251
|
Arregui CO, González Á, Burdisso JE, González Wusener AE. Protein tyrosine phosphatase PTP1B in cell adhesion and migration. Cell Adh Migr 2013; 7:418-23. [PMID: 24104540 DOI: 10.4161/cam.26375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell migration requires a highly coordinated interplay between specialized plasma membrane adhesion complexes and the cytoskeleton. Protein phosphorylation/dephosphorylation modifications regulate many aspects of the integrin-cytoskeleton interdependence, including their coupling, dynamics, and organization to support cell movement. The endoplasmic reticulum-bound protein tyrosine phosphatase PTP1B has been implicated as a regulator of cell adhesion and migration. Recent results from our laboratory shed light on potential mechanisms, such as Src/FAK signaling through Rho GTPases and integrin-cytoskeletal coupling.
Collapse
Affiliation(s)
- Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Juan E Burdisso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| | - Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH); Universidad Nacional de San Martín; Consejo Nacional de Investigaciones Científicas y Técnicas; Buenos Aires, Argentina
| |
Collapse
|
252
|
Thievessen I, Thompson PM, Berlemont S, Plevock KM, Plotnikov SV, Zemljic-Harpf A, Ross RS, Davidson MW, Danuser G, Campbell SL, Waterman CM. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. ACTA ACUST UNITED AC 2013; 202:163-77. [PMID: 23836933 PMCID: PMC3704983 DOI: 10.1083/jcb.201303129] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Vinculin functions as a molecular clutch that organizes leading edge F-actin, generates traction, and promotes focal adhesion formation and turnover but not adhesion growth. In migrating cells, integrin-based focal adhesions (FAs) assemble in protruding lamellipodia in association with rapid filamentous actin (F-actin) assembly and retrograde flow. How dynamic F-actin is coupled to FA is not known. We analyzed the role of vinculin in integrating F-actin and FA dynamics by vinculin gene disruption in primary fibroblasts. Vinculin slowed F-actin flow in maturing FA to establish a lamellipodium–lamellum border and generate high extracellular matrix (ECM) traction forces. In addition, vinculin promoted nascent FA formation and turnover in lamellipodia and inhibited the frequency and rate of FA maturation. Characterization of a vinculin point mutant that specifically disrupts F-actin binding showed that vinculin–F-actin interaction is critical for these functions. However, FA growth rate correlated with F-actin flow speed independently of vinculin. Thus, vinculin functions as a molecular clutch, organizing leading edge F-actin, generating ECM traction, and promoting FA formation and turnover, but vinculin is dispensible for FA growth.
Collapse
Affiliation(s)
- Ingo Thievessen
- Laboratory of Cell and Tissue Morphodynamics, Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Bonet R, Vakonakis I, Campbell ID. Characterization of 14-3-3-ζ Interactions with integrin tails. J Mol Biol 2013; 425:3060-72. [PMID: 23763993 PMCID: PMC4068353 DOI: 10.1016/j.jmb.2013.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/17/2013] [Accepted: 05/25/2013] [Indexed: 01/20/2023]
Abstract
Integrins are a family of heterodimeric (α+β) adhesion receptors that play key roles in many cellular processes. Integrins are unusual in that their functions can be modulated from both outside and inside the cell. Inside-out signaling is mediated by binding adaptor proteins to the flexible cytoplasmic tails of the α- and β-integrin subunits. Talin is one well-known intracellular activator, but various other adaptors bind to integrin tails, including 14-3-3-ζ, a member of the 14-3-3 family of dimeric proteins that have a preference for binding phosphorylated sequence motifs. Phosphorylation of a threonine in the β2 integrin tail has been shown to modulate β2/14-3-3-ζ interactions, and recently, the α4 integrin tail was reported to bind to 14-3-3-ζ and associate with paxillin in a ternary complex that is regulated by serine phosphorylation. Here, we use a range of biophysical techniques to characterize interactions between 14-3-3-ζ and the cytoplasmic tails of α4, β1, β2 and β3 integrins. The X-ray structure of the 14-3-3-ζ/α4 complex indicates a canonical binding mode for the α4 phospho-peptide, but unexpected features are also observed: residues outside the consensus 14-3-3-ζ binding motif are shown to be essential for an efficient interaction; in contrast, a short β2 phospho-peptide is sufficient for high-affinity binding to 14-3-3-ζ. In addition, we report novel 14-3-3-ζ/integrin tail interactions that are independent of phosphorylation. Of the integrin tails studied, the strongest interaction with 14-3-3-ζ is observed for the β1A variant. In summary, new insights about 14-3-3-ζ/integrin tail interactions that have implications for the role of these molecular associations in cells are described.
Collapse
Affiliation(s)
| | | | - Iain D. Campbell
- Department of Biochemistry, University of Oxford, South Parks
Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
254
|
Miller NLG, Lawson C, Kleinschmidt EG, Tancioni I, Uryu S, Schlaepfer DD. A non-canonical role for Rgnef in promoting integrin-stimulated focal adhesion kinase activation. J Cell Sci 2013; 126:5074-85. [PMID: 24006257 DOI: 10.1242/jcs.135509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin-FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef-FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef-FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner.
Collapse
|
255
|
Ridley AJ. RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc 2013; 251:242-9. [PMID: 23488932 DOI: 10.1111/jmi.12025] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/07/2013] [Indexed: 12/16/2022]
Abstract
Rho GTPases are well known to regulate cell motility through activation of a variety of downstream effector proteins, including enzymes, adaptor proteins and actin nucleators. The three closely related Rho GTPases RhoA, RhoB and RhoC all have the potential to interact with the same downstream effectors, yet they have substantially different effects on cell shape and migratory properties. Here I review the different ways in which RhoA, RhoB and RhoC expression is regulated in cancer and how they play distinct roles in cancer progression. I describe their main effectors known to contribute to cell motility. Recent results from our laboratory and others indicate that RhoA, RhoB and RhoC can be activated by specific stimuli and act through different effectors to control distinct aspects of cancer cell migration and invasion. This suggests that they each make unique contributions to cancer by participating in different protein complexes.
Collapse
Affiliation(s)
- A J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK.
| |
Collapse
|
256
|
LIM domains target actin regulators paxillin and zyxin to sites of stress fiber strain. PLoS One 2013; 8:e69378. [PMID: 23990882 PMCID: PMC3749209 DOI: 10.1371/journal.pone.0069378] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/08/2013] [Indexed: 01/25/2023] Open
Abstract
Contractile actomyosin stress fibers are critical for maintaining the force balance between the interior of the cell and its environment. Consequently, the actin cytoskeleton undergoes dynamic mechanical loading. This results in spontaneous, stochastic, highly localized strain events, characterized by thinning and elongation within a discrete region of stress fiber. Previous work showed the LIM-domain adaptor protein, zyxin, is essential for repair and stabilization of these sites. Using live imaging, we show paxillin, another LIM-domain adaptor protein, is also recruited to stress fiber strain sites. Paxillin recruitment to stress fiber strain sites precedes zyxin recruitment. Zyxin and paxillin are each recruited independently of the other. In cells lacking paxillin, actin recovery is abrogated, resulting in slowed actin recovery and increased incidence of catastrophic stress fiber breaks. For both paxillin and zyxin, the LIM domains are necessary and sufficient for recruitment. This work provides further evidence of the critical role of LIM-domain proteins in responding to mechanical stress in the actin cytoskeleton.
Collapse
|
257
|
Martin M, Geudens I, Bruyr J, Potente M, Bleuart A, Lebrun M, Simonis N, Deroanne C, Twizere JC, Soubeyran P, Peixoto P, Mottet D, Janssens V, Hofmann WK, Claes F, Carmeliet P, Kettmann R, Gerhardt H, Dequiedt F. PP2A regulatory subunit Bα controls endothelial contractility and vessel lumen integrity via regulation of HDAC7. EMBO J 2013; 32:2491-503. [PMID: 23955003 DOI: 10.1038/emboj.2013.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/19/2013] [Indexed: 01/04/2023] Open
Abstract
To supply tissues with nutrients and oxygen, the cardiovascular system forms a seamless, hierarchically branched, network of lumenized tubes. Here, we show that maintenance of patent vessel lumens requires the Bα regulatory subunit of protein phosphatase 2A (PP2A). Deficiency of Bα in zebrafish precludes vascular lumen stabilization resulting in perfusion defects. Similarly, inactivation of PP2A-Bα in cultured ECs induces tubulogenesis failure due to alteration of cytoskeleton dynamics, actomyosin contractility and maturation of cell-extracellular matrix (ECM) contacts. Mechanistically, we show that PP2A-Bα controls the activity of HDAC7, an essential transcriptional regulator of vascular stability. In the absence of PP2A-Bα, transcriptional repression by HDAC7 is abrogated leading to enhanced expression of the cytoskeleton adaptor protein ArgBP2. ArgBP2 hyperactivates RhoA causing inadequate rearrangements of the EC actomyosin cytoskeleton. This study unravels the first specific role for a PP2A holoenzyme in development: the PP2A-Bα/HDAC7/ArgBP2 axis maintains vascular lumens by balancing endothelial cytoskeletal dynamics and cell-matrix adhesion.
