251
|
Mullane K, Williams M. Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochem Pharmacol 2020; 177:113945. [DOI: 10.1016/j.bcp.2020.113945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
|
252
|
Romero JR, Demissie S, Beiser A, Himali JJ, DeCarli C, Levy D, Seshadri S. Relation of plasma β-amyloid, clusterin, and tau with cerebral microbleeds: Framingham Heart Study. Ann Clin Transl Neurol 2020; 7:1083-1091. [PMID: 32588552 PMCID: PMC7359126 DOI: 10.1002/acn3.51066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Cerebral microbleeds (CMBs) are associated with higher risk of stroke and dementia, predating clinical diagnosis by several years. CMB are considered markers of cerebral small vessel disease (CSVD): hypertensive (deep CMB) and cerebral amyloid angiopathy (lobar CMB). We related plasma β-Amyloid (40, 42 and their ratio), clusterin, and tau levels to CMB to elucidate their role as biomarkers for the angiopathies represented by CMB. METHODS Dementia, stroke, and other neurological disease-free Framingham Heart Study participants with available CMB and biomarker measurements were included. We related biomarker levels (standardized for analyses) to CMB presence overall and stratified by brain topography (any, lobar, deep), using multivariable logistic regression analyses. RESULTS CMB were observed in 208 (5.7%) participants (mean age 57 years, 54% women). After multivariable adjustment, Aβ1-40 was associated with any CMB (OR (95%CI) 1.20 (0.99, 1.45) P = 0.062)) and lobar CMB (OR (95%CI) 1.33 (1.05, 1.68) P = 0.019), but not with deep CMB. Log-Aβ1-42 levels were not associated with CMB overall. Clusterin was related to mixed CMB (1.70 [1.05, 2.74], P = 0.031). Tau levels were associated with any CMB (OR (95%CI) 1.26 (1.07, 1.49) P = 0.006), lobar CMB (OR (95%CI) 1.26 (1.05, 1.52) P = 0.013), and with deep CMB (OR (95% CI) 1.46 (1.13, 1.89) P = 0.004). INTERPRETATION We found that plasma Aβ1-40 and Tau are associated with CMB but further studies are needed to confirm their role in hemorrhage prone CSVD represented by CMB and as indicators of ongoing subclinical neuronal injury.
Collapse
Affiliation(s)
- José Rafael Romero
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
| | - Serkalem Demissie
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
| | - Alexa Beiser
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
| | - Jayandra J. Himali
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexas
| | - Charles DeCarli
- Department of NeurologyUniversity of California‐ DavisSacramentoCalifornia
| | - Daniel Levy
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- The Population Sciences Branch of the National Heart, Lung, and Blood Institute of the National Institutes of HealthBethesdaMaryland
| | - Sudha Seshadri
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexas
| |
Collapse
|
253
|
Chen TB, Lai YH, Ke TL, Chen JP, Lee YJ, Lin SY, Lin PC, Wang PN, Cheng IH. Changes in Plasma Amyloid and Tau in a Longitudinal Study of Normal Aging, Mild Cognitive Impairment, and Alzheimer's Disease. Dement Geriatr Cogn Disord 2020; 48:180-195. [PMID: 31991443 DOI: 10.1159/000505435] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Changes in cerebrospinal fluid, neuroimaging, and cognitive functions have been used as diagnostic biomarkers of Alzheimer's disease (AD). This study aimed to investigate the temporal trajectories of plasma biomarkers in subjects with mild cognitive impairment (MCI) and patients with AD relative to healthy controls (HCs). METHODS In this longitudinal study, 82 participants (31 HCs, 33 MCI patients, and 18 AD patients) were enrolled. After 3 years, 7 HCs had transitioned to MCI and 10 subjects with MCI had converted to AD. We analyzed plasma amyloid beta (Aβ) and tau proteins at baseline and annually to correlate with biochemical data and neuropsychological scores. RESULTS Longitudinal data analysis showed an evolution of Aβ-related biomarkers over time within patients, whereas tau-related biomarkers differed primarily across diagnostic classifications. An initial steady increase in Aβ42 in the MCI stage was followed by a decrease just prior to clinical AD onset. Hyperphosphorylated tau protein levels correlated with cognitive decline in the MCI stage, but not in the AD stage. CONCLUSION Plasma Aβ and tau levels change in a dynamic, nonlinear, nonparallel manner over the AD continuum. Changes in plasma Aβ concentration are time-dependent, whereas changes in hyperphosphorylated tau protein levels paralleled the clinical progression of MCI. It remains to be clarified whether diagnostic efficiency can be improved by combining multiple plasma markers or combining plasma markers with other diagnostic biomarkers.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia and Parkinson's Disease Integrated Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Hua Lai
- Department of Neurology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ting-Ling Ke
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Jung Lee
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Division of Neurology, Department of Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Szu-Ying Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Po-Chen Lin
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Irene H Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan,
| |
Collapse
|
254
|
Nyberg L, Lundquist A, Nordin Adolfsson A, Andersson M, Zetterberg H, Blennow K, Adolfsson R. Elevated plasma neurofilament light in aging reflects brain white-matter alterations but does not predict cognitive decline or Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12050. [PMID: 32587884 PMCID: PMC7311800 DOI: 10.1002/dad2.12050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION We investigated neurofilament light (NFL) accumulation in normal aging as well as in preclinical and clinical Alzheimer's disease (AD) and assessed individual differences in NFL load in relation to cognition and brain white-matter integrity. METHODS We analyzed longitudinal data covering 30 years (1988-2017). Cognitive testing was done up to six times. Plasma NFL was quantified for controls and 142 cases who developed AD over time, and longitudinal changes in NFL were quantified for 100 individuals with three brain-imaging sessions. RESULTS Longitudinal analyses revealed age-related NFL increases with marked variability. AD cases had elevated NFL levels, while no significant group differences were seen in the preclinical phase. Variability in NFL levels showed non-significant correlations with cognition but was associated with brain white matter. DISCUSSION Our findings suggest that elevated blood NFL, likely reflecting brain white-matter alterations, characterizes clinical AD, while NFL levels do not predict age-related cognitive impairment or impending AD.
Collapse
Affiliation(s)
- Lars Nyberg
- Department of Radiation Sciences Umeå University Umeå Sweden
- Department of Integrative Medical Biology Umeå University Umeå Sweden
- Umeå Center for Functional Brain Imaging (UFBI) Umeå University Umeå Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI) Umeå University Umeå Sweden
- Department of Statistics USBE Umeå University Umeå Sweden
- Swedish University of Agricultural Sciences Umeå Umeå Sweden
| | | | - Micael Andersson
- Department of Integrative Medical Biology Umeå University Umeå Sweden
- Umeå Center for Functional Brain Imaging (UFBI) Umeå University Umeå Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- Department of Neurodegenerative Disease UCL Institute of Neurology London UK
- UK Dementia Research Institute at UCL London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Institute of Neuroscience and Physiology The Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences Umeå University Umeå Sweden
| |
Collapse
|
255
|
Jonesco DS, Karsdal MA, Henriksen K. The CNS-specific proteoglycan, brevican, and its ADAMTS4-cleaved fragment show differential serological levels in Alzheimer's disease, other types of dementia and non-demented controls: A cross-sectional study. PLoS One 2020; 15:e0234632. [PMID: 32559242 PMCID: PMC7304580 DOI: 10.1371/journal.pone.0234632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 02/05/2023] Open
Abstract
Evidence indicate that the brain-specific protein, brevican, is proteolytically cleaved during neurodegeneration, hence positioning fragments of brevican as potential blood biomarkers of neurodegenerative diseases, such as dementia. We aimed to develop two assays capable of detecting the brevican N-terminal (N-Brev) and the ADAMTS4-generated fragment (Brev-A), cleaved at Ser401, in serum and to perform a preliminary assessment of their diagnostic potential in dementias. Monoclonal antibodies against N-Brev and Brev-A were used to develop two ELISAs detecting each epitope. A comparison of brevican fragments in serum from individuals with AD (n = 28), other dementia (OD) (n = 41), and non-dementia-related memory complaints (NDCs) (n = 48) was conducted. Anti-N-Brev and anti-Brev-A antibodies selectively recognized their targets and dilution and spike recoveries were within limits of ±20%. Intra- and inter-assay CVs were below limits of 10% and 15%, respectively. For the N-Brev biomarker, serum from patients with OD showed significantly lower levels than those with AD (p = 0.05) and NDCs (p < 0.01). The opposite pattern was evident for Brev-A: serum levels in patients with OD were significantly higher than for AD (p = 0.04) and NDCs (p = 0.01). For both N-Brev and Brev-A, levels did not differ between AD and NDCs. The ratio of N-Brev/Brev-A resulted in increased significant differences between OD and AD (p < 0.01) and between OD and NDCs (p < 0.0001). The ratio discriminated between NDCs and OD (AUC: 0.75, 95% CI: 0.65-0.85, p < 0.0001) and between OD and AD (AUC: 0.72, 95% CI: 0.59-0.85, p < 0.01). In conclusion, we developed the first assays detecting the N-terminal of brevican as well as an ADAMTS4-cleaved fragment of brevican in blood. Differential levels of N-Brev and Brev-A between AD and OD allow for these biomarkers to possibly distinguish between different forms of dementias.
