251
|
Zhang X, Xiang J. Remodeling the Microenvironment before Occurrence and Metastasis of Cancer. Int J Biol Sci 2019; 15:105-113. [PMID: 30662351 PMCID: PMC6329933 DOI: 10.7150/ijbs.28669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis and progression of cancer are complex processes which transformed cells and stromal cells interact and co-evolve. Intrinsic and extrinsic factors cause the mutations of cells. The survival of transformed cells critically depends on the circumstances which they reside. The malignant transformed cancer cells reprogram the microenvironment locally and systemically. The formation of premetastatic niche in the secondary organs facilitates cancer cells survival in the distant organs. This review outlines the current understanding of the key roles of premalignant niche and premetastatic niche in cancer progression. We proposed that a niche facilitates survival of transformed cells is characteristics of senescence, stromal fibrosis and obese microenvironment. We also proposed the formation of premetastatic niche in secondary organs is critically influenced by primary cancer cells. Therefore, it suggested that strategies to target the niche can be promising approach to eradicate cancer cells.
Collapse
Affiliation(s)
- Xina Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
252
|
Chen F, Li Z, Zhou H. Identification of prognostic miRNA biomarkers for predicting overall survival of colon adenocarcinoma and bioinformatics analysis: A study based on The Cancer Genome Atlas database. J Cell Biochem 2018; 120:9839-9849. [DOI: 10.1002/jcb.28264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Fangyao Chen
- Department of Epidemiology and Health Statistics School of Public Health Xi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Zhe Li
- First Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
| | - Hui Zhou
- Department of Pharmacy, First Affiliated Hospatial of Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
253
|
Zhai LY, Li MX, Pan WL, Chen Y, Li MM, Pang JX, Zheng L, Chen JX, Duan WJ. In Situ Detection of Plasma Exosomal MicroRNA-1246 for Breast Cancer Diagnostics by a Au Nanoflare Probe. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39478-39486. [PMID: 30350935 DOI: 10.1021/acsami.8b12725] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Breast cancer is the second cause of cancer mortality in women globally. Early detection, treatment, and metastasis monitoring are of great importance to favorable prognosis. Although conventional diagnostic methods, such as breast X-ray mammography and image positioning biopsy, are accurate, they could cause radioactive or invasive damage to patients. Liquid biopsy as a noninvasive method is convenient for repeated sampling in clinical cancer prognostic, metastatic evaluation, and relapse monitoring. MicroRNAs encased in exosomes circulating in biofluids are promising candidate cancer biomarkers because of their cancer-specific expression profiles. Here, we report an in situ detection of microRNA-1246 (miR-1246) in human plasma exosomes as breast cancer biomarker by a nucleic acid functionalized Au nanoflare probe. Needing neither time-consuming and costly isolation of exosomes from the plasma sample nor transfection means, the Au nanoflare probe can directly enter the plasma exosomes to generate fluorescent signal quantitatively by specifically targeting miR-1246. Only 40 μL of plasma is needed to incubate 4 h with the probe, giving signal sensitive enough to distinguish samples of breast cancer to normal control. Using plasma miR-1246 level detected by our assay as a marker, we differentiated 46 breast cancer patients from 28 healthy controls with 100% sensitivity and 92.9% specificity at the best cutoff. This simple, accurate, sensitive, and cost-effective liquid biopsy by the Au nanoflare probe is potent to be developed as a noninvasive breast cancer diagnostic assay for clinical adaption.
Collapse
Affiliation(s)
| | | | | | | | - Min-Min Li
- Center of Clinical Laboratory , The First Affiliated Hospital of Jinan University , Guangzhou 510630 , People's Republic of China
| | | | | | | | | |
Collapse
|
254
|
Tang YT, Huang YY, Li JH, Qin SH, Xu Y, An TX, Liu CC, Wang Q, Zheng L. Alterations in exosomal miRNA profile upon epithelial-mesenchymal transition in human lung cancer cell lines. BMC Genomics 2018; 19:802. [PMID: 30400814 PMCID: PMC6219194 DOI: 10.1186/s12864-018-5143-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is regarded as a critical event during tumor metastasis. Recent studies have revealed changes and the contributions of proteins in/on exosomes during EMT. Besides proteins, microRNA (miRNA) is another important functional component of exosomes. We hypothesized that the miRNA profile of exosomes may change following EMT and these exosomal miRNAs may in return promote EMT, migration and invasion of cancer cells. RESULTS The small RNA profile of exosomes was altered following EMT. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the specific miRNAs of M-exosomes have the potential to drive signal transduction networks in EMT and cancer progression. Co-culture experiments confirmed that M-exosomes can enter epithelial cells and promote migration, invasion and expression of mesenchymal markers in the recipient cells. CONCLUSION Our results reveal changes in the function and miRNA profile of exosomes upon EMT. M-exosomes can promote transfer of the malignant (mesenchymal) phenotype to epithelial recipient cells. Further, the miRNAs specifically expressed in M-exosomes are associated with EMT and metastasis, and may serve as new biomarkers for EMT-like processes in lung cancer.
Collapse
Affiliation(s)
- Yue-Ting Tang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
- Department of Clinical Laboratory, Zhongnan Hospital, Wuhan University, Wuhan, Hubei China
| | - Yi-Yao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Jing-Huan Li
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire UK
| | - Si-Hua Qin
- Department of Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Yong Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Tai-Xue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Chun-Chen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| | - Qian Wang
- Department of Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, 510515 Guangdong China
| |
Collapse
|
255
|
Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. J Clin Med 2018; 7:jcm7100355. [PMID: 30322213 PMCID: PMC6210470 DOI: 10.3390/jcm7100355] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
It is currently thought that extracellular vesicles (EVs), such as exosomes and microvesicles, play an important autocrine/paracrine role in intercellular communication. EVs package proteins, mRNA and microRNA (miRNA), which have the ability to transfer biological information to recipient cells in the lungs. Depending on their origin, EVs fulfil different functions. EVs derived from mesenchymal stem cells (MSCs) have been found to promote therapeutic activities that are comparable to MSCs themselves. Recent animal model-based studies suggest that MSC-derived EVs have significant potential as a novel alternative to whole-cell therapies. Compared to their parent cells, EVs may have a superior safety profile and can be stored without losing function. It has been observed that MSC-derived EVs suppress pro-inflammatory processes and reduce oxidative stress, pulmonary fibrosis and remodeling in a variety of in vivo inflammatory lung disease models by transferring their components. However, there remain significant challenges to translate this therapy to the clinic. From this view point, we will summarize recent studies on EVs produced by MSCs in preclinical experimental models of inflammatory lung diseases. We will also discuss the most relevant issues in bringing MSC-derived EV-based therapeutics to the clinic for the treatment of inflammatory lung diseases.
Collapse
|
256
|
Kitdumrongthum S, Metheetrairut C, Charoensawan V, Ounjai P, Janpipatkul K, Panvongsa W, Weerachayaphorn J, Piyachaturawat P, Chairoungdua A. Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes. Life Sci 2018; 210:65-75. [PMID: 30165035 DOI: 10.1016/j.lfs.2018.08.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
AIM Cholangiocarcinoma (CCA) is a malignant tumor of bile duct epithelial cells. The prognosis of CCA is poor due to lack of effective therapeutic targets and detection at an advanced stage. Exosomes are secreted nano-sized vesicles and contribute to the malignancy of several cancers via transferring their miRNAs between cells. Thus, exosomal miRNAs may serve as new therapeutic targets and potential biomarkers for CCA. MAIN METHODS Exosomes were isolated from three different CCA cell lines and normal human cholangiocyte cells, followed by miRNA profiling analysis. Potential role of dysregulated miRNA was investigated by knockdown experiment. KEY FINDINGS We found that 38 and 460 miRNAs in CCA exosomes were significantly up- and down-regulated, respectively. Of these differentially expressed miRNAs, the hsa-miR-205-5p and miR-200 family members were markedly up-regulated for 600-1500 folds, whereas the miR-199 family members and their clustered miRNA, hsa-miR-214-3p, were down-regulated for 1000-2000 folds. The expression patterns of these representative exosomal miRNAs were similar to those observed in all types of CCA cells. The target genes of the top ten most up- and down-regulated miRNAs are significantly associated with well-characterized cancer-related pathways. Consistently, knockdown of the most up-regulated miRNA, miR-205-5p, reduced KKU-M213 cell invasion and migration. SIGNIFICANCE We have demonstrated the distinct miRNA signatures in exosomes released from CCA cells, compared to normal human cholangiocyte cells. These exosomal miRNAs may have the potential to be novel therapeutic targets and biomarkers for CCA.