Collapse
Affiliation(s)
- Maud Martin
- Laboratory of Protein Signaling and Interactions, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, Sart-Tilman, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
259
|
Abstract
Integrins are transmembrane receptors that mediate cell adhesion to neighboring cells and to the extracellular matrix. Here, the various modes in which integrin-mediated adhesion regulates intracellular signaling pathways impinging on cell survival, proliferation, and differentiation are considered. Subsequently, evidence that integrins also control crucial signaling cascades in cancer cells is discussed. Lastly, the important role of integrin signaling in tumor cells as well as in stromal cells that support cancer growth, metastasis, and therapy resistance indicates that integrin signaling may be an attractive target for (combined) cancer therapy strategies. Current approaches to target integrins in this context are reviewed.
Collapse
|
260
|
Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration. Exp Neurol 2013; 248:157-69. [PMID: 23797153 DOI: 10.1016/j.expneurol.2013.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022]
Abstract
In the adult central nervous system, the tips of axons severed by injury are commonly transformed into dystrophic endballs and cease migration upon encountering a rising concentration gradient of inhibitory proteoglycans. However, intracellular signaling networks mediating endball migration failure remain largely unknown. Here we show that manipulation of protein kinase A (PKA) or its downstream adhesion component paxillin can reactivate the locomotive machinery of endballs in vitro and facilitate axon growth after injury in vivo. In dissociated cultures of adult rat dorsal root ganglion neurons, PKA is activated in endballs formed on gradients of the inhibitory proteoglycan aggrecan, and pharmacological inhibition of PKA promotes axon growth on aggrecan gradients most likely through phosphorylation of paxillin at serine 301. Remarkably, pre-formed endballs on aggrecan gradients resume forward migration in response to PKA inhibition. This resumption of endball migration is associated with increased turnover of adhesive point contacts dependent upon paxillin phosphorylation. Furthermore, expression of phosphomimetic paxillin overcomes aggrecan-mediated growth arrest of endballs, and facilitates axon growth after optic nerve crush in vivo. These results point to the importance of adhesion dynamics in restoring endball migration and suggest a potential therapeutic target for axon tract repair.
Collapse
|
261
|
Kawada I, Hasina R, Lennon FE, Bindokas VP, Usatyuk P, Tan YHC, Krishnaswamy S, Arif Q, Carey G, Hseu RD, Robinson M, Tretiakova M, Brand TM, Iida M, Ferguson MK, Wheeler DL, Husain AN, Natarajan V, Vokes EE, Singleton PA, Salgia R. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics: relevance to lung cancer. Cancer Biol Ther 2013; 14:679-91. [PMID: 23792636 PMCID: PMC3742497 DOI: 10.4161/cbt.25091] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytoskeletal and focal adhesion abnormalities are observed in several types of cancer, including lung cancer. We have previously reported that paxillin (PXN) was mutated, amplified, and overexpressed in a significant number of lung cancer patient samples, that PXN protein was upregulated in more advanced stages of lung cancer compared with lower stages, and that the PXN gene was also amplified in some pre-neoplastic lung lesions. Among the mutations investigated, we previously found that PXN variant A127T in lung cancer cells enhanced cell proliferation and focal adhesion formation and colocalized with the anti-apoptotic protein B Cell Lymphoma 2 (BCL-2), which is known to localize to the mitochondria, among other sites. To further explore the effects of activating mutations of PXN on mitochondrial function, we cloned and expressed wild-type PXN and variants containing the most commonly occurring PXN mutations (P46S, P52L, G105D, A127T, P233L, T255I, D399N, E423K, P487L, and K506R) in a GFP-tagged vector using HEK-293 human embryonic kidney cells. Utilizing live-cell imaging to systematically study the effects of wild-type PXN vs. mutants, we created a model that recapitulates the salient features of the measured dynamics and conclude that compared with wild-type, some mutant clones confer enhanced focal adhesion and lamellipodia formation (A127T, P233L, and P487L) and some confer increased association with BCL-2, Dynamin-related Protein-1 (DRP-1), and Mitofusion-2 (MFN-2) proteins (P233L and D399N). Further, PXN mutants, through their interactions with BCL-2 and DRP-1, could regulate cisplatin drug resistance in human lung cancer cells. The data reported herein suggest that mutant PXN variants play a prominent role in mitochondrial dynamics with direct implications on lung cancer progression and hence, deserve further exploration as therapeutic targets.
Collapse
Affiliation(s)
- Ichiro Kawada
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Watanabe-Nakayama T, Saito M, Machida S, Kishimoto K, Afrin R, Ikai A. Requirement of LIM domains for the transient accumulation of paxillin at damaged stress fibres. Biol Open 2013; 2:667-74. [PMID: 23862014 PMCID: PMC3711034 DOI: 10.1242/bio.20134531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/25/2013] [Indexed: 12/12/2022] Open
Abstract
Cells recognize and respond to changes in intra- and extracellular mechanical conditions to maintain their mechanical homeostasis. Linear contractile bundles of actin filaments and myosin II known as stress fibres (SFs) mediate mechanical signals. Mechanical cues such as excessive stress driven by myosin II and/or external force may damage SFs and induce the local transient accumulation of SF-repair complexes (zyxin and VASP) at the damaged sites. Using an atomic force microscope mounted on a fluorescence microscope, we applied mechanical damage to cells expressing fluorescently tagged cytoskeletal proteins and recorded the subsequent mobilization of SF-repair complexes. We found that a LIM protein, paxillin, transiently accumulated at the damaged sites earlier than zyxin, while paxillin knockdown did not affect the kinetics of zyxin translocation. The C-terminal half of paxillin, comprising four-tandem LIM domains, can still translocate to damaged sites on SFs, suggesting that the LIM domain is essential for the mechanosensory function of paxillin. Our findings demonstrate a crucial role of the LIM domain in mechanosensing LIM proteins.
Collapse
Affiliation(s)
- Takahiro Watanabe-Nakayama
- Innovation Laboratory, Tokyo Institute of Technology , S2-8, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 , Japan ; Present address: Imaging Research Division, Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
263
|
Wang R, Bi J, Ampah KK, Zhang C, Li Z, Jiao Y, Wang X, Ba X, Zeng X. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering. Int J Biochem Cell Biol 2013; 45:1679-89. [PMID: 23665237 DOI: 10.1016/j.biocel.2013.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 01/16/2023]
Abstract
Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins.
Collapse
Affiliation(s)
- Ruifei Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Moik D, Böttcher A, Makhina T, Grashoff C, Bulus N, Zent R, Fässler R. Mutations in the paxillin-binding site of integrin-linked kinase (ILK) destabilize the pseudokinase domain and cause embryonic lethality in mice. J Biol Chem 2013; 288:18863-71. [PMID: 23658024 DOI: 10.1074/jbc.m113.470476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val(386) and Thr(387) were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.5. Fibroblasts isolated from ILK-VT/GG mice contained mutant ILK in FAs, showed normal adhesion to and spreading on extracellular matrix substrates but displayed impaired migration. Biochemical analysis revealed that VT/GG substitutions decreased ILK protein stability leading to decreased ILK levels and reduced binding to paxillin and α-parvin. Because paxillin depletion did not affect ILK localization to FAs, the embryonic lethality and the in vitro migration defects are likely due to the reduced levels of ILK-VT/GG and diminished binding to parvins.