Collapse
Affiliation(s)
| | | | - Kim Henriksen
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
256
|
Kritikos M, Clouston SAP, Diminich ED, Deri Y, Yang X, Carr M, Gandy S, Sano M, Bromet EJ, Luft BJ. Pathway Analysis for Plasma β-Amyloid, Tau and Neurofilament Light (ATN) in World Trade Center Responders at Midlife. Neurol Ther 2020; 9:159-171. [PMID: 32350803 PMCID: PMC7229074 DOI: 10.1007/s40120-020-00189-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION World Trade Center (WTC) responders who aided in the search and rescue efforts are now at midlife, and evidence has demonstrated that many are experiencing early-onset cognitive impairment and are at risk of developing dementia, such as Alzheimer's disease (AD). According to the recent NIA-AA framework, AD is characterized by a neuropathological cascade commencing with β-amyloid deposition (A), followed by tauopathy (T) and neurodegeneration (N). However, the ATN model has not been replicated utilizing recently validated plasma-based biomarkers, and the role of the Aβ40 subtype in A is not well understood. This study examined plasma-based neuropathological markers of Aβ42 and Aβ40 for A, total tau for T, and NfL for N in a cohort of World Trade Center responders at midlife in order to determine the role for the two β-amyloid subtypes in the ATN model. METHODS Ultrasensitive Simoa technology was utilized to measure neuropathology in plasma collected from a consecutive clinical sample (n =398). Generalized structural equation modeling was utilized for modeling linkages between pathological markers. Model fit was utilized to determine proposed directions of association. RESULTS Our findings support the ATN neuropathological cascade model of AD and further identify an associative role for Aβ40 in A as playing a central role linking T to N. A strong correlation was found between CI and age, and it was found that women may be at increased risk of elevated T levels, with plasma NfL levels higher in responders with CI. Notably, our model reported associations between: Aβ42, CI and N; Aβ40, T and N; T and CI; Aβ42 and Aβ40. CONCLUSIONS The current ATN model of AD does not specify the subtype of β-amyloid to be considered, which may be overlooking the differential roles that these two subtypes serve in the pathogenesis of AD.
Collapse
Affiliation(s)
- Minos Kritikos
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA.
| | - Sean A P Clouston
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Erica D Diminich
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Xiaohua Yang
- Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Melissa Carr
- World Trade Center Health and Wellness Program, Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC, New York, NY, USA
- James J Peters VAMC, Bronx, NY, USA
| | - Mary Sano
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NYC, New York, NY, USA
- James J Peters VAMC, Bronx, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Benjamin J Luft
- World Trade Center Health and Wellness Program, Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
257
|
Sugarman MA, Zetterberg H, Blennow K, Tripodis Y, McKee AC, Stein TD, Martin B, Palmisano JN, Steinberg EG, Simkin I, Budson AE, Killiany R, O'Connor MK, Au R, Qiu WWQ, Goldstein LE, Kowall NW, Mez J, Stern RA, Alosco ML. A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease. Neurobiol Aging 2020; 94:60-70. [PMID: 32585491 DOI: 10.1016/j.neurobiolaging.2020.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
We examined baseline and longitudinal associations between plasma neurofilament light (NfL) and total tau (t-tau), and the clinical presentation of Alzheimer's disease (AD). A total of 579 participants (238, normal cognition [NC]; 185, mild cognitive impairment [MCI]; 156, AD dementia) had baseline blood draws; 82% had follow-up evaluations. Plasma samples were analyzed for NfL and t-tau using Simoa technology. Baseline plasma NfL was higher in AD dementia than MCI (standardized mean difference = 0.55, 95% CI: 0.37-0.73) and NC (standardized mean difference = 0.68, 95% CI: 0.49-0.88), corresponded to Clinical Dementia Rating scores (OR = 1.94, 95% CI: 1.35-2.79]), and correlated with all neuropsychological tests (r's = 0.13-0.42). Longitudinally, NfL did not predict diagnostic conversion but predicted decline on 3/10 neuropsychological tests. Baseline plasma t-tau was higher in AD dementia than NC with a small effect (standardized mean difference = 0.33, 95% CI: 0.10-0.57) but not MCI. t-tau did not statistically significant predict any longitudinal outcomes. Plasma NfL may be useful for the detection of AD dementia and monitoring of disease progression. In contrast, there was minimal evidence in support of plasma t-tau.
Collapse
Affiliation(s)
- Michael A Sugarman
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Brett Martin
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Eric G Steinberg
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Irene Simkin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew E Budson
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Ronald Killiany
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA, USA
| | - Maureen K O'Connor
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neuropsychology, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Rhoda Au
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Wendy Wei Qiao Qiu
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; Departments of Psychiatry and Ophthalmology, Boston University School of Medicine, Boston, MA, USA; Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA; U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA; Department of Neurosurgery, Boston University School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Center and CTE Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
258
|
Future avenues for Alzheimer's disease detection and therapy: liquid biopsy, intracellular signaling modulation, systems pharmacology drug discovery. Neuropharmacology 2020; 185:108081. [PMID: 32407924 DOI: 10.1016/j.neuropharm.2020.108081] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
When Alzheimer's disease (AD) disease-modifying therapies will be available, global healthcare systems will be challenged by a large-scale demand for clinical and biological screening. Validation and qualification of globally accessible, minimally-invasive, and time-, cost-saving blood-based biomarkers need to be advanced. Novel pathophysiological mechanisms (and related candidate biomarkers) - including neuroinflammation pathways (TREM2 and YKL-40), axonal degeneration (neurofilament light chain protein), synaptic dysfunction (neurogranin, synaptotagmin, α-synuclein, and SNAP-25) - may be integrated into an expanding pathophysiological and biomarker matrix and, ultimately, integrated into a comprehensive blood-based liquid biopsy, aligned with the evolving ATN + classification system and the precision medicine paradigm. Liquid biopsy-based diagnostic and therapeutic algorithms are increasingly employed in Oncology disease-modifying therapies and medical practice, showing an enormous potential for AD and other brain diseases as well. For AD and other neurodegenerative diseases, newly identified aberrant molecular pathways have been identified as suitable therapeutic targets and are currently investigated by academia/industry-led R&D programs, including the nerve-growth factor pathway in basal forebrain cholinergic neurons, the sigma1 receptor, and the GTPases of the Rho family. Evidence for a clinical long-term effect on cognitive function and brain health span of cholinergic compounds, drug candidates for repositioning programs, and non-pharmacological multidomain interventions (nutrition, cognitive training, and physical activity) is developing as well. Ultimately, novel pharmacological paradigms, such as quantitative systems pharmacology-based integrative/explorative approaches, are gaining momentum to optimize drug discovery and accomplish effective pathway-based strategies for precision medicine. This article is part of the special issue on 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
259
|
Vogels T, Leuzy A, Cicognola C, Ashton NJ, Smolek T, Novak M, Blennow K, Zetterberg H, Hromadka T, Zilka N, Schöll M. Propagation of Tau Pathology: Integrating Insights From Postmortem and In Vivo Studies. Biol Psychiatry 2020; 87:808-818. [PMID: 31735253 DOI: 10.1016/j.biopsych.2019.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022]
Abstract
Cellular accumulation of aggregated forms of the protein tau is a defining feature of so-called tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and chronic traumatic encephalopathy. A growing body of literature suggests that conformational characteristics of tau filaments, along with regional vulnerability to tau pathology, account for the distinct histopathological morphologies, biochemical composition, and affected cell types seen across these disorders. In this review, we describe and discuss recent evidence from human postmortem and clinical biomarker studies addressing the differential vulnerability of brain areas to tau pathology, its cell-to-cell transmission, and characteristics of the different strains that tau aggregates can adopt. Cellular biosensor assays are increasingly used in human tissue to detect the earliest forms of tau pathology, before overt histopathological lesions (i.e., neurofibrillary tangles) are apparent. Animal models with localized tau expression are used to uncover the mechanisms that influence spreading of tau aggregates. Further, studies of human postmortem-derived tau filaments from different tauopathies injected in rodents have led to striking findings that recapitulate neuropathology-based staging of tau. Furthermore, the recent advent of tau positron emission tomography and novel fluid-based biomarkers render it possible to study the temporal progression of tau pathology in vivo. Ultimately, evidence from these approaches must be integrated to better understand the onset and progression of tau pathology across tauopathies. This will lead to improved methods for the detection and monitoring of disease progression and, hopefully, to the development and refinement of tau-based therapeutics.
Collapse
Affiliation(s)
- Thomas Vogels
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Antoine Leuzy
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Claudia Cicognola
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom; Biomedical Research Unit for Dementia, NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, University College London, London, United Kingdom
| | - Tomas Smolek
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia; AXON Neuroscience SE, Larnaca, Cyprus
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom; UK Dementia Research Institute, University College London, London, United Kingdom
| | - Tomas Hromadka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Dementia Research Centre, Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
260
|
Qin T, Prins S, Groeneveld GJ, Van Westen G, de Vries HE, Wong YC, Bischoff LJ, de Lange EC. Utility of Animal Models to Understand Human Alzheimer's Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals. Int J Mol Sci 2020; 21:ijms21093158. [PMID: 32365768 PMCID: PMC7247586 DOI: 10.3390/ijms21093158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
To diagnose and treat early-stage (preclinical) Alzheimer’s disease (AD) patients, we need body-fluid-based biomarkers that reflect the processes that occur in this stage, but current knowledge on associated processes is lacking. As human studies on (possible) onset and early-stage AD would be extremely expensive and time-consuming, we investigate the potential value of animal AD models to help to fill this knowledge gap. We provide a comprehensive overview of processes associated with AD pathogenesis and biomarkers, current knowledge on AD-related biomarkers derived from on human and animal brains and body fluids, comparisons of biomarkers obtained in human AD and frequently used animal AD models, and emerging body-fluid-based biomarkers. In human studies, amyloid beta (Aβ), hyperphosphorylated tau (P-tau), total tau (T-tau), neurogranin, SNAP-25, glial fibrillary acidic protein (GFAP), YKL-40, and especially neurofilament light (NfL) are frequently measured. In animal studies, the emphasis has been mostly on Aβ. Although a direct comparison between human (familial and sporadic) AD and (mostly genetic) animal AD models cannot be made, still, in brain, cerebrospinal fluid (CSF), and blood, a majority of similar trends are observed for human AD stage and animal AD model life stage. This indicates the potential value of animal AD models in understanding of the onset and early stage of AD. Moreover, animal studies can be smartly designed to provide mechanistic information on the interrelationships between the different AD processes in a longitudinal fashion and may also include the combinations of different conditions that may reflect comorbidities in human AD, according to the Mastermind Research approach.
