251
|
Lemoine R, Pachlopnik-Schmid J, Farin HF, Bigorgne A, Debré M, Sepulveda F, Héritier S, Lemale J, Talbotec C, Rieux-Laucat F, Ruemmele F, Morali A, Cathebras P, Nitschke P, Bole-Feysot C, Blanche S, Brousse N, Picard C, Clevers H, Fischer A, de Saint Basile G. Immune deficiency-related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J Allergy Clin Immunol 2014; 134:1354-1364.e6. [PMID: 25174867 DOI: 10.1016/j.jaci.2014.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/04/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is one of the most common chronic gastrointestinal diseases, but the underlying molecular mechanisms remain largely unknown. Studies of monogenic diseases can provide insight into the pathogenesis of IBD. OBJECTIVE We thought to determine the underlying molecular causes of IBD occurring in 2 unrelated families in association with an immune deficiency. METHODS We performed genetic linkage analysis and candidate gene sequencing on 13 patients from a large consanguineous family affected by early-onset IBD, progressive immune deficiency, and, in some cases, autoimmunity and alopecia, a condition we named enteropathy-lymphocytopenia-alopecia. The candidate gene was also sequenced in an unrelated patient with a similar phenotype. We performed histologic analysis of patients' intestinal biopsy specimens and carried out functional assays on PBMCs. Gut organoids derived from a patient's biopsy specimen were analyzed. RESULTS We identified biallelic missense mutations in tetratricopeptide repeat domain 7A (TTC7A) in all patients from both families. The resulting TTC7A depletion modified the proliferation, adhesion, and migratory capacities of lymphocytes through inappropriate activation of the RhoA signaling pathway. Normal function was restored by wild-type TTC7A expression or addition of a RhoA kinase inhibitor. The growth and polarity of gut epithelial organoids were also found to be dependent on the RhoA signaling pathway. CONCLUSIONS We show that TTC7A regulates the actin cytoskeleton dynamics in lymphocytes through the RhoA signaling pathway and is required in both lymphocytes and epithelial cells for maintaining equilibrium between cell proliferation, migration, polarization, and cell death. Our study highlights variability in the phenotypic expression resulting from TTC7A deficiency and outlines that impairment of both epithelial cells and lymphocytes cooperatively causes IBD.
Collapse
Affiliation(s)
- Roxane Lemoine
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Jana Pachlopnik-Schmid
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Henner F Farin
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Amélie Bigorgne
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Marianne Debré
- Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Fernando Sepulveda
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Sébastien Héritier
- Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Julie Lemale
- Unité de Nutrition et Gastroentérologie Pédiatriques, Hôpital Trousseau, Paris, France
| | - Cécile Talbotec
- Service de gastroentérologie, hépatologie et nutrition pédiatriques, Hôpital Necker-Enfants Malades, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Frank Ruemmele
- Service de gastroentérologie, hépatologie et nutrition pédiatriques, Hôpital Necker-Enfants Malades, Paris, France
| | - Alain Morali
- Unité d'Hépato-Gastro-Entérologie et Nutrition Pédiatriques, Hôpital d'Enfants, CHU Nancy Brabois-F 54500 Vandoeuvre les Nancy et Unité INSERM U954, Paris, France
| | - Pascal Cathebras
- Service de Médecine Interne, CHU de Saint Etienne, Saint Etienne, France
| | - Patrick Nitschke
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | | | - Stéphane Blanche
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Nicole Brousse
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Laboratoire d'Anatomie Pathologique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Capucine Picard
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France; Centre d'Etudes des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alain Fischer
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France; College de France, Paris, France
| | - Geneviève de Saint Basile
- INSERM, Unité U1163, Laboratoire Homéostasie normale et pathologique du système immunitaire, Hôpital Necker Enfants-Malades, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Unité d'Immunologie et Hématologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France; Centre d'Etudes des Déficits Immunitaires, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
252
|
Chen W, Mao K, Liu Z, Dinh-Xuan AT. The role of the RhoA/Rho kinase pathway in angiogenesis and its potential value in prostate cancer (Review). Oncol Lett 2014; 8:1907-1911. [PMID: 25289078 PMCID: PMC4186560 DOI: 10.3892/ol.2014.2471] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022] Open
Abstract
Prostate cancer (PCa) remains a major cause of mortality among males in western countries, with little change in mortality rates observed over the past 25 years. Despite recent advances in therapy, treatment options for metastatic castration-resistant disease remain limited. In terms of chemotherapy, only the combination of docetaxel and prednisone has been shown to improve survival in these patients, but duration of response to therapy is short. There is a continuing unmet need for new systemic interventions that act either alone or synergistically with chemotherapy in patients with progressive PCa. Angiogenesis plays a critical role in tumor growth and metastasis in PCa. Several strategies have been used to target angiogenesis; however, it is becoming increasingly apparent that current anti-angiogenic therapies frequently achieve only modest effects in clinical settings. The RhoA/Rho kinase (ROCK) pathway plays a crucial role in the process of angiogenesis in PCa, and studies have demonstrated that ROCK inhibitors decrease VEGF-induced angiogenesis and tumor cell growth. However, further research is required to fully elucidate the molecular mechanisms involved in this pathway, and the potential value of modulating these mechanisms in the treatment of PCa. This study reviews the current understanding of the role of the RhoA/ROCK pathway in the process of angiogenesis in PCa, and the potential of this pathway as a therapeutic target in the future.
Collapse
Affiliation(s)
- Weihua Chen
- Department of Clinical Physiology, Medical School, Cochin Hospital, Paris Descartes University, EA 2511, Paris 75014, France ; Department of Urology, Tongji University, School of Medicine, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Kaili Mao
- Department of Clinical Physiology, Medical School, Cochin Hospital, Paris Descartes University, EA 2511, Paris 75014, France ; Department of Urology, Tongji University, School of Medicine, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Zhongmin Liu
- Clinical and Translational Research Center, Tongji University, School of Medicine, Shanghai East Hospital, Shanghai 200120, P.R. China
| | - Anh Tuan Dinh-Xuan
- Department of Clinical Physiology, Medical School, Cochin Hospital, Paris Descartes University, EA 2511, Paris 75014, France ; Clinical and Translational Research Center, Tongji University, School of Medicine, Shanghai East Hospital, Shanghai 200120, P.R. China
| |
Collapse
|
253
|
Um K, Niu S, Duman JG, Cheng JX, Tu YK, Schwechter B, Liu F, Hiles L, Narayanan AS, Ash RT, Mulherkar S, Alpadi K, Smirnakis SM, Tolias KF. Dynamic control of excitatory synapse development by a Rac1 GEF/GAP regulatory complex. Dev Cell 2014; 29:701-15. [PMID: 24960694 DOI: 10.1016/j.devcel.2014.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022]
Abstract
The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here, we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases.