Collapse
Affiliation(s)
- Sarunya Kitdumrongthum
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Keatdamrong Janpipatkul
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Jittima Weerachayaphorn
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pawinee Piyachaturawat
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
257
|
Sanz-Rubio D, Martin-Burriel I, Gil A, Cubero P, Forner M, Khalyfa A, Marin JM. Stability of Circulating Exosomal miRNAs in Healthy Subjects. Sci Rep 2018; 8:10306. [PMID: 29985466 PMCID: PMC6037782 DOI: 10.1038/s41598-018-28748-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are nano-vesicles present in the circulation that are involved in cell-to-cell communication and regulation of different biological processes. MicroRNAs (miRNAs) are part of their cargo and are potential biomarkers. Methods of exosome isolation and the inter-individual and intra-individual variations in circulating miRNA exosomal cargo have been poorly investigated. This study aims for comparing two exosome isolation methods and to assess the stability of eleven plasma exosomal miRNAs over time. In addition to evaluate miRNA variability of both kits, the effect of freezing plasma before exosome isolation or freezing isolated exosomes on miRNA stability was also evaluated. MiRNA levels were tested in 7 healthy subjects who underwent four different blood extractions obtained in 4 consecutive weeks. One of the isolation kits displayed generally better amplification signals, and miRNAs from exosomes isolated after freezing the plasma had the highest levels. Intra-subject and inter-subject coefficients of variance were lower for the same isolation kit after freezing plasma. Finally, miRNAs that showed an acceptable expression level were stable across the consecutive extractions. This study shows for the first time the stability over time of miRNAs isolated from circulating plasma exosomes, establishing a key step in the use of exosomal miRNAs as biomarkers.
Collapse
Affiliation(s)
- David Sanz-Rubio
- Translational Respiratory Research Unit, IISAragon & CIBERES, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | | | - Ana Gil
- Translational Respiratory Research Unit, IISAragon & CIBERES, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Pablo Cubero
- Translational Respiratory Research Unit, IISAragon & CIBERES, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Marta Forner
- Translational Respiratory Research Unit, IISAragon & CIBERES, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Abdelnaby Khalyfa
- Section of Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, USA
| | - Jose M Marin
- Translational Respiratory Research Unit, IISAragon & CIBERES, Hospital Universitario Miguel Servet, Zaragoza, Spain.,Department of Medicine, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
258
|
Lucchetti D, Fattorossi A, Sgambato A. Extracellular Vesicles in Oncology: Progress and Pitfalls in the Methods of Isolation and Analysis. Biotechnol J 2018; 14:e1700716. [PMID: 29878510 DOI: 10.1002/biot.201700716] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The possibility to study solid tumors through the analysis of extracellular vesicles in biological fluids is one of the most exciting and rapidly advancing field in cancer research. The extracellular vesicles are tiny sacs released in both physiological and pathological conditions and can be used to monitor the evolution of several pathological states, including neoplastic diseases. Indeed, these vesicles carry biological informations and can affect the behavior of recipient cells by transferring proteins, DNA, RNA, and microRNA. In this review the authors analyze the methods to collect biological fluid samples (urine, plasma/serum, and cell supernatant), and to isolate and quantify extracellular vesicles highlighting advantages and drawbacks. Moreover, the authors provide an overview on the adoption and the advantages of the methods (such as digital PCR, next generation sequencing, reverse-phase protein microarrays, flow-cytometry, etc.) most frequently used to analyze the molecular content of extracellular vesicles. Despite the great scientific interest on this topic, there is still a great uncertainty about which is the best method for the collection, isolation, quantification, and molecular evaluation of these vesicles and a standardization is needed. The features of EVs make them ideal candidates for liquid biopsy-based biomarkers. However, the small size of EVs makes their analysis very difficult and requires multiple advanced technologies, being therefore a limitation.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Fattorossi
- Department of Obstetrics and Gynecology, Fondazione Policlinico A. Gemelli, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
259
|
Falzone L, Scola L, Zanghì A, Biondi A, Di Cataldo A, Libra M, Candido S. Integrated analysis of colorectal cancer microRNA datasets: identification of microRNAs associated with tumor development. Aging (Albany NY) 2018; 10:1000-1014. [PMID: 29779016 PMCID: PMC5990389 DOI: 10.18632/aging.101444] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cause of cancer death worldwide. Currently, no effective early diagnostic biomarkers are available for colorectal carcinoma. Therefore, there is a need to discover new molecules able to identify pre-cancerous lesions. Recently, microRNAs (miRNAs) have been associated with the onset of specific pathologies, thus the identification of miRNAs associated to colorectal cancer may be used to detect this pathology at early stages. On these bases, the expression levels of miRNAs were analyzed to compare the miRNAs expression levels of colorectal cancer samples and normal tissues in several miRNA datasets. This analysis revealed a group of 19 differentially expressed miRNAs. To establish the interaction between miRNAs and the most altered genes in CRC, the mirDIP gene target analysis was performed in such group of 19 differentially expressed miRNAs. To recognize miRNAs able to activate or inhibit genes and pathways involved in colorectal cancer development DIANA-mirPath prediction analysis was applied. Overall, these analyses showed that the up-regulated hsa-miR-183-5p and hsa-miR-21-5p, and the down-regulated hsa-miR-195-5p and hsa-miR-497-5p were directly related to colorectal cancer through the interaction with the Mismatch Repair pathway and Wnt, RAS, MAPK, PI3K, TGF-β and p53 signaling pathways involved in cancer development.
Collapse
Affiliation(s)
- Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Letizia Scola
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Palermo 90127, Italy
| | - Antonino Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Catania 95125, Italy
| | - Antonio Biondi
- Department of General Surgery, Vittorio Emanuele Hospital, University of Catania, Catania 95124, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania 95123, Italy
| | - Antonio Di Cataldo
- Department of Medical and Surgical Sciences and Advanced Technology "G.F. Ingrassia", University of Catania, Catania 95125, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania 95123, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania 95123, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania 95123, Italy
| |
Collapse
|
260
|
Pohler KG, Green JA, Moley LA, Gunewardena S, Hung WT, Payton RR, Hong X, Christenson LK, Geary TW, Smith MF. Circulating microRNA as candidates for early embryonic viability in cattle. Mol Reprod Dev 2018. [PMID: 28643872 DOI: 10.1002/mrd.22856] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood-borne extracellular vesicles (i.e., exosomes and microvesicles) carrying microRNAs (miRNAs) could make excellent biomarkers of disease and different physiologic states, including pregnancy status. We tested the hypothesis that circulating extracellular vesicle-derived miRNAs might differentiate the pregnancy status of cows that had maintained pregnancy to Day 30 from non-pregnant cows or from those that exhibited embryonic mortality between Days 17 and 30 of gestation. Cows were randomly assigned for artificial insemination with fertile semen (n = 36) or dead semen (n = 8; control group) on Day 0 (day of estrus). Blood was collected from all animals on Day 0 and on Days 17 and 24 after artificial insemination. Cows receiving live sperm were retrospectively classified as pregnant on Day 30 (n = 17) or exhibiting embryonic mortality between Days 17 and 30 (n = 19). Extracellular vesicles from Day 17 and 24 samples were isolated from serum using ultra-centrifugation, and their presence was confirmed by nanoparticle tracking and Western blot analyses (for CD81) prior to RNA extraction. MicroRNA sequencing was performed on pregnant, embryonic-mortality, and control cows (n = 4 per day), for a total of 24 independent reactions. In total, 214 miRNAs were identified in serum, 40 of which were novel. Based on differential abundance parameters, we identified 32 differentially abundant loci, representing 27 differentially abundant mature miRNA. At Days 17 and 24, specific miRNAs (e.g., miR-25, -16b, and -3596) were identified that differentiated the pregnancy status. In summary, we identified several circulating extracellular vesicles derived miRNAs that differ in abundance between embryonic mortality and pregnant cows.
Collapse
Affiliation(s)
- Ky G Pohler
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Laura A Moley
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | - Wei-Ting Hung
- University of Kansas Medical Center, Kansas City, Kansas
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee, Knoxville, Tennessee
| | - Xiaoman Hong
- University of Kansas Medical Center, Kansas City, Kansas
| | | | - Tom W Geary
- USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, Montana
| | - Michael F Smith
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
261
|
Urabe F, Kosaka N, Kimura T, Egawa S, Ochiya T. Extracellular vesicles: Toward a clinical application in urological cancer treatment. Int J Urol 2018; 25:533-543. [PMID: 29726046 DOI: 10.1111/iju.13594] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are nanometer-sized lipid membranous vesicles that are released from almost all types of cells into the extracellular space. Extracellular vesicles have gained considerable attention in the past decade, and emerging evidence suggests that they play novel roles in mediating cancer biology. Extracellular vesicles contain pathogenic components, such as proteins, DNA fragments, messenger ribonucleic acids, non-coding ribonucleic acids and lipids, all of which mediate paracrine signaling in the tumor microenvironment. Extracellular vesicles impact the multistep process of cancer progression through modulation of the immune system, angiogenesis and pre-metastatic niche formation through transfer of their contents. Therefore, a better understanding of their roles in urological cancers will provide opportunities for novel therapeutic strategies. In addition, the contents of extracellular vesicles hold promise for the discovery of liquid-based biomarkers for prostate, kidney and bladder cancers. Here, we summarize the current research regarding extracellular vesicles in urological cancer and discuss potential clinical applications for extracellular vesicles in urological cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
262
|
Lewis JM, Vyas AD, Qiu Y, Messer KS, White R, Heller MJ. Integrated Analysis of Exosomal Protein Biomarkers on Alternating Current Electrokinetic Chips Enables Rapid Detection of Pancreatic Cancer in Patient Blood. ACS NANO 2018; 12:3311-3320. [PMID: 29570265 DOI: 10.1021/acsnano.7b08199] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) typically has nonspecific symptoms and is often found too late to treat. Because diagnosis of PDAC involves complex, invasive, and expensive procedures, screening populations at increased risk will depend on developing rapid, sensitive, specific, and cost-effective tests. Exosomes, which are nanoscale vesicles shed into blood from tumors, have come into focus as valuable entities for noninvasive liquid biopsy diagnostics. However, rapid capture and analysis of exosomes with their protein and other biomarkers have proven difficult. Here, we present a simple method integrating capture and analysis of exosomes and other extracellular vesicles directly from whole blood, plasma, or serum onto an AC electrokinetic microarray chip. In this process, no pretreatment or dilution of sample is required, nor is it necessary to use capture antibodies or other affinity techniques. Subsequent on-chip immunofluorescence analysis permits specific identification and quantification of target biomarkers within as little as 30 min total time. In this initial validation study, the biomarkers glypican-1 and CD63 were found to reflect the presence of PDAC and thus were used to develop a bivariate model for detecting PDAC. Twenty PDAC patient samples could be distinguished from 11 healthy subjects with 99% sensitivity and 82% specificity. In a smaller group of colon cancer patient samples, elevated glypican-1 was observed for metastatic but not for nonmetastatic disease. The speed and simplicity of ACE exosome capture and on-chip biomarker detection, combined with the ability to use whole blood, will enable seamless "sample-to-answer" liquid biopsy screening and improve early stage cancer diagnostics.