Collapse
Affiliation(s)
- Tian Qin
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (T.Q.); (L.J.M.B.)
| | - Samantha Prins
- Centre for Human Drug Research (CHDR), 2333 CL Leiden, The Netherlands; (S.P.); (G.J.G.)
| | - Geert Jan Groeneveld
- Centre for Human Drug Research (CHDR), 2333 CL Leiden, The Netherlands; (S.P.); (G.J.G.)
| | - Gerard Van Westen
- Computational Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic Centre of Drug Research, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Helga E. de Vries
- Neuro-immunology research group, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands;
| | - Yin Cheong Wong
- Advanced Modelling and Simulation, UCB Celltech, Slough SL1 3WE, UK;
| | - Luc J.M. Bischoff
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (T.Q.); (L.J.M.B.)
| | - Elizabeth C.M. de Lange
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (T.Q.); (L.J.M.B.)
- Correspondence: ; Tel.: +31-71-527-6330
| |
Collapse
|
261
|
Jiao H, Downie LE, Huang X, Wu M, Oberrauch S, Keenan RJ, Jacobson LH, Chinnery HR. Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy. J Neuroinflammation 2020; 17:136. [PMID: 32345316 PMCID: PMC7189727 DOI: 10.1186/s12974-020-01803-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Xin Huang
- Innate Phagocytosis Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Sara Oberrauch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia. .,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
262
|
Li LX, Yang T, Guo L, Wang DY, Tang CH, Li Q, Yang HM, Zhu J, Zhang LL. Serum tau levels are increased in patients with hyperthyroidism. Neurosci Lett 2020; 729:135003. [PMID: 32335219 DOI: 10.1016/j.neulet.2020.135003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
Hyperthyroidism may cause cognitive decline and increases the risk of Alzheimer's disease (AD), the major form of dementia; however, the underlying mechanism of this relationship is unclear. AD is associated with increased serum levels of tau. In this study, we investigated the relationship between serum thyroid hormones (THs) and tau. Fifty participants diagnosed with hyperthyroidism and fifty euthyroid counterparts were included and received clinical examinations. Serum concentrations of thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3) and tau protein were assessed. The total tau protein level was significantly higher in hyperthyroidism participants than in their euthyroid counterparts. The level of circulating total tau had a significant positive association with the serum concentrations of FT3 and FT4. Total tau level was increased in the low TSH group and the serum THs decreased with the increase of age. These findings reveal that peripheral THs are associated with the serum concentration of tau, which may be involved in the pathogenesis of AD, suggesting a potential therapeutic target of AD via hyperthyroidism therapy.
Collapse
Affiliation(s)
- Lun-Xi Li
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Tong Yang
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Lu Guo
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Da-Yan Wang
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-sen University, China
| | - Chun-Hua Tang
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Qiong Li
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Hai-Mei Yang
- Department of Neurology, Army Medical University Daping Hospital, China
| | - Jie Zhu
- Department of Neurology, Army Medical University Daping Hospital, China.
| | - Li-Li Zhang
- Department of Neurology, Army Medical University Daping Hospital, China
| |
Collapse
|
263
|
Ashton NJ, Hye A, Rajkumar AP, Leuzy A, Snowden S, Suárez-Calvet M, Karikari TK, Schöll M, La Joie R, Rabinovici GD, Höglund K, Ballard C, Hortobágyi T, Svenningsson P, Blennow K, Zetterberg H, Aarsland D. An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders. Nat Rev Neurol 2020; 16:265-284. [PMID: 32322100 DOI: 10.1038/s41582-020-0348-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Cerebrospinal fluid analyses and neuroimaging can identify the underlying pathophysiology at the earliest stage of some neurodegenerative disorders, but do not have the scalability needed for population screening. Therefore, a blood-based marker for such pathophysiology would have greater utility in a primary care setting and in eligibility screening for clinical trials. Rapid advances in ultra-sensitive assays have enabled the levels of pathological proteins to be measured in blood samples, but research has been predominantly focused on Alzheimer disease (AD). Nonetheless, proteins that were identified as potential blood-based biomarkers for AD, for example, amyloid-β, tau, phosphorylated tau and neurofilament light chain, are likely to be relevant to other neurodegenerative disorders that involve similar pathological processes and could also be useful for the differential diagnosis of clinical symptoms. This Review outlines the neuropathological, clinical, molecular imaging and cerebrospinal fluid features of the most common neurodegenerative disorders outside the AD continuum and gives an overview of the current status of blood-based biomarkers for these disorders.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Abdul Hye
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Anto P Rajkumar
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK.,Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Antoine Leuzy
- Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Stuart Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Suárez-Calvet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.,Department of Neurology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Memory Research Unit, Lund University, Malmö, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Renaud La Joie
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kina Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Disease Research, Neurogeriatrics Division, Karolinska Institutet, Novum, Huddinge, Stockholm, Sweden
| | | | - Tibor Hortobágyi
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Per Svenningsson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.,Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK. .,Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.
| |
Collapse
|
264
|
Alifier M, Olsson B, Andreasson U, Cullen NC, Czyżewska J, Jakubów P, Sieśkiewicz A, Stasiak-Barmuta A, Hirnle T, Kornhuber J, Zetterberg H, Lewczuk P, Blennow K. Cardiac Surgery is Associated with Biomarker Evidence of Neuronal Damage. J Alzheimers Dis 2020; 74:1211-1220. [DOI: 10.3233/jad-191165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marek Alifier
- Department of Clinical Immunology, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Bob Olsson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas C. Cullen
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jolanta Czyżewska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Piotr Jakubów
- Department of Cardiosurgery, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Andrzej Sieśkiewicz
- Department of Otolaryngology, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Tomasz Hirnle
- Department of Cardiosurgery, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
265
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
266
|
Hampel H, Vergallo A, Afshar M, Akman-Anderson L, Arenas J, Benda N, Batrla R, Broich K, Caraci F, Cuello AC, Emanuele E, Haberkamp M, Kiddle SJ, Lucía A, Mapstone M, Verdooner SR, Woodcock J, Lista S. Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer's disease
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020. [PMID: 31636492 PMCID: PMC6787542 DOI: 10.31887/dcns.2019.21.2/hhampel] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD)-a complex disease showing multiple pathomechanistic alterations-is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for clinical trial contexts of use-including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant AD "signatures" through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective disease-modifying drugs.
.
Collapse
Affiliation(s)
- Harald Hampel
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Andrea Vergallo
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mohammad Afshar
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Leyla Akman-Anderson
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Joaquín Arenas
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Norbert Benda
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Richard Batrla
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Karl Broich
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Filippo Caraci
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - A Claudio Cuello
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Enzo Emanuele
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Marion Haberkamp
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven J Kiddle
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Alejandro Lucía
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mark Mapstone
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven R Verdooner
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Janet Woodcock
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Simone Lista
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| |
Collapse
|
267
|
Chiu MJ, Chen TF, Hu CJ, Yan SH, Sun Y, Liu BH, Chang YT, Yang CC, Yang SY. Nanoparticle-based immunomagnetic assay of plasma biomarkers for differentiating dementia and prodromal states of Alzheimer's disease - A cross-validation study. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102182. [PMID: 32222476 DOI: 10.1016/j.nano.2020.102182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Blood-based biomarker assays of plasma β-amyloid (Aβ) and tau have the advantages of cost-effective and less invasive for the diagnosis of Alzheimer's disease (AD). We used two independent cohorts to cross-validate the clinical use of the nanoparticle-based immunomagnetic assay of plasma biomarkers to assist in the differential diagnosis of early AD. There were in total 160 subjects in the derivation cohort, and 242 in the validation cohort both containing controls, mild cognitive impairment due to AD and AD dementia diagnosed according to the 2011 NIA-AA guidelines. The cutoff value for plasma Aβ1-42 (16.4 pg/ml) performed the best in differentiating between controls and patients with prodromal or clinical AD, with 92.5% for positive percent agreement (PPA), negative percent agreement (NPA), and overall rate of agreement (ORA). Aβ1-42 × tau (642.58) was useful for separating patients with dementia and prodromal states of AD, with 84.9% PPA, 78.8% NPA and 83% ORA.
Collapse
Affiliation(s)
- Ming-Jang Chiu
- Department of Neurology, National Taiwan University of Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan.
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University of Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Sui-Hing Yan
- Department of Neurology, Renai Branch, Taipei City Hospital, Taipei, Taiwan; Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu Sun
- Department of Neurology, National Taiwan University of Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
| | | | | | | | | |
Collapse
|
268
|
Mengel D, Liu W, Glynn RJ, Selkoe DJ, Strydom A, Lai F, Rosas HD, Torres A, Patsiogiannis V, Skotko B, Walsh DM. Dynamics of plasma biomarkers in Down syndrome: the relative levels of Aβ42 decrease with age, whereas NT1 tau and NfL increase. ALZHEIMERS RESEARCH & THERAPY 2020; 12:27. [PMID: 32192521 PMCID: PMC7081580 DOI: 10.1186/s13195-020-00593-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/06/2020] [Indexed: 11/12/2022]
Abstract
Background Down syndrome (DS) is the most common genetic cause of Alzheimer’s disease (AD), but diagnosis of AD in DS is challenging due to the intellectual disability which accompanies DS. When disease-modifying agents for AD are approved, reliable biomarkers will be required to identify when and how long people with DS should undergo treatment. Three cardinal neuropathological features characterize AD, and AD in DS—Aβ amyloid plaques, tau neurofibrillary tangles, and neuronal loss. Here, we quantified plasma biomarkers of all 3 neuropathological features in a large cohort of people with DS aged from 3 months to 68 years. Our primary aims were (1) to assess changes in the selected plasma biomarkers in DS across age, and (2) to compare biomarkers measured in DS plasma versus age- and sex-matched controls. Methods Using ultra-sensitive single molecule array (Simoa) assays, we measured 3 analytes (Aβ42, NfL, and tau) in plasmas of 100 individuals with DS and 100 age- and sex-matched controls. Tau was measured using an assay (NT1) which detects forms of tau containing at least residues 6–198. The stability of the 3 analytes was established using plasma from ten healthy volunteers collected at 6 intervals over a 5-day period. Results High Aβ42 and NT1 tau and low NfL were observed in infants. Across all ages, Aβ42 levels were higher in DS than controls. Levels of Aβ42 decreased with age in both DS and controls, but this decrease was greater in DS than controls and became prominent in the third decade of life. NT1 tau fell in adolescents and young adults, but increased in older individuals with DS. NfL levels were low in infants, children, adolescents, and young adults, but thereafter increased in DS compared to controls. Conclusions High levels of Aβ42 and tau in both young controls and DS suggest these proteins are produced by normal physiological processes, whereas the changes seen in later life are consistent with emergence of pathological alterations. These plasma biomarker results are in good agreement with prior neuropathology studies and indicate that the third and fourth decades (i.e., 20 to 40 years of age) of life are pivotal periods during which AD processes manifest in DS. Application of the assays used here to longitudinal studies of individuals with DS aged 20 to 50 years of age should further validate the use of these biomarkers, and in time may allow identification and monitoring of people with DS best suited for treatment with AD therapies.