Collapse
Affiliation(s)
- Daniel Moik
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
265
|
Ninio-Many L, Grossman H, Shomron N, Chuderland D, Shalgi R. microRNA-125a-3p reduces cell proliferation and migration by targeting Fyn. J Cell Sci 2013; 126:2867-76. [PMID: 23606749 DOI: 10.1242/jcs.123414] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fyn, a member of the Src family kinases (SFKs), has a pivotal role in cell adhesion, proliferation, migration and survival, and its overexpression is associated with several types of cancer. MicroRNAs (miRNAs) play a major role in post-transcriptional repression of protein expression. In light of the significant functions of Fyn, together with studies demonstrating miR-125a as a tumor-suppressing miRNA that is downregulated in several cancer cell types and on our bioinformatics studies presented here, we chose to examine the post-transcription regulation of Fyn by miR-125a-3p in the HEK 293T cell line. We show that Fyn expression can be dramatically reduced by elevated levels of miR-125a-3p. Following this reduction, the activity of proteins downstream of Fyn, such as FAK, paxillin and Akt (proteins known to be overexpressed in various tumors), is also reduced. On a broader level, we show that miR-125a-3p causes an arrest of the cell cycle at the G2/M stage and decreases cell viability and migration, probably in a Fyn-directed manner. The results are reinforced by control experiments conducted using Fyn siRNA and anti-miR-125a-3p, as well as by the fact that numerous cancer cell lines show a significant downregulation of Fyn after mir-125a-3p overexpression. Collectively, we conclude that miR-125a-3p has an important role in the regulation of Fyn expression and of its signaling pathway, which implies that it has a therapeutic potential in overexpressed Fyn-related diseases.
Collapse
Affiliation(s)
- Lihi Ninio-Many
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
266
|
Fuentealba J, Toro-Tapia G, Arriagada C, Riquelme L, Beyer A, Henriquez JP, Caprile T, Mayor R, Marcellini S, Hinrichs MV, Olate J, Torrejón M. Ric-8A, a guanine nucleotide exchange factor for heterotrimeric G proteins, is critical for cranial neural crest cell migration. Dev Biol 2013; 378:74-82. [PMID: 23588098 DOI: 10.1016/j.ydbio.2013.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/05/2013] [Accepted: 04/05/2013] [Indexed: 01/02/2023]
Abstract
The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Lee SH, Kim JK, Kim DW, Hwang HS, Eum WS, Park J, Han KH, Oh JS, Choi SY. Antitumor activity of methyl gallate by inhibition of focal adhesion formation and Akt phosphorylation in glioma cells. Biochim Biophys Acta Gen Subj 2013; 1830:4017-29. [PMID: 23562553 DOI: 10.1016/j.bbagen.2013.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/05/2013] [Accepted: 03/27/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Methyl gallate (MG) possesses a wide range of biological properties that include anti-oxidant, anti-inflammatory, and anti-microbial activities. However, its anti-tumor activity has not been extensively examined in cancer cells. Thus, we examined the effect of MG in both glutamate-induced rat C6 and human U373 glioma cell proliferation and migration. METHODS MG was isolated from the stem bark of Acer barbinerve. Cell viability and migration were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and scratch wound-healing assay, respectively. Focal adhesion formation was detected with immunofluorescence. RESULTS Treatment of C6 and U373 glioma cells with MG significantly reduced cell viability, migration, and Akt phosphorylation level. Glutamate stimulation markedly increased the level of ERK1/2 phosphorylation. However, cells treated with MG displayed decreased ERK1/2 phosphorylation. Inhibition of ERK1/2 by MG or MEK1/2 inhibitor significantly inhibited paxillin phosphorylation at Ser(83) and focal adhesion turn-over produced inefficient glioma cell migration. In addition, activation of Akt and ERK1/2 upon glutamate stimulation was independently regulated by Ca(2+) and protein kinase C activity, respectively, via the α-amino-3-hydroxy-5-methy-4-isoxazolepropionate acid glutamate receptor and metabotropic glutamate receptor. GENERAL SIGNIFICANCE Our results clearly indicate that MG has a strong anti-tumor effect through the down-regulation of the Akt and ERK1/2 signaling pathways. Thus, methyl gallate is a potent anti-tumor and novel therapeutic agent for glioma.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Kopf S, Viola K, Atanasov AG, Jarukamjorn K, Rarova L, Kretschy N, Teichmann M, Vonach C, Saiko P, Giessrigl B, Huttary N, Raab I, Krieger S, Schumacher M, Diederich M, Strnad M, de Martin R, Szekeres T, Jäger W, Dirsch VM, Mikulits W, Grusch M, Dolznig H, Krupitza G. In vitro characterisation of the anti-intravasative properties of the marine product heteronemin. Arch Toxicol 2013; 87:1851-61. [DOI: 10.1007/s00204-013-1045-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
|
269
|
Following the 'tracks': Tramtrack69 regulates epithelial tube expansion in the Drosophila ovary through Paxillin, Dynamin, and the homeobox protein Mirror. Dev Biol 2013; 378:154-69. [PMID: 23545328 DOI: 10.1016/j.ydbio.2013.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/05/2013] [Accepted: 03/16/2013] [Indexed: 11/21/2022]
Abstract
Epithelial tubes are the infrastructure for organs and tissues, and tube morphogenesis requires precise orchestration of cell signaling, shape, migration, and adhesion. Follicle cells in the Drosophila ovary form a pair of epithelial tubes whose lumens act as molds for the eggshell respiratory filaments, or dorsal appendages (DAs). DA formation is a robust and accessible model for studying the patterning, formation, and expansion of epithelial tubes. Tramtrack69 (TTK69), a transcription factor that exhibits a variable embryonic DNA-binding preference, controls DA lumen volume and shape by promoting tube expansion; the tramtrack mutation twin peaks (ttk(twk)) reduces TTK69 levels late in oogenesis, inhibiting this expansion. Microarray analysis of wild-type and ttk(twk) ovaries, followed by in situ hybridization and RNAi of candidate genes, identified the Phospholipase B-like protein Lamina ancestor (LAMA), the scaffold protein Paxillin, the endocytotic regulator Shibire (Dynamin), and the homeodomain transcription factor Mirror, as TTK69 effectors of DA-tube expansion. These genes displayed enriched expression in DA-tube cells, except lama, which was expressed in all follicle cells. All four genes showed reduced expression in ttk(twk) mutants and exhibited RNAi phenotypes that were enhanced in a ttk(twk)/+ background, indicating ttk(twk) genetic interactions. Although previous studies show that Mirror patterns the follicular epithelium prior to DA tubulogenesis, we show that Mirror has an independent, novel role in tube expansion, involving positive regulation of Paxillin. Thus, characterization of ttk(twk)-differentially expressed genes expands the network of TTK69 effectors, identifies novel epithelial tube-expansion regulators, and significantly advances our understanding of this vital developmental process.
Collapse
|
270
|
Zheng JW, Yin HF, Wang X, Liu YC, Wan YL, Zhu J. SiRNA-mediated silencing of paxillin down-regulates ERK1/2 signaling and alters cell ultrastructure in colorectal carcinoma cell line SW480. Shijie Huaren Xiaohua Zazhi 2013; 21:754-760. [DOI: 10.11569/wcjd.v21.i9.754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of silencing of paxillin overexpression on cell signaling and ultrastructure in colorectal carcinoma cell line SW480.
METHODS: Using empty plasmid as a negative control, two siRNA fragments were transfected into a colorectal carcinoma cell line SW480 which overexpresses paxillin. Stably transfected cells were screened and three new cell lines NC, SW545 and SW782 were obtained, which carried the negative control, the siRNA targeting the site 545-565, and the siRNA targeting the site 782-802, respectively. The expression and site-specific phosphorylation of paxillin, FAK, ERK1/2 and AKT1/2/3 were examined in the four cell lines by Western blot. Specimens were prepared with cultured carcinoma cells to observe cell ultrastructure by transmission electron microscopy.
RESULTS: Paxillin overexpression in SW545 cells was not silenced at all, whereas silenced paxillin overexpression and remarkably reduced phosphorylation of paxillin (Tyr118) were observed in SW782 cells. Expression of AKT1/2/3 and FAK as well as their site-specific phosphorylation were substantially the same in the four cell lines. Although expression of ERK1/2 was substantially the same in the four cell lines, significantly reduced phosphorylation of ERK1/2 (Thr202/Tyr204) was observed in SW782 cells. There was no distinct ultrastructural difference between NC cells and SW480 cells, whereas dramatic ultrastructural changes were observed in SW782 cells, such as much more microvilli, microfilament and microtubule bundles, lysosomes and much less mitochondria.