Collapse
|
263
|
Cheng Q, Li X, Wang Y, Dong M, Zhan FH, Liu J. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro. Acta Pharmacol Sin 2018; 39:561-568. [PMID: 28858294 DOI: 10.1038/aps.2017.118] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/18/2017] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal proliferation of malignant plasma cells and refractoriness to traditional therapies. It has been shown that exosomes are involved in modulating the progression and the metastasis of cancers through microRNAs (miRs). Ceramide is a type of sphingolipid; the ceramide pathway of exosomal secretion has been shown to affect the apoptosis of cancer cells. But the role of this pathway in MM cell function, exosome function and miR regulation remains unknown. In this study, we showed that C6 ceramide (an exogenous ceramide supplement, 1.25-40 μmol/L) dose-dependently inhibited the proliferation and promoted the apoptosis in human MM OPM2 cell line, which were associated with elevated caspase 3/9 and PARP cleavage. We also found that C6 ceramide (5-20 μmol/L) dose-dependently stimulated exosome secretion and increased exosomal levels of tumor-suppressive miRs (miR 202, miR 16, miR 29b and miR 15a). Of note, exosomes from C6 ceramide-treated OPM2 cells could influence the proliferation and apoptosis of the recipient OPM2 cells, which correlated with increased tumor-suppressive exosomal miRs. In contrast, GW4869 (a ceramide inhibitor, 5-20 μmol/L) exerted the opposite effects on the regulation of MM function, exosome secretion and miR levels in MM exosomes. However, exosomes from GW4869-treated OPM2 cells had no effect on these miRs and the survival of targeted OPM2 cells. Taken together, our findings reveal that the ceramide pathway modulates MM survival, probably directly via the caspase pathway and indirectly via exosomal miR mechanisms.
Collapse
|
264
|
|
265
|
Shurtleff MJ, Temoche-Diaz MM, Schekman R. Extracellular Vesicles and Cancer: Caveat Lector. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew J. Shurtleff
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Morayma M. Temoche-Diaz
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
266
|
Mueller M, Castro RE, Thorell A, Marschall H, Auer N, Herac M, Rodrigues CM, Trauner M. Ursodeoxycholic acid: Effects on hepatic unfolded protein response, apoptosis and oxidative stress in morbidly obese patients. Liver Int 2018; 38:523-531. [PMID: 28853202 PMCID: PMC5836915 DOI: 10.1111/liv.13562] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Ursodeoxycholic acid (UDCA) is a secondary hydrophilic bile acid (BA) used as therapy for a range of hepatobiliary diseases. Its efficacy in non-alcoholic fatty liver disease (NAFLD) is still under debate. Here, we aimed to decipher molecular mechanisms of UDCA in regulating endoplasmic reticulum (ER) homeostasis, apoptosis and oxidative stress in morbidly obese patients. METHODS In this randomized controlled pharmacodynamic study, liver and serum samples from 40 well-matched morbidly obese NAFLD-patients were analysed. Patients received UDCA (20 mg/kg/d) or no treatment 3 weeks before samples were obtained during bariatric surgery. RESULTS Patients treated with UDCA displayed higher scoring of steatosis (S), activity (A) and fibrosis (F), the so called SAF-scoring. UDCA partially disrupted ER homeostasis by inducing the expression of the ER stress markers CHOP and GRP78. However, ERDJ4 and sXBP1 levels were unaffected. Enhanced CHOP expression, a suggested pro-apoptotic trigger, failed to induce apoptosis via BAK and BAX in the UDCA treated group. Potentially pro-apoptotic miR-34a was reduced in the vesicle-free fraction in serum but not in liver after UDCA treatment. Thiobarbituric acid reactive substances, 4-hydroxynonenal and mRNA levels of several oxidative stress indicators remained unchanged after UDCA treatment. CONCLUSION Our data suggest that UDCA treatment has ambivalent effects in NAFLD patients. While increased SAF-scores and elevated CHOP levels may be disadvantageous in the UDCA treated cohort, UDCA's cytoprotective properties potentially changed the apoptotic threshold as reflected by absent induction of pro-apoptotic triggers. UDCA treatment failed to improve the oxidative stress status in NAFLD patients.
Collapse
Affiliation(s)
- Michaela Mueller
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbonPortugal,Department of Biochemistry and Human BiologyFaculty of PharmacyUniversidade de LisboaLisbonPortugal
| | - Anders Thorell
- Department of Clinical Science at Danderyds HospitalKarolinska InstitutetStockholmSweden,Department of SurgeryErsta HospitalStockholmSweden
| | - Hanns‐Ulrich Marschall
- Department of Molecular and Clinical MedicineSahlgrenska AcademyInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | - Nicole Auer
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Merima Herac
- Department of Clinical PathologyUniversity of ViennaViennaAustria
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbonPortugal,Department of Biochemistry and Human BiologyFaculty of PharmacyUniversidade de LisboaLisbonPortugal
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
267
|
Tian T, Mingyi M, Qiu X, Qiu Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. Oncotarget 2018; 7:79584-79595. [PMID: 27792996 PMCID: PMC5346737 DOI: 10.18632/oncotarget.12861] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a chemotherapy-resistant brain tumor with limited treatment options. Temozolomide (TMZ), an alkylating agent, is a front-line chemotherapeutic drug currently employed in GBM. Although it is currently the most promising chemotherapy for GBM, resistance to TMZ is also common and accounts for many treatment failures. Therefore, understanding the underlying mechanisms that generate resistance is essential to develop more effective chemotherapies. Here, we show that microRNA-101 (miR-101) was significantly downregulated in TMZ-resistant GBM cells and human specimens. Instead, over-expression of miR-101 could sensitize resistant GBM cells to TMZ through downregulation of glycogen synthase kinase 3β (GSK3β). Moreover, we found that GSK3β inhibition could enhance TMZ effect through repression of MGMT via promoter methylation. Importantly, decreased expression of miR-101 is related to poor prognosis in patients with GBM, suggesting its potential role as a new prognostic marker in GBM. In conclusion, our study demonstrates that miR-101 can reverse TMZ resistance by inhibition of GSK3β in GBM, thus offer a novel and powerful strategy for GBM therapy.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.,Department of Neurology, Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ma Mingyi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xia Qiu
- Department of Medicine, Shangqiu Medical School, Shangqiu 476000, Henan Province, People's Republic of China
| | - Yang Qiu
- Department of Clinical Medicine, Shaoyang Medical College, Shaoyang 422000, Hunan Province, People's Republic of China
| |
Collapse
|
268
|
Gao T, Shu J, Cui J. A systematic approach to RNA-associated motif discovery. BMC Genomics 2018; 19:146. [PMID: 29444662 PMCID: PMC5813387 DOI: 10.1186/s12864-018-4528-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sequencing-based large screening of RNA-protein and RNA-RNA interactions has enabled the mechanistic study of post-transcriptional RNA processing and sorting, including exosome-mediated RNA secretion. The downstream analysis of RNA binding sites has encouraged the investigation of novel sequence motifs, which resulted in exceptional new challenges for identifying motifs from very short sequences (e.g., small non-coding RNAs or truncated messenger RNAs), where conventional methods tend to be ineffective. To address these challenges, we propose a novel motif-finding method and validate it on a wide range of RNA applications. RESULTS We first perform motif analysis on microRNAs and longer RNA fragments from various cellular and exosomal sources, and then validate our prediction through literature search and experimental test. For example, a 4 bp-long motif, GUUG, was detected to be responsible for microRNA loading in exosomes involved in human colon cancer (SW620). Additional performance comparisons in various case studies have shown that this new approach outperforms several existing state-of-the-art methods in detecting motifs with exceptional high coverage and explicitness. CONCLUSIONS In this work, we have demonstrated the promising performance of a new motif discovery approach that is particularly effective in current RNA applications. Important discoveries resulting from this work include the identification of possible RNA-loading motifs in a variety of exosomes, as well as novel insights in sequence features of RNA cargos, i.e., short non-coding RNAs and messenger RNAs may share similar loading mechanism into exosomes. This method has been implemented and deployed as a new webserver named MDS2 which is accessible at http://sbbi-panda.unl.edu/MDS2/ , along with a standalone package available for download at https://github.com/sbbi/MDS2 .