Collapse
Affiliation(s)
- David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA. .,Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Robert J Glynn
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Division of Psychiatry, University College London, London, UK
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital and McLean Hospital, and Harvard Medical School, Boston, MA, USA
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital and McLean Hospital, and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Torres
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Vasiliki Patsiogiannis
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Brian Skotko
- Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
| |
Collapse
|
269
|
Alzheimer's Disease Diagnosis Using Misfolding Proteins in Blood. Dement Neurocogn Disord 2020; 19:1-18. [PMID: 32174051 PMCID: PMC7105719 DOI: 10.12779/dnd.2020.19.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by a long progressive phase of neuronal changes, including accumulation of extracellular amyloid-β (Aβ) and intracellular neurofibrillary tangles, before the onset of observable symptoms. Many efforts have been made to develop a blood-based diagnostic method for AD by incorporating Aβ and tau as plasma biomarkers. As blood tests have the advantages of being highly accessible and low cost, clinical implementation of AD blood tests would provide preventative screening to presymptomatic individuals, facilitating early identification of AD patients and, thus, treatment development in clinical research. However, the low concentration of AD biomarkers in the plasma has posed difficulties for accurate detection, hindering the development of a reliable blood test. In this review, we introduce three AD blood test technologies emerging in South Korea, which have distinctive methods of heightening detection sensitivity of specific plasma biomarkers. We discuss in detail the multimer detection system, the self-standard analysis of Aβ biomarkers quantified by interdigitated microelectrodes, and a biomarker ratio analysis comprising Aβ and tau.
Collapse
|
270
|
Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, Chai X, Proctor NK, Eichenlaub U, Zetterberg H, Blennow K, Reiman EM, Stomrud E, Dage JL, Hansson O. Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 2020; 26:379-386. [PMID: 32123385 DOI: 10.1038/s41591-020-0755-1] [Citation(s) in RCA: 698] [Impact Index Per Article: 139.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Plasma phosphorylated tau181 (P-tau181) might be increased in Alzheimer's disease (AD), but its usefulness for differential diagnosis and prognosis is unclear. We studied plasma P-tau181 in three cohorts, with a total of 589 individuals, including cognitively unimpaired participants and patients with mild cognitive impairment (MCI), AD dementia and non-AD neurodegenerative diseases. Plasma P-tau181 was increased in preclinical AD and further increased at the MCI and dementia stages. It correlated with CSF P-tau181 and predicted positive Tau positron emission tomography (PET) scans (area under the curve (AUC) = 0.87-0.91 for different brain regions). Plasma P-tau181 differentiated AD dementia from non-AD neurodegenerative diseases with an accuracy similar to that of Tau PET and CSF P-tau181 (AUC = 0.94-0.98), and detected AD neuropathology in an autopsy-confirmed cohort. High plasma P-tau181 was associated with subsequent development of AD dementia in cognitively unimpaired and MCI subjects. In conclusion, plasma P-tau181 is a noninvasive diagnostic and prognostic biomarker of AD, which may be useful in clinical practice and trials.
Collapse
Affiliation(s)
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Department of Neurology, Skåne University Hospital, Lund, Sweden
| | | | | | - Xiyun Chai
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Erik Stomrud
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden. .,Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
271
|
Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Huss AM, Neugebauer H, von Arnim CAF, Diehl-Schmid J, Grimmer T, Kornhuber J, Lewczuk P, Danek A, Ludolph AC, Otto M. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer's Disease and Correlates with Cognitive Impairment. J Alzheimers Dis 2020; 67:481-488. [PMID: 30594925 DOI: 10.3233/jad-180325] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reliable blood biomarkers for Alzheimer's disease (AD) are missing. We measured astroglial GFAP in patients with AD (n = 28), frontotemporal dementia (bvFTD, n = 35), Parkinson's disease (n = 11), Lewy body dementias (n = 19), and controls (n = 34). Serum GFAP was increased in AD (p < 0.001) and DLB/PDD (p < 0.01), and cerebrospinal fluid GFAP was increased in all neurodegenerative diseases (p < 0.001). Serum GFAP correlated with the Mini-Mental State Examination score (r= -0.42, p < 0.001) and might be a follow-up marker in clinical trials. Sensitivity and specificity of serum GFAP for AD versus bvFTD was 89% and 79% and might be the first blood biomarker in the differential diagnosis of AD and bvFTD.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | | | | | | | - André M Huss
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | | | | | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-University of Erlangen Nuremberg, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander-University of Erlangen Nuremberg, Erlangen, Germany.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Danek
- Department of Neurology, University Hospital, LMU Munich, München, Germany
| | | | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
272
|
Thijssen EH, La Joie R, Wolf A, Strom A, Wang P, Iaccarino L, Bourakova V, Cobigo Y, Heuer H, Spina S, VandeVrede L, Chai X, Proctor NK, Airey DC, Shcherbinin S, Duggan Evans C, Sims JR, Zetterberg H, Blennow K, Karydas AM, Teunissen CE, Kramer JH, Grinberg LT, Seeley WW, Rosen H, Boeve BF, Miller BL, Rabinovici GD, Dage JL, Rojas JC, Boxer AL. Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nat Med 2020; 26:387-397. [PMID: 32123386 PMCID: PMC7101073 DOI: 10.1038/s41591-020-0762-2] [Citation(s) in RCA: 495] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
With the potential development of new disease-modifying Alzheimer's disease (AD) therapies, simple, widely available screening tests are needed to identify which individuals, who are experiencing symptoms of cognitive or behavioral decline, should be further evaluated for initiation of treatment. A blood-based test for AD would be a less invasive and less expensive screening tool than the currently approved cerebrospinal fluid or amyloid β positron emission tomography (PET) diagnostic tests. We examined whether plasma tau phosphorylated at residue 181 (pTau181) could differentiate between clinically diagnosed or autopsy-confirmed AD and frontotemporal lobar degeneration. Plasma pTau181 concentrations were increased by 3.5-fold in AD compared to controls and differentiated AD from both clinically diagnosed (receiver operating characteristic area under the curve of 0.894) and autopsy-confirmed frontotemporal lobar degeneration (area under the curve of 0.878). Plasma pTau181 identified individuals who were amyloid β-PET-positive regardless of clinical diagnosis and correlated with cortical tau protein deposition measured by 18F-flortaucipir PET. Plasma pTau181 may be useful to screen for tau pathology associated with AD.
Collapse
Affiliation(s)
- Elisabeth H Thijssen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Amy Wolf
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Ping Wang
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Viktoriya Bourakova
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Hilary Heuer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Xiyun Chai
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | - John R Sims
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anna M Karydas
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Howie Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Julio C Rojas
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
273
|
Pase MP, Beiser AS, Himali JJ, Satizabal CL, Aparicio HJ, DeCarli C, Chêne G, Dufouil C, Seshadri S. Assessment of Plasma Total Tau Level as a Predictive Biomarker for Dementia and Related Endophenotypes. JAMA Neurol 2020; 76:598-606. [PMID: 30830207 DOI: 10.1001/jamaneurol.2018.4666] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Importance Blood-based biomarkers have the potential to improve the identification of persons with the greatest dementia risk for inclusion in dementia prevention trials through low-cost and minimally invasive screening. Objective To investigate the use of plasma total tau as a blood biomarker for dementia and related endophenotypes. Design, Setting, and Participants This prospective cohort study used data from the US community-based Framingham Heart Study with replication in the Memento study, a multicenter cohort of persons with mild cognitive impairment or subjective cognitive complaints recruited from memory clinics across France. Total tau levels were measured from stored plasma samples in Framingham Heart Study participants during 2004 to 2011. Dementia follow-up occurred across a median of 6 years (interquartile range, 5-8 years) for persons 65 years and older who were dementia free at baseline. Plasma and/or cerebrospinal fluid samples were obtained from Memento study participants from April 19, 2011, to June 22, 2016. Dementia follow-up took place over a median of 4 years (interquartile range, 3-5 years). Data analysis was performed from January to November 2018. Exposures Plasma total tau level measured using single-molecule array technology. Main Outcomes and Measures Incidence of dementia of any cause (all dementia) and dementia due to clinical Alzheimer disease (AD dementia). Results Among the 1453 participants in the Framingham dementia study sample, the mean (SD) age was 75 (7) years; 792 (54.5%) were female. Among the 367 individuals in the replication cohort, the mean (SD) age was 69 (9) years; 217 (59.1%) were female. Of 134 cases of incident all dementia in the Framingham sample, 105 were AD dementia. After adjustment for age and sex, each SD unit increase in the log of plasma total tau level was associated with a 35% increase in AD dementia risk (hazard ratio [HR], 1.35; 95% CI, 1.10-1.67). The addition of plasma total tau to a model including age and sex improved the stratification of participants for risk of AD dementia (net reclassification improvement, 0.382; 95% CI, 0.030-0.716). Higher plasma total tau level was associated with poorer cognition across 7 cognitive tasks (P < .05) and smaller hippocampi (hippocampal volume: β [SE] = 0.002 [0.001]; P = .003) as well as neurofibrillary tangles (β [SE] = 0.95 [0.45]; P = .04) and microinfarcts (odds ratio, 3.04; 95% CI, 1.26-7.37) at autopsy. In the replication cohort, plasma total tau level weakly correlated with cerebrospinal fluid total tau level (Spearman correlation coefficient, 0.16; P = .07), but plasma total tau was at least as strongly associated with incident AD dementia as cerebrospinal fluid total tau (log plasma total tau: HR, 2.33; 95% CI, 1.00-5.48; log cerebrospinal fluid total tau: HR, 2.14; 95% CI, 1.33-3.44) after adjustment for age and sex. Conclusions and Relevance The findings suggest that plasma total tau levels may improve the prediction of future dementia, are associated with dementia endophenotypes, and may be used as a biomarker for risk stratification in dementia prevention trials.