Collapse
Affiliation(s)
- Kyongmi Um
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sanyong Niu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jinxuan X Cheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yen-Kuei Tu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brandon Schwechter
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Feng Liu
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Laura Hiles
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Anjana S Narayanan
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ryan T Ash
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kannan Alpadi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Stelios M Smirnakis
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
254
|
Flate E, Stalvey JRD. Motility of select ovarian cancer cell lines: effect of extra-cellular matrix proteins and the involvement of PAK2. Int J Oncol 2014; 45:1401-11. [PMID: 25050916 PMCID: PMC4151804 DOI: 10.3892/ijo.2014.2553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022] Open
Abstract
The interaction between tumor cells and extracellular matrix (ECM) proteins influences cell migration and the invasive behavior of cancer cells. In this study, we provide experimental evidence that collagen I and fibronectin affect ovarian cancer cell migration. In vitro wound healing assays and transwell migration assays were used to measure both total wound healing and directionality of individually migrating OV2008 and C13 ovarian cancer cells on glass, collagen I and fibronectin. Involvement of p21-activated kinase 2 (Pak2) in the motility of these cell lines was investigated using a chemical inhibitor as well as siRNA transfection. Culturing ovarian cancer cells on collagen type I (COLL) increased the migratory ability of OV2008 and C13 cells by increasing the directional migration of cells. In contrast, fibronectin (FN) decreased the migratory ability of OV2008 cells by reducing their ability to migrate directionally. When both cell lines are cultured on COLL and treated with increasing concentrations of a PAK inhibitor (IPA-3), there is a dose-dependent response such that there is a decrease in migration with an increase in inhibitor concentration. Further experiments utilizing PAK2 knockdown via siRNA transfection demonstrated significantly reduced migration of OV2008 cells on COLL as compared to those receiving control siRNA. In conclusion, our results indicate that FN and COLL affect the motility of the selected ovarian cancer cells lines and the effect of COLL is likely mediated, at least in part, by PAK2. A better understanding of the molecular events that contribute to tumor invasion and metastasis is crucial for developing novel treatment strategies to improve the long-term survival of women with ovarian cancer. As PAK2 is involved in motility, it should be further explored as a pro-metastatic gene in ovarian cancer.
Collapse
|
255
|
Biro M, Munoz MA, Weninger W. Targeting Rho-GTPases in immune cell migration and inflammation. Br J Pharmacol 2014; 171:5491-506. [PMID: 24571448 PMCID: PMC4282076 DOI: 10.1111/bph.12658] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/28/2022] Open
Abstract
Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies.
Collapse
Affiliation(s)
- Maté Biro
- Centenary Institute of Cancer Medicine and Cell Biology, Immune Imaging Program, Newtown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
256
|
Langert KA, Pervan CL, Stubbs EB. Novel role of Cdc42 and RalA GTPases in TNF-α mediated secretion of CCL2. Small GTPases 2014; 5:29260. [PMID: 24911990 DOI: 10.4161/sgtp.29260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transendothelial migration of autoreactive leukocytes into peripheral nerves is an early pathological hallmark of acute inflammatory demyelinating polyneuropathy (AIDP), a North American and European variant of Guillain-Barré Syndrome. Whereas the clinical management of AIDP is currently limited to non-selective immune modulating therapies, recent experimental studies support selective targeting of leukocyte trafficking as a promising alternative therapeutic strategy. Here, using a combination of targeted siRNA knockdown and pharmacological inhibitors, we report a novel role of both Cdc42 and RalA GTPases in facilitating TNF-α mediated CCL2 trafficking and release from immortalized rat peripheral nerve microvascular endoneurial endothelial cells. These findings raise interest in Cdc42 and RalA GTPases as potential therapeutic targets for the management of autoimmune inflammatory peripheral nerve disease.
Collapse
Affiliation(s)
- Kelly A Langert
- Research Service; Department of Veterans Affairs; Edward Hines Jr. VA Hospital; Hines, IL USA; Neuroscience Institute; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA; Department of Ophthalmology; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA
| | - Cynthia L Pervan
- Research Service; Department of Veterans Affairs; Edward Hines Jr. VA Hospital; Hines, IL USA; Neuroscience Institute; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA; Department of Ophthalmology; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA
| | - Evan B Stubbs
- Research Service; Department of Veterans Affairs; Edward Hines Jr. VA Hospital; Hines, IL USA; Neuroscience Institute; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA; Department of Ophthalmology; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA
| |
Collapse
|
257
|
Álvarez-González B, Bastounis E, Meili R, del Álamo JC, Firtel R, Lasheras JC. Cytoskeletal Mechanics Regulating Amoeboid Cell Locomotion. APPLIED MECHANICS REVIEWS 2014; 66. [PMID: 25328163 PMCID: PMC4201387 DOI: 10.1115/1.4026249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Migrating cells exert traction forces when moving. Amoeboid cell migration is a common type of cell migration that appears in many physiological and pathological processes and is performed by a wide variety of cell types. Understanding the coupling of the biochemistry and mechanics underlying the process of migration has the potential to guide the development of pharmacological treatment or genetic manipulations to treat a wide range of diseases. The measurement of the spatiotemporal evolution of the traction forces that produce the movement is an important aspect for the characterization of the locomotion mechanics. There are several methods to calculate the traction forces exerted by the cells. Currently the most commonly used ones are traction force microscopy methods based on the measurement of the deformation induced by the cells on elastic substrate on which they are moving. Amoeboid cells migrate by implementing a motility cycle based on the sequential repetition of four phases. In this paper we review the role that specific cytoskeletal components play in the regulation of the cell migration mechanics. We investigate the role of specific cytoskeletal components regarding the ability of the cells to perform the motility cycle effectively and the generation of traction forces. The actin nucleation in the leading edge of the cell, carried by the ARP2/3 complex activated through the SCAR/WAVE complex, has shown to be fundamental to the execution of the cyclic movement and to the generation of the traction forces. The protein PIR121, a member of the SCAR/WAVE complex, is essential to the proper regulation of the periodic movement and the protein SCAR, also included in the SCAR/WAVE complex, is necessary for the generation of the traction forces during migration. The protein Myosin II, an important F-actin cross-linker and motor protein, is essential to cytoskeletal contractility and to the generation and proper organization of the traction forces during migration.
