251
|
Trusca VG, Fuior EV, Fenyo IM, Kardassis D, Simionescu M, Gafencu AV. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes. PLoS One 2017; 12:e0174078. [PMID: 28355284 PMCID: PMC5371326 DOI: 10.1371/journal.pone.0174078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis.
Collapse
Affiliation(s)
- Violeta Georgeta Trusca
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Elena Valeria Fuior
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Ioana Madalina Fenyo
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Dimitris Kardassis
- Department of Basic Sciences, University of Crete Medical School, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete, Greece
| | - Maya Simionescu
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| | - Anca Violeta Gafencu
- Department of Genomics, Transcriptomics and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
252
|
Benson S, Engler H, Wegner A, Rebernik L, Spreitzer I, Schedlowski M, Elsenbruch S. What Makes You Feel Sick After Inflammation? Predictors of Acute and Persisting Physical Sickness Symptoms Induced by Experimental Endotoxemia. Clin Pharmacol Ther 2017; 102:141-151. [PMID: 28074475 DOI: 10.1002/cpt.618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
We aimed to identify statistical predictor variables of lipopolysaccharide (LPS)-induced physical sickness symptoms during the acute and late inflammatory phases using multivariate regression analyses. Data from N = 128 healthy volunteers who received i.v. LPS injection (0.4 or 0.8 ng/kg) or placebo were pooled for analyses. Physical sickness symptoms experienced during the acute (0-6h postinjection) and late (6-24h postinjection) phases were assessed with the validated General-Assessment-of-Side-Effects (GASE) questionnaire. LPS-treated subjects reported significantly more physical sickness symptoms. Physical symptoms during the acute phase were associated with LPS-induced mood impairments and interleukin (IL)-6 increases, explaining 28.5% of variance in GASE scores. During late phase, LPS-induced increases in cortisol and IL-6 plasma concentrations and baseline depression were significant predictor variables, explaining 38.5% of variance. In patients with recurrent or chronic inflammatory states, these factors may act as risk factors ultimately contributing to an exacerbation of sickness symptoms, and should be considered as potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- S Benson
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - H Engler
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - A Wegner
- Clinic for Trauma and Orthopedic Surgery, University Hospital Essen, University of Duisburg-Essen, Germany
| | - L Rebernik
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - I Spreitzer
- Paul Ehrlich Institute, Federal Agency for Sera and Vaccines, Langen, Germany
| | - M Schedlowski
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - S Elsenbruch
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
253
|
Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 2017; 18:367-382. [PMID: 28341876 DOI: 10.1007/s10522-017-9696-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
|
254
|
Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; 20:145-155. [PMID: 28092661 PMCID: PMC6960010 DOI: 10.1038/nn.4476] [Citation(s) in RCA: 1273] [Impact Index Per Article: 159.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 01/16/2023]
Abstract
The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut-brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimer's disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota-gut-brain communication during health and neurological disease.
Collapse
|
255
|
Lopizzo N, Tosato S, Begni V, Tomassi S, Cattane N, Barcella M, Turco G, Ruggeri M, Riva MA, Pariante CM, Cattaneo A. Transcriptomic analyses and leukocyte telomere length measurement in subjects exposed to severe recent stressful life events. Transl Psychiatry 2017; 7:e1042. [PMID: 28221367 PMCID: PMC5438034 DOI: 10.1038/tp.2017.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Stressful life events occurring in adulthood have been found able to affect mood and behavior, thus increasing the vulnerability for several stress-related psychiatric disorders. However, although there is plenty of clinical data supporting an association between stressful life events in adulthood and an enhanced vulnerability for psychopathology, the underlying molecular mechanisms are still poorly investigated. Thus, in this study we performed peripheral/whole-genome transcriptomic analyses in blood samples obtained from 53 adult subjects characterized for recent stressful life events occurred within the previous 6 months. Transcriptomic data were analyzed using Partek Genomics Suite; pathway and network analyses were performed using Ingenuity Pathway Analysis and GeneMANIA Software. We found 207 genes significantly differentially expressed in adult subjects who reported recent stressful life experiences (n=21) compared with those without such experiences (n=32). Moreover, the same subjects exposed to such stressful experiences showed a reduction in leukocyte telomere length. A correlation analyses between telomere length and transcriptomic data indicated an association between the exposures to recent stressful life events and the modulation of several pathways, mainly involved in immune-inflammatory-related processes and oxidative stress, such as natural killer cell signaling, interleukin-1 (IL-1) signaling, MIF regulation of innate immunity and IL-6 signaling. Our data suggest an association between exposures to recent stressful life events in adulthood and alterations in the immune, inflammatory and oxidative stress pathways, which could be also involved in the negative effect of stressful life events on leukocyte telomere length. The modulation of these mechanisms may underlie the clinical association between the exposure to recent Stressful life events in adulthood and an enhanced vulnerability to develop psychiatric diseases in adulthood.
Collapse
Affiliation(s)
- N Lopizzo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - S Tosato
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - V Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - S Tomassi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - N Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - M Barcella
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - G Turco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - M Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - M A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - C M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College, London, London, UK
| | - A Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College, London, London, UK,Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK. E-mail:
| |
Collapse
|
256
|
Haim A, Julian D, Albin-Brooks C, Brothers HM, Lenz KM, Leuner B. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav Immun 2017; 59:67-78. [PMID: 27686844 DOI: 10.1016/j.bbi.2016.09.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
During pregnancy and the postpartum period, the adult female brain is remarkably plastic exhibiting modifications of neurons, astrocytes and oligodendrocytes. However, little is known about how microglia, the brain's innate immune cells, are altered during this time. In the current studies, microglial density, number and morphological phenotype were analyzed within multiple regions of the maternal brain that are known to show neural plasticity during the peripartum period and/or regulate peripartum behavioral changes. Our results show a significant reduction in microglial density during late pregnancy and the early-mid postpartum period in the basolateral amygdala, medial prefrontal cortex, nucleus accumbens shell and dorsal hippocampus. In addition, microglia numbers were reduced postpartum in all four brain regions, and these reductions occurred primarily in microglia with a thin, ramified morphology. Across the various measures, microglia in the motor cortex were unaffected by reproductive status. The peripartum decrease in microglia may be a consequence of reduced proliferation as there were fewer numbers of proliferating microglia, and no changes in apoptotic microglia, in the postpartum hippocampus. Finally, hippocampal concentrations of the cytokines interleukin (IL)-6 and IL-10 were increased postpartum. Together, these data point to a shift in the maternal neuroimmune environment during the peripartum period that could contribute to neural and behavioral plasticity occurring during the transition to motherhood.