Collapse
Affiliation(s)
- Matthew P Pase
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Framingham Heart Study, Framingham, Massachusetts.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia.,Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health and The University of Melbourne, Melbourne, Australia
| | - Alexa S Beiser
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Framingham Heart Study, Framingham, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jayandra J Himali
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Framingham Heart Study, Framingham, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Claudia L Satizabal
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Framingham Heart Study, Framingham, Massachusetts.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas
| | - Hugo J Aparicio
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Framingham Heart Study, Framingham, Massachusetts
| | - Charles DeCarli
- Framingham Heart Study, Framingham, Massachusetts.,Department of Neurology, School of Medicine & Imaging of Dementia and Aging Laboratory, Center for Neuroscience, University of California Davis, Sacramento, California
| | - Geneviève Chêne
- Inserm Unit 1219 Bordeaux Population Health, CIC 1401-EC (Clinical Epidemiology), University of Bordeaux, ISPED (Bordeaux School of Public Health), Bordeaux University Hospital, Bordeaux, France
| | - Carole Dufouil
- Inserm Unit 1219 Bordeaux Population Health, CIC 1401-EC (Clinical Epidemiology), University of Bordeaux, ISPED (Bordeaux School of Public Health), Bordeaux University Hospital, Bordeaux, France
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Framingham Heart Study, Framingham, Massachusetts.,Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, Texas
| |
Collapse
|
274
|
Hameed S, Fuh JL, Senanarong V, Ebenezer EGM, Looi I, Dominguez JC, Park KW, Karanam AK, Simon O. Role of Fluid Biomarkers and PET Imaging in Early Diagnosis and its Clinical Implication in the Management of Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:21-37. [PMID: 32206755 PMCID: PMC7081089 DOI: 10.3233/adr-190143] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical diagnosis of Alzheimer's disease (AD) is based on symptoms; however, the challenge is to diagnose AD at the preclinical stage with the application of biomarkers and initiate early treatment (still not widely available). Currently, cerebrospinal fluid (CSF) amyloid-β 42 (Aβ42) and tau are used in the clinical diagnosis of AD; nevertheless, blood biomarkers (Aβ42 and tau) are less predictive. Amyloid-positron emission tomography (PET) imaging is an advancement in technology that uses approved radioactive diagnostic agents (florbetapir, flutemetamol, or florbetaben) to estimate Aβ neuritic plaque density in adults with cognitive impairment evaluated for AD and other causes of cognitive decline. There is no cure for AD to date-the disease progression cannot be stopped or reversed; approved pharmacological agents (donepezil, galantamine, and rivastigmine; memantine) provide symptomatic treatment. However, the disease-modifying therapies are promising; aducanumab and CAD106 are in phase III trials for the early stages of AD. In conclusion, core CSF biomarkers reflect pathophysiology of AD in the early and late stages; the application of approved radiotracers have potential in amyloid-PET brain imaging to detect early AD.
Collapse
Affiliation(s)
- Shahul Hameed
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore
- Duke NUS Medical School, Singapore
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Vorapun Senanarong
- Division of Neurology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Irene Looi
- Clinical Research Centre, Hospital Seberang Jaya, Penang, Malaysia
- Department of Medicine, Hospital Seberang Jaya, Penang, Malaysia
| | | | - Kyung Won Park
- Department of Neurology and Cognitive Disorders and Dementia Center, Institute of Convergence Bio-Health, Dong-A University College of Medicine, Busan, Republic of Korea
| | | | - Oliver Simon
- Novartis (Singapore) Pte. Ltd., Singapore, Singapore
| |
Collapse
|
275
|
Verberk IMW, Hendriksen HMA, van Harten AC, Wesselman LMP, Verfaillie SCJ, van den Bosch KA, Slot RER, Prins ND, Scheltens P, Teunissen CE, Van der Flier WM. Plasma amyloid is associated with the rate of cognitive decline in cognitively normal elderly: the SCIENCe project. Neurobiol Aging 2020; 89:99-107. [PMID: 32081465 DOI: 10.1016/j.neurobiolaging.2020.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/12/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Plasma biomarkers are promising prognostic tools in individuals with subjective cognitive decline (SCD). We aimed to investigate the relationships of baseline plasma amyloid beta (Aβ)42/Aβ40 and total Tau (tTau) with rate of cognitive decline, in comparison to relationships of baseline cerebrospinal fluid (CSF) Aβ42, tTau, and phosphorylated tau181 (pTau181) with rate of cognitive decline. We included 241 subjects with SCD (age = 61 ± 9, 40% female, Mini-Mental State Examination = 28 ± 2) with follow-up (average: 2 ± 2 years, median visits: 3 [range: 1-11]) for re-evaluation of neuropsychological test performance (attention, memory, language, and executive functioning domains). Using age, gender and education-adjusted linear mixed models, we found that lower plasma Aβ42/Aβ40 was associated with steeper rate of decline on tests for attention, memory, and executive functioning, but not language. Lower CSF Aβ42 was associated with steeper decline on tests covering all domains. Associations for plasma amyloid and cognitive decline mirror those of CSF amyloid. Plasma tTau was not associated with rate of cognitive decline, whereas CSF tTau and pTau181 were on multiple tests covering all domains.
Collapse
Affiliation(s)
- Inge M W Verberk
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Heleen M A Hendriksen
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Argonde C van Harten
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Linda M P Wesselman
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sander C J Verfaillie
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Karlijn A van den Bosch
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rosalinde E R Slot
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Niels D Prins
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M Van der Flier
- Alzheimer Center, Department of Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
276
|
Li D, Mielke MM, Bell WR, Reilly C, Zhang L, Lin FV, Yu F. Blood biomarkers as surrogate endpoints of treatment responses to aerobic exercise and cognitive training (ACT) in amnestic mild cognitive impairment: the blood biomarkers study protocol of a randomized controlled trial (the ACT Trial). Trials 2020; 21:19. [PMID: 31907024 PMCID: PMC6943901 DOI: 10.1186/s13063-019-3798-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/11/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an epidemic with tremendous public health impacts because there are currently no disease-modifying therapeutics. Randomized controlled trials (RCTs) for prevention of AD dementia often use clinical endpoints that take years to manifest (e.g., cognition) or surrogate endpoints that are costly or invasive (e.g., magnetic resonance imaging [MRI]). Blood biomarkers represent a clinically applicable alternative surrogate endpoint for RCTs that would be both cost-effective and minimally invasive, but little is known about their value as surrogate endpoints for treatment responses in the prevention of AD dementia. METHODS The objective of this study is to investigate blood neuropathological, neurodegenerative, and neurotrophic biomarkers as surrogate endpoints for treatment responses to three interventions in older adults with amnestic mild cognitive impairment (aMCI, a prodromal stage of AD): aerobic exercise, cognitive training, and combined aerobic exercise and cognitive training (ACT). We chose these three sets of biomarkers for their unique mechanistic associations with AD pathology, neurodegeneration and neurogenesis. This study is built on the ACT Trial (1R01AG055469), a single-blinded, multi-site, 2 × 2 factorial phase II RCT that examines the synergistic effects of a 6-month ACT intervention on cognition and MRI biomarkers (AD-signature cortical thickness and hippocampal volume) (n = 128). In this ACT Trial blood biomarkers study, we will enroll 120 ACT Trial participants with aMCI and measure blood biomarkers at baseline and at 3, 6, 12, and 18 months. The goals are to (1) determine the effect of interventions on blood biomarkers over 6 months, (2) evaluate blood biomarkers as surrogate endpoints for predicting cognitive responses to interventions over 18 months, and (3, exploratory) examine blood biomarkers as surrogate endpoints for predicting brain MRI biomarker responses to interventions over 18 months. DISCUSSION This study aims to identify new blood biomarkers that can track cognitive decline or AD-related brain atrophy among patients with aMCI subjected to a regimen of aerobic exercise and cognitive training. Findings from this study will drive the further use of blood biomarkers in developing effective prevention and treatment strategies for AD dementia. TRIAL REGISTRATION ClinicalTrials.gov, NCT03313895. Registered on 18 October 2017.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Michelle M. Mielke
- Department of Neurology and Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN 55902 USA
| | - W. Robert Bell
- Department of Lab Medicine and Pathology, University of Minnesota, 420 Delaware Street SE, MMC 609, Minneapolis, MN 55455 USA
| | - Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 USA
| | - Lin Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 USA
| | - Feng Vankee Lin
- University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Fang Yu
- School of Nursing, University of Minnesota, 5-140 WDH, 308 Harvard St SE, Minneapolis, MN 55455 USA
| |
Collapse
|
277
|
Park JC, Han SH, Yi D, Byun MS, Lee JH, Jang S, Ko K, Jeon SY, Lee YS, Kim YK, Lee DY, Mook-Jung I. Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer's disease. Brain 2020; 142:771-786. [PMID: 30668647 DOI: 10.1093/brain/awy347] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/04/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
One of the hallmarks of Alzheimer's disease is abnormal deposition of tau proteins in the brain. Although plasma tau has been proposed as a potential biomarker for Alzheimer's disease, a direct link to brain deposition of tau is limited. Here, we estimated the amount of in vivo tau deposition in the brain by PET imaging and measured plasma levels of total tau (t-tau), phosphorylated tau (p-tau, T181) and amyloid-β1-42. We found significant correlations of plasma p-tau, t-tau, p-tau/amyloid-β1-42, and t-tau/amyloid-β1-42 with brain tau deposition in cross-sectional and longitudinal manners. In particular, t-tau/amyloid-β1-42 in plasma was highly predictive of brain tau deposition, exhibiting 80% sensitivity and 91% specificity. Interestingly, the brain regions where plasma t-tau/amyloid-β1-42 correlated with brain tau were similar to the typical deposition sites of neurofibrillary tangles in Alzheimer's disease. Furthermore, the longitudinal changes in cerebral amyloid deposition, brain glucose metabolism, and hippocampal volume change were also highly associated with plasma t-tau/amyloid-β1-42. These results indicate that combination of plasma tau and amyloid-β1-42 levels might be potential biomarkers for predicting brain tau pathology and neurodegeneration.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sukjin Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kang Ko
- Department of Geriatric Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Republic of Korea.,Neuroscience Research Institute, Seoul National University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
278
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
279
|
From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 2020; 139:3-25. [PMID: 31686182 PMCID: PMC6942016 DOI: 10.1007/s00401-019-02087-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022]
Abstract
The term “propagon” is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various “tauopathies” that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer’s disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer’s pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer’s disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.