Collapse
Affiliation(s)
- Begoña Álvarez-González
- Mechanical and Aerospace
Engineering Department,
University of California, San Diego,
La Jolla, CA 92093-0411
e-mail:
| | - Effie Bastounis
- Postdoctoral Fellow
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Ruedi Meili
- Mechanical and Aerospace
Engineering Department,
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Juan C. del Álamo
- Associate Professor
Mechanical and Aerospace
Engineering Department,
Institute for Engineering in Medicine,
University of California, San Diego,
La Jolla, CA 92093-0411
| | - Richard Firtel
- Distinguished Professor
Division of Cell and Developmental Biology,
University of California, San Diego,
La Jolla, CA 92093-0411
| | | |
Collapse
|
258
|
Kato T, Kawai K, Egami Y, Kakehi Y, Araki N. Rac1-dependent lamellipodial motility in prostate cancer PC-3 cells revealed by optogenetic control of Rac1 activity. PLoS One 2014; 9:e97749. [PMID: 24848679 PMCID: PMC4029798 DOI: 10.1371/journal.pone.0097749] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/24/2014] [Indexed: 01/16/2023] Open
Abstract
The lamellipodium, an essential structure for cell migration, plays an important role in the invasion and metastasis of cancer cells. Although Rac1 recognized as a key player in the formation of lamellipodia, the molecular mechanisms underlying lamellipodial motility are not fully understood. Optogenetic technology enabled us to spatiotemporally control the activity of photoactivatable Rac1 (PA-Rac1) in living cells. Using this system, we revealed the role of phosphatidylinositol 3-kinase (PI3K) in Rac1-dependent lamellipodial motility in PC-3 prostate cancer cells. Through local blue laser irradiation of PA-Rac1-expressing cells, lamellipodial motility was reversibly induced. First, outward extension of a lamellipodium parallel to the substratum was observed. The extended lamellipodium then showed ruffling activity at the periphery. Notably, PI(3,4,5)P3 and WAVE2 were localized in the extending lamellipodium in a PI3K-dependent manner. We confirmed that the inhibition of PI3K activity greatly suppressed lamellipodial extension, while the ruffling activity was less affected. These results suggest that Rac1-induced lamellipodial motility consists of two distinct activities, PI3K-dependent outward extension and PI3K-independent ruffling.
Collapse
Affiliation(s)
- Takuma Kato
- Department of Urology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Yoshiyuki Kakehi
- Department of Urology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
- * E-mail:
| |
Collapse
|
259
|
Stanley A, Thompson K, Hynes A, Brakebusch C, Quondamatteo F. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid Redox Signal 2014; 20:2026-42. [PMID: 24251358 DOI: 10.1089/ars.2013.5713] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Rho GTPases are historically known to be central regulators of actin cytoskeleton reorganization. This affects many processes including cell migration. In addition, members of the Rac subfamily are known to be involved in reactive oxygen species (ROS) production through the regulation of NADPH oxidase (Nox) activity. This review focuses on relationships between Nox-regulated ROS, Rho GTPases, and cytoskeletal reorganization, in the context of cell migration. RECENT ADVANCES It has become clear that ROS participate in the regulation of certain Rho GTPase family members, thus mediating cytoskeletal reorganization. CRITICAL ISSUES The role of the actin cytoskeleton in providing a scaffold for components of the Nox complex needs to be examined in the light of these new advances. During cell migration, Rho GTPases, ROS, and cytoskeletal organization appear to function as a complex regulatory network. However, more work is needed to fully elucidate the interactions between these factors and their potential in vivo importance. FUTURE DIRECTIONS Ultrastructural analysis, that is, electron microscopy, particularly immunogold labeling, will enable direct visualization of subcellular compartments. This in conjunction with the analysis of tissues lacking specific Rho GTPases, and Nox components will facilitate a detailed examination of the interactions of these structures with the actin cytoskeleton. In combination with the analysis of ROS production, including its subcellular location, these data will contribute significantly to our understanding of this intricate network under physiological conditions. Based on this, in vivo and in vitro studies can then be combined to elucidate the signaling pathways involved and their targets.
Collapse
Affiliation(s)
- Alanna Stanley
- 1 Skin and Extracellular Matrix Research Group , Anatomy, NUI Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
260
|
Fernández BG, Jezowska B, Janody F. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene. Oncogene 2014; 33:2027-39. [PMID: 23644660 DOI: 10.1038/onc.2013.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.
Collapse
Affiliation(s)
| | - B Jezowska
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - F Janody
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
261
|
Sass GL, Ostrow BD. Disruption of the protein kinase N gene of drosophila melanogaster results in the recessive delorean allele (pkndln) with a negative impact on wing morphogenesis. G3 (BETHESDA, MD.) 2014; 4:643-56. [PMID: 24531729 PMCID: PMC4059237 DOI: 10.1534/g3.114.010579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/07/2014] [Indexed: 12/15/2022]
Abstract
We describe the delorean mutation of the Drosophila melanogaster protein kinase N gene (pkn(dln)) with defects in wing morphology. Flies homozygous for the recessive pkn(dln) allele have a composite wing phenotype that exhibits changes in relative position and shape of the wing blade as well as loss of specific vein and bristle structures. The pkn(dln) allele is the result of a P-element insertion in the first intron of the pkn locus, and the delorean wing phenotype is contingent upon the interaction of insertion-bearing alleles in trans. The presence of the insertion results in production of a novel transcript that initiates from within the 3' end of the P-element. The delorean-specific transcript is predicted to produce a wild-type PKN protein. The delorean phenotype is not the result of a reduction in pkn expression, as it could not be recreated using a variety of wing-specific drivers of pkn-RNAi expression. Rather, it is the presence of the delorean-specific transcript that correlates with the mutant phenotype. We consider the delorean wing phenotype to be due to a pairing-dependent, recessive mutation that behaves as a dosage-sensitive, gain of function. Our analysis of genetic interactions with basket and nemo reflects an involvement of pkn and Jun-terminal kinase signaling in common processes during wing differentiation and places PKN as a potential effector of Rho1's involvement in the Jun-terminal kinase pathway. The delorean phenotype, with its associated defects in wing morphology, provides evidence of a role for PKN in adult morphogenetic processes.