CONCLUSION: Paxillin overexpression may play an important role in the malignant transformation of colorectal carcinoma cells, which is characterized by dramatic ultrastructural changes that can be reversed by silencing paxillin overexpression. Activation of ERK1/2 signaling downstream of paxillin is indispensable for the malignant transformation of colorectal carcinoma cells.
Collapse
|
271
|
Werner ME, Ward HH, Phillips CL, Miller C, Gattone VH, Bacallao RL. Inversin modulates the cortical actin network during mitosis. Am J Physiol Cell Physiol 2013; 305:C36-47. [PMID: 23515530 DOI: 10.1152/ajpcell.00279.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv-/- mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv-/- mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Anatomy and Cell Biology, Indiana University, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
272
|
Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis. Arch Toxicol 2013; 87:1301-12. [DOI: 10.1007/s00204-013-1028-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/25/2013] [Indexed: 01/09/2023]
|
273
|
Kim SH, Jang YH, Chau GC, Pyo S, Um SH. Prognostic significance and function of phosphorylated ribosomal protein S6 in esophageal squamous cell carcinoma. Mod Pathol 2013; 26:327-35. [PMID: 22996377 DOI: 10.1038/modpathol.2012.161] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ribosomal protein S6 is a key regulator of 40S ribosome biogenesis, and its phosphorylation is closely related to cell growth capacity. However, as a downstream target of S6 kinases, the clinical significance and the roles of S6 and S6 phosphorylation in cell viability and motility of esophageal squamous cell carcinoma remain unclear. Here, we show that high level of phosphorylated-ribosomal protein S6 (p-S6) (immunohistochemistry score ≥5) and an increased ratio of p-S6/S6 (immunohistochemistry score ≥0.75) were significantly associated with shortened disease-free survival in patients with esophageal squamous cell carcinoma in univariate analysis (P=0.049 and P<0.001, respectively). After adjusting for age, tumor-nodes-metastasis stage, chemotherapy, and radiation therapy in multivariate analysis, both p-S6 (hazard ratio 2.21, P=0.005) and p-S6/S6 (hazard ratio 2.40, P<0.001) remained independent adverse prognostic factors. In addition, S6 and S6 kinase 1 knockdown resulted in attenuation of viability by suppressing cyclin D1 expression in esophageal cancer cells. Furthermore, depletion of S6 and S6 kinase 1 resulted in a reduction in esophageal cancer cell migration and invasion. This was paralleled by a reduction in focal adhesion and by suppression of extracellular signal-regulated kinase and c-jun N-terminal kinase phosphorylation, which control cell motility. Collectively, these findings suggest that p-S6 and the ratio of p-S6/S6 are closely relevant to tumor progression and have prognostic significance in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
274
|
Austin P, Freeman SA, Gray CA, Gold MR, Vogl AW, Andersen RJ, Roberge M, Roskelley CD. The invasion inhibitor sarasinoside A1 reverses mesenchymal tumor transformation in an E-cadherin-independent manner. Mol Cancer Res 2013; 11:530-40. [PMID: 23399642 DOI: 10.1158/1541-7786.mcr-12-0385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During metastatic progression, an aberrant epithelial-to-mesenchymal transformation (EMT) that is most often driven by the loss of the cell-cell adhesion molecule E-cadherin generates noncohesive tumor cells that are highly invasive. We used mesenchymally transformed, E-cadherin-negative MDA-MB-231 breast carcinoma cells in a natural product screen and determined that the triterpenoid saponin sarasinoside A1 inhibited their invasion and the invasion of a number of other tumor cell lines. Sarasinoside A1 also caused MDA-MB-231 cells to become cohesive in a three-dimensional basement membrane and collagen gel cultures. In two-dimensional culture, sarasinoside A1 initiated a morphologic re-epithelialization of MDA-MB-231 cells wherein preexisting nonepithelial cadherins and the junction-associated proteins β-catenin and ZO-1 all relocalized to sites of cell-cell contact. In addition, the intercellular space between neighboring cells narrowed considerably, the stability of polymerized actin at cell-cell contact sites increased, and there was a recruitment and stabilization of nectin-based adhesion complexes to these sites, all of which strongly suggested that functional cell-cell junctions had formed. Importantly, sarasinoside A1 induced nascent cell-cell junction formation that did not require changes in gene expression and was not associated with an induction of E-cadherin but resulted in increased activation of Rap GTPases. Therefore, our findings with sarasinoside A1 suggest that it may be possible to re-epithelialize metastatic tumor cells with phenotypic consequence even when E-cadherin is completely absent.
Collapse
Affiliation(s)
- Pamela Austin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
275
|
Maia V, Ortiz-Rivero S, Sanz M, Gutierrez-Berzal J, Alvarez-Fernández I, Gutierrez-Herrero S, de Pereda JM, Porras A, Guerrero C. C3G forms complexes with Bcr-Abl and p38α MAPK at the focal adhesions in chronic myeloid leukemia cells: implication in the regulation of leukemic cell adhesion. Cell Commun Signal 2013; 11:9. [PMID: 23343344 PMCID: PMC3629710 DOI: 10.1186/1478-811x-11-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Previous studies by our group and others have shown that C3G interacts with Bcr-Abl through its SH3-b domain. Results In this work we show that C3G and Bcr-Abl form complexes with the focal adhesion (FA) proteins CrkL, p130Cas, Cbl and Abi1 through SH3/SH3-b interactions. The association between C3G and Bcr-Abl decreased upon Abi1 or p130Cas knock-down in K562 cells, which suggests that Abi1 and p130Cas are essential partners in this interaction. On the other hand, C3G, Abi1 or Cbl knock-down impaired adhesion to fibronectin, while p130Cas silencing enhanced it. C3G, Cbl and p130Cas-SH3-b domains interact directly with common proteins involved in the regulation of cell adhesion and migration. Immunoprecipitation and immunofluorescence studies revealed that C3G form complexes with the FA proteins paxillin and FAK and their phosphorylated forms. Additionally, C3G, Abi1, Cbl and p130Cas regulate the expression and phosphorylation of paxillin and FAK. p38α MAPK also participates in the regulation of adhesion in chronic myeloid leukemia cells. It interacts with C3G, CrkL, FAK and paxillin and regulates the expression of paxillin, CrkL and α5 integrin, as well as paxillin phosphorylation. Moreover, double knock-down of C3G/p38α decreased adhesion to fibronectin, similarly to the single silencing of one of these genes, either C3G or p38α. These suggest that C3G and p38α MAPK are acting through a common pathway to regulate cell adhesion in K562 cells, as previously described for the regulation of apoptosis. Conclusions Our results indicate that C3G-p38αMAPK pathway regulates K562 cell adhesion through the interaction with FA proteins and Bcr-Abl, modulating the formation of different protein complexes at FA.
Collapse
Affiliation(s)
- Vera Maia
- Centro de Investigación del Cáncer, IBMCC, CSIC-Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Ohsawa M, Kobayashi T, Okura H, Igarashi T, Mizuguchi M, Hino O. TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity. PLoS One 2013; 8:e54503. [PMID: 23355874 PMCID: PMC3552859 DOI: 10.1371/journal.pone.0054503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
The tumor-suppressor genes TSC1 and TSC2 are mutated in tuberous sclerosis, an autosomal dominant multisystem disorder. The gene products of TSC1 and TSC2 form a protein complex that inhibits the signaling of the mammalian target of rapamycin complex1 (mTORC1) pathway. mTORC1 is a crucial molecule in the regulation of cell growth, proliferation and survival. When the TSC1/TSC2 complex is not functional, uncontrolled mTORC1 activity accelerates the cell cycle and triggers tumorigenesis. Recent studies have suggested that TSC1 and TSC2 also regulate the activities of Rac1 and Rho, members of the Rho family of small GTPases, and thereby influence the ensuing actin cytoskeletal organization at focal adhesions. However, how TSC1 contributes to the establishment of cell polarity is not well understood. Here, the relationship between TSC1 and the formation of the actin cytoskeleton was analyzed in stable TSC1-expressing cell lines originally established from a Tsc1-deficient mouse renal tumor cell line. Our analyses showed that cell proliferation and migration were suppressed when TSC1 was expressed. Rac1 activity in these cells was also decreased as was formation of lamellipodia and filopodia. Furthermore, the number of basal actin stress fibers was reduced; by contrast, apical actin fibers, originating at the level of the tight junction formed a network in TSC1-expressing cells. Treatment with Rho-kinase (ROCK) inhibitor diminished the number of apical actin fibers, but rapamycin had no effect. Thus, the actin fibers were regulated by the Rho-ROCK pathway independently of mTOR. In addition, apical actin fibers appeared in TSC1-deficient cells after inhibition of Rac1 activity. These results suggest that TSC1 regulates cell polarity-associated formation of actin fibers through the spatial regulation of Rho family of small GTPases.