Collapse
Affiliation(s)
- Achikam Haim
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Dominic Julian
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | | | - Holly M Brothers
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Kathryn M Lenz
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA; Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210, USA
| | - Benedetta Leuner
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210, USA; Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA; Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
257
|
Antonson AM, Radlowski EC, Lawson MA, Rytych JL, Johnson RW. Maternal viral infection during pregnancy elicits anti-social behavior in neonatal piglet offspring independent of postnatal microglial cell activation. Brain Behav Immun 2017; 59:300-312. [PMID: 27650113 DOI: 10.1016/j.bbi.2016.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/16/2016] [Indexed: 02/03/2023] Open
Abstract
Maternal infection during pregnancy increases risk for neurodevelopmental disorders and reduced stress resilience in offspring, but the mechanisms are not fully understood. We hypothesized that piglets born from gilts infected with a respiratory virus during late gestation would exhibit aberrant microglia activity, cognitive deficits and reduced sociability. Pregnant gilts were inoculated with porcine reproductive and respiratory syndrome virus (PRRSV; 5×105 TCID50 of live PRRSV) or saline at gestational day 76. Gilts infected with PRRSV exhibited fever (p<0.01) and reduced appetite (p<0.001) for 2weekspost-inoculation and were PRRSV-positive at parturition. Piglets born from infected and control gilts were weaned at postnatal day (PD) 1 and assigned to two groups. Group 1 was challenged with lipopolysaccharide (LPS, 5μg/kg body weight i.p.) or saline on PD 14 and tissues were collected. Group 2 was tested in a T-maze task to assess spatial learning and in a 3-chamber arena with unfamiliar conspecifics to assess social behavior from PD 14-27. Microglia (CD11b+ CD45low) isolated from Group 2 piglets at PD 28 were challenged ex vivo with LPS; a subset of cells was analyzed for MHCII expression. Maternal infection did not affect offspring circulating TNFα, IL-10, or cortisol levels basally or 4h post-LPS challenge. While performance in the T-maze task was not affected by maternal infection, both sociability and preference for social novelty were decreased in piglets from infected gilts. There was no effect of maternal infection on microglial MHCII expression or LPS-induced cytokine production. Taken together, these results suggest the reduced social behavior elicited by maternal infection is not due to aberrant microglia activity postnatally.
Collapse
Affiliation(s)
- Adrienne M Antonson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Emily C Radlowski
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marcus A Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
258
|
Abstract
As the immune-competent cells of the brain, microglia play an increasingly important role in maintaining normal brain function. They invade the brain early in development, transform into a highly ramified phenotype, and constantly screen their environment. Microglia are activated by any type of pathologic event or change in brain homeostasis. This activation process is highly diverse and depends on the context and type of the stressor or pathology. Microglia can strongly influence the pathologic outcome or response to a stressor due to the release of a plethora of substances, including cytokines, chemokines, and growth factors. They are the professional phagocytes of the brain and help orchestrate the immunological response by interacting with infiltrating immune cells. We describe here the diversity of microglia phenotypes and their responses in health, aging, and disease. We also review the current literature about the impact of lifestyle on microglia responses and discuss treatment options that modulate microglial phenotypes.
Collapse
Affiliation(s)
- Susanne A Wolf
- Cellular Neurosciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany;
| | - H W G M Boddeke
- Department of Neuroscience, University of Groningen, University Medical Center Groningen, Groningen 9713, The Netherlands
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin 13092, Germany;
| |
Collapse
|
259
|
Pagram H, Bivard A, Lincz LF, Levi C. Immunity and stroke, the hurdles of stroke research translation. Int J Stroke 2016; 12:123-131. [PMID: 27784822 DOI: 10.1177/1747493016676622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunomodulatory therapies after stroke have the potential to provide clinical benefit to a subset of patients, but risk subverting the protective, healing aspects of the innate immune response. Neutrophils clear necrotic cerebral tissue and are important in immunomodulation, but can also contribute to tissue injury. Human trials for immunomodulatory stroke treatments in the sub-acute time frame have attempted to prevent peripheral neutrophil infiltration, but none have been successful and one trial demonstrated harm. These unselected trials had broad inclusion criteria and appear to not have had a specific treatment target. Unfortunately, due to the heterogeneous nature of brain ischemia in humans resulting in variation in clinical severity, the negative effect of thrombolytic drugs on the blood-brain barrier, and the heterogeneity of immune response, it may only be a subset of stroke patients who can realistically benefit from immunomodulation therapies. Translational research strategies require both an understanding of lab practices which create highly controlled environments in contrast to clinical practice where the diagnosis of stroke does not require the identification of a vessel occlusion. These differences between lab and clinical practices can be resolved through the integration of appropriate patient selection criteria and use of advanced imaging and ridged patient selection practices in clinical trials which will be an important part to the success of any future trials of translational research such as immunomodulation.