Collapse
Affiliation(s)
- Georgette L. Sass
- Department of Biology, Grand Valley State University, Allendale, Michigan 49401
| | - Bruce D. Ostrow
- Department of Biology, Grand Valley State University, Allendale, Michigan 49401
| |
Collapse
|
262
|
Takahashi R, Nagayama S, Furu M, Kajita Y, Jin Y, Kato T, Imoto S, Sakai Y, Toguchida J. AFAP1L1, a novel associating partner with vinculin, modulates cellular morphology and motility, and promotes the progression of colorectal cancers. Cancer Med 2014; 3:759-74. [PMID: 24723436 PMCID: PMC4303145 DOI: 10.1002/cam4.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022] Open
Abstract
We have previously identified actin filament-associated protein 1-like 1 (AFAP1L1) as a metastasis-predicting marker for spindle cell sarcomas by gene expression profiling, and demonstrated that AFAP1L1 is involved in the cell invasion process by in vitro analyses. However, its precise molecular function has not been fully elucidated, and it remains unknown whether AFAP1L1 could be a prognostic marker and/or therapeutic target of other malignancies. In this study, we found a marked elevation of AFAP1L1 gene expression in colorectal cancer (CRC) tissues as compared to the adjacent normal mucosa. Multivariate analysis revealed that AFAP1L1 was an independent and significant factor for the recurrence of rectal cancers. Moreover, the addition of the AFAP1L1 expression level to the lymph node metastasis status provided more predictive information regarding postoperative recurrence in rectal cancers. AFAP1L1-transduced CRC cells exhibited a rounded shape, increased cell motility on planar substrates, and resistance to anoikis in vitro. AFAP1L1 localized to the ringed structure of the invadopodia, together with vinculin, and AFAP1L1 was identified as a novel associating partner of vinculin by immunoprecipitation assay. AFAP1L1-transduced cells showed accelerated tumor growth in vivo, presumably reflecting the anoikis resistance of these AFAP1L1-expressing cells. Furthermore, the local administration of a siRNA against AFAP1L1 significantly suppressed the in vivo tumor growth of xenografts, suggesting that AFAP1L1 might be a candidate therapeutic target for CRCs. These results suggest that AFAP1L1 plays a role in the progression of CRCs by modulating cell shape and motility and by inhibiting anoikis, presumably through interactions with vinculin-including protein complexes.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Kobayashi M, Harada K, Negishi M, Katoh H. Dock4 forms a complex with SH3YL1 and regulates cancer cell migration. Cell Signal 2014; 26:1082-8. [PMID: 24508479 DOI: 10.1016/j.cellsig.2014.01.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Dock4 is a member of the Dock180 family of proteins that mediates cancer cell migration through activation of Rac. However, the regulatory mechanism of Dock4 remains unclear. In this study, we show that the C-terminal proline-rich region of Dock4 is essential for the Dock4 mediated promotion of cell migration in MDA-MB-231 breast cancer cells. We found that a phosphoinositide-binding protein SH3YL1 interacted with the C-terminal proline-rich region of Dock4. Interaction of SH3YL1 with Dock4 promoted Dock4-mediated Rac1 activation and cell migration. Mutations in the phosphoinositide-binding domain disrupted the ability of SH3YL1 to promote Dock4-mediated cell migration. In addition, depletion of SH3YL1 in MDA-MB-231 cells suppressed cell migration. Taken together, these results provide evidence for a novel and functionally important interaction between Dock4 and SH3YL1 to promote cancer cell migration by regulating Rac1 activity.
Collapse
Affiliation(s)
- Masakazu Kobayashi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Harada
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
264
|
Zhong H, Gutkin DW, Han B, Ma Y, Keskinov AA, Shurin MR, Shurin GV. Origin and pharmacological modulation of tumor-associated regulatory dendritic cells. Int J Cancer 2014; 134:2633-45. [PMID: 24443321 DOI: 10.1002/ijc.28590] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/28/2013] [Accepted: 10/30/2013] [Indexed: 12/29/2022]
Abstract
Protumorigenic activity of immune regulatory cells has been proven to play a major role in precluding immunosurveillance and limiting the efficacy of anticancer therapies. Although several approaches have been offered to deplete myeloid-derived suppressor cells (MDSC) and regulatory T cells, there are no data on how to control suppressive dendritic cell (DC) accumulation or function in the tumor environment. Although immunosuppressive function of DC in cancer was implicated to immature and plasmacytoid DC, details of how conventional DC (cDC) develop immunosuppressive properties remain less understood. Here, we show that the development of lung cancer in mice was associated with fast accumulation of regulatory DC (regDC) prior to the appearance of MDSC. Using the in vitro and in vivo approaches, we demonstrated that (i)both cDC and MDSC could be polarized into protumor regDC in the lung cancer environment; (ii) cDC → regDC polarization was mediated by the small Rho GTPase signaling, which could be controlled by noncytotoxic doses of paclitaxel; and (iii) prevention of regDC appearance increased the antitumor potential of DC vaccine in lung cancer. These findings not only bring new players to the family of myeloid regulatory cells and provide new targets for cancer therapy, but offer novel insights into the immunomodulatory capacity of chemotherapeutic agents used in low, noncytotoxic doses.
Collapse
Affiliation(s)
- Hua Zhong
- Department of Pulmonary Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
265
|
Tersteeg C, Heijnen HF, Eckly A, Pasterkamp G, Urbanus RT, Maas C, Hoefer IE, Nieuwland R, Farndale RW, Gachet C, de Groot PG, Roest M. FLow-induced PRotrusions (FLIPRs): a platelet-derived platform for the retrieval of microparticles by monocytes and neutrophils. Circ Res 2014; 114:780-91. [PMID: 24406984 DOI: 10.1161/circresaha.114.302361] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RATIONALE Platelets are the most important cells in the primary prevention of blood loss after injury. In addition, platelets are at the interface between circulating leukocytes and the (sub)endothelium regulating inflammatory responses. OBJECTIVE Our aim was to study the dynamic process that leads to the formation of procoagulant and proinflammatory platelets under physiological flow. METHODS AND RESULTS In the present study, we describe the formation of extremely long, negatively charged membrane strands that emerge from platelets adhered under flow. These flow-induced protrusions (FLIPRs) are formed in vitro on different physiological substrates and are also detected in vivo in a mouse carotid injury model. FLIPRs are formed downstream the adherent and activated platelets and reach lengths of 250 μm. FLIPR formation is shear-dependent and requires cyclophilin D, calpain, and Rac1 activation. It is accompanied by a disassembly of the F-actin and microtubule organization. Monocytes and neutrophils roll over FLIPRs in a P-selectin/P-selectin glycoprotein ligand-1-dependent manner, retrieving fragments of FLIPRs as microparticles on their surface. Consequently, monocytes and neutrophils become activated, as demonstrated by increased CD11b expression and L-selectin shedding. CONCLUSIONS The formation of long platelet membrane extensions, such as the ones presented in our flow model, may pave the way to generate an increased membrane surface for interaction with monocytes and neutrophils. Our study provides a mechanistic model for platelet membrane transfer and the generation of monocyte/neutrophil-microparticle complexes. We propose that the formation of FLIPRs in vivo contributes to the well-established proinflammatory function of platelets and platelet-derived microparticles.