Collapse
|
280
|
Teuber-Hanselmann S, Rekowski J, Vogelgsang J, von Arnim C, Reetz K, Stang A, Jöckel KH, Wiltfang J, Esselmann H, Otto M, Tumani H, Herring A, Keyvani K. CSF and blood Kallikrein-8: a promising early biomarker for Alzheimer's disease. J Neurol Neurosurg Psychiatry 2020; 91:40-48. [PMID: 31371645 PMCID: PMC6952834 DOI: 10.1136/jnnp-2019-321073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE There is still an urgent need for supportive minimally invasive and cost-effective biomarkers for early diagnosis of Alzheimer's disease (AD). Previous work in our lab has identified Kallikrein-8 (KLK8) as a potential candidate since it shows an excessive increase in human brain in preclinical disease stages. The aim of this study was to evaluate the diagnostic performance of cerebrospinal fluid (CSF) and blood KLK8 for AD and mild cognitive impairment (MCI) due to AD. METHODS In this multi-centre trans-sectional study, clinical and laboratory data as well as CSF and/or blood serum samples of 237 participants, including 98 patients with mild AD, 21 with MCI due to AD and 118 controls were collected. CSF and/or serum KLK8 levels were analysed by ELISA. The diagnostic accuracy of KLK8 in CSF and blood was determined using receiver operating characteristic (ROC) analyses and compared with that of CSF core biomarkers Aβ42, P-tau and T-tau. RESULTS The diagnostic accuracy of CSF KLK8 was as good as that of core CSF biomarkers for AD (area under the curve (AUC)=0.89) and in case of MCI (AUC=0.97) even superior to CSF Aβ42. Blood KLK8 was a similarly strong discriminator for MCI (AUC=0.94) but slightly weaker for AD (AUC=0.83). CONCLUSIONS This is the first study to demonstrate the potential clinical utility of blood and CSF KLK8 as a biomarker for incipient AD. Future prospective validation studies are warranted.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jan Rekowski
- Institute of Medical Informatics, Biometry and Epidemiology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| | - Christine von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany.,Clinic for Neurogeriatrics and Neurological Rehabilitation, RKU-University and Rehabilitation Hospital Ulm, Ulm, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Andreas Stang
- Center of Clinical Epidemiology, c/o Institute of Medical Informatics, Biometry and Epidemiology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany.,iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Herrmann Esselmann
- Department of Psychiatry and Psychotherapy, University Medical Center, Gottingen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Arne Herring
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
281
|
Bernick C, Shan G, Zetterberg H, Banks S, Mishra VR, Bekris L, Leverenz JB, Blennow K. Longitudinal change in regional brain volumes with exposure to repetitive head impacts. Neurology 2019; 94:e232-e240. [PMID: 31871218 PMCID: PMC7108810 DOI: 10.1212/wnl.0000000000008817] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022] Open
Abstract
Objective This study tests the hypothesis that certain MRI-based regional brain volumes will show reductions over time in a cohort exposed to repetitive head impacts (RHI). Methods Participants were drawn from the Professional Fighters Brain Health Study, a longitudinal observational study of professional fighters and controls. Participants underwent annual 3T brain MRI, computerized cognitive testing, and blood sampling for determination of neurofilament light (NfL) and tau levels. Yearly change in regional brain volume was calculated for several predetermined cortical and subcortical brain volumes and the relationship with NfL and tau levels determined. Results A total of 204 participants who had at least 2 assessments were included in the analyses. Compared to controls, the active boxers had an average yearly rate of decline in volumes of the left thalamus (102.3 mm3/y [p = 0.0004], mid anterior corpus callosum (10.2 mm3/y [p = 0.018]), and central corpus callosum (16.5 mm3/y [p = <0.0001]). Retired boxers showed the most significant volumetric declines compared to controls in left (32.1 mm3/y [p = 0.002]) and right (30.6 mm3/y [p = 0.008]) amygdala and right hippocampus (33.5 mm3/y [p = 0.01]). Higher baseline NfL levels were associated with greater volumetric decline in left hippocampus and mid anterior corpus callosum. Conclusion Volumetric loss in different brain regions may reflect different pathologic processes at different times among individuals exposed to RHI.
Collapse
Affiliation(s)
- Charles Bernick
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH.
| | - Guogen Shan
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| | - Henrik Zetterberg
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| | - Sarah Banks
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| | - Virendra R Mishra
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| | - Lynn Bekris
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| | - James B Leverenz
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| | - Kaj Blennow
- From the Cleveland Clinic (C.B., V.R.M.), Las Vegas; University of Nevada (G.S.), Las Vegas; Sahlgrenska Academy (H.Z., K.B.), University of Gothenburg, Sweden; University of California (S.B.), San Diego; and Cleveland Clinic (L.B., J.B.L.), OH
| |
Collapse
|
282
|
Milà-Alomà M, Suárez-Calvet M, Molinuevo JL. Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer's disease. Ther Adv Neurol Disord 2019; 12:1756286419888819. [PMID: 31897088 PMCID: PMC6920596 DOI: 10.1177/1756286419888819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and its diagnosis has classically been based on clinical symptoms. Recently, a biological rather than a syndromic definition of the disease has been proposed that is based on biomarkers that reflect neuropathological changes. In AD, there are two main biomarker categories, namely neuroimaging and fluid biomarkers [cerebrospinal fluid (CSF) and blood]. As a complex and multifactorial disease, AD biomarkers are important for an accurate diagnosis and to stage the disease, assess the prognosis, test target engagement, and measure the response to treatment. In addition, biomarkers provide us with information that, even if it does not have a current clinical use, helps us to understand the mechanisms of the disease. In addition to the pathological hallmarks of AD, which include amyloid-β and tau deposition, there are multiple concomitant pathological events that play a key role in the disease. These include, but are not limited to, neurodegeneration, inflammation, vascular dysregulation or synaptic dysfunction. In addition, AD patients often have an accumulation of other proteins including α-synuclein and TDP-43, which may have a pathogenic effect on AD. In combination, there is a need to have biomarkers that reflect different aspects of AD pathogenesis and this will be important in the future to establish what are the most suitable applications for each of these AD-related biomarkers. It is unclear whether sex, gender, or both have an effect on the causes of AD. There may be differences in fluid biomarkers due to sex but this issue has often been neglected and warrants further research. In this review, we summarize the current state of the principal AD fluid biomarkers and discuss the effect of sex on these biomarkers.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- Department of Neurology, Hospital del Mar,
Barcelona
| | - José Luís Molinuevo
- Scientific Director, Alzheimer’s Prevention
Program, Barcelonaβeta Brain Research Center, Wellington 30, Barcelona,
08005, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- CIBER Fragilidad y Envejecimiento Saludable,
Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
283
|
Simrén J, Ashton NJ, Blennow K, Zetterberg H. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 2019; 61:29-39. [PMID: 31838254 DOI: 10.1016/j.conb.2019.11.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Over the last twenty years, the characterization of Alzheimer's disease (AD) patients has progressed from a description of clinical symptomatology followed by neuropathological findings at autopsy to in vivo pathophysiological signatures using cerebrospinal fluid (CSF) and positron emission tomography (PET). Additionally, CSF biomarkers now reflect synaptic pathology, axonal injury and neuroinflammation. Novel techniques are capable of measuring proteins of pathophysiological importance at femtomolar concentrations in blood (e.g. amyloid, tau species and neurofilaments), which enable screening of large populations in the near future. This will be essential for secondary prevention trials and clinical management. However, common diseases such as dementia with Lewy bodies, Parkinson's disease and frontotemporal dementias, are still without reliable diagnostic biomarkers, although emerging techniques show promising pilot results for some of these diseases. This is likely to change in the next few years, which will be crucial to stratify populations enrolling in clinical trials, since pathologies often coexist.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| |
Collapse
|
284
|
Bittar A, Bhatt N, Kayed R. Advances and considerations in AD tau-targeted immunotherapy. Neurobiol Dis 2019; 134:104707. [PMID: 31841678 PMCID: PMC6980703 DOI: 10.1016/j.nbd.2019.104707] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
The multifactorial and complex nature of Alzheimer’s disease (AD) has made it difficult to identify therapeutic targets that are causally involved in the disease process. However, accumulating evidence from experimental and clinical studies that investigate the early disease process point towards the required role of tau in AD etiology. Importantly, a large number of studies investigate and characterize the plethora of pathological forms of tau protein involved in disease onset and propagation. Immunotherapy is one of the most clinical approaches anticipated to make a difference in the field of AD therapeutics. Tau –targeted immunotherapy is the new direction after the failure of amyloid beta (Aß)-targeted immunotherapy and the growing number of studies that highlight the Aß-independent disease process. It is now well established that immunotherapy alone will most likely be insufficient as a monotherapy. Therefore, this review discusses updates on tau-targeted immunotherapy studies, AD-relevant tau species, updates on promising biomarkers and a prospect on combination therapies to surround the disease propagation in an efficient and timely manner.