Collapse
Affiliation(s)
- Heather Pagram
- 1 Department of Neurology, John Hunter Hospital, University of Newcastle, Callaghan, Australia
| | - Andrew Bivard
- 1 Department of Neurology, John Hunter Hospital, University of Newcastle, Callaghan, Australia
| | - Lisa F Lincz
- 2 Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, Australia
| | - Christopher Levi
- 1 Department of Neurology, John Hunter Hospital, University of Newcastle, Callaghan, Australia
| |
Collapse
|
260
|
Delpech JC, Wei L, Hao J, Yu X, Madore C, Butovsky O, Kaffman A. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav Immun 2016; 57:79-93. [PMID: 27301858 PMCID: PMC5010940 DOI: 10.1016/j.bbi.2016.06.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022] Open
Abstract
Children exposed to abuse or neglect show abnormal hippocampal development and similar findings have been reported in rodent models. Using brief daily separation (BDS), a mouse model of early life stress, we previously showed that exposure to BDS impairs hippocampal function in adulthood and perturbs synaptic maturation, synaptic pruning, axonal growth and myelination in the developing hippocampus. Given that microglia are involved in these developmental processes, we tested whether BDS impairs microglial activity in the hippocampus of 14 (during BDS) and 28-day old mice (one week after BDS). We found that BDS increased the density and altered the morphology of microglia in the hippocampus of 14-day old pups, effects that were no longer present on postnatal day (PND) 28. Despite the normal cell number and morphology seen at PND28, the molecular signature of hippocampal microglia, assessed using the NanoString immune panel, was altered at both ages. We showed that during normal hippocampal development, microglia undergo significant changes between PND14 and PND28, including reduced cell density, decreased ex vivo phagocytic activity, and an increase in the expression of genes involved in inflammation and cell migration. However, microglia harvested from the hippocampus of 28-day old BDS mice showed an increase in phagocytic activity and reduced expression of genes that normally increase across development. Promoter analysis indicated that alteration in the transcriptional activity of PU.1, Creb1, Sp1, and RelA accounted for most of the transcriptional changes seen during normal microglia development and for most of the BDS-induced changes at PND14 and PND28. These findings are the first to demonstrate that early life stress dysregulates microglial function in the developing hippocampus and to identify key transcription factors that are likely to mediate these changes.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Jin Hao
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Xiaoqing Yu
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT 06511, USA
| | - Charlotte Madore
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oleg Butovsky
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| |
Collapse
|
261
|
Rolf L, Damoiseaux J, Hupperts R, Huitinga I, Smolders J. Network of nuclear receptor ligands in multiple sclerosis: Common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmun Rev 2016; 15:900-10. [DOI: 10.1016/j.autrev.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
|
262
|
Monrad M, Sajadieh A, Christensen JS, Ketzel M, Raaschou-Nielsen O, Tjønneland A, Overvad K, Loft S, Sørensen M. Residential exposure to traffic noise and risk of incident atrial fibrillation: A cohort study. ENVIRONMENT INTERNATIONAL 2016; 92-93:457-63. [PMID: 27164554 DOI: 10.1016/j.envint.2016.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 04/24/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Studies have found long-term exposure to traffic noise to be associated with higher risk for hypertension, ischemic heart disease and stroke. We aimed to investigate the novel hypothesis that traffic noise increases the risk of atrial fibrillation (A-fib). METHODS In a population-based cohort of 57,053 people aged 50-64years at enrolment in 1993-1997, we identified 2692 cases of first-ever hospital admission of A-fib from enrolment to end of follow-up in 2011 using a nationwide registry. The mean follow-up time was 14.7years. Present and historical residential addresses were identified for all cohort members from 1987 to 2011. For all addresses, exposure to road traffic and railway noise was estimated using the Nordic prediction method and exposure to air pollution was estimated using a validated dispersion model. We used Cox proportional hazard model for the analyses with adjustment for lifestyle, socioeconomic position and air pollution. RESULTS A 10dB higher 5-year time-weighted mean exposure to road traffic noise was associated with a 6% higher risk of A-fib (incidence rate ratio (IRR): 1.06; 95% confidence interval (95% CI): 1.00-1.12) in models adjusted for factors related to lifestyle and socioeconomic position. The association followed a monotonic exposure-response relationship. In analyses with adjustment for air pollution, NOx or NO2, there were no statistically significant associations between exposure to road traffic noise and risk of A-fib; IRR: 1.04; (95% CI: 0.96-1.11) and IRR: 1.01; (95% CI: 0.94-1.09), respectively. Exposure to railway noise was not associated with A-fib. CONCLUSION Exposure to residential road traffic noise may be associated with higher risk of A-fib, though associations were difficult to separate from exposure to air pollution.
Collapse
Affiliation(s)
- Maria Monrad
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark.
| | - Ahmad Sajadieh
- Department of Cardiology, Copenhagen University Hospital of Bispebjerg, Bispebjerg, Denmark
| | | | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Anne Tjønneland
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
263
|
Well-being and immune response: a multi-system perspective. Curr Opin Pharmacol 2016; 29:34-41. [PMID: 27318753 DOI: 10.1016/j.coph.2016.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022]
Abstract
Whereas it is well-established that inflammation and other immune responses can change how we feel, most people are still surprised to hear that, conversely, well-being and its violations also affect our immune system. Here we show that those effects are highly adaptive and bear potential for both research and therapeutic applications. The studies discussed in this review demonstrate that immunity is tuned by ones emotions, personality, and social status as well as by other life style variables like sleep, nutrition, obesity, or exercise. We further provide a short excursion on the effects of stress and depression on immunity and discuss acute experimental endotoxemia as a model to study the effects of well-being on the innate immune response in humans.
Collapse
|
264
|
Exploring the Impact of Short- and Long-Term Hydrocortisone Replacement on Cognitive Function, Quality of Life and Catecholamine Secretion: A Pilot Study. Appl Psychophysiol Biofeedback 2016; 41:341-7. [DOI: 10.1007/s10484-016-9338-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
265
|
5: Other integrative medical treatments. Per Med 2016. [DOI: 10.1201/b19687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
266
|
Flannery JE, Beauchamp KG, Fisher PA. The role of social buffering on chronic disruptions in quality of care: evidence from caregiver-based interventions in foster children. Soc Neurosci 2016; 12:86-91. [PMID: 27021231 DOI: 10.1080/17470919.2016.1170725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is growing evidence that social support can buffer the physiological stress response, specifically cortisol reactivity. We use a developmental framework to review the importance of social buffering in early childhood, a period of heightened plasticity for programming of the hypothalamic-pituitary-adrenal (HPA) axis. The social environment, in which parents play the largest role in early life, is a critical agent in the developmental trajectory of the HPA axis. A prevailing model of social buffering primarily focuses on the role of social support in the context of acute stressors and cortisol response. This review expands this model to provide evidence of the mechanism of social buffering, or lack thereof, across periods of chronic stress by applying the social buffer model to children involved in the child welfare system. We also highlight current interventions that capitalize on the mechanism of social buffering to modify HPA axis functioning across childhood. Last, we synthesize our findings using the social buffering framework to inform future targeted interventions.