Collapse
Affiliation(s)
- Claudia Tersteeg
- From the Laboratory of Clinical Chemistry and Haematology (C.T., H.F.H., R.T.U., C.M., P.G.d.G., M.R.), Laboratory of Experimental Cardiology (C.T., G.P., I.E.H.), and Cell Microscopy Center, Department of Cell Biology (H.F.H.), UMC Utrecht, Utrecht, The Netherlands; UMR-S949 INSERM, EFS-Alsace, Université de Strasbourg, Strasbourg, France (A.E., C.G.); Department of Clinical Chemistry, AMC Amsterdam, Amsterdam, The Netherlands (R.N.); and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom (R.W.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Abstract
Sphingosine 1-phosphate (S1P), a lipid mediator produced by sphingolipid metabolism, promotes endothelial cell spreading, vascular maturation/stabilization, and barrier function. S1P is present at high concentrations in the circulatory system, whereas in tissues its levels are low. This so-called vascular S1P gradient is essential for S1P to regulate much physiological and pathophysiological progress such as the modulation of vascular permeability. Cellular sources of S1P in blood has only recently begun to be identified. In this review, we summarize the current understanding of S1P in regulating vascular integrity. In particular, we discuss the recent discovery of the endothelium-protective functions of HDL-bound S1P which is chaperoned by apolipoprotein M.
Collapse
|
267
|
Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, Speirs V, Thorne JL, Thygesen HH, Zougman A, Hull MA, Hanby AM, Hughes TA. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol 2013; 231:388-99. [PMID: 23939832 PMCID: PMC4030585 DOI: 10.1002/path.4248] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) influence the behaviour of cancer cells but the roles of microRNAs in this interaction are unknown. We report microRNAs that are differentially expressed between breast normal fibroblasts and CAFs of oestrogen receptor-positive cancers, and explore the influences of one of these, miR-26b, on breast cancer biology. We identified differentially expressed microRNAs by expression profiling of clinical samples and a tissue culture model: miR-26b was the most highly deregulated microRNA. Using qPCR, miR-26b was confirmed as down-regulated in fibroblasts from 15 of 18 further breast cancers. Next, we examined whether manipulation of miR-26b expression changed breast fibroblast behaviour. Reduced miR-26b expression caused fibroblast migration and invasion to increase by up to three-fold in scratch-closure and trans-well assays. Furthermore, in co-culture with MCF7 breast cancer epithelial cells, fibroblasts with reduced miR-26b expression enhanced both MCF7 migration in trans-well assays and MCF7 invasion from three-dimensional spheroids by up to five-fold. Mass spectrometry was used to identify expression changes associated with the reduction of miR-26b expression in fibroblasts. Pathway analyses of differentially expressed proteins revealed that glycolysis/TCA cycle and cytoskeletal regulation by Rho GTPases are downstream of miR-26b. In addition, three novel miR-26b targets were identified (TNKS1BP1, CPSF7, COL12A1) and the expression of each in cancer stroma was shown to be significantly associated with breast cancer recurrence. MiR-26b in breast CAFs is a potent regulator of cancer behaviour in oestrogen receptor-positive cancers, and we have identified key genes and molecular pathways that act downstream of miR-26b in CAFs. © 2013 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eldo T Verghese
- Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK; Department of Histopathology, St James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
Coordination of the activity of multiple small GTPases is required for the regulation of many physiological processes, including cell migration. There are now several examples of functional interplay between small GTPase pairs, but the mechanisms that control GTPase activity in time and space are only partially understood. Here, we build on the hypothesis that small GTPases are part of a large, integrated network and propose that key proteins within this network integrate multiple signaling events and coordinate multiple small GTPase activities. Specifically, we identify the scaffolding protein IQGAP1 as a master regulator of multiple small GTPases, including Cdc42, Rac1, Rap1, and RhoA. In addition, we demonstrate that IQGAP1 promotes Arf6 activation downstream of β1 integrin engagement. Furthermore, following literature-curated searches and recent mass spectrometric analysis of IQGAP1-binding partners, we report that IQGAP1 recruits other small GTPases, including RhoC, Rac2, M-Ras, RhoQ, Rab10, and Rab5, small GTPase regulators, including Tiam1, RacGAP1, srGAP2 and HERC1, and small GTPase effectors, including PAK6, N-WASP, several sub-units of the Arp2/3 complex and the formin mDia1. Therefore, we propose that IQGAP1 acts as a small GTPase scaffolding platform within the small GTPase network, and recruits and/or regulates small GTPases, small GTPase regulators and effectors to orchestrate cell behavior. Finally, to identify other putative key regulators of small GTPase crosstalk, we have assembled a small GTPase network using protein-protein interaction databases.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research; Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research; Faculty of Life Sciences; University of Manchester; Manchester, UK
| |
Collapse
|
269
|
Kapus A, Janmey P. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations. Compr Physiol 2013; 3:1231-81. [PMID: 23897686 DOI: 10.1002/cphy.c120015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions.
Collapse
Affiliation(s)
- András Kapus
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
270
|
Abstract
During chemotaxis, cells sense extracellular chemical gradients and position Ras GTPase activation and phosphatidylinositol (3,4,5)-triphosphate (PIP3) production toward chemoattractants. These two major signaling events are visualized by biosensors in a crescent-like zone at the plasma membrane. Here, we show that a Dictyostelium Rho GTPase, RacE, and a guanine nucleotide exchange factor, GxcT, stabilize the orientation of Ras activation and PIP3 production in response to chemoattractant gradients, and this regulation occurred independently of the actin cytoskeleton and cell polarity. Cells lacking RacE or GxcT fail to persistently direct Ras activation and PIP3 production toward chemoattractants, leading to lateral pseudopod extension and impaired chemotaxis. Constitutively active forms of RacE and human RhoA are located on the portion of the plasma membrane that faces lower concentrations of chemoattractants, opposite of PIP3 production. Mechanisms that control the localization of the constitutively active form of RacE require its effector domain, but not PIP3. Our findings reveal a critical role for Rho GTPases in positioning Ras activation and thereby establishing the accuracy of directional sensing.
Collapse
|
271
|
Harrison SMW, Knifley T, Chen M, O'Connor KL. LPA, HGF, and EGF utilize distinct combinations of signaling pathways to promote migration and invasion of MDA-MB-231 breast carcinoma cells. BMC Cancer 2013; 13:501. [PMID: 24160245 PMCID: PMC3819718 DOI: 10.1186/1471-2407-13-501] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Various pathways impinge on the actin-myosin pathway to facilitate cell migration and invasion including members of the Rho family of small GTPases and MAPK. However, the signaling components that are considered important for these processes vary substantially within the literature with certain pathways being favored. These distinctions in signaling pathways utilized are often attributed to differences in cell type or physiological conditions; however, these attributes have not been systematically assessed. Methods To address this question, we analyzed the migration and invasion of MDA-MB-231 breast carcinoma cell line in response to various stimuli including lysophosphatidic acid (LPA), hepatocyte growth factor (HGF) and epidermal growth factor (EGF) and determined the involvement of select signaling pathways that impact myosin light chain phosphorylation. Results LPA, a potent stimulator of the Rho-ROCK pathway, surprisingly did not require the Rho-ROCK pathway to stimulate migration but instead utilized Rac and MAPK. In contrast, LPA-stimulated invasion required Rho, Rac, and MAPK. Of these three major pathways, EGF-stimulated MDA-MB-231 migration and invasion required Rho; however, Rac was essential only for invasion and MAPK was dispensable for migration. HGF signaling, interestingly, utilized the same pathways for migration and invasion, requiring Rho but not Rac signaling. Notably, the dependency of HGF-stimulated migration and invasion as well as EGF-stimulated invasion on MAPK was subject to the inhibitors used. As expected, myosin light chain kinase (MLCK), a convergence point for MAPK and Rho family GTPase signaling, was required for all six conditions. Conclusions These observations suggest that, while multiple signaling pathways contribute to cancer cell motility, not all pathways operate under all conditions. Thus, our study highlights the plasticity of cancer cells to adapt to multiple migratory cues.