Collapse
Affiliation(s)
- Tian Gao
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Jiang Shu
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
269
|
Gulei D, Irimie AI, Cojocneanu-Petric R, Schultze JL, Berindan-Neagoe I. Exosomes—Small Players, Big Sound. Bioconjug Chem 2018; 29:635-648. [DOI: 10.1021/acs.bioconjchem.8b00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetics, Faculty of Dentistry, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Roxana Cojocneanu-Petric
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Joachim L. Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu-Hatieganu” University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Republicii 34-36 Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
270
|
Hasegawa T, Glavich GJ, Pahuski M, Short A, Semmes OJ, Yang L, Galkin V, Drake R, Esquela-Kerscher A. Characterization and Evidence of the miR-888 Cluster as a Novel Cancer Network in Prostate. Mol Cancer Res 2018; 16:669-681. [PMID: 29330297 DOI: 10.1158/1541-7786.mcr-17-0321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/10/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Abstract
Prostate cancer afflicts 1 in 7 men and is the second leading cause of male cancer-related deaths in the United States. MicroRNAs (miRNAs), an extensive class of approximately 22 nucleotide noncoding RNAs, are often aberrantly expressed in tissues and fluids from prostate cancer patients, but the mechanisms of how specific miRNAs regulate prostate tumorigenesis and metastasis are poorly understood. Here, miR-888 was identified as a novel prostate factor that promotes proliferation and migration. miR-888 resides within a genomic cluster of 7 miRNA genes (mir-892c, mir-890, mir-888, mir-892a, mir-892b, mir-891b, mir-891a) on human chromosome Xq27.3. Moreover, as miR-888 maps within HPCX1, a locus associated with susceptibility and/or hereditary prostate cancer, it was hypothesized that additional miRNA cluster members also play functional roles in the prostate. Expression analysis determined that cluster members were similarly elevated in metastatic PC3-ML prostate cells and their secreted exosomes, as well as enriched in expressed prostatic secretions urine-derived exosomes obtained from clinical patients with high-grade prostate cancer. In vitro assays revealed that miR-888 cluster members selectively modulated PC3-derived and LNCaP cell proliferation, migration, invasion, and colony formation. Mouse xenograft studies verified miR-888 and miR-891a as pro-oncogenic factors that increased prostate tumor growth in vivo Further analysis validated RBL1, KLF5, SMAD4, and TIMP2 as direct miR-888 targets and that TIMP2 is also coregulated by miR-891a. This study provides the first comprehensive analysis of the entire miR-888 cluster and reveals biological insight.Implications: This work reveals a complex noncoding RNA network in the prostate that could be developed as effective diagnostic and therapeutic tools for advanced prostate cancer. Mol Cancer Res; 16(4); 669-81. ©2018 AACR.
Collapse
Affiliation(s)
- Tsuyoshi Hasegawa
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Garrison J Glavich
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Mary Pahuski
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Aleena Short
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - O John Semmes
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Lifang Yang
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Vitold Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Richard Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Aurora Esquela-Kerscher
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
271
|
Li C, Qin F, Hu F, Xu H, Sun G, Han G, Wang T, Guo M. Characterization and selective incorporation of small non-coding RNAs in non-small cell lung cancer extracellular vesicles. Cell Biosci 2018; 8:2. [PMID: 29344346 PMCID: PMC5763536 DOI: 10.1186/s13578-018-0202-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022] Open
Abstract
Background Extracellular vesicles (EVs) play important roles in intercellular communication through the delivery of their cargoes, which include proteins, lipids, and RNAs. Increasingly, multiple studies have reported the association between EV small non-coding RNAs and cancer, due to their regulatory functions in gene expression. Hence, analysis of the features of small non-coding RNA expression and their incorporation into EVs is important for cancer research. Results We performed deep sequencing to investigate the expression of small RNAs in plasma EVs from lung adenocarcinoma (ADC) patients, lung squamous cell carcinoma (SQCC) patients, and healthy controls. Then, eighteen differently expressed miRNAs in plasma EVs was validated by QRT-PCR. The small RNA expression profiles of plasma EVs were different among lung ADC, SQCC patients, and healthy controls. And many small RNAs, including 5′ YRNA hY4-derived fragments, miR-451a, miR-122-5p, miR-20a-5p, miR-20b-5p, miR-30b-5p, and miR-665, were significantly upregulated in non-small cell lung cancer (NSCLC) EVs. And the cell viability assays indicated that hY4-derived fragments inhibited the proliferation of lung cancer cell A549. By comparing the cellular and EV expression levels of six miRNAs in NSCLC cells, we found that miR-451a and miR-122-5p were significantly downregulated in NSCLC cell lysates, while significantly upregulated in NSCLC EVs. Conclusions The differently expressed EV small RNAs may serve as potential circulating biomarkers for the diagnosis of NSCLC. Particularly, YRNA hY4-derived fragments can serve as a novel class of biomarkers, which function as tumor suppressors in NSCLC. Additionally, miR-451a and miR-122-5p may be sorted into NSCLC EVs in a selective manner. Electronic supplementary material The online version of this article (10.1186/s13578-018-0202-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuang Li
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| | - Fang Qin
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| | - Fen Hu
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Hui Xu
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Guihong Sun
- 3School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Guang Han
- 4Department of Radiation Oncology, Hubei Cancer Hospital, 116 Zhuodaoquan South Road, Wuhan, 430079 Hubei People's Republic of China.,5Department of Oncology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Street, Wuhan, 430060 Hubei People's Republic of China
| | - Tao Wang
- 2Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 Hubei People's Republic of China
| | - Mingxiong Guo
- 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei People's Republic of China
| |
Collapse
|
272
|
Zhao H, Achreja A, Iessi E, Logozzi M, Mizzoni D, Di Raimo R, Nagrath D, Fais S. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer 2018; 1869:64-77. [PMID: 29175553 PMCID: PMC5800973 DOI: 10.1016/j.bbcan.2017.11.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.
Collapse
Affiliation(s)
- Hongyun Zhao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Abhinav Achreja
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Elisabetta Iessi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy
| | - Deepak Nagrath
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
273
|
Leng Q, Lin Y, Jiang F, Lee CJ, Zhan M, Fang H, Wang Y, Jiang F. A plasma miRNA signature for lung cancer early detection. Oncotarget 2017; 8:111902-111911. [PMID: 29340099 PMCID: PMC5762367 DOI: 10.18632/oncotarget.22950] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
Abstract
The early detection of lung cancer continues to be a major clinical challenge. Using whole-transcriptome next-generation sequencing to analyze lung tumor and the matched noncancerous tissues, we previously identified 54 lung cancer-associated microRNAs (miRNAs). The objective of this study was to investigate whether the miRNAs could be used as plasma biomarkers for lung cancer. We determined expressions of the lung tumor-miRNAs in plasma of a development cohort of 180 subjects by using reverse transcription PCR to develop biomarkers. The development cohort included 92 lung cancer patients and 88 cancer-free smokers. We validated the biomarkers in a validation cohort of 64 individuals comprising 34 lung cancer patients and 30 cancer-free smokers. Of the 54 miRNAs, 30 displayed a significant different expression level in plasma of the lung cancer patients vs. cancer-free controls (all P < 0.05). A plasma miRNA signature (miRs-126, 145, 210, and 205-5p) with the best prediction was developed, producing 91.5% sensitivity and 96.2% specificity for lung cancer detection. Diagnostic performance of the plasma miRNA signature had no association with stage and histological type of lung tumor, and patients' age, sex, and ethnicity (all p > 0.05). The plasma miRNA signature was reproducibly confirmed in the validation cohort. The plasma miRNA signature may provide a blood-based assay for diagnosing lung cancer at the early stage, and thereby reduce the associated mortality and cost.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanli Lin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fangran Jiang
- Departments of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Cheng-Ju Lee
- Departments of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Min Zhan
- Departments of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - HongBin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yue Wang
- Department of Mathematics & Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
274
|
Kai K, Dittmar RL, Sen S. Secretory microRNAs as biomarkers of cancer. Semin Cell Dev Biol 2017; 78:22-36. [PMID: 29258963 DOI: 10.1016/j.semcdb.2017.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression predominantly by inhibiting transcription and/or promoting degradation of target mRNAs also in addition to being involved in non-canonical mechanisms regulating transcription, translation and cell signaling processes. Extracellular secretory miRNAs, either in complex with specific proteins or encapsulated in microvesicles called exosomes, are transported between cells as means of intercellular communication. Secretory miRNAs in circulation remain functional after delivery to recipient cells, regulating target genes and their corresponding signaling pathways. Cancer cell secreted miRNA-mediated intercellular communication affects physiological processes associated with the disease, such as, angiogenesis, metabolic reprogramming, immune modulation, metastasis, and chemo-resistance. Given the stability of miRNAs in body fluids and their well-documented roles in deregulating cancer-relevant genetic pathways, there is considerable interest in developing secretory miRNAs as liquid biopsy biomarkers for detection, diagnosis and prognostication of cancer. In this review, we discuss salient features of miRNA biogenesis, secretion and function in cancer as well as the current state of secretory miRNA isolation and profiling methods. Furthermore, we discuss the challenges and opportunities of secretory miRNA biomarker assay development, which need to be addressed for clinical applications.