Collapse
Affiliation(s)
| | | | - Philip A Fisher
- a Department of Psychology , University of Oregon , Eugene , OR , USA.,b Prevention Science Institute , University of Oregon , Eugene , OR , USA
| |
Collapse
|
267
|
Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress 2016; 4:23-33. [PMID: 27981187 PMCID: PMC5146205 DOI: 10.1016/j.ynstr.2016.03.001] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
There is a growing emphasis on the relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health/disease, including brain health and disorders of the central nervous system. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the brain, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis. Changes in this environment can lead to a broad spectrum of physiological and behavioural effects including hypothalamic-pituitary-adrenal (HPA) axis activation, and altered activity of neurotransmitter systems and immune function. While an appropriate, co-ordinated physiological response, such as an immune or stress response are necessary for survival, a dysfunctional response can be detrimental to the host contributing to the development of a number of CNS disorders. In this review, the involvement of the gastrointestinal microbiota in stress-mediated and immune-mediated modulation of neuroendocrine, immune and neurotransmitter systems and the consequential behaviour is considered. We also focus on the mechanisms by which commensal gut microbiota can regulate neuroinflammation and further aim to exploit our understanding of their role in stress-related disorders as a consequence of neuroinflammatory processes.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
268
|
Pereira MR, Leite PEC. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex. J Cell Physiol 2016; 231:1862-9. [DOI: 10.1002/jcp.25307] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology; Directory of Metrology Applied to Life Sciences (LABET)-Dimav; National Institute of Metrology Quality and Technology-INMETRO; Duque de Caxias Rio de Janeiro Brazil
| |
Collapse
|
269
|
Bollinger JL, Bergeon Burns CM, Wellman CL. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex. Brain Behav Immun 2016; 52:88-97. [PMID: 26441134 PMCID: PMC4909118 DOI: 10.1016/j.bbi.2015.10.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States
| | - Christine M Bergeon Burns
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States
| | - Cara L Wellman
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, United States.
| |
Collapse
|
270
|
Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne) 2016; 7:156. [PMID: 28018291 PMCID: PMC5155014 DOI: 10.3389/fendo.2016.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Waldemar Kanczkowski,
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Endocrinology and Diabetes, King’s College London, London, UK
| |
Collapse
|
271
|
Stelzer IA, Arck PC. Immunity and the Endocrine System. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151910 DOI: 10.1016/b978-0-12-374279-7.19001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
272
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
273
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
274
|
Gur TL, Bailey MT. Effects of Stress on Commensal Microbes and Immune System Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:289-300. [DOI: 10.1007/978-3-319-20215-0_14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
275
|
Stewart CP, Oaks BM, Laugero KD, Ashorn U, Harjunmaa U, Kumwenda C, Chaima D, Maleta K, Ashorn P, Dewey KG. Maternal cortisol and stress are associated with birth outcomes, but are not affected by lipid-based nutrient supplements during pregnancy: an analysis of data from a randomized controlled trial in rural Malawi. BMC Pregnancy Childbirth 2015; 15:346. [PMID: 26694646 PMCID: PMC4688934 DOI: 10.1186/s12884-015-0793-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prenatal micronutrient supplements have been found to increase birth weight, but mechanisms for increased growth are poorly understood. Our hypotheses were that 1) women who receive lipid-based nutrient supplements (LNS) during pregnancy would have lower mean salivary cortisol concentration at 28 wk and 36 wk gestation compared to the multiple micronutrient (MMN) and iron-folic acid (IFA) supplement groups and 2) both salivary cortisol and perceived stress during pregnancy would be associated with shorter duration of gestation and smaller size at birth. METHODS Women were enrolled in the trial in early pregnancy and randomized to receive LNS, MMN, or iron-folic acid (IFA) supplements daily throughout pregnancy. At enrollment, 28 wk and 36 wk gestation, saliva samples were collected and their cortisol concentration was measured. Self-report of perceived stress was measured using questionnaires. Gestation duration was indicated by ultrasound dating and newborn anthropometric measurements (weight, length, head circumference) provided indicators of intrauterine growth. RESULTS Of the 1391 women enrolled in the trial, 1372, 906 and 1049 saliva samples were collected from women at baseline, 28 wk and 36 wk, respectively. There were no significant differences in mean cortisol concentrations by intervention group at 28 wk or 36 wk gestation. Cortisol concentrations were negatively associated with duration of gestation (Baseline: β = -0.05, p = 0.039; 36 wk: β = -0.04, p = 0.037) and birth weight (28 wk: β = -0.08, p = 0.035; 36 wk: β = -0.11, p = 0.003) but not associated with length-for-age or head circumference-for-age z-scores. Perceived stress at 36 wk was significantly associated with shorter newborn LAZ (p = 0.001). There were no significant associations with the risk of small for gestational age, preterm birth, or low birth weight. CONCLUSIONS Maternal salivary cortisol concentration was strongly associated with birth weight and duration of gestation in rural Malawi, but these data do not support the hypothesis that LNS provision to pregnant women would influence their salivary cortisol concentrations. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT01239693.