Collapse
Affiliation(s)
- Maki Ohsawa
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail: (OH); (TK)
| | - Hidehiro Okura
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Igarashi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail: (OH); (TK)
| |
Collapse
|
277
|
Santiago-Medina M, Gregus KA, Gomez TM. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci 2013; 126:1122-33. [PMID: 23321640 DOI: 10.1242/jcs.112607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.
Collapse
Affiliation(s)
- Miguel Santiago-Medina
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
278
|
Lee JH, Wittki S, Bräu T, Dreyer FS, Krätzel K, Dindorf J, Johnston ICD, Gross S, Kremmer E, Zeidler R, Schlötzer-Schrehardt U, Lichtenheld M, Saksela K, Harrer T, Schuler G, Federico M, Baur AS. HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 2013; 49:668-79. [PMID: 23317503 DOI: 10.1016/j.molcel.2012.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/19/2012] [Accepted: 12/06/2012] [Indexed: 12/21/2022]
Abstract
The HIV Nef protein recruits the polycomb protein Eed and mimics an integrin receptor signal for reasons that are not entirely clear. Here we demonstrate that Nef and Eed complex with the integrin effector paxillin to recruit and activate TNFα converting enzyme (TACE alias ADAM 17) and its close relative ADAM10. The activated proteases cleaved proTNFα and were shuttled into extracellular vesicles (EVs). Peripheral blood mononuclear cells that ingested these EVs released TNFα. Analyzing the mechanism, we found that Pak2, an established host cell effector of Nef, phosphorylated paxillin on Ser272/274 to induce TACE-paxillin association and shuttling into EVs via lipid rafts. Conversely, Pak1 phosphorylated paxillin on Ser258, which inhibited TACE association and lipid raft transfer. Interestingly, melanoma cells used an identical mechanism to shuttle predominantly ADAM10 into EVs. We conclude that HIV-1 and cancer cells exploit a paxillin/integrin-controlled mechanism to release TACE/ADAM10-containing vesicles, ensuring better proliferation/growth conditions in their microenvironment.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
In vitro inhibition of breast cancer spheroid-induced lymphendothelial defects resembling intravasation into the lymphatic vasculature by acetohexamide, isoxsuprine, nifedipin and proadifen. Br J Cancer 2013; 108:570-8. [PMID: 23299527 PMCID: PMC3593542 DOI: 10.1038/bjc.2012.580] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: As metastasis is the prime cause of death from malignancies, there is vibrant interest to discover options for the management of the different mechanistic steps of tumour spreading. Some approved pharmaceuticals exhibit activities against diseases they have not been developed for. In order to discover such activities that might attenuate lymph node metastasis, we investigated 225 drugs, which are approved by the US Food and Drug Administration. Methods: A three-dimensional cell co-culture assay was utilised measuring tumour cell-induced disintegrations of the lymphendothelial wall through which tumour emboli can intravasate as a limiting step in lymph node metastasis of ductal breast cancer. The disintegrated areas in the lymphendothelial cell (LEC) monolayers were induced by 12(S)-HETE, which is secreted by MCF-7 tumour cell spheroids, and are called ‘circular chemorepellent induced defects' (CCIDs). The putative mechanisms by which active drugs prevented the formation of entry gates were investigated by western blotting, NF-κB activity assay and by the determination of 12(S)-HETE synthesis. Results: Acetohexamide, nifedipin, isoxsuprine and proadifen dose dependently inhibited the formation of CCIDs in LEC monolayers and inhibited markers of epithelial-to-mesenchymal-transition and migration. The migration of LECs is a prerequisite of CCID formation, and these drugs either repressed paxillin levels or the activities of myosin light chain 2, or myosin-binding subunit of myosin phosphatase. Isoxsuprine inhibited all three migration markers, and isoxsuprine and acetohexamide suppressed the synthesis of 12(S)-HETE, whereas proadifen and nifedipin inhibited NF-κB activation. Both the signalling pathways independently cause CCID formation. Conclusion: The targeting of different mechanisms was most likely the reason for synergistic effects of different drug combinations on the inhibition of CCID formation. Furthermore, the treatment with drug combinations allowed also a several-fold reduction in drug concentrations. These results encourage further screening of approved drugs and their in vivo testing.
Collapse
|
280
|
Niland S, Ditkowski B, Parrandier D, Roth L, Augustin H, Eble JA. Rhodocetin-αβ-induced neuropilin-1-cMet association triggers restructuring of matrix contacts in endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:544-54. [PMID: 23288161 DOI: 10.1161/atvbaha.112.00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The snake venom component rhodocetin-αβ (RCαβ) stimulates endothelial cell motility in an α2β1 integrin-independent manner. We aimed to elucidate its cellular and molecular mechanisms. METHODS AND RESULTS We identified neuropilin-1 (Nrp1) as a novel target of RCαβ by protein-chemical methods. RCαβ and vascular endothelial growth factor (VEGF)-A avidly bind to Nrp1. Instead of acting as VEGF receptor 2 coreceptor, Nrp1 associates upon RCαβ treatment with cMet. Furthermore, cell-based ELISAs and kinase inhibitor studies showed that RCαβ induces phosphorylation of tyrosines 1234/1235 [corrected] and thus activation of cMet. Consequently, paxillin is phosphorylated at Y31, which is redistributed from streak-like focal adhesions to spot-like focal contacts at the cell perimeter, along with α2β1 integrin, thereby regulating cell-matrix interactions. Cortactin is abundant in the cell perimeter, where it is involved in the branching of the cortical actin network of lamellipodia, whereas tensile force-bearing actin stress fibers radiating from focal adhesions disappear together with zyxin, a focal adhesion marker, on RCαβ treatment. CONCLUSIONS Our data demonstrate that (1) Nrp1 is a novel target for venom components, such as RCαβ; (2) Nrp1 coupled to cMet regulates the type of cell-matrix interactions in a manner involving paxillin phosphorylation; and (3) altered cell-matrix interactions determine endothelial cell migration and cellular force management.
Collapse
Affiliation(s)
- Stephan Niland
- Center for Molecular Medicine, Vascular Matrix Biology, Excellence Cluster Cardio-Pulmonary System, Frankfurt University Hospital, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
281
|
Vogl AW, Young JS, Du M. New insights into roles of tubulobulbar complexes in sperm release and turnover of blood-testis barrier. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:319-55. [PMID: 23445814 DOI: 10.1016/b978-0-12-407697-6.00008-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tubulobulbar complexes are actin-filament-related structures that form at intercellular junctions in the seminiferous epithelium of mammalian testis. The structures occur both at adhesion junctions between Sertoli cells and the maturing spermatids in apical regions of the epithelium, and at junction complexes between neighboring Sertoli cells near the base of the epithelium. Here, we review the general morphology and molecular composition of tubulobulbar complexes, and also include a description of tubulobulbar complex structure in the human seminiferous epithelium. Although tubulobulbar complexes are unique to the seminiferous epithelium, they have the molecular signature of clathrin-based endocytosis machinery present generally in cells. We review the evidence that tubulobulbar complexes internalize intact intercellular junctions and are significant components of the sperm-release mechanism and the process by which spermatocytes translocate from basal to adluminal compartments of the epithelium.
Collapse
Affiliation(s)
- A Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
282
|
Bachir AI, Kubow KE, Horwitz AR. Fluorescence fluctuation approaches to the study of adhesion and signaling. Methods Enzymol 2013; 519:167-201. [PMID: 23280111 DOI: 10.1016/b978-0-12-405539-1.00006-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm-μm) and time (ms-min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions.