Collapse
Affiliation(s)
- Alice Bittar
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Nemil Bhatt
- Department of Neuroscience, Cell Biology and Anatomy, Graduate School of Biomedical Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| | - Rakez Kayed
- Department of Neurology, The Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, United States of America.
| |
Collapse
|
285
|
Cavedo E, Lista S, Houot M, Vergallo A, Grothe MJ, Teipel S, Zetterberg H, Blennow K, Habert MO, Potier MC, Dubois B, Hampel H. Plasma tau correlates with basal forebrain atrophy rates in people at risk for Alzheimer disease. Neurology 2019; 94:e30-e41. [DOI: 10.1212/wnl.0000000000008696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
ObjectiveTo investigate whether baseline concentrations of plasma total tau (t-tau) and neurofilament light (NfL) chain proteins are associated with annual percent change (APC) of the basal forebrain cholinergic system (BFCS) in cognitively intact older adults at risk for Alzheimer disease (AD).MethodsThis was a large-scale study of 276 cognitively intact older adults from the monocentric INSIGHT-preAD (Investigation of Alzheimer's Predictors in Subjective Memory Complainers) cohort. Participants underwent baseline assessment of plasma t-tau and NfL concentrations as well as baseline and 24-month follow-up MRI scans. Linear models with and without influential observations (calculated using the Cook distance) were carried out to investigate the effect of plasma NfL and t-tau concentrations, and their interaction effect with β-amyloid status and APOE genotype, on the APC of the whole BFCS and its anterior (Ch1/2) and posterior (Ch4) subdivisions separately.ResultsHigher plasma t-tau concentrations at baseline were associated with higher BFCS rate of atrophy (model without influencers: n = 251, F value = 4.6815; p value = 0.031). Subregional analyses showed similar results for both the APC of the Ch1/2 (model without influencers: n = 256, F value = 3.9535, p corrected = 0.047) and Ch4 BFCS sectors (model without influencers: n = 253, F value = 4.9090, p corrected = 0.047). Baseline NfL, β-amyloid load, and APOE ε4 carrier status did not affect APC of the BFCS.ConclusionIncreased concentrations of baseline plasma t-tau may predict in vivo structural BFCS atrophy progression in older adults at risk for AD, independently of β-amyloid status and APOE genotype.
Collapse
|
286
|
Lue LF, Kuo YM, Sabbagh M. Advance in Plasma AD Core Biomarker Development: Current Findings from Immunomagnetic Reduction-Based SQUID Technology. Neurol Ther 2019; 8:95-111. [PMID: 31833027 PMCID: PMC6908530 DOI: 10.1007/s40120-019-00167-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 11/28/2022] Open
Abstract
New super-sensitive biomarker assay platforms for measuring Alzheimer's disease (AD) core pathological markers in plasma have recently been developed and tested. Research findings from these technologies offer promising evidence for identifying the earliest stages of AD and correlating them with brain pathological progression. Here, we review findings using immunomagnetic reduction, one of these ultrasensitive technologies. The principles, technology and assays developed, along with selected published findings will be discussed. The major findings from this technology were significant increases of amyloid beta (Aβ) 42 and total tau (t-tau) levels in subjects clinically diagnosed with early AD when compared with cognitively normal control (NC) subjects. The composite marker of the product of Aβ42 and t-tau discriminated subjects with early AD from NC subjects with high accuracy. The potential of this technology for the purpose of early or preclinical disease stage detection has yet to be explored in subjects who have also been assessed with brain imaging and cerebrospinal fluid AD core biomarker measurements.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Civin Neuropathology Laboratory, Banner Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ, 85351, USA.
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ, 85281, USA.
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University Medical School, 1 Dasyue Road, Tainan, Taiwan
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Ave, Las Vegas, NV, 89106, USA
| |
Collapse
|
287
|
Palmqvist S, Insel PS, Stomrud E, Janelidze S, Zetterberg H, Brix B, Eichenlaub U, Dage JL, Chai X, Blennow K, Mattsson N, Hansson O. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer's disease. EMBO Mol Med 2019; 11:e11170. [PMID: 31709776 PMCID: PMC6895602 DOI: 10.15252/emmm.201911170] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Failures in Alzheimer's disease (AD) drug trials highlight the need to further explore disease mechanisms and alterations of biomarkers during the development of AD. Using cross-sectional data from 377 participants in the BioFINDER study, we examined seven cerebrospinal fluid (CSF) and six plasma biomarkers in relation to β-amyloid (Aβ) PET uptake to understand their evolution during AD. In CSF, Aβ42 changed first, closely followed by Aβ42/Aβ40, phosphorylated-tau (P-tau), and total-tau (T-tau). CSF neurogranin, YKL-40, and neurofilament light increased after the point of Aβ PET positivity. The findings were replicated using Aβ42, Aβ40, P-tau, and T-tau assays from five different manufacturers. Changes were seen approximately simultaneously for CSF and plasma biomarkers. Overall, plasma biomarkers had smaller dynamic ranges, except for CSF and plasma P-tau which were similar. In conclusion, using state-of-the-art biomarkers, we identified the first changes in Aβ, closely followed by soluble tau. Only after Aβ PET became abnormal, biomarkers of neuroinflammation, synaptic dysfunction, and neurodegeneration were altered. These findings lend in vivo support of the amyloid cascade hypotheses in humans.
Collapse
Affiliation(s)
- Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
| | - Philip S Insel
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Erik Stomrud
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Shorena Janelidze
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | | | | | | | | | - Kaj Blennow
- Department of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Niklas Mattsson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Department of NeurologySkåne University HospitalLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| |
Collapse
|
288
|
Soluble TREM1 concentrations are increased and positively correlated with total tau levels in the plasma of patients with Alzheimer's disease. Aging Clin Exp Res 2019; 31:1801-1805. [PMID: 30637597 DOI: 10.1007/s40520-019-01122-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Recently, we showed that triggering receptor expressed on myeloid cells 1 (TREM1) was involved in the pathogenesis of Alzheimer's disease (AD) since it modulated microglial phagocytic functions and thus affected amyloid-β clearance in the brain. Interestingly, a soluble form of TREM1 (sTREM1) can be detected in the plasma of human. To date, whether sTREM1 concentrations were altered in the plasma under AD context remained unclear. METHODS In this study, we compared the plasma concentrations of sTREM1 between 110 AD patients and 128 age- and gender-matched controls. Meanwhile, the relationship of sTREM1 concentrations with total tau levels in the plasma of AD patients was also assessed. RESULTS We revealed that the concentrations of sTREM1 were significantly increased in AD patients. Meanwhile, the sTREM1 concentrations were gradually increased during disease progression. More importantly, we showed that the sTREM1 concentrations were positively correlated with the levels of total tau in the plasma of AD patients (r = 0.61, P < 0.001). The subsequent subgroup analysis indicated that this correlation was more pronounced in patients with severe dementia (Mini-Mental State Exam score < 10, r = 0.81, P < 0.01). CONCLUSION These findings indicate a potential association between sTREM1 and tau pathology, and further confirm an involvement of this immune receptor in AD pathogenesis.
Collapse
|
289
|
Vanderstichele HM, Teunissen CE, Vanmechelen E. Critical Steps to be Taken into Consideration Before Quantification of β-Amyloid and Tau Isoforms in Blood can be Implemented in a Clinical Environment. Neurol Ther 2019; 8:129-145. [PMID: 31833029 PMCID: PMC6908532 DOI: 10.1007/s40120-019-00166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
This review aims to document difficulties, limitations, and pitfalls when considering protein analysis in blood samples. It proposes an improved workflow for design, development, and validation of (immuno)assays for blood proteins, without providing reflections on a potential hypothesis of the origin of protein mismetabolism and deposition. There is a special focus on assay development for quantification of β-amyloid (Aβ) and tau in blood for diagnostic use or for integration in clinical trials in the field of Alzheimer's disease (AD).
Collapse
|
290
|
Ashton NJ, Ide M, Zetterberg H, Blennow K. Salivary Biomarkers for Alzheimer's Disease and Related Disorders. Neurol Ther 2019; 8:83-94. [PMID: 31833026 PMCID: PMC6908535 DOI: 10.1007/s40120-019-00168-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
The search for accessible and cost-effective biomarkers to complement current cerebrospinal fluid (CSF) and imaging biomarkers in the accurate detection of Alzheimer disease (AD) and other common neurodegenerative disorders remains a challenging task. The advances in ultra-sensitive detection methods has highlighted blood biomarkers (e.g. amyloid-β and neurofilament light) as a valuable and realistic tool in a diagnostic or screening process. Saliva, however, is also a rich source of potential biomarkers for disease detection and offers several practical advantages over biofluids that are currently examined for neurodegenerative disorders. However, while this may be true for the general population, challenges in collecting saliva from an elderly population should be seriously considered. In this review, we begin by discussing how saliva is produced and how age-related conditions can modify saliva production and composition. We then focus on the data available which support the concept of salivary amyloid-β, tau species and novel biomarkers in detecting AD and alpha-synuclein (α-syn) in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK.
| | - Mark Ide
- Periodontology, Centre for Host Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, UK
- Mucosal and Salivary Biology, Centre for Host Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
291
|
Abstract
The development of blood-based biomarkers of Alzheimer's disease (AD) pathology as tools for screening the general population, and as the first step in a multistep process to determine which non-demented individuals are at greatest risk of developing AD dementia, is essential. Proteins that are reflective of AD pathology, such as amyloid beta 42 (Aβ42), tau proteins [total tau (T-tau) and phosphorylated tau (P-tau)], and neurofilament light chain (NfL), are detectable in the blood. However, a major challenge in measuring these blood-based proteins is that their concentrations are much lower in plasma or serum than in the cerebrospinal fluid. Single molecule array (SiMoA) is an ultrasensitive technology that can detect proteins in blood at sub-femtomolar concentrations (i.e., 10-16 M). In this review, we focus on the utility of SiMoA assays for the measurement of plasma or serum Aβ42, P-tau, T-tau, and NfL levels and discuss future directions.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
292
|
Ashton NJ, Suárez-Calvet M, Heslegrave A, Hye A, Razquin C, Pastor P, Sanchez-Valle R, Molinuevo JL, Visser PJ, Blennow K, Hodges AK, Zetterberg H. Plasma levels of soluble TREM2 and neurofilament light chain in TREM2 rare variant carriers. ALZHEIMERS RESEARCH & THERAPY 2019; 11:94. [PMID: 31779670 PMCID: PMC6883551 DOI: 10.1186/s13195-019-0545-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/09/2019] [Indexed: 11/22/2022]
Abstract
Background Results from recent clinical studies suggest that cerebrospinal fluid (CSF) biomarkers that are indicative of Alzheimer’s disease (AD) can be replicated in blood, e.g. amyloid-beta peptides (Aβ42 and Aβ40) and neurofilament light chain (NFL). Such data proposes that blood is a rich source of potential biomarkers reflecting central nervous system pathophysiology and should be fully explored for biomarkers that show promise in CSF. Recently, soluble fragments of the triggering receptor expressed on myeloid cells 2 (sTREM2) protein in CSF have been reported to be increased in prodromal AD and also in individuals with TREM2 rare genetic variants that increase the likelihood of developing dementia. Methods In this study, we measured the levels of plasma sTREM2 and plasma NFL using the MesoScale Discovery and single molecule array platforms, respectively, in 48 confirmed TREM2 rare variant carriers and 49 non-carriers. Results Our results indicate that there are no changes in plasma sTREM2 and NFL concentrations between TREM2 rare variant carriers and non-carriers. Furthermore, plasma sTREM2 is not different between healthy controls, mild cognitive impairment (MCI) or AD. Conclusion Concentrations of plasma sTREM2 do not mimic the recent changes found in CSF sTREM2.