Collapse
Affiliation(s)
- Christine P Stewart
- Program in International and Community Nutrition, Department of Nutrition, University of California, Davis, CA, USA.
| | - Brietta M Oaks
- Program in International and Community Nutrition, Department of Nutrition, University of California, Davis, CA, USA.
| | - Kevin D Laugero
- Western Human Nutrition Research Center, USDA-ARS, Davis, CA, USA.
| | - Ulla Ashorn
- Department for International Health, USDA-ARS, Tampere, Finland.
| | - Ulla Harjunmaa
- Department for International Health, USDA-ARS, Tampere, Finland.
| | - Chiza Kumwenda
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi.
| | - David Chaima
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Kenneth Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Per Ashorn
- Department for International Health, USDA-ARS, Tampere, Finland.
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland.
| | - Kathryn G Dewey
- Program in International and Community Nutrition, Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
276
|
Ota A, Yatsuya H, Mase J, Ono Y. Psychological job strain, social support at work and daytime secretion of dehydroepiandrosterone (DHEA) in healthy female employees: cross-sectional analyses. Sci Rep 2015; 5:15844. [PMID: 26552586 PMCID: PMC4639848 DOI: 10.1038/srep15844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Evidence is limited concerning the influences of high psychological job strain and low social support at work on daytime secretion of dehydroepiandrosterone (DHEA), which demonstrates anti-cortisol effects. We carried out a cross-sectional study to examine the associations of job strain and social support with daytime secretion amounts of DHEA and cortisol and daytime variation of the cortisol-to-DHEA ratio (C/D ratio) in healthy female workers. Study subjects comprised 115 healthy female nursery school teachers. Area under the curve with respect to ground (AUCG) of salivary DHEA, cortisol and C/D ratio was calculated for estimation of daytime secretion and variation. Social support scores were negatively associated with daytime DHEA secretion (standardized partial regression coefficient = -0.343, P < 0.001 by multiple linear regression analysis). This association remained significant when daytime cortisol secretion was additionally adjusted. Social support was not associated with daytime variation of the C/D ratio. Significant association between social support and daytime cortisol secretion was not confirmed. Job strain was not associated with DHEA, cortisol or the C/D ratio. In summary, we found that daytime DHEA secretion was increased in healthy workers with low social support, perhaps independent of daytime cortisol secretion.
Collapse
Affiliation(s)
- Atsuhiko Ota
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Yatsuya
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Mase
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Dentistry, Aichi Cancer Centre Hospital, Nagoya, Japan
| | - Yuichiro Ono
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
277
|
Lieber BA, Appelboom G, Taylor BE, Lowy FD, Bruce EM, Sonabend AM, Kellner C, Connolly ES, Bruce JN. Preoperative chemotherapy and corticosteroids: independent predictors of cranial surgical-site infections. J Neurosurg 2015; 125:187-95. [PMID: 26544775 DOI: 10.3171/2015.4.jns142719] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECT Preoperative corticosteroids and chemotherapy are frequently prescribed for patients undergoing cranial neurosurgery but may pose a risk of postoperative infection. Postoperative surgical-site infections (SSIs) have significant morbidity and mortality, dramatically increase the length and cost of hospitalization, and are a major cause of 30-day readmission. In patients undergoing cranial neurosurgery, there is a lack of data on the role of patient-specific risk factors in the development of SSIs. The authors of this study sought to determine whether chemotherapy and prolonged steroid use before surgery increase the risk of an SSI at postoperative Day 30. METHODS Using the national prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database for 2006-2012, the authors calculated the rates of superficial, deep-incisional, and organ-space SSIs at postoperative Day 30 for neurosurgery patients who had undergone chemotherapy or had significant steroid use within 30 days before undergoing cranial surgery. Trauma patients, patients younger than 18 years, and patients with a preoperative infection were excluded. Univariate analysis was performed for 25 variables considered risk factors for superficial and organ-space SSIs. To identify independent predictors of SSIs, the authors then conducted a multivariate analysis in which they controlled for duration of operation, wound class, white blood cell count, and other potential confounders that were significant on the univariate analysis. RESULTS A total of 8215 patients who had undergone cranial surgery were identified. There were 158 SSIs at 30 days (frequency 1.92%), of which 52 were superficial, 27 were deep-incisional, and 79 were organ-space infections. Preoperative chemotherapy was an independent predictor of organ-space SSIs in the multivariate model (OR 5.20, 95% CI 2.33-11.62, p < 0.0001), as was corticosteroid use (OR 1.86, 95% CI 1.03-3.37, p = 0.04), but neither was a predictor of superficial or deep-incisional SSIs. Other independent predictors of organ-space SSIs were longer duration of operation (OR 1.16), wound class of ≥ 2 (clean-contaminated and further contaminated) (OR 3.17), and morbid obesity (body mass index ≥ 40 kg/m(2)) (OR 3.05). Among superficial SSIs, wound class of 3 (contaminated) (OR 6.89), operative duration (OR 1.13), and infratentorial surgical approach (OR 2.20) were predictors. CONCLUSIONS Preoperative chemotherapy and corticosteroid use are independent predictors of organ-space SSIs, even when data are controlled for leukopenia. This indicates that the disease process in organ-space SSIs may differ from that in superficial SSIs. In effect, this study provides one of the largest analyses of risk factors for SSIs after cranial surgery. The results suggest that, in certain circumstances, modulation of preoperative chemotherapy or steroid regimens may reduce the risk of organ-space SSIs and should be considered in the preoperative care of this population. Future studies are needed to determine optimal timing and dosing of these medications.