Collapse
Affiliation(s)
- Alexia I Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.
| | | | | |
Collapse
|
283
|
Ness JK, Snyder KM, Tapinos N. Lck tyrosine kinase mediates β1-integrin signalling to regulate Schwann cell migration and myelination. Nat Commun 2013; 4:1912. [PMID: 23715271 PMCID: PMC3674276 DOI: 10.1038/ncomms2928] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/24/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction between laminin and β1-integrin on the surface of Schwann cells regulates Schwann cell proliferation, maturation and differentiation. However, the signalling mediators that fine-tune these outcomes are not fully elucidated. Here we show that lymphoid cell kinase is the crucial effector of β1-integrin signalling in Schwann cells. Lymphoid cell kinase is activated after laminin treatment of Schwann cells, while downregulation of β1-integrin with short interfering RNAs inhibits lymphoid cell kinase phosphorylation. Treatment of Schwann cells with a selective lymphoid cell kinase inhibitor reveals a pathway that involves paxillin and CrkII, which ultimately elevates Rac-GTP levels to induce radial lamellipodia formation. Inhibition of lymphoid cell kinase in Schwann cell-dorsal root ganglion cocultures and dorsal root ganglions from Lck(-/-) mice show a reduction of Schwann cell longitudinal migration, reduced myelin formation and internode length. Finally, Lck(-/-) mice exhibit delays in myelination, thinner myelin with abnormal g-ratios and aberrant myelin outfoldings. Our data implicate lymphoid cell kinase as a major regulator of cytoskeletal dynamics, migration and myelination in the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer K. Ness
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Kristin M. Snyder
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| | - Nikos Tapinos
- Molecular Neuroscience Laboratory, Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, Pennsylvania 17822, USA
| |
Collapse
|
284
|
Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Natl Acad Sci U S A 2012; 110:881-6. [PMID: 23277584 DOI: 10.1073/pnas.1207997110] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recent methods have revealed that cells on planar substrates exert both shear (in-plane) and normal (out-of-plane) tractions against the extracellular matrix (ECM). However, the location and origin of the normal tractions with respect to the adhesive and cytoskeletal elements of cells have not been elucidated. We developed a high-spatiotemporal-resolution, multidimensional (2.5D) traction force microscopy to measure and model the full 3D nature of cellular forces on planar 2D surfaces. We show that shear tractions are centered under elongated focal adhesions whereas upward and downward normal tractions are detected on distal (toward the cell edge) and proximal (toward the cell body) ends of adhesions, respectively. Together, these forces produce significant rotational moments about focal adhesions in both protruding and retracting peripheral regions. Temporal 2.5D traction force microscopy analysis of migrating and spreading cells shows that these rotational moments are highly dynamic, propagating outward with the leading edge of the cell. Finally, we developed a finite element model to examine how rotational moments could be generated about focal adhesions in a thin lamella. Our model suggests that rotational moments can be generated largely via shear lag transfer to the underlying ECM from actomyosin contractility applied at the intracellular surface of a rigid adhesion of finite thickness. Together, these data demonstrate and probe the origin of a previously unappreciated multidimensional stress profile associated with adhesions and highlight the importance of new approaches to characterize cellular forces.
Collapse
|
285
|
Deakin NO, Pignatelli J, Turner CE. Diverse roles for the paxillin family of proteins in cancer. Genes Cancer 2012; 3:362-70. [PMID: 23226574 DOI: 10.1177/1947601912458582] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The paxillin family of intracellular scaffold proteins includes paxillin, Hic-5, and leupaxin, and all have been identified as key regulators of the cellular migration machinery in both 2- and 3-dimensional microenvironments. Herein, we provide insight into the roles of these proteins during tumorigenesis and metastasis, highlighting their functions in cancer initiation as well as tumor cell dissemination and survival. Furthermore, we speculate on the potential of paxillin family proteins as both future prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Nicholas O Deakin
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|
286
|
Zou W, DeSelm CJ, Broekelmann TJ, Mecham RP, Pol SV, Choi K, Teitelbaum SL. Paxillin contracts the osteoclast cytoskeleton. J Bone Miner Res 2012; 27:2490-500. [PMID: 22807029 PMCID: PMC3494816 DOI: 10.1002/jbmr.1706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/27/2012] [Accepted: 07/03/2012] [Indexed: 01/09/2023]
Abstract
Osteoclastic bone resorption depends upon the cell's ability to organize its cytoskeleton via the αvβ3 integrin and osteoclastogenic cytokines. Because paxillin associates with αvβ3, we asked if it participates in skeletal degradation. Unlike deletion of other αvβ3-associated cytoskeleton-regulating molecules, which impairs the cell's ability to spread, paxillin-deficient (Pax(-/-) ) osteoclasts, generated from embryonic stem cells, "superspread" in response to receptor activator of NF-κB ligand (RANKL) and form large, albeit dynamically atypical, actin bands. Despite their increased size, Pax(-/-) osteoclasts resorb bone poorly, excavating pits approximately one-third normal depth. Ligand-occupied αvβ3 or RANKL promotes paxillin serine and tyrosine phosphorylation, the latter via cellular sarcoma (c-Src). The abnormal Pax(-/-) phenotype is rescued by wild-type (WT) paxillin but not that lacking its LD4 domain. In keeping with the appearance of mutant osteoclasts, WT paxillin, overexpressed in WT cells, contracts the cytoskeleton. Most importantly, the abnormal phenotype of Pax(-/-) osteoclasts likely represents failed RANKL-mediated delivery of myosin IIA to the actin cytoskeleton via the paxillin LD4 domain but is independent of tyrosine phosphorylation. Thus, in response to RANKL, paxillin associates with myosin IIA to contract the osteoclast cytoskeleton, thereby promoting its bone-degrading capacity.
Collapse
Affiliation(s)
- Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Carl J. DeSelm
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
287
|
Veith C, Marsh LM, Wygrecka M, Rutschmann K, Seeger W, Weissmann N, Kwapiszewska G. Paxillin Regulates Pulmonary Arterial Smooth Muscle Cell Function in Pulmonary Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1621-33. [DOI: 10.1016/j.ajpath.2012.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/17/2012] [Accepted: 07/24/2012] [Indexed: 01/04/2023]
|
288
|
Lee YC, Chang AY, Lin-Feng MH, Tsou WI, Chiang IH, Lai MZ. Paxillin phosphorylation by JNK and p38 is required for NFAT activation. Eur J Immunol 2012; 42:2165-75. [PMID: 22865050 DOI: 10.1002/eji.201142192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Paxillin is an adaptor protein associated with focal adhesion complex, and is activated by tyrosine phosphorylation through focal adhesion kinase (FAK) and Src kinase. Recent studies reveal that serine phosphorylation of paxillin by JNK and p38 MAPK is essential for cell migration or neurite extension, but their cellular targets remain unclear. In this study, we examined the requirement of paxillin phosphorylation by p38 MAPK or JNK in T-cell motility and activation using paxillin mutants at the respective phosphorylation sites, Ser85, and Ser178. (S85A)-paxillin, (S178A)-paxillin, or (S85A/S178A)-paxillin inhibited the motility of NIH/3T3 fibroblasts, but did not interfere with T-cell migration and integrin-mediated T-cell adhesion. In contrast, activation of T cells was effectively suppressed by (S85A/S178A)-paxillin. Transgenic (S85A/S178A)-paxillin expression inhibited T-cell proliferation and reduced the production of IL-2, IFN-γ, and IL-4. In searching for signals modulated by (S85A/S178A)-paxillin, we found that NFAT activation was specifically blocked by (S85A/S178A)-paxillin. This could be partly attributed to diminished stromal interaction molecule 1 (STIM1) expression and attenuated TCR-induced Ca(2+) influx. Our results demonstrate that dual phosphorylation of paxillin by JNK and p38 MAPK is essential for T-cell activation and suggest that NFAT is a functional target of the JNK/p38 phosphorylated paxillin.