Collapse
Affiliation(s)
- Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden. .,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK.
| | - Marc Suárez-Calvet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.,Department of Neurology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Abdul Hye
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,CIBER and Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Pau Pastor
- Fundació Docència i Recerca Mútua Terrassa, University Hospital Mútua de Terrassa, Terrassa, 08221, Barcelona, Spain.,Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Terrassa, 08222, Barcelona, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - José L Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Catalonia, Spain.,August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Angela K Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
293
|
Perrotte M, Haddad M, Le Page A, Frost EH, Fulöp T, Ramassamy C. Profile of pathogenic proteins in total circulating extracellular vesicles in mild cognitive impairment and during the progression of Alzheimer's disease. Neurobiol Aging 2019; 86:102-111. [PMID: 31883770 DOI: 10.1016/j.neurobiolaging.2019.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/03/2023]
Abstract
Accumulating evidence suggests that the propagation of hyperphosphorylation of tau protein and the amyloid-β peptide can be mediated by extracellular vesicles (EVs) and be associated with the onset and the progression of Alzheimer's disease (AD). As EVs may transfer between the brain and the blood, we have thus hypothesized that the total plasma EVs (pEVs) may contain potential markers to predict the mild cognitive impairment (MCI) and AD progression. We have thus quantified AD-related proteins in isolated pEVs from controls, MCI and AD subjects. In pEVs, we observed early changes of total tau (tTau), amyloid precursor protein levels, and phospho-tau (pTau)-T181/tTau ratio from MCI subjects and late increases of Aβ42 and pTau-T181 levels from patients with moderate AD. Interestingly, abnormal amyloid precursor protein levels and pTau-T181/tTau ratio in pEVs demonstrated a high accuracy to define MCI and AD staging. Although larger samples sizes will be needed to generate well-powered investigations, these preliminary results highlighted the potential of AD-related proteins enriched in pEVs as a sensitive tool for differentiating patients with MCI to patients with AD and monitoring AD progression.
Collapse
Affiliation(s)
- Morgane Perrotte
- Institut National de La Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Institute on Nutrition and Functional Foods, Laval University, Québec, Canada; Quebec Network for Research on Aging, University of Montreal, Montreal, QC, Canada
| | - Mohamed Haddad
- Institut National de La Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Institute on Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatric Division, Research Center on Aging, University of Sherbrooke, QC, Canada
| | - Eric H Frost
- Department of Microbiology and Infectiology, Centre de Recherches Cliniques de CHUS, University of Sherbrooke, QC, Canada
| | - Tamàs Fulöp
- Department of Medicine, Geriatric Division, Research Center on Aging, University of Sherbrooke, QC, Canada
| | - Charles Ramassamy
- Institut National de La Recherche Scientifique - Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada; Institute on Nutrition and Functional Foods, Laval University, Québec, Canada; Quebec Network for Research on Aging, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
294
|
Shen L, Xia S, Zhang H, Yao F, Liu X, Zhao Y, Ying M, Iqbal J, Liu Q. Precision Medicine: Role of Biomarkers in Early Prediction and Diagnosis of Alzheimer’s Disease. Mol Med 2019. [DOI: 10.5772/intechopen.82035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
295
|
Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S, Stomrud E, Lee J, Fitz L, Samad TA, Ramaswamy G, Margolin RA, Malarstig A, Hansson O. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease. Acta Neuropathol Commun 2019; 7:169. [PMID: 31694701 PMCID: PMC6836495 DOI: 10.1186/s40478-019-0795-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
To date, the development of disease-modifying therapies for Alzheimer’s disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (− 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (− 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87–0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68–0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
Collapse
|
296
|
Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer's Disease: Present and future applications. Brain Res 2019; 1727:146535. [PMID: 31669827 DOI: 10.1016/j.brainres.2019.146535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive and multifactorial disease. Many scientific advances have advanced our understanding of the pathogenesis of AD. However, the clinical diagnosis of AD remains difficult, with only post-mortem assays confirming its definitive diagnosis. There is a crucial need for an early and accurate detection of AD related symptoms. To date, current diagnosis techniques are costly or invasive. Finding a peripheral biomarker that could provide a sensitive, reproducible, and accurate detection prior to the onset of the AD clinical symptoms will allow identification of "at risk" individuals, thereby facilitating early initiation of treatments that may prove more effective. Salivary glands contain stem cells, which are affected by aging, suggesting that tissue samples from these glands may reveal a stem cell biomarker of AD, but also stem cells may be harvested from these glands, with proper timing and isolation technique, for cell-based regenerative medicine. Alternatively, instead of the salivary glands, saliva may represent an attractive source for biomarkers due to minimal discomfort to the patient, non-invasive collection, and the possibility of cost-effective screening large populations, encouraging greater compliance in clinical trials and frequent testing. In addition, salivary glands contain stem cells, which are likely also present in the saliva, making these cells as potentially sensitive cellular biomarker of and a therapeutic agent for AD. The aim of this review is to critically analyze the use of saliva for the identification of circulating biological markers to help the diagnosis of early cognitive impairment associated with AD and to generate insights into the potential application of stem cells derived from salivary glands or saliva as therapeutics (i.e., stem cell transplantation) for the disease.
Collapse
|
297
|
Farhadi A, Vosough M, Zhang JS, Tahamtani Y, Shahpasand K. A Possible Neurodegeneration Mechanism Triggered by Diabetes. Trends Endocrinol Metab 2019; 30:692-700. [PMID: 31399291 DOI: 10.1016/j.tem.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/14/2023]
Abstract
Several conditions result in neurodegeneration; among which diabetes mellitus (DM) is of crucial importance. Tau (τ) malfunction is a major pathological process participating in neurodegeneration. Despite extensive considerations, the actual causative link between DM and τ abnormalities remains uncertain thus far. Phosphorylated (p)-τ at Thr-Pro motifs can exist in the two distinct cis and trans conformations. cis is neurotoxic, and is accumulated upon various stress conditions, such as nutrition depletion. We assume that pathogenic cis p-τ is the central mediator of neurodegeneration in DM, and propose why different brain areas give various responses to stress conditions. We herein juxtapose recent approaches in diabetic neurodegeneration and propose a therapeutic target to stop neuronal loss during DM.
Collapse
Affiliation(s)
- Aisan Farhadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Jin-San Zhang
- International Collaborative Center on Growth Factor Research, and School of Pharmaceutical Sciences, Wenzhou Medical University; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China; Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran.
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, IR 19395-4644, Iran.
| |
Collapse
|
298
|
Sancesario G, Bernardini S. AD biomarker discovery in CSF and in alternative matrices. Clin Biochem 2019; 72:52-57. [DOI: 10.1016/j.clinbiochem.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022]
|
299
|
Plasma Aβ42 and Total Tau Predict Cognitive Decline in Amnestic Mild Cognitive Impairment. Sci Rep 2019; 9:13984. [PMID: 31562355 PMCID: PMC6764975 DOI: 10.1038/s41598-019-50315-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023] Open
Abstract
Levels of amyloid-β (Aβ) and tau peptides in brain have been associated with Alzheimer disease (AD). The current study investigated the abilities of plasma Aβ42 and total-tau (t-tau) levels in predicting cognitive decline in subjects with amnestic mild cognitive impairment (MCI). Plasma Aβ42 and t-tau levels were quantified in 22 participants with amnestic MCI through immunomagnetic reduction (IMR) assay at baseline. The cognitive performance of participants was measured through neuropsychological tests at baseline and annual follow-up (average follow-up period of 1.5 years). The predictive value of plasma Aβ42 and t-tau for cognitive status was evaluated. We found that higher levels of Aβ42 and t-tau are associated with lower episodic verbal memory performance at baseline and cognitive decline over the course of follow-up. While Aβ42 or t-tau alone had moderate-to-high discriminatory value in the identification of future cognitive decline, the product of Aβ42 and t-tau offered greater differential value. These preliminary results might suggest that high levels of plasma Aβ42 and t-tau in amnestic MCI are associated with later cognitive decline. A further replication with a larger sample over a longer time period to validate and determine their long-term predictive value is warranted.
Collapse
|
300
|
Benedet AL, Ashton NJ, Pascoal TA, Leuzy A, Mathotaarachchi S, Kang MS, Therriault J, Savard M, Chamoun M, Schöll M, Zimmer ER, Gauthier S, Labbe A, Zetterberg H, Blennow K, Neto PR. Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:679-689. [PMID: 31673598 PMCID: PMC6816316 DOI: 10.1016/j.dadm.2019.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Introduction Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Methods Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ-) subjects. Results Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. Discussion These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects.
Collapse
Affiliation(s)
- Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Antoine Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Min S Kang
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Eduardo R Zimmer
- Alzheimer's Disease Research Unit, The McGill University Research Centre for Studies in Aging, Montreal, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, The McGill University Research Centre for Studies in Aging, Montreal, McGill University, Montreal, Quebec, Canada
| | - Aurélie Labbe
- Department of Decision Sciences, HEC Montreal, Montreal, Quebec, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Pedro R Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|