the normal intestinal epithelium. Is such a tumor-associated marker uniquely essential for tumor growth? Deficiency for the tumor-associated glycoprotein clusterin does not affect the multiplicity or growth rate of intestinal tumors in Min mice. Thus, clusterin is a candidate secreted colon cancer marker but not a single target for chemoprevention or therapy.
Collapse
Affiliation(s)
- Xiaodi Chen
- McArdle Laboratory for Cancer Research, 1400 University Avenue, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|