Collapse
Affiliation(s)
- Yu-Chi Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan ROC
| | | | | | | | | | | |
Collapse
|
289
|
NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012; 10:e1001409. [PMID: 23109907 PMCID: PMC3479101 DOI: 10.1371/journal.pbio.1001409] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 01/27/2023] Open
Abstract
NAD+ improves muscle tissue structure and function in dystrophic zebrafish by increasing basement membrane organization. Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. A variety of diseases, both inherited and acquired, affect muscle tissues in humans. Critical to muscle homeostasis is the anchoring of muscle fibers to their surrounding microenvironment through cell adhesion complexes that help to resist the repeated stress experienced during muscle contraction. Genetic mutations in these complexes weaken this mechanical attachment, making fibers more susceptible to damage and death. The resulting increased fiber degeneration can eventually lead to progressive muscle-wasting diseases, known collectively as muscular dystrophies. Although clinical trials are ongoing, there is presently no way to cure the loss of muscle structure and function associated with these diseases. We identified a novel cell adhesion pathway involving integrin alpha6 that promotes adhesion of muscle cells to their microenvironment. Here, we show that activation of this pathway not only significantly reduces muscle degeneration but also improves the swimming ability of dystrophic zebrafish. We explore the likely benefits and limitations of this pathway in treating symptoms of congenital muscular dystrophies. Our findings suggest that activation of this pathway (for example, by boosting levels of NAD+) has the potential to ameliorate loss of muscle structure and function in multiple muscular dystrophies.
Collapse
|
290
|
Sero JE, German AE, Mammoto A, Ingber DE. Paxillin controls directional cell motility in response to physical cues. Cell Adh Migr 2012; 6:502-8. [PMID: 23076140 DOI: 10.4161/cam.21672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Physical cues from the extracellular environment that influence cell shape and directional migration are transduced into changes in cytoskeletal organization and biochemistry through integrin-based cell adhesions to extracellular matrix (ECM). Paxillin is a focal adhesion (FA) scaffold protein that mediates integrin anchorage to the cytoskeleton, and has been implicated in regulation of FA assembly and cell migration. To determine whether paxillin is involved in coupling mechanical distortion with directional movement, cell shape was physically constrained by culturing cells on square-shaped fibronectin-coated adhesive islands surrounded by non-adhesive barrier regions that were created with a microcontact printing technique. Square-shaped cells preferentially formed FAs and extended lamellipodia from their corner regions when stimulated with PDGF, and loss of paxillin resulted in loss of this polarized response. Selective expression of the N- and C-terminal domains of paxillin produced opposite, but complementary, effects on suppressing or promoting lamellipodia formation in different regions of square cells, which corresponded to directional motility defects in vitro. Paxillin loss or mutation was also shown to affect the formation of circular dorsal ruffles, and this corresponded to changes in cell invasive behavior in 3D. This commentary addresses the implications of these findings in terms of how a multifunctional FA scaffold protein can link physical cues to cell adhesion, protrusion and membrane trafficking so as to control directional migration in 2D and 3D. We also discuss how microengineered ECM islands and in vivo model systems can be used to further elucidate the functions of paxillin in directional migration.
Collapse
Affiliation(s)
- Julia E Sero
- Dynamical Cell Systems Team, Institute of Cancer Research, London, UK
| | | | | | | |
Collapse
|
291
|
Pignatelli J, Jones MC, LaLonde DP, Turner CE. Beta2-adaptin binds actopaxin and regulates cell spreading, migration and matrix degradation. PLoS One 2012; 7:e46228. [PMID: 23056266 PMCID: PMC3462795 DOI: 10.1371/journal.pone.0046228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
Cell adhesion to the extracellular matrix is a key event in cell migration and invasion and endocytic trafficking of adhesion receptors and signaling proteins plays a major role in regulating these processes. Beta2-adaptin is a subunit of the AP-2 complex and is involved in clathrin-mediated endocytosis. Herein, β2-adaptin is shown to bind to the focal adhesion protein actopaxin and localize to focal adhesions during cells spreading in an actopaxin dependent manner. Furthermore, β2-adaptin is enriched in adhesions at the leading edge of migrating cells and depletion of β2-adaptin by RNAi increases cell spreading and inhibits directional cell migration via a loss of cellular polarity. Knockdown of β2-adaptin in both U2OS osteosarcoma cells and MCF10A normal breast epithelial cells promotes the formation of matrix degrading invadopodia, adhesion structures linked to invasive migration in cancer cells. These data therefore suggest that actopaxin-dependent recruitment of the AP-2 complex, via an interaction with β2-adaptin, to focal adhesions mediates cell polarity and migration and that β2-adaptin may control the balance between the formation of normal cell adhesions and invasive adhesion structures.
Collapse
Affiliation(s)
- Jeanine Pignatelli
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Matthew C. Jones
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - David P. LaLonde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
292
|
Coló GP, Hernández-Varas P, Lock J, Bartolomé RA, Arellano-Sánchez N, Strömblad S, Teixidó J. Focal adhesion disassembly is regulated by a RIAM to MEK-1 pathway. J Cell Sci 2012; 125:5338-52. [PMID: 22946047 DOI: 10.1242/jcs.105270] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell migration and invasion require regulated turnover of integrin-dependent adhesion complexes. Rap1-GTP-interacting adaptor molecule (RIAM) is an adaptor protein that mediates talin recruitment to the cell membrane, and whose depletion leads to defective melanoma cell migration and invasion. In this study, we investigated the potential involvement of RIAM in focal adhesion (FA) dynamics. RIAM-depleted melanoma and breast carcinoma cells displayed an increased number, size and stability of FAs, which accumulated centrally at the ventral cell surface, a phenotype caused by defective FA disassembly. Impairment in FA disassembly resulting from RIAM knockdown correlated with deficient integrin-dependent mitogen-activated protein kinase kinase (MEK)-Erk1/2 activation and, importantly, overexpression of constitutively active MEK resulted in rescue of FA disassembly and recovery of cell invasion. Furthermore, RIAM-promoted Ras homologue gene family, member A (RhoA) activation following integrin engagement was needed for subsequent Erk1/2 activation. In addition, RhoA overexpression partially rescued the FA phenotype in RIAM-depleted cells, also suggesting a functional role for RhoA downstream of RIAM, but upstream of Erk1/2. RIAM knockdown also led to enhanced phosphorylation of paxillin Tyr118 and Tyr31. However, expression of phosphomimetic and nonphosphorylatable mutants at these paxillin residues indicated that paxillin hyperphosphorylation is a subsequent consequence of the blockade of FA disassembly, but does not cause the FA phenotype. RIAM depletion also weakened the association between FA proteins, suggesting that it has important adaptor roles in the correct assembly of adhesion complexes. Our data suggest that integrin-triggered, RIAM-dependent MEK activation represents a key feedback event required for efficient FA disassembly, which could help explain the role of RIAM in cell migration and invasion.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
293
|
Alisi A, Arciello M, Petrini S, Conti B, Missale G, Balsano C. Focal adhesion kinase (FAK) mediates the induction of pro-oncogenic and fibrogenic phenotypes in hepatitis C virus (HCV)-infected cells. PLoS One 2012; 7:e44147. [PMID: 22937161 PMCID: PMC3429423 DOI: 10.1371/journal.pone.0044147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/01/2012] [Indexed: 01/18/2023] Open
Abstract
Hepatitis C Virus (HCV) infection is one of the most common etiological factors involved in fibrosis development and its progression to hepatocellular carcinoma (HCC). The pivotal role of hepatic stellate cells (HCSs) and extracellular matrix (ECM) in fibrogenesis is now certainly accepted, while the network of molecular interactions connecting HCV is emerging as a master regulator of several biological processes including proliferation, inflammation, cytoskeleton and ECM remodeling. In this study, the effects of HCV proteins expression on liver cancer cells, both pro-invasive and pro-fibrogenic phenotypes were explored. As a model of HCV infection, we used permissive Huh7.5.1 hepatoma cells infected with JFH1-derived ccHCV. Conditioned medium from these cells was used to stimulate LX-2 cells, a line of HSCs. We found that the HCV infection of Huh7.5.1 cells decreased adhesion, increased migration and caused the delocalization of alpha-actinin from plasma membrane to cytoplasm and increased expression levels of paxillin. The treatment of LX-2 cells, with conditioned medium from HCV-infected Huh7.5.1 cells, caused an increase in cell proliferation, expression of alpha-smooth muscle actin, hyaluronic acid release and apoptosis rate measured as cleaved poly ADP-ribose polymerase (PARP). These effects were accompanied in Huh7.5.1 cells by an HCV-dependent increasing of FAK activation that physically interacts with phosphorylated paxillin and alpha-actinin, and a rising of tumor necrosis factor alpha production/release. Silencing of FAK by siRNA reverted all effects of HCV infection, both those directed on Huh7.5.1 cells, and those indirect effects on the LX-2 cells. Moreover and interestingly, FAK inhibition enhances apoptosis in HCV-conditioned LX-2 cells. In conclusion, our findings demonstrate that HCV, through FAK activation, may promote cytoskeletal reorganization and a pro-oncogenic phenotype in hepatocyte-like cells, and a fibrogenic phenotype in HSCs.