Collapse
Affiliation(s)
- Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Rachel L Dittmar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States; Program in Human and Molecular Genetics, The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, United States.
| |
Collapse
|
275
|
Urabe F, Kosaka N, Yoshioka Y, Egawa S, Ochiya T. The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clin Transl Med 2017; 6:45. [PMID: 29238879 PMCID: PMC5729179 DOI: 10.1186/s40169-017-0176-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/03/2017] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicles released from almost all type of cells including cancer cells. EVs transfer their components, such as microRNAs (miRNAs), messenger RNAs, lipids and proteins, from one cell to another, affecting the target cells. Emerging evidence suggests that reciprocal interactions between cancer cells and the cells in their microenvironment via EVs drive disease progression and therapy resistance. Therefore, understanding the roles of EVs in cancer biology will provide us with new opportunities to treat patients. EVs are also useful for monitoring disease processes. EVs have been found in many kinds of biological fluids such as blood, urine, saliva and semen. Because of their accessibility, EVs offer ease of collection with minimal discomfort to patients and are preferred for serial collection. In addition, they reflect and carry dynamic changes in disease, allowing us to access crucial molecular information about the disease status. Therefore, EVs hold great possibility as clinically useful biomarkers to provide multiple non-invasive snapshots of primary and metastatic tumors. In this review, we summarize current knowledge of miRNAs in EVs in cancer biology and as biomarkers. Furthermore, we discuss the potential of miRNAs in EVs for clinical application.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Urology, Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, 3-19-18 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
276
|
Shiozawa K, Shuting J, Yoshioka Y, Ochiya T, Kondo T. Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochem Biophys Res Commun 2017; 495:1322-1327. [PMID: 29191657 DOI: 10.1016/j.bbrc.2017.11.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
Abstract
The development of drug resistance in tumor cells leads to relapse and distant metastasis. Secreted microRNAs (miRNAs) enclosed in extracellular vesicles (EVs) can act as intercellular messengers. The objective of our study was to elucidate the role of secreted miRNAs to better understand the regulatory network underlying pazopanib-resistance in synovial sarcoma cells. We performed a comprehensive analysis of secreted miRNA abundance in pazopanib treated/untreated synovial sarcoma cells from four different cell lines (SYO-1, HS-SYII, 1273/99, and YaFuSS) using microarray technology, and discovered miR-761 in EVs as a potential biomarker of pazopanib-resistance in synovial sarcoma. Furthermore, we showed that miR-761 putatively targeted three proteins, thyroid hormone receptor interactor 6 (TRIP6), lamin A/C (LMNA), and NAD-dependent protein deacetylase sirtuin-3 (SIRT3). Knockdown of any of these proteins was shown in previous studies to confer increased resistance to chemotherapeutic agents. Our findings provide new insight into the potential role of miR-761, an EV-secreted miRNA from synovial sarcoma cells, making it a potential candidate for use in sarcoma therapy in the future.
Collapse
Affiliation(s)
- Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Ji Shuting
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
277
|
Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A Perspective on Extracellular Vesicles Proteomics. Front Chem 2017; 5:102. [PMID: 29209607 PMCID: PMC5702361 DOI: 10.3389/fchem.2017.00102] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieved from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.
Collapse
Affiliation(s)
- Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Victória Bombarda Rocha
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
278
|
Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep 2017; 7:15277. [PMID: 29127370 PMCID: PMC5681649 DOI: 10.1038/s41598-017-15475-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths. It is diagnosed mostly at the locally advanced or metastatic stage. Recently, micro RNAs (miRs) and their distribution in circulation have been implicated in physiological and pathological processes. In this study, miR-126 was evaluated in serum, exosome and exosome-free serum fractions in non-small cell lung cancer (NSCLC) patients at early and advanced stages, and compared with healthy controls. Down-regulation of miR-126 was found in serum of advanced stage NSCLC patients. In healthy controls, circulating miR-126 was equally distributed between exosomes and exosome-free serum fractions. Conversely, in both early and advanced stage NSCLC patients, miR-126 was mainly present in exosomes. Different fractions of miR-126 in circulation may reflect different conditions during tumour formation. Incubation of exosomes from early and advanced NSCLC patients induced blood vessel formation and malignant transformation in human bronchial epithelial cells. On the other hand, exosome-enriched miR-126 from normal endothelial cells inhibited cell growth and induces loss of malignancy of NSCLC cells. These findings suggest a role of exo-miRs in the modulation of the NSCLC microenvironmental niche. Exosome-delivered miRs thus hold a substantial promise as a diagnostics biomarker as well as a personalized therapeutic modality.
Collapse
|
279
|
Peng J, Liu H, Liu C. MiR-155 Promotes Uveal Melanoma Cell Proliferation and Invasion by Regulating NDFIP1 Expression. Technol Cancer Res Treat 2017; 16:1160-1167. [PMID: 29333944 PMCID: PMC5762084 DOI: 10.1177/1533034617737923] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs refer to small RNA molecules that destroy the messenger RNA by binding on them inhibiting the production of protein. However, the role of miR-155 in uveal melanoma metastasis remains largely unknown. In this study, we found that miR-155 was upregulated in both uveal melanoma cells and tissues. Transfection of miR-155 mimic into uveal melanoma cells led to an increase in cell growth and invasion; in contrast, inhibition of miR-155 resulted in opposite effects. Also, we identified Nedd4-family interacting protein 1 as a direct target of miR-155, and the expression of Nedd4-family interacting protein 1 was inhibited by miR-155. Furthermore, ectopic expression of Nedd4-family interacting protein 1 restored the effects of miR-155 on cell proliferation and invasion of uveal melanoma cells. In conclusion, miR-155 acts as a tumor promotor in uveal melanoma through increasing cell proliferation and invasion. Thus, miR-155 might serve as a potential therapeutic target in patients with uveal melanoma.
Collapse
Affiliation(s)
- Jing Peng
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| | - Honglei Liu
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| | - Cuihong Liu
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| |
Collapse
|
280
|
Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. LAB ON A CHIP 2017; 17:3558-3577. [PMID: 28832692 PMCID: PMC5656537 DOI: 10.1039/c7lc00592j] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Exosomes, the smallest sized extracellular vesicles (∽30-150 nm) packaged with lipids, proteins, functional messenger RNAs and microRNAs, and double-stranded DNA from their cells of origin, have emerged as key players in intercellular communication. Their presence in bodily fluids, where they protect their cargo from degradation, makes them attractive candidates for clinical application as innovative diagnostic and therapeutic tools. But routine isolation and analysis of high purity exosomes in clinical settings is challenging, with conventional methods facing a number of drawbacks including low yield and/or purity, long processing times, high cost, and difficulties in standardization. Here we review a promising solution, microfluidic-based technologies that have incorporated a host of separation and sensing capabilities for exosome isolation, detection, and analysis, with emphasis on point-of-care and clinical applications. These new capabilities promise to advance fundamental research while paving the way toward routine exosome-based liquid biopsy for personalized medicine.
Collapse
Affiliation(s)
- Jose C Contreras-Naranjo
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.
| | | | | |
Collapse
|
281
|
Wu K, Xing F, Wu SY, Watabe K. Extracellular vesicles as emerging targets in cancer: Recent development from bench to bedside. Biochim Biophys Acta Rev Cancer 2017; 1868:538-563. [PMID: 29054476 DOI: 10.1016/j.bbcan.2017.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) have emerged as important players of cancer initiation and progression through cell-cell communication. They have been recognized as critical mediators of extracellular communications, which promote transformation, growth invasion, and drug-resistance of cancer cells. Interestingly, the secretion and uptake of EVs are regulated in a more controlled manner than previously anticipated. EVs are classified into three groups, (i) exosomes, (ii) microvesicles (MVs), and (iii) apoptotic bodies (ABs), based on their sizes and origins, and novel technologies to isolate and distinguish these EVs are evolving. The biologically functional molecules harbored in these EVs, including nucleic acids, lipids, and proteins, have been shown to induce key signaling pathways in both tumor and tumor microenvironment (TME) cells for exacerbating tumor development. While tumor cell-derived EVs are capable of reprogramming stromal cells to generate a proper tumor cell niche, stromal-derived EVs profoundly affect the growth, resistance, and stem cell properties of tumor cells. This review summarizes and discusses these reciprocal communications through EVs in different types of cancers. Further understanding of the pathophysiological roles of different EVs in tumor progression is expected to lead to the discovery of novel biomarkers in liquid biopsy and development of tumor specific therapeutics. This review will also discuss the translational aspects of EVs and therapeutic opportunities of utilizing EVs in different cancer types.