Collapse
Affiliation(s)
- Bryan A Lieber
- Department of Neurosurgery, New York University;,Cerebrovascular Lab
| | | | | | - Franklin D Lowy
- Division of Infectious Diseases, Department of Medicine, Columbia University; and
| | | | - Adam M Sonabend
- Department of Neurosurgery.,Neuro-Intensive Care Unit, Columbia University Medical Center, New York, New York
| | | | - E Sander Connolly
- Cerebrovascular Lab.,Department of Neurosurgery.,Neuro-Intensive Care Unit, Columbia University Medical Center, New York, New York
| | - Jeffrey N Bruce
- Department of Neurosurgery.,The Gabriele Bartoli Brain Tumor Laboratory, and
| |
Collapse
|
278
|
Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology 2015; 40:2774-87. [PMID: 25948102 PMCID: PMC4864653 DOI: 10.1038/npp.2015.127] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/07/2015] [Accepted: 04/24/2015] [Indexed: 11/08/2022]
Abstract
Dietary n-3 polyunsaturated fatty acids (PUFAs) are critical components of inflammatory response and memory impairment. However, the mechanisms underlying the sensitizing effects of low n-3 PUFAs in the brain for the development of memory impairment following inflammation are still poorly understood. In this study, we examined how a 2-month n-3 PUFAs deficiency from pre-puberty to adulthood could increase vulnerability to the effect of inflammatory event on spatial memory in mice. Mice were given diets balanced or deficient in n-3 PUFAs for a 2-month period starting at post-natal day 21, followed by a peripheral administration of lipopolysaccharide (LPS), a bacterial endotoxin, at adulthood. We first showed that spatial memory performance was altered after LPS challenge only in n-3 PUFA-deficient mice that displayed lower n-3/n-6 PUFA ratio in the hippocampus. Importantly, long-term depression (LTD), but not long-term potentiation (LTP) was impaired in the hippocampus of LPS-treated n-3 PUFA-deficient mice. Proinflammatory cytokine levels were increased in the plasma of both n-3 PUFA-deficient and n-3 PUFA-balanced mice. However, only n-3 PUFA-balanced mice showed an increase in cytokine expression in the hippocampus in response to LPS. In addition, n-3 PUFA-deficient mice displayed higher glucocorticoid levels in response to LPS as compared with n-3 PUFA-balanced mice. These results indicate a role for n-3 PUFA imbalance in the sensitization of the hippocampal synaptic plasticity to inflammatory stimuli, which is likely to contribute to spatial memory impairment.
Collapse
|
279
|
Inoue T, Okusa MD. Neuroimmune Control of Acute Kidney Injury and Inflammation. Nephron Clin Pract 2015; 131:97-101. [PMID: 26376049 DOI: 10.1159/000438496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/09/2015] [Indexed: 01/07/2023] Open
Abstract
Despite major advances in identifying pathophysiological mechanisms of acute kidney injury (AKI), no definitive therapeutic or preventive modalities have been developed with the exception of dialysis. One possible approach is the control of inflammation and AKI through activation of the neuroimmune axis. The cholinergic anti-inflammatory pathway is thought to contribute to the homeostatic response in inflammation-related disorders and forms the basis for recent approaches toward therapeutic intervention. The concept is based on the emerging understanding of the interface between the nervous and immune systems. In the cholinergic anti-inflammatory pathway, the efferent vagus nerve indirectly stimulates the CD4+ T-cells in the spleen. The CD4+ T-cells produce acetylcholine, which stimulates alpha 7 nicotinic receptors (α7nAChRs) on macrophages. Activation of the α7nAChRs on macrophages in turn activates NF-x03BA;β and elicits an anti-inflammatory response. Recently, we demonstrated the effect of a non-pharmacologic, noninvasive, ultrasound-based method to prevent renal ischemia-reperfusion injury and sepsis-induced AKI in mice. Our data suggest that ultrasound-induced tissue protection is mediated through the activation of the cholinergic anti-inflammatory pathway. In addition, nicotinic receptor agonists and ghrelin, a neuropeptide, were reported to prevent AKI possibly through a mechanism closely linked with the stimulation of the vagus nerve. Based on the studies focusing on inflammation and the observations regarding kidney injury, we believe that activating the cholinergic anti-inflammatory pathway will be a new modality for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Department of Medicine, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Va., USA
| | | |
Collapse
|
280
|
Frank MG, Watkins LR, Maier SF. The permissive role of glucocorticoids in neuroinflammatory priming: mechanisms and insights. Curr Opin Endocrinol Diabetes Obes 2015; 22:300-5. [PMID: 26087336 PMCID: PMC4516217 DOI: 10.1097/med.0000000000000168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Glucocorticoids have been universally regarded as anti-inflammatory; however, a considerable number of studies now demonstrate that under some conditions, glucocorticoids are capable of potentiating neuroinflammatory processes (i.e. priming), a permissive function of glucocorticoids. The present review addresses recent evidence that provides insight into the mechanism(s) of glucocorticoid-induced neuroinflammatory priming. RECENT FINDINGS Glucocorticoids have been found to prime inflammasomes [i.e. nucleotide-binding domain, leucine-rich repeat, pyrin domain containing proteins-3 (NLRP3)], which are intracellular multiprotein complexes that mediate proinflammatory processes. Inflammasomes are activated by products of stressed or damaged cells. Interestingly, these products (damage-associated molecular patterns) are induced by stress and mediate stress-induced neuroinflammatory priming. SUMMARY In light of these findings, we propose a model of glucocorticoid-induced neuroinflammatory priming whereby stress and glucocorticoids induce cellular damage/stress in the brain, the products of which prime the NLRP3 inflammasome. Thus, glucocorticoid-induced priming of the NLRP3 inflammasome may mediate the potentiated neuroinflammatory response to a subsequent proinflammatory immune challenge. We propose that during a flight-or-flight response, available energy stores should be diverted to defensive behaviours, and it might be after the emergency is over that resources should be shifted to recuperation and host defense against infection. This is the scenario that would be promoted by elevated glucocorticoids reducing ongoing inflammation while simultaneously priming the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Matthew G. Frank
- Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, Campus Box 345, University of Colorado Boulder, Boulder, CO, 80309-0345, USA, Tel: +1-303-919-8116, Fax: +1-303-492-2967,
| | | | | |
Collapse
|
281
|
Schiffer L, Anderko S, Hannemann F, Eiden-Plach A, Bernhardt R. The CYP11B subfamily. J Steroid Biochem Mol Biol 2015; 151:38-51. [PMID: 25465475 DOI: 10.1016/j.jsbmb.2014.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
The biosynthesis of steroid hormones is dependent on P450-catalyzed reactions. In mammals, cholesterol is the common precursor of all steroid hormones, and its conversion to pregnenolone is the initial and rate-limiting step in hormone biosynthesis in steroidogenic tissues such as gonads and adrenal glands. The production of glucocorticoids and mineralocorticoids takes place in the adrenal gland and the final steps are catalyzed by 2 mitochondrial cytochromes P450, CYP11B1 (11β-hydroxylase or P45011β) and CYP11B2 (aldosterone synthase or P450aldo). The occurrence and development of these 2 enzymes in different species, their contribution to the biosynthesis of steroid hormones as well as their regulation at different levels (gene expression, cellular regulation, regulation on the level of proteins) is the topic of this chapter.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Simone Anderko
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Antje Eiden-Plach
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
282
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
283
|
Horowitz MA, Zunszain PA. Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci 2015; 1351:68-79. [PMID: 25943397 DOI: 10.1111/nyas.12781] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major depressive disorder has been linked to alterations in several interacting systems, particularly with respect to neuroendocrine and neuroinflammatory dysfunction. Increased levels of both cortisol and proinflammatory cytokines have regularly been described. This presents an apparent paradox, given the well-known anti-inflammatory properties of glucocorticoids, including inhibition of cytokine release. There are two competing theories to resolve this paradox: one proposes that reduced glucocorticoid signaling, as a result of glucocorticoid resistance, creates a permissive environment for an overactive innate immune system; the other theory focuses on evidence that glucocorticoids can be proinflammatory under some circumstances, depending on context and temporal factors. This review assesses the evidence base and limitations of both theories, discussing animal and clinical data, and preliminary work in human neural cells. Further work to delineate the relationship between neuroimmune and neuroendocrine systems in depression will be critical for understanding the biological perturbations underpinning depression, and therefore, for discerning treatment targets, and we include suggestions for future directions.
Collapse
Affiliation(s)
- Mark A Horowitz
- Stress, Psychiatry, and Immunology Laboratory (SPI-Lab), Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Patricia A Zunszain
- Stress, Psychiatry, and Immunology Laboratory (SPI-Lab), Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
284
|
Strewe C, Muckenthaler F, Feuerecker M, Yi B, Rykova M, Kaufmann I, Nichiporuk I, Vassilieva G, Hörl M, Matzel S, Schelling G, Thiel M, Morukov B, Choukèr A. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement. J Appl Physiol (1985) 2015; 118:1122-7. [DOI: 10.1152/japplphysiol.00755.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/08/2015] [Indexed: 12/24/2022] Open
Abstract
The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ∼500 m3mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research.
Collapse
Affiliation(s)
- C. Strewe
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - F. Muckenthaler
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Feuerecker
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - B. Yi
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Rykova
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - I. Kaufmann
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care Medicine, Neuperlach Hospital, Municipal Hospital Group, Munich, Germany; and
| | - I. Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - G. Vassilieva
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - M. Hörl
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - S. Matzel
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - G. Schelling
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Thiel
- Clinic of Anesthesiology and Intensive Care, Klinikum Mannheim, University of Mannheim, Mannheim, Germany
| | - B. Morukov
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - A. Choukèr
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| |
Collapse
|
285
|
Yu J, Park MH, Choi SY, Jo SH. Cortisone and hydrocortisone inhibit human Kv1.3 activity in a non-genomic manner. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:653-61. [PMID: 25743574 DOI: 10.1007/s00210-015-1109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
Glucocorticoids are hormones released in response to stress that are involved in various physiological processes including immune functions. One immune-modulating mechanism is achieved by the Kv1.3 voltage-dependent potassium channel, which is expressed highly in lymphocytes including effector memory T lymphocytes (TEM). Although glucocorticoids are known to inhibit Kv1.3 function, the detailed inhibitory mechanism is not yet fully understood. Here we studied the rapid non-genomic effects of cortisone and hydrocortisone on the human Kv1.3 channel expressed in Xenopus oocytes. Both cortisone and hydrocortisone reduced the amplitude of the Kv1.3 channel current in a concentration-dependent manner. Both cortisone and hydrocortisone rapidly and irreversibly inhibited Kv1.3 currents, eliminating the possibility of genomic regulation. Inhibition rate was stable relative to the degree of depolarization. Kinetically, cortisone altered the activating gate of Kv1.3 and hydrocortisone interacted with this channel in an open state. These results suggest that cortisone and hydrocortisone inhibit Kv1.3 currents via a non-genomic mechanism, providing a mechanism for the immunosuppressive effects of glucocorticoids.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Republic of Korea
| | | | | | | |
Collapse
|
286
|
Farzi A, Reichmann F, Holzer P. The homeostatic role of neuropeptide Y in immune function and its impact on mood and behaviour. Acta Physiol (Oxf) 2015; 213:603-27. [PMID: 25545642 DOI: 10.1111/apha.12445] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/10/2014] [Accepted: 12/21/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY), one of the most abundant peptides in the nervous system, exerts its effects via five receptor types, termed Y1, Y2, Y4, Y5 and Y6. NPY's pleiotropic functions comprise the regulation of brain activity, mood, stress coping, ingestion, digestion, metabolism, vascular and immune function. Nerve-derived NPY directly affects immune cells while NPY also acts as a paracrine and autocrine immune mediator, because immune cells themselves are capable of producing and releasing NPY. NPY is able to induce immune activation or suppression, depending on a myriad of factors such as the Y receptors activated and cell types involved. There is an intricate relationship between psychological stress, mood disorders and the immune system. While stress represents a risk factor for the development of mood disorders, it exhibits diverse actions on the immune system as well. Conversely, inflammation is regarded as an internal stressor and is increasingly recognized to contribute to the pathogenesis of mood and metabolic disorders. Intriguingly, the cerebral NPY system has been found to protect against distinct disturbances in response to immune challenge, attenuating the sickness response and preventing the development of depression. Thus, NPY plays an important homeostatic role in balancing disturbances of physiological systems caused by peripheral immune challenge. This implication is particularly evident in the brain in which NPY counteracts the negative impact of immune challenge on mood, emotional processing and stress resilience. NPY thus acts as a unique signalling molecule in the interaction of the immune system with the brain in health and disease.