Collapse
Affiliation(s)
- Anna Alisi
- Liver Research Unit, Confocal Microscopy Facility of “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
- * E-mail: (AA); (CB)
| | - Mario Arciello
- Laboratory of Molecular Virology and Oncology, A. Cesalpino Foundation, University of Rome “La Sapienza”, Rome, Italy
- Department of Internal Medicine, University of L’Aquila, L’Aquila, Italy
| | - Stefania Petrini
- Confocal Microscopy Facility of “Bambino Gesù” Children’s Hospital, IRCCS, Rome, Italy
| | - Beatrice Conti
- Laboratory of Molecular Virology and Oncology, A. Cesalpino Foundation, University of Rome “La Sapienza”, Rome, Italy
- Department of Internal Medicine, University of L’Aquila, L’Aquila, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero – Universitaria di Parma, Parma, Italy
| | - Clara Balsano
- Laboratory of Molecular Virology and Oncology, A. Cesalpino Foundation, University of Rome “La Sapienza”, Rome, Italy
- IBPM (Institute of Biology and Molecular Pathology), Rome, Italy
- * E-mail: (AA); (CB)
| |
Collapse
|
294
|
Huck B, Kemkemer R, Franz-Wachtel M, Macek B, Hausser A, Olayioye MA. GIT1 phosphorylation on serine 46 by PKD3 regulates paxillin trafficking and cellular protrusive activity. J Biol Chem 2012; 287:34604-13. [PMID: 22893698 DOI: 10.1074/jbc.m112.374652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.
Collapse
Affiliation(s)
- Bettina Huck
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
295
|
Le Dévédec SE, Geverts B, de Bont H, Yan K, Verbeek FJ, Houtsmuller AB, van de Water B. The residence time of focal adhesion kinase (FAK) and paxillin at focal adhesions in renal epithelial cells is determined by adhesion size, strength and life cycle status. J Cell Sci 2012; 125:4498-506. [PMID: 22767508 DOI: 10.1242/jcs.104273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Focal adhesions (FAs) are specialized membrane-associated multi-protein complexes that link the cell to the extracellular matrix and enable cell proliferation, survival and motility. Despite the extensive description of the molecular composition of FAs, the complex regulation of FA dynamics is unclear. We have used photobleaching assays of whole cells to determine the protein dynamics in every single focal adhesion. We identified that the focal adhesion proteins FAK and paxillin exist in two different states: a diffuse cytoplasmic pool and a transiently immobile FA-bound fraction with variable residence times. Interestingly, the average residence time of both proteins increased with focal adhesion size. Moreover, increasing integrin clustering by modulating surface collagen density increased residence time of FAK but not paxillin. Finally, this approach was applied to measure FAK and paxillin dynamics using nocodazole treatment followed by washout. This revealed an opposite residence time of FAK and paxillin in maturing and disassembling FAs, which depends on the ventral and peripheral cellular position of the FAs.
Collapse
Affiliation(s)
- Sylvia E Le Dévédec
- Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, Gorlaeus Laboratoria, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
296
|
Kwak TK, Lee MS, Ryu J, Choi YJ, Kang M, Jeong D, Lee JW. Cell adhesion-dependent serine 85 phosphorylation of paxillin modulates focal adhesion formation and haptotactic migration via association with the C-terminal tail domain of talin. J Biol Chem 2012; 287:27499-509. [PMID: 22761432 DOI: 10.1074/jbc.m111.323360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration.
Collapse
Affiliation(s)
- Tae Kyoung Kwak
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Medicinal Bioconvergence Research Center, College of Pharmacy, College of Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
297
|
Tesfay L, Huhn AJ, Hatcher H, Torti FM, Torti SV. Ferritin blocks inhibitory effects of two-chain high molecular weight kininogen (HKa) on adhesion and survival signaling in endothelial cells. PLoS One 2012; 7:e40030. [PMID: 22768328 PMCID: PMC3388046 DOI: 10.1371/journal.pone.0040030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is tightly regulated through complex crosstalk between pro- and anti-angiogenic signals. High molecular weight kininogen (HK) is an endogenous protein that is proteolytically cleaved in plasma and on endothelial cell surfaces to HKa, an anti-angiogenic protein. Ferritin binds to HKa and blocks its anti-angiogenic activity. Here, we explore mechanisms underlying the cytoprotective effect of ferritin in endothelial cells exposed to HKa. We observe that ferritin promotes adhesion and survival of HKa-treated cells and restores key survival and adhesion signaling pathways mediated by Erk, Akt, FAK and paxillin. We further elucidate structural motifs of both HKa and ferritin that are required for effects on endothelial cells. We identify an histidine-glycine-lysine (HGK) -rich antiproliferative region within domain 5 of HK as the target of ferritin, and demonstrate that both ferritin subunits of the H and L type regulate HKa activity. We further demonstrate that ferritin reduces binding of HKa to endothelial cells and restores the association of uPAR with α5β1 integrin. We propose that ferritin blocks the anti-angiogenic activity of HKa by reducing binding of HKa to UPAR and interfering with anti-adhesive and anti-proliferative signaling of HKa.
Collapse
Affiliation(s)
- Lia Tesfay
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Annissa J. Huhn
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Heather Hatcher
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Frank M. Torti
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Suzy V. Torti
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
298
|
Paxillin is the target of c-Jun N-terminal kinase in Schwann cells and regulates migration. Cell Signal 2012; 24:2061-9. [PMID: 22750292 DOI: 10.1016/j.cellsig.2012.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/25/2012] [Indexed: 12/14/2022]
Abstract
During development of the peripheral nervous system (PNS), Schwann cells migrate along axons, wrapping individual axons to form a myelin sheath. This process is all mediated by the intercellular signaling between neurons and Schwann cells. As yet, little is known about the intracellular signaling mechanisms controlling these morphological changes including Schwann cell migration. We previously showed that c-Jun N-terminal kinase (JNK) plays a key role in Schwann cell migration before the initiation of myelination. Here we show that JNK, acting through phosphorylation of the cytoskeletal protein paxillin, regulates Schwann cell migration and that it mediates dorsal root ganglion (DRG) neuronal conditioned medium (CM). Phosphorylation of paxillin at the Ser-178 position, the JNK phosphorylation site, is observed following stimulation with neuronal CM. Phosphorylation is also detected as a result of stimulation with each of growth factors contained in neuronal CM. Knockdown of paxillin with the specific small interfering RNA (siRNA) inhibits migration. The reintroduction of paxillin reverses siRNA-mediated inhibition of migration, whereas paxillin harboring the Ser-178-to-Ala mutation fails to reverse it. In addition, while JNK binds to the N-terminal region (called LD1), the deletion of LD1 blocks migration. Together, JNK binds and phosphorylates paxillin to regulate Schwann cell migration, illustrating that paxillin provides one of the convergent points of intracellular signaling pathways controlling Schwann cell migration.
Collapse
|
299
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
300
|
Lickfeld M, Schmitz HP. A network involving Rho-type GTPases, a paxillin and a formin homologue regulates spore length and spore wall integrity in the filamentous fungus Ashbya gossypii. Mol Microbiol 2012; 85:574-93. [PMID: 22676838 DOI: 10.1111/j.1365-2958.2012.08128.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi produce spores that allow for their dispersal and survival under harsh environmental conditions. These spores can have an astonishing variety of shapes and sizes. Using the highly polar, needle-shaped spores of the ascomycete Ashbya gossypii as a model, we demonstrated that spores produced by this organism are not simple continuous structures but rather consist of three different segments that correlate with the accumulation of different materials: a rigid tip segment, a more fragile main spore-compartment and a solid tail segment. Little is currently known about the regulatory mechanisms that control the formation of the characteristic spore morphologies. We tested a variety of mutant strains for their spore phenotypes, including spore size, shape and wall defects. The mutants that we identified as displaying such phenotypes are all known for their roles in the regulation of hyphal tip growth, including the formin protein AgBni1, the homologous Rho-type GTPases AgRho1a and AgRho1b and the scaffold protein AgPxl1. Our observations suggest that these proteins form a signalling network controlling spore length by regulating the formation of actin structures.
Collapse
Affiliation(s)
- Manuela Lickfeld
- Department of Genetics, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| | | |
Collapse
|