Collapse
Affiliation(s)
- Kerui Wu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Fei Xing
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Shih-Ying Wu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kounosuke Watabe
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| |
Collapse
|
282
|
Teow SY, Liew K, Khoo ASB, Peh SC. Pathogenic Role of Exosomes in Epstein-Barr Virus (EBV)-Associated Cancers. Int J Biol Sci 2017; 13:1276-1286. [PMID: 29104494 PMCID: PMC5666526 DOI: 10.7150/ijbs.19531] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 40- to 100-nm membrane-bound small vesicles that carry a great variety of cellular cargoes including proteins, DNA, messenger RNAs (mRNAs), and microRNAs (miRNAs). These nanovesicles are detected in various biological fluids such as serum, urine, saliva, and seminal fluids. Exosomes serve as key mediators in intercellular communication by facilitating the transfer and exchange of cellular components from cells to cells. They contain various pathogenic factors whereby their adverse effects have been implicated in multiple viral infections and cancers. Interestingly, accumulating evidences showed that exosomes derived from tumour viruses or oncoviruses, exacerbate virus-associated cancers by remodelling the tumour microenvironment. In this review, we summarize the contributing factors of Epstein-Barr virus (EBV) products-containing exosomes in viral pathogenesis and their potential implications in EBV-driven malignancies. Understanding the biological role of these exosomes in the disease would undoubtedly boost the development of a more comprehensive strategy to combat EBV-associated cancers and to better predict the therapeutic outcomes. Furthermore, we also highlight the potentials and challenges of EBV products-containing exosomes being employed as diagnostic markers and therapeutic targets for EBV-related cancers. Since these aspects are rather underexplored, we attempt to underline interesting areas that warrant further investigations in the future.
Collapse
Affiliation(s)
- Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Kitson Liew
- Molecular Pathology Unit, Cancer Research Centre (CaRC), Institute for Medical Research (IMR), Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Alan Soo-Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre (CaRC), Institute for Medical Research (IMR), Jalan Pahang, 50588 Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation, International Medical University (IMU), Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Suat-Cheng Peh
- Sunway Institute for Healthcare Development (SIHD), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.,Anatomical Pathology Department, Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
283
|
Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A 2017; 114:10584-10589. [PMID: 28923936 DOI: 10.1073/pnas.1709210114] [Citation(s) in RCA: 611] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine.
Collapse
|
284
|
Zheng X, Wang S, Hong S, Liu S, Chen G, Tang W, Zhao Y, Gao H, Cha B. CXCR4/RhoA signaling pathway is involved in miR-128-regulated proliferation and apoptosis of human thyroid cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9213-9222. [PMID: 31966793 PMCID: PMC6965988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 06/10/2023]
Abstract
microRNA-128 (miR-128), a kind of short, noncoding RNAs, functioned as a tumor marker. However, the underlying function and mechanism of miR-128 in human thyroid cancer were uncertain. Therefore, in the present study, the effects of miR-128 on the proliferation and apoptosis of cultured human thyroid cancer cells were investigated. After slicing miR-128 in human thyroid cancer cells, the proliferation was measured by methyl thiazolyl tetrazolium (MTT) method, the expression of miR-128, CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), Caspase-3 and Caspase-9 was determined by RT-PCR, and protein expression of chemokine receptor 4 (CXCR4) and Ras homolog gene family, member A (RhoA) was analyzed by Western blot. It was found that knockdown of miR-128 promoted the optical density (OD) value of cells, enhanced mRNA expression of PPARγ and C/EBPα, while inhibited cell apoptotic rate, and Caspase-3, Caspase-9 expression. Furthermore, higher protein expression of CXCR4 and RhoA was found in the absence of miR-128. Notably, miRNA-128 over-expression-inhibited proliferation and induced-apoptosis of human thyroid cancer cells were partially changed following the block of CXCR4/RhoA signaling pathway by the CXCR4 inhibitor (AMD3100). It was indicated that miR-128 down-regulated proliferation while promoted apoptosis of human thyroid cancer cells through suppression of CXCR4/RhoA signaling pathway.
Collapse
Affiliation(s)
- Xucai Zheng
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Shengying Wang
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Shikai Hong
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Song Liu
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Gongpu Chen
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Weifang Tang
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Yuanyuan Zhao
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Hong Gao
- Department of Head and Neck, Breast Surgery, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| | - Baiwei Cha
- Department of Anesthesia, Anhui Provincial Tumor Hospital (West Branch of Anhui Provincial Hospital)Hefei, China
| |
Collapse
|
285
|
Xu YF, Hannafon BN, Zhao YD, Postier RG, Ding WQ. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017; 8:77028-77040. [PMID: 29100367 PMCID: PMC5652761 DOI: 10.18632/oncotarget.20332] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/28/2017] [Indexed: 12/22/2022] Open
Abstract
Patients with localized pancreatic cancer (stage I and stage IIA) have a much higher survival rate than those presenting at later stages, yet early detection remains a challenge to this malignancy. The aim of this study was to evaluate whether exosome miRNA signatures are indicative of localized pancreatic cancer. Exosomes were collected from the conditioned media of pancreatic cancer cell lines and plasma samples of localized pancreatic cancer patients (Stage I-IIA, n=15), and healthy subjects (n=15). Cellular and exosome miRNAs from pancreatic cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome miRNA expression was analyzed by qRT-PCR. We found that certain miRNAs, such as miR-196a and miR-1246, are highly enriched in pancreatic cancer exosomes. Consistently, plasma exosome miR-196a and miR-1246 levels were significantly elevated in pancreatic cancer patients as compared to healthy subjects. An analysis of the cancer subtypes indicated that plasma exosome miR-196a is a better indicator of pancreatic ductal adenocarcinoma (PDAC), whereas plasma exosome miR-1246 is significantly elevated in patients with intraductal papillary mucinous neoplasms (IPMN). In contrast, there were no differences in the plasma exosome miR-196a and miR-1246 levels between patients with pancreatic neuroendocrine tumors (NET) and healthy subjects. In conclusion, we demonstrate that certain miRNA species, such as miR-196a and miR-1246, are highly enriched in pancreatic cancer exosomes and elevated in plasma exosomes of patients with localized pancreatic cancer.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Russell G Postier
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| |
Collapse
|
286
|
Enomoto Y, Takagi R, Naito Y, Kiniwa T, Tanaka Y, Hamada-Tsutsumi S, Kawano M, Matsushita S, Ochiya T, Miyajima A. Identification of the novel 3' UTR sequences of human IL-21 mRNA as potential targets of miRNAs. Sci Rep 2017; 7:7780. [PMID: 28798470 PMCID: PMC5552845 DOI: 10.1038/s41598-017-07853-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/30/2017] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of hepatocellular carcinoma worldwide. However, the strategy of HBV to escape from the host immune system remains largely unknown. In this study, we examined extracellular vesicles (EVs) secreted from human hepatocytes infected with HBV. EVs includeing exosomes are nano-size vesicles with proteins, mRNAs, and microRNAs (miRNAs), which can be transmitted to different cells. We found that 104 EV associated miRNAs were increased in hepatocytes more than 2-fold by HBV infection. We then selected those that were potentially implicated in immune regulation. Among them, five HBV-induced miRNAs were found to potentially target multiple sequences in the 3'UTR of IL-21, a cytokine that induces anti-viral immunity. Moreover, expression of a reporter gene with the 3' UTR of human IL-21 mRNA was suppressed by the five miRNAs individually. Finally, IL-21 expression in cloned human T cells was down-regulated by the five miRNAs. Collectively, this study identified the novel 3' UTR sequences of human IL-21 mRNA and potential binding sites of HBV-induced EV-miRNAs.
Collapse
Affiliation(s)
- Yutaka Enomoto
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Rie Takagi
- Department of Allergy and Immunology Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Yutaka Naito
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tsuyoshi Kiniwa
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Susumu Hamada-Tsutsumi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Masaaki Kawano
- Department of Allergy and Immunology Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Sho Matsushita
- Department of Allergy and Immunology Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama, 350-0495, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
287
|
Vacuole-inducing compounds that disrupt endolysosomal trafficking stimulate production of exosomes by glioblastoma cells. Mol Cell Biochem 2017; 439:1-9. [PMID: 28770472 DOI: 10.1007/s11010-017-3130-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are produced from mammalian cells when multivesicular endosomes fuse with the plasma membrane, releasing their intralumenal vesicles. In this study we assessed the effects of MOPIPP, a novel indole-based chalcone, and vacuolin-1, a distinct triazine-based compound, on exosome production in cultured glioblastoma and 293T cells. Both compounds promote vacuolization of late endosome compartments and interfere with trafficking of late endosomes to lysosomes, without significant cytotoxicity. The results show that vacuolated cells treated with these compounds release exosomes with morphologies similar to untreated controls. However, both compounds trigger multi-fold increases in release of exosome marker proteins (e.g., CD63, Alix) in exosome fractions collected from equivalent numbers of cells. Despite the marked increase in exosome production, the profiles of selected miRNA cargoes carried by the exosomes were generally similar in cells treated with the compounds. Insofar as MOPIPP and vacuolin-1 seem able to increase the overall yield of exosomes from cultured cells, they might be useful for efforts to develop exosome-based therapeutics.
Collapse
|
288
|
Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer 2017; 16:132. [PMID: 28743280 PMCID: PMC5526308 DOI: 10.1186/s12943-017-0694-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although gemcitabine-based chemotherapy has been established as a core multimodal therapy for non-small cell lung cancer (NSCLC) treatment, its clinical efficacy remains limited by the development of acquired resistance following tumor metastasis and relapse. In this study, we investigated how gemcitabine-resistant (GR) cells contribute to the development of NSCLC tumor malignancy via exosome-mediated transfer of microRNAs. METHODS We first studied the mechanism of exosome internalization via PKH-67 staining and an immunofluorescence assay, then confirmed our finding by transmission electron microscopy and western blot analysis. Candidate miRNAs were identified through microarray analysis. Thereafter, RT-PCR, MTS, Transwell and soft agar assays were performed to assess the role of exosomic miR-222-3p in vitro. A 3' untranslated region reporter assay was applied to identify the target of miR-222-3p. A lung metastasis mouse model was constructed to evaluate tumor growth and metastasis in vivo. Finally, clinical samples were used for correlation analysis between exosomic miR-222-3p levels and patients' response to gemcitabine. RESULTS A549-GR-derived exosomes were internalized by receipt cells via caveolin- and lipid raft-dependent endocytosis, which allowed the transfer of miR-222-3p. Exosomic miR-222-3p enhanced the proliferation, gemcitabine resistance, migration, invasion, and anti-anoikis of parental sensitive cells by directly targeting the promoter of SOCS3. In addition, a higher level of exosomic miR-222-3p in sera usually predicted worse prognosis in NSCLC patients. CONCLUSION Our data demonstrate that exosomic-miR-222-3p functions as a principal regulator of gemcitabine resistance and malignant characteristics by targeting SOCS3. The exosomic miR-222-3p level in sera may be a potential prognostic biomarker for predicting gemcitabine sensitivity in NSCLC patients.
Collapse
|
289
|
Lu M, Xing H, Yang Z, Sun Y, Yang T, Zhao X, Cai C, Wang D, Ding P. Recent advances on extracellular vesicles in therapeutic delivery: Challenges, solutions, and opportunities. Eur J Pharm Biopharm 2017; 119:381-395. [PMID: 28739288 DOI: 10.1016/j.ejpb.2017.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/24/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are intrinsic mediators of intercellular communication in our body, allowing functional transfer of biomolecules (lipids, proteins, and nucleic acid) between diverse locations. Such an instrumental role evokes a surge of interest within the drug delivery community in tailoring EVs for therapeutic delivery. These vesicles represent a novel generation of drug delivery systems, providing high delivery efficiency, intrinsic targeting properties, and low immunogenicity. In the recent years, considerable research efforts have been directed toward developing safe and efficient EV-based delivery vehicles. Although EVs are shown to harbor great promise in therapeutic delivery, substantial improvements in exploring standardized isolation techniques with high efficiency and robust yield, scalable production, standard procedures for EV storage, efficient loading methods without damaging EV integrity, understanding their in vivo trafficking, and developing novel EV-based nanocarriers are still required before their clinical transformation. In this review, we seek to summarize the recent advance on harnessing EVs for drug delivery with focus on state-of-the-art solutions for overcoming major challenges.
Collapse
Affiliation(s)
- Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongkai Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
290
|
Lobb RJ, Lima LG, Möller A. Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol 2017; 67:3-10. [DOI: 10.1016/j.semcdb.2017.01.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
|
291
|
Lucchetti D, Calapà F, Palmieri V, Fanali C, Carbone F, Papa A, De Maria R, De Spirito M, Sgambato A. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1633-1647. [DOI: 10.1016/j.ajpath.2017.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/04/2017] [Indexed: 02/07/2023]
|
292
|
Exosomal MicroRNAs in Breast Cancer towards Diagnostic and Therapeutic Applications. Cancers (Basel) 2017; 9:cancers9070071. [PMID: 28672799 PMCID: PMC5532607 DOI: 10.3390/cancers9070071] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
Soon after the discovery of microRNAs over 15 years ago, a myriad of research groups around the world sought to develop clinical applications in breast cancer for these short, noncoding, regulatory RNAs. While little of this knowledge has translated into the clinic, the recent research explosion on cell-to-cell communication via exosomes and other extracellular vesicles has rekindled interest in microRNA-based clinical applications. microRNAs appear to be a preferential and important cargo of exosomes in mediating biological effects in recipient cells. This review highlights recent studies on the biology of exosomal microRNAs (exo-miRNAs) and discusses potential clinical applications. From a diagnostic perspective, circulating exo-miRNAs may represent breast cancer cell content and/or tumor microenvironmental reactions to cancer cell growth. Thus, serum or plasma analysis of exo-miRNAs could be useful for early disease detection or for monitoring treatment response and disease progression. From a therapeutic perspective, exo-miRNAs derived from different cell types have been implicated in supporting or restraining tumor growth, conferring drug resistance, and preparing the metastatic niche. Strategies to interfere with the loading or delivery of tumor-promoting exo-miRNAs or to replenish tumor-suppressive miRNAs via exosomal delivery are under investigation. These recent studies provide new hope and opportunities, but study design limitations and technical challenges will need to be overcome before seriously considering clinical application of exo-miRNAs.
Collapse
|
293
|
Raghavan V, Bhomia M, Torres I, Jain S, Wang KK. Hypothesis: Exosomal microRNAs as potential biomarkers for schizophrenia. Med Hypotheses 2017; 103:21-25. [DOI: 10.1016/j.mehy.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/03/2017] [Indexed: 01/27/2023]
|
294
|
De Luca L, Trino S, Laurenzana I, Lamorte D, Caivano A, Del Vecchio L, Musto P. Mesenchymal Stem Cell Derived Extracellular Vesicles: A Role in Hematopoietic Transplantation? Int J Mol Sci 2017; 18:ijms18051022. [PMID: 28486431 PMCID: PMC5454935 DOI: 10.3390/ijms18051022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous cellular population containing different progenitors able to repair tissues, support hematopoiesis, and modulate immune and inflammatory responses. Several clinical trials have used MSCs in allogeneic hematopoietic stem cell transplantation (allo-HSCT) to prevent hematopoietic stem cell (HSC) engraftment failure, reduce aplasia post chemotherapy, and to control graft versus host disease (GvHD). The efficacy of MSCs is linked to their immune suppressive and anti-inflammatory properties primarily due to the release of soluble factors. Recent studies indicate that most of these effects are mediated by extracellular vesicles (EVs). MSC-EVs have therefore therapeutic effects in regenerative medicine, tumor inhibition, and immune-regulation. MSC-EVs may offer specific advantages for patient safety, such as lower propensity to trigger innate and adaptive immune responses. It has been also shown that MSC-EVs can prevent or treat acute-GvHD by modulating the immune-response and, combined with HSCs, may contribute to the hematopoietic microenvironment reconstitution. Finally, MSC-EVs may provide a new potential therapeutic option (e.g., transplantation, gene therapy) for different diseases, particularly hematological malignancies. In this review, we will describe MSC and MSC-EVs role in improving allo-HSCT procedures and in treating GvHD.
Collapse
Affiliation(s)
- Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Luigi Del Vecchio
- CEINGE Biotecnologie Avanzate s.c.a r.l., 80147 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Napoli, Italy.
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| |
Collapse
|
295
|
Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, Kelley KA, Lopez CD, Rana SR, Ruhl R, Tsikitis VL, Vaccaro GM, Wong MH, Mayo SC. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol Gastroenterol Hepatol 2017; 3:163-173. [PMID: 28275683 DOI: 10.1016/j.jcmgh.2017.01.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 05/25/2023]
Abstract
In patients with colorectal cancer (CRC) that metastasizes to the liver, there are several key goals for improving outcomes including early detection, effective prognostic indicators of treatment response, and accurate identification of patients at high risk for recurrence. Although new therapeutic regimens developed over the past decade have increased survival, there is substantial room for improvement in selecting targeted treatment regimens for the patients who will derive the most benefit. Recently, there have been exciting developments in identifying high-risk patient cohorts, refinements in the understanding of systemic vs localized drug delivery to metastatic niches, liquid biomarker development, and dramatic advances in tumor immune therapy, all of which promise new and innovative approaches to tackling the problem of detecting and treating the metastatic spread of CRC to the liver. Our multidisciplinary group held a state-of-the-science symposium this past year to review advances in this rapidly evolving field. Herein, we present a discussion around the issues facing treatment of patients with CRC liver metastases, including the relationship of discrete gene signatures with prognosis. We also discuss the latest advances to maximize regional and systemic therapies aimed at decreasing intrahepatic recurrence, review recent insights into the tumor microenvironment, and summarize advances in noninvasive multimodal biomarkers for early detection of primary and recurrent disease. As we continue to advance clinically and technologically in the field of colorectal tumor biology, our goal should be continued refinement of predictive and prognostic studies to decrease recurrence after curative resection and minimize treatment toxicity to patients through a tailored multidisciplinary approach to cancer care.
Collapse
Key Words
- 5-FU, fluorouracil
- Biomarkers
- CDX2, caudal-type homeobox transcription factor 2
- CEA, carcinoembryonic antigen
- CK, cytokeratin
- CRC, colorectal cancer
- CRLM, colorectal cancer liver metastasis
- CTC, circulating tumor cells
- Colorectal Cancer Liver Metastasis
- DFS, disease-free survival
- EGFR, epidermal growth factor receptor
- EpCAM, epithelial cell adhesion molecule
- HAI, hepatic arterial infusion
- Hepatic Arterial Infusion
- High-Risk Colorectal Cancer
- IL, interleukin
- LV, leucovorin
- MSI, microsatellite instability
- OS, overall survival
- PD, programmed death
- Recurrence
- TH, T-helper
- cfDNA, cell-free DNA
- dMMR, deficient mismatch repair
- miRNA, microRNA
Collapse
Affiliation(s)
- Luai R Zarour
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Sudarshan Anand
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Kevin G Billingsley
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - William H Bisson
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Andrea Cercek
- Department of Gastrointestinal Medical Oncology, Solid Tumor Division, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael F Clarke
- Stanford Institute for Stem Cell and Regenerative Medicine, Stanford University, Stanford, California; Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Lisa M Coussens
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Charles E Gast
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - Cristina B Geltzeiler
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Lissi Hansen
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; School of Nursing, Oregon Heath and Science University, Portland, Oregon
| | - Katherine A Kelley
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Charles D Lopez
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Shushan R Rana
- Department of Radiation Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Rebecca Ruhl
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - V Liana Tsikitis
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Gina M Vaccaro
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon; Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Melissa H Wong
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Skye C Mayo
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon; The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| |
Collapse
|
296
|
Chatterjee N, Rana S, Espinosa-Diez C, Anand S. MicroRNAs in Cancer: challenges and opportunities in early detection, disease monitoring, and therapeutic agents. CURRENT PATHOBIOLOGY REPORTS 2017; 5:35-42. [PMID: 28966883 PMCID: PMC5613763 DOI: 10.1007/s40139-017-0123-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are to examine the usefulness of miRNAs as diagnostic and prognostic biomarkers for cancer and to evaluate the applicability of miRNAs as cancer therapeutics. RECENT FINDINGS Examination of miRNA milieu from body fluids offers a new alternative for quick, affordable and easy analysis of disease status in patients. Blood-based exosomal miRNAs have increased stability and are an excellent choice for clinical cancer diagnostics and prognostics. Currently, there are many miRNA signatures associated with cancer and progression but there is no consensus among multiple sera and tumor sample studies. Off-target and immunological effects remains an obstacle for use of miRNAs as novel chemotherapeutics in the clinic. Recent developments in nanotechnology and drug delivery systems which target the tumor microenvironment may provide an alternative therapeutic approach with decreased toxicity. SUMMARY This review critically evaluates the literature investigating the use of miRNAs as biomarkers and their future as potential therapeutics.
Collapse
Affiliation(s)
- Namita Chatterjee
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Shushan Rana
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Cristina Espinosa-Diez
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Sudarshan Anand
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Department of Radiation Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
297
|
Teng Y, Ren Y, Hu X, Mu J, Samykutty A, Zhuang X, Deng Z, Kumar A, Zhang L, Merchant ML, Yan J, Miller DM, Zhang HG. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat Commun 2017; 8:14448. [PMID: 28211508 PMCID: PMC5321731 DOI: 10.1038/ncomms14448] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression. Exosomes are involved in the development of metastasis but how their composition is regulated is not well known. Here the authors propose that major vault protein-dependent loading of miR-193a into exosomes could be a general mechanism by which cancer cells get rid of oncosuppressor miRNAs.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Yi Ren
- Department of Breast and Thyroid Surgery, Huai'an First People's Hospital, Huai'an, Jiangsu 223001, China
| | - Xin Hu
- Program in Biostatistics, Bioinformatics and Systems Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Abhilash Samykutty
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Xiaoying Zhuang
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Zhongbin Deng
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Donald M Miller
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA
| | - Huang-Ge Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, USA.,Robley Rex VA Medical Center, Louisville, Kentucky 40206, USA
| |
Collapse
|
298
|
Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol 2017; 44:170-181. [PMID: 28215970 DOI: 10.1016/j.semcancer.2017.02.006] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small membrane vesicles with a size ranging from 40 to 100nm. They can serve as functional mediators in cell interaction leading to cancer metastasis. Metastasis is a complex multistep process of cancer cell invasion, survival in blood vessels, attachment to and colonization of the host organ. Exosomes influence every step of this cascade and can be targeted by oncological treatment. This review highlights the role of exosomes in the various steps of the metastatic cascade and how exosome dependent pathways can be targeted as therapeutic approach or used for liquid biopsies.
Collapse
Affiliation(s)
| | - József Dudás
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
299
|
Jafri MA, Al-Qahtani MH, Shay JW. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 2017; 44:117-131. [PMID: 28188828 DOI: 10.1016/j.semcancer.2017.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/23/2022]
Abstract
Metastasis is the spread and growth of localized cancer to new locations in the body and is considered the main cause of cancer-related deaths. Metastatic cancer cells display distinct genomic and epigenomic profiles and almost universally an aggressive pathophysiology. A better understanding of the molecular mechanisms and regulation of metastasis, including how metastatic tumors grow and survive in the nascent niche and the interactions of the emergent metastatic cancer cells within the local microenvironment may provide tools to design strategies to restrict metastatic dissemination. Aberrant microRNAs (miRNA) expression has been reported in metastatic cancer cells. MicroRNAs are known to regulate divergent and/or convergent metastatic gene pathways including activation of reprogramming switches during metastasis. An in-depth understanding of role of miRNAs in the metastatic cascade may lead to the identification of novel targets for anti-metastatic therapeutics as well as potential candidate miRNAs for cancer treatment. This review primarily focuses on the role of miRNAs in the mechanisms of cancer metastasis as well as implications for metastatic cancer treatment.
Collapse
Affiliation(s)
- Mohammad Alam Jafri
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Jerry William Shay
- Center of Excellence for Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Cell Biology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
300
|
Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, Kelley KA, Lopez CD, Rana SR, Ruhl R, Tsikitis VL, Vaccaro GM, Wong MH, Mayo SC. Colorectal Cancer Liver Metastasis: Evolving Paradigms and Future Directions. Cell Mol Gastroenterol Hepatol 2017; 3:163-173. [PMID: 28275683 PMCID: PMC5331831 DOI: 10.1016/j.jcmgh.2017.01.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
Abstract
In patients with colorectal cancer (CRC) that metastasizes to the liver, there are several key goals for improving outcomes including early detection, effective prognostic indicators of treatment response, and accurate identification of patients at high risk for recurrence. Although new therapeutic regimens developed over the past decade have increased survival, there is substantial room for improvement in selecting targeted treatment regimens for the patients who will derive the most benefit. Recently, there have been exciting developments in identifying high-risk patient cohorts, refinements in the understanding of systemic vs localized drug delivery to metastatic niches, liquid biomarker development, and dramatic advances in tumor immune therapy, all of which promise new and innovative approaches to tackling the problem of detecting and treating the metastatic spread of CRC to the liver. Our multidisciplinary group held a state-of-the-science symposium this past year to review advances in this rapidly evolving field. Herein, we present a discussion around the issues facing treatment of patients with CRC liver metastases, including the relationship of discrete gene signatures with prognosis. We also discuss the latest advances to maximize regional and systemic therapies aimed at decreasing intrahepatic recurrence, review recent insights into the tumor microenvironment, and summarize advances in noninvasive multimodal biomarkers for early detection of primary and recurrent disease. As we continue to advance clinically and technologically in the field of colorectal tumor biology, our goal should be continued refinement of predictive and prognostic studies to decrease recurrence after curative resection and minimize treatment toxicity to patients through a tailored multidisciplinary approach to cancer care.
Collapse
Key Words
- 5-FU, fluorouracil
- Biomarkers
- CDX2, caudal-type homeobox transcription factor 2
- CEA, carcinoembryonic antigen
- CK, cytokeratin
- CRC, colorectal cancer
- CRLM, colorectal cancer liver metastasis
- CTC, circulating tumor cells
- Colorectal Cancer Liver Metastasis
- DFS, disease-free survival
- EGFR, epidermal growth factor receptor
- EpCAM, epithelial cell adhesion molecule
- HAI, hepatic arterial infusion
- Hepatic Arterial Infusion
- High-Risk Colorectal Cancer
- IL, interleukin
- LV, leucovorin
- MSI, microsatellite instability
- OS, overall survival
- PD, programmed death
- Recurrence
- TH, T-helper
- cfDNA, cell-free DNA
- dMMR, deficient mismatch repair
- miRNA, microRNA
Collapse
Affiliation(s)
- Luai R. Zarour
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Sudarshan Anand
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Kevin G. Billingsley
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - William H. Bisson
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Andrea Cercek
- Department of Gastrointestinal Medical Oncology, Solid Tumor Division, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Michael F. Clarke
- Stanford Institute for Stem Cell and Regenerative Medicine, Stanford University, Stanford, California,Division of Oncology, Department of Medicine, Stanford University, Stanford, California
| | - Lisa M. Coussens
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Charles E. Gast
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - Cristina B. Geltzeiler
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Lissi Hansen
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,School of Nursing, Oregon Heath and Science University, Portland, Oregon
| | - Katherine A. Kelley
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon
| | - Charles D. Lopez
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Shushan R. Rana
- Department of Radiation Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Rebecca Ruhl
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon
| | - V. Liana Tsikitis
- Division of Colorectal Surgery, Department of Surgery, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Gina M. Vaccaro
- The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Division of Hematology and Medical Oncology, Department of Medicine, Oregon Heath and Science University, Portland, Oregon
| | - Melissa H. Wong
- Department of Cell Developmental and Cancer Biology, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon
| | - Skye C. Mayo
- Division of Surgical Oncology, Department of Surgery, Oregon Heath and Science University, Portland, Oregon,The Knight Cancer Institute, Oregon Heath and Science University, Portland, Oregon,Correspondence Address correspondence to: Skye C. Mayo, MD, Department of Surgery, Oregon Heath and Science University, 3181 SW Sam Jackson Park Road, Mailcode L223, Portland, Oregon 97239. fax: (503) 494–8884.Department of SurgeryOregon Heath and Science University3181 SW Sam Jackson Park Road, Mailcode L223PortlandOregon 97239
| |
Collapse
|