Collapse
Affiliation(s)
| | | | | | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, 741 S, Limestone Street, Lexington 40506-0509, USA.
| |
Collapse
|
272
|
Kim S, Dangelmaier C, Bhavanasi D, Meng S, Wang H, Goldfinger LE, Kunapuli SP. RhoG protein regulates glycoprotein VI-Fc receptor γ-chain complex-mediated platelet activation and thrombus formation. J Biol Chem 2013; 288:34230-34238. [PMID: 24106269 DOI: 10.1074/jbc.m113.504928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. We demonstrate for the first time the expression and activation of RhoG in platelets. Platelet aggregation, integrin αIIbβ3 activation, and α-granule and dense granule secretion in response to the glycoprotein VI (GPVI) agonists collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion were minimally affected in RhoG-deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific. CRP-induced phosphorylation of Syk, Akt, and ERK, but not SFK (Src family kinase), was significantly reduced in RhoG-deficient platelets. CRP-induced RhoG activation was consistently abolished by a pan-SFK inhibitor but not by Syk or PI3K inhibitors. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG-deficient platelets. Finally, RhoG(-/-) mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared with wild-type littermates, indicating the important in vivo functional role of RhoG in platelets. Our data demonstrate that RhoG is expressed and activated in platelets, plays an important role in GPVI-Fc receptor γ-chain complex-mediated platelet activation, and is critical for thrombus formation in vivo.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Shu Meng
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Hong Wang
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Lawrence E Goldfinger
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
273
|
Luo J, Xu T, Li C, Ba X, Wang X, Jiang Y, Zeng X. p85-RhoGDI2, a novel complex, is required for PSGL-1-induced β1 integrin-mediated lymphocyte adhesion to VCAM-1. Int J Biochem Cell Biol 2013; 45:2764-73. [PMID: 24055812 DOI: 10.1016/j.biocel.2013.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/30/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
P-selectin glycoprotein ligand-1 and β1 integrin play essential roles in T cell trafficking during inflammation. E-selectin and vascular cell adhesion molecule-1 are their ligands expressed on inflammation-activated endothelium. During the tethering and rolling of lymphocytes on endothelium, P-selectin glycoprotein ligand-1 binds E-selectin and induces signals. Subsequently, β1 integrin is activated and mediates stable adhesion. However, the intracellular signal pathways from PSGL-1 to β1 integrin have not yet been fully understood. Here, we find that p85, a regulatory subunit of phosphoinositide 3-kinase, forms a novel complex with Rho-GDP dissociation inhibitor-2, a lymphocyte-specific RhoGTPases dissociation inhibitor. Phosporylations of the p85-bound Rho-GDP dissociation inhibitor-2 on 130 and 153 tyrosine residues by c-Abl and Src were required for the complex to be recruited to P-selectin glycoprotein ligand-1 and thereby regulate β1 integrin-mediated T cell adhesion to vascular cell adhesion molecule-1. Both shRNAs to Rho-GDP dissociation inhibitor-2 and p85 and over-expression of Rho-GDP dissociation inhibitor-2 Y130F and Y153F significantly reduced the above-mentioned adhesion. Although Rho-GDP dissociation inhibitor-2 in the p85-Rho-GDP dissociation inhibitor-2 complex was also phosphorylated on 24 tyrosine residue by Syk, the phosphorylation is not required for the adhesion. Taken together, we find that specific phosphorylations on 130 and 153 tyrosine residues of p85-bound Rho-GDP dissociation inhibitor-2 are pivotal for P-selectin glycoprotein ligand-1-induced β1 integrin-mediated lymphocyte adhesion to vascular cell adhesion molecule-1. This will shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.
Collapse
Affiliation(s)
- Jixian Luo
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China; Department of Bioscience, Shanxi University, Taiyuan, China
| | | | | | | | | | | | | |
Collapse
|
274
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
275
|
Aslan JE, Baker SM, Loren CP, Haley KM, Itakura A, Pang J, Greenberg DL, David LL, Manser E, Chernoff J, McCarty OJT. The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation. Am J Physiol Cell Physiol 2013; 305:C519-28. [PMID: 23784547 DOI: 10.1152/ajpcell.00418.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of the platelet actin cytoskeleton by the Rho family of small GTPases is essential for the proper maintenance of hemostasis. However, little is known about how intracellular platelet activation from Rho GTPase family members, including Rac, Cdc42, and Rho, translate into changes in platelet actin structures. To better understand how Rho family GTPases coordinate platelet activation, we identified platelet proteins associated with Rac1, a Rho GTPase family member, and actin regulatory protein essential for platelet hemostatic function. Mass spectrometry analysis revealed that upon platelet activation with thrombin, Rac1 associates with a set of effectors of the p21-activated kinases (PAKs), including GIT1, βPIX, and guanine nucleotide exchange factor GEFH1. Platelet activation by thrombin triggered the PAK-dependent phosphorylation of GIT1, GEFH1, and other PAK effectors, including LIMK1 and Merlin. PAK was also required for the thrombin-mediated activation of the MEK/ERK pathway, Akt, calcium signaling, and phosphatidylserine (PS) exposure. Inhibition of PAK signaling prevented thrombin-induced platelet aggregation and blocked platelet focal adhesion and lamellipodia formation in response to thrombin. Together, these results demonstrate that the PAK signaling system is a key orchestrator of platelet actin dynamics, linking Rho GTPase activation downstream of thrombin stimulation to PAK effector function, MAP kinase activation, calcium signaling, and PS exposure in platelets.