Collapse
Affiliation(s)
- A. Farzi
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - F. Reichmann
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| | - P. Holzer
- Research Unit of Translational Neurogastroenterology; Institute of Experimental and Clinical Pharmacology; Medical University of Graz; Graz Austria
| |
Collapse
|
287
|
Im E. Multi-facets of Corticotropin-releasing Factor in Modulating Inflammation and Angiogenesis. J Neurogastroenterol Motil 2015; 21:25-32. [PMID: 25540945 PMCID: PMC4288099 DOI: 10.5056/jnm14076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/20/2022] Open
Abstract
The family of corticotropin-releasing factor (CRF) composed of 4 ligands including CRF, urocortin (Ucn) 1, Ucn2, and Ucn3 is expressed both in the central nervous system and the periphery including the gastrointestinal tract. Two different forms of G protein coupled receptors, CRF1 and CRF2, differentially recognize CRF family members, mediating various biological functions. A large body of evidence suggests that the CRF family plays an important role in regulating inflammation and angiogenesis. Of particular interest is a contrasting role of the CRF family during inflammatory processes. The CRF family can exert both pro-and anti-inflammatory functions depending on the type of receptors, the tissues, and the disease phases. In addition, there has been a growing interest in a possible role of the CRF family in angiogenesis. Regulation of angiogenesis by the CRF family has been shown to modulate endogenous blood vessel formation, inflammatory neovascularization and cardiovascular function. This review outlines the effect of the CRF family and its receptors on 2 major biological events: inflammation and angiogenesis, and provides a possibility of their application for the treatment of inflammatory vascular diseases.
Collapse
Affiliation(s)
- Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
288
|
Gur TL, Worly BL, Bailey MT. Stress and the commensal microbiota: importance in parturition and infant neurodevelopment. Front Psychiatry 2015; 6:5. [PMID: 25698977 PMCID: PMC4313583 DOI: 10.3389/fpsyt.2015.00005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/12/2015] [Indexed: 12/26/2022] Open
Abstract
The body is colonized by an enormous array of microbes that are collectively called the microbiota. During quiescent periods, microbial communities within the gut are relatively resistant to change. However, several factors that disrupt homeostasis can also significantly change gut microbial community structure. One factor that has been shown to change the composition of the gut microbiota is exposure to psychological stressors. Studies demonstrate that the commensal microbiota are involved in stressor-induced immunomodulation, but other biological effects are not yet known. This review discusses emerging evidence that the microbiota can impact the brain and behavior and indicates that stressor-induced alterations in the composition of gut microbial communities contribute to stressor-induced behavioral changes. This review will also discuss the evidence that such effects are most evident early in life, where both stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment. When considered together, a paradigm emerges in which stressor-induced alterations in commensal microbial populations significantly impact parturition and infant neurodevelopment.
Collapse
Affiliation(s)
- Tamar L Gur
- Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Neuroscience, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| | - Brett L Worly
- Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| | - Michael T Bailey
- Division of Biosciences, College of Dentistry, The Ohio State University , Columbus, OH , USA ; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Department of Pediatrics, The Ohio State University Wexner Medical Center , Columbus, OH , USA ; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center , Columbus, OH , USA
| |
Collapse
|
289
|
Caldwell KE, Labrecque MT, Solomon BR, Ali A, Allan AM. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development. Neurotoxicol Teratol 2014; 47:66-79. [PMID: 25459689 DOI: 10.1016/j.ntt.2014.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
The glucocorticoid system, which plays a critical role in a host of cellular functions including mood disorders and learning and memory, has been reported to be disrupted by arsenic. In previous work we have developed and characterized a prenatal moderate arsenic exposure (50ppb) model and identified several deficits in learning and memory and mood disorders, as well as alterations within the glucocorticoid receptor signaling system in the adolescent mouse. In these present studies we assessed the effects of arsenic on the glucocorticoid receptor (GR) pathway in both the placenta and the fetal brain in response at two critical periods, embryonic days 14 and 18. The focus of these studies was on the 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) which play a key role in glucorticoid synthesis, as well as the expression and set point of the GR negative feedback regulation. Negative feedback regulation is established early in development. At E14 we found arsenic exposure significantly decreased expression of both protein and message in brain of GR and the 11β-HSD1, while 11β-HSD2 enzyme protein levels were increased but mRNA levels were decreased in the brain. These changes in brain protein continued into the E18 time point, but mRNA levels were no longer significantly altered. Placental HSD11B2 mRNA was not altered by arsenic treatment but protein levels were elevated at E14. GR placental protein levels were decreased at E18 in the arsenic exposed condition. This suggests that arsenic exposure may alter GR expression levels as a consequence of a prolonged developmental imbalance between 11β-HSD1 and 11β-HSD2 protein expression despite decreased 11HSDB2 mRNA. The suppression of GR and the failure to turn down 11β-HSD2 protein expression during fetal development may lead to an altered set point for GR signaling throughout adulthood. To our knowledge, these studies are the first to demonstrate that gestational exposure to moderate levels of arsenic results in altered fetal programming of the glucocorticoid system.
Collapse
Affiliation(s)
- Katharine E Caldwell
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Matthew T Labrecque
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Benjamin R Solomon
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Abdulmehdi Ali
- Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States.
| |
Collapse
|
290
|
Abstract
Suicide ranks among the leading causes of death around the world and takes a heavy emotional and public health toll on most societies. Both distal and proximal factors contribute to suicidal behaviour. Distal factors - such as familial and genetic predisposition, as well as early-life adversity - increase the lifetime risk of suicide. They alter responses to stress and other processes through epigenetic modification of genes and associated changes in gene expression, and through the regulation of emotional and behavioural traits. Proximal factors are associated with the precipitation of a suicidal event and include alterations in key neurotransmitter systems, inflammatory changes and glial dysfunction in the brain. This Review explores the key molecular changes that are associated with suicidality and discusses some promising avenues for future research.
Collapse
|