Collapse
Affiliation(s)
- Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Abstract
RhoA is one of the more extensively studied members of the Rho family of small GTPase where it is most readily recognized for its contributions to actin-myosin contractility and stress fiber formation. Accordingly, RhoA function during cell migration has been relegated to the rear of the cell where it mediates retraction of the trailing edge. However, RhoA can also mediate membrane ruffling, lamellae formation and membrane blebbing, thus suggesting an active role in membrane protrusions at the leading edge. With the advent of fluorescence resonance energy transfer (FRET)-based Rho activity reporters, RhoA has been shown to be active at the leading edge of migrating cells where it precedes Rac and Cdc42 activation. These observations demonstrate a remarkable versatility to RhoA signaling, but how RhoA function can switch between contraction and protrusion has remained an enigma. This review highlights recent advances regarding how the cooperation of Rho effector Rhotekin and S100A4 suppresses stress fiber generation to permit RhoA-mediated lamellae formation.
Collapse
Affiliation(s)
| | - Min Chen
- University of Kentucky; Lexington, KY
| |
Collapse
|
277
|
Lipid raft- and SRC family kinase-dependent entry of coxsackievirus B into human placental trophoblasts. J Virol 2013; 87:8569-81. [PMID: 23720726 DOI: 10.1128/jvi.00708-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Maternal-fetal transmission of group B coxsackieviruses (CVB) during pregnancy has been associated with a number of diverse pathological outcomes, including hydrops fetalis, fetal myocarditis, meningoencephalitis, neurodevelopmental delays, congenital skin lesions, miscarriage, and/or stillbirth. Throughout pregnancy, the placenta forms a critical antimicrobial protective barrier at the maternal-fetal interface. Despite the severity of diseases accompanying fetal CVB infections, little is known regarding the strategies used by CVB to gain entry into placental trophoblasts. Here we used both a trophoblast cell line and primary human trophoblasts to demonstrate the mechanism by which CVB gains entry into polarized placental trophoblasts. Our studies revealed that the kinetics of CVB entry into placental trophoblasts are similar to those previously described for polarized intestinal epithelial cells. Likewise, CVB entry into placental trophoblasts requires decay-accelerating factor (DAF) binding and involves relocalization of the virus from the apical surface to intercellular tight junctions. In contrast, we have identified a divergent mechanism for CVB entry into polarized trophoblasts that is clathrin, caveolin-1, and dynamin II independent but requires intact lipid rafts. In addition, we found that members of the Src family of tyrosine kinases were required for CVB entry. Our studies highlight the complexity of viral entry into human placental trophoblasts and may serve as a model for mechanisms used by diverse pathogens to penetrate the placental barrier.
Collapse
|
278
|
Usatyuk PV, Burns M, Mohan V, Pendyala S, He D, Ebenezer DL, Harijith A, Fu P, Huang LS, Bear JE, Garcia JGN, Natarajan V. Coronin 1B regulates S1P-induced human lung endothelial cell chemotaxis: role of PLD2, protein kinase C and Rac1 signal transduction. PLoS One 2013; 8:e63007. [PMID: 23667561 PMCID: PMC3648575 DOI: 10.1371/journal.pone.0063007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Coronins are a highly conserved family of actin binding proteins that regulate actin-dependent processes such as cell motility and endocytosis. We found that treatment of human pulmonary artery endothelial cells (HPAECs) with the bioactive lipid, sphingosine-1-phosphate (S1P) rapidly stimulates coronin 1B translocation to lamellipodia at the cell leading edge, which is required for S1P-induced chemotaxis. Further, S1P-induced chemotaxis of HPAECs was attenuated by pretreatment with small interfering RNA (siRNA) targeting coronin 1B (∼36%), PLD2 (∼45%) or Rac1 (∼50%) compared to scrambled siRNA controls. Down regulation PLD2 expression by siRNA also attenuated S1P-induced coronin 1B translocation to the leading edge of the cell periphery while PLD1 silencing had no effect. Also, S1P-induced coronin 1B redistribution to cell periphery and chemotaxis was attenuated by inhibition of Rac1 and over-expression of dominant negative PKC δ, ε and ζ isoforms in HPAECs. These results demonstrate that S1P activation of PLD2, PKC and Rac1 is part of the signaling cascade that regulates coronin 1B translocation to the cell periphery and the ensuing cell chemotaxis.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Institute for Personalized Respiratory Medicine, University of Illinois, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Domingues MJ, Larue L, Bonaventure J. [Migration of melanocytic lineage-derived cells]. Med Sci (Paris) 2013; 29:287-92. [PMID: 23544383 DOI: 10.1051/medsci/2013293015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During development, neural crest cells-derived melanoblasts migrate along the dorso-lateral axis into the dermis, then cross the basal layer to reach the epidermis and differentiate into melanocytes. They finally colonize the hair follicles to become resident pigmented cells. Neoplastic transformation converts melanocytes into highly invasive melanoma cells, which can adopt two modes of interconvertible migration (mesenchymal and amoeboid). Through analysis of the coat color phenotype of natural mouse mutants and genetically modified animals, many of the genes regulating migration were identified. Deciphering of cell membrane protrusions and signaling molecules involved in melanoma cell motility was further achieved through 2D and 3D culture systems. Here, we summarize how these data allow a better understanding of the complex mechanisms controlling migration of normal and pathological cells of the melanocytic lineage.
Collapse
Affiliation(s)
- Mélanie J Domingues
- Institut Curie, CNRS UMR3347, Inserm U1021,Génétique du développement des mélanocytes, Centre de recherche, bâtiment 110, 91405 Orsay, France
| | | | | |
Collapse
|
280
|
Bonaventure J, Domingues MJ, Larue L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res 2013; 26:316-25. [PMID: 23433358 DOI: 10.1111/pcmr.12080] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
During embryonic development in vertebrates, the neural crest-derived melanoblasts migrate along the dorsolateral axis and cross the basal membrane separating the dermis from the epidermis to reach their final location in the interfollicular epidermis and epidermal hair follicles. Neoplastic transformation converts melanocytes into highly invasive and metastatic melanoma cells. In vitro, these cells extend various types of protrusions and adopt two interconvertible modes of migration, mesenchymal and amoeboid, driven by different signalling molecules. In this review, we describe the major contributions of natural mouse mutants, mouse models generated by genetic engineering and in vitro culture systems, to identification of the genes, signalling pathways and mechanisms regulating the migration of normal and pathological cells of the melanocyte lineage, at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Jacky Bonaventure
- Developmental Genetics of Melanocytes, Institut Curie, Centre de Recherche, Orsay, France
| | | | | |
Collapse
|
281
|
Spooner E, McLaughlin BM, Lepow T, Durns TA, Randall J, Upchurch C, Miller K, Campbell EM, Fares H. Systematic screens for proteins that interact with the mucolipidosis type IV protein TRPML1. PLoS One 2013; 8:e56780. [PMID: 23418601 PMCID: PMC3572064 DOI: 10.1371/journal.pone.0056780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1.
Collapse
Affiliation(s)
- Ellen Spooner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Brooke M. McLaughlin
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Talya Lepow
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Tyler A. Durns
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Randall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Upchurch
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Katherine Miller
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin M. Campbell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
282
|
Waheed F, Dan Q, Amoozadeh Y, Zhang Y, Tanimura S, Speight P, Kapus A, Szászi K. Central role of the exchange factor GEF-H1 in TNF-α-induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells. Mol Biol Cell 2013; 24:1068-82. [PMID: 23389627 PMCID: PMC3608494 DOI: 10.1091/mbc.e12-09-0661] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tumor necrosis factor-α activates the enzyme TACE/ADAM17 through the guanine nucleotide exchange factor GEF-H1, Rac, and p38, leading to activation of the epidermal growth factor. GEF-H1 mediates hierarchical activation of Rac and RhoA through differential phosphorylation. Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration.
Collapse
Affiliation(s)
- Faiza Waheed
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Tong H, Zhao B, Shi H, Ba X, Wang X, Jiang Y, Zeng X. c-Abl tyrosine kinase plays a critical role in β2 integrin-dependent neutrophil migration by regulating Vav1 activity. J Leukoc Biol 2013; 93:611-22. [PMID: 23325923 DOI: 10.1189/jlb.1012487] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recruitment and migration of neutrophils are critical for innate immunity and acute inflammatory responses. However, the mechanism that regulates the recruitment and migration of neutrophils has not been well characterized. We here reveal a novel function of c-Abl kinase in regulating neutrophil migration. Our results demonstrate that c-Abl kinase is required for neutrophil recruitment in vivo and migration in vitro, and the inhibition of c-Abl kinase activity has a significant impact on neutrophil migratory behavior. Moreover, c-Abl kinase activation depends on β2 integrin engagement, and the activated c-Abl kinase further regulates actin polymerization and membrane protrusion dynamics at the extended leading edges during neutrophil migration. In addition, we identify the Rho GEF Vav1 as a major downstream effector of c-Abl kinase. The C-terminal SH3-SH2-SH3 domain and proline-rich region of Vav1 are required for its interaction with c-Abl kinase, and c-Abl kinase probably regulates the activity of Vav1 by direct phosphorylation at Tyr-267 in the DH domain. Together, these results indicate that c-Abl kinase plays a critical role in β2 integrin-dependent neutrophil migration by regulating Vav1 activity.
Collapse
Affiliation(s)
- Haibin Tong
- Changchun Teachers College, 677 Changji Northroad, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
284
|
Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity. Eur J Hum Genet 2013; 21:988-93. [PMID: 23299920 DOI: 10.1038/ejhg.2012.293] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a monogenic disorder that is subdivided into four different types and caused by survival motor neuron gene 1 (SMN1) deletion. Discordant cases of SMA suggest that there exist additional severity modifying factors, apart from the SMN2 gene copy number. Here we performed the first genome-wide methylation profiling of SMA patients and healthy individuals to study the association of DNA methylation status with the severity of the SMA phenotype. We identified strong significant differences in methylation level between SMA patients and healthy controls in CpG sites close to the genes CHML, ARHGAP22, CYTSB, CDK2AP1 and SLC23A2. Interestingly, the CHML and ARHGAP22 genes are associated with the activity of Rab and Rho GTPases, which are important regulators of vesicle formation, actin dynamics, axonogenesis, processes that could be critical for SMA development. We suggest that epigenetic modifications may influence the severity of SMA and that these novel genetic positions could prove to be valuable biomarkers for the understanding of SMA pathogenesis.
Collapse
|
285
|
Khan AR. Oligomerization of rab/effector complexes in the regulation of vesicle trafficking. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:579-614. [PMID: 23663983 DOI: 10.1016/b978-0-12-386931-9.00021-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rabs comprise the largest member of the Ras superfamily of small GTPases with over 60 proteins in mammals and 11 proteins in yeast. Like all small GTPases, Rabs oscillate between an inactive GDP-bound conformation and an active GTP-bound state that is tethered to lipid membranes via a C-terminal prenylation site on conserved cysteine residues. In their active state, Rabs regulate various aspects of membrane trafficking, including vesicle formation, transport, docking, and fusion. The critical element of biological activity is the recruitment of cytosolic effector proteins to specific endomembranes by active Rabs. The importance of Rabs in cellular processes is apparent from their links to genetic disorders, immunodeficiency, cancer, and pathogen invasion. During the last decade, numerous structures of complexes have shed light on the molecular basis for Rab/effector specificity and their topological organization on subcellular membranes. Here, I review the known structures of Rab/effector complexes and their modes of oligomerization. This is followed by a brief discussion on the thermodynamics of effector recruitment, which has not been documented sufficiently in previous reviews. A summary of diseases associated with Rab/effector trafficking pathways concludes this chapter.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
286
|
Wang ZG, Jia MK, Cao H, Bian P, Fang XD. Knockdown of Coronin-1C disrupts Rac1 activation and impairs tumorigenic potential in hepatocellular carcinoma cells. Oncol Rep 2012; 29:1066-72. [PMID: 23292607 DOI: 10.3892/or.2012.2216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/10/2012] [Indexed: 11/05/2022] Open
Abstract
Coronin-1C is an important F-actin binding protein which is critical for cell motility. Furthermore, the expression of this protein was found to be increased in diffuse tumors and was correlated with the degree of tumor malignancy. However, the mechanism(s) through which this protein enhances malignancy in hepatocellular carcinoma (HCC) is poorly understood. In this study, we found that Coronin-1C was overexpressed in human HCC tissues compared with the adjacent non-tumor tissues. Overexpression of Coronin-1C enhanced the cell migration in the human HCC cell line BEL-7402, whereas suppressed cell migration and proliferation were observed in Coronin-1C-knockdown BEL-7402 cells together with impaired cell polarity, disrupted cytoskeleton and decreased Rac-1 activation. Moreover, the Coronin-1C knockdown cells displayed a lower degree of malignancy by inducing smaller tumors in nude mice. Thus, we demonstrated a relationship between Coronin-1C overexpression and human HCC growth through enhancement of tumor cell proliferation and migration, which are correlated with Rac-1 activation.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | | | | | | | | |
Collapse
|
287
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
288
|
Wiezlak M, Diring J, Abella J, Mouilleron S, Way M, McDonald NQ, Treisman R. G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J Cell Sci 2012; 125:5860-72. [PMID: 22976292 DOI: 10.1242/jcs.112078] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Phactr family of PP1-binding proteins is implicated in human diseases including Parkinson's, cancer and myocardial infarction. Each Phactr protein contains four G-actin binding RPEL motifs, including an N-terminal motif, abutting a basic element, and a C-terminal triple RPEL repeat, which overlaps a conserved C-terminus required for interaction with PP1. RPEL motifs are also found in the regulatory domains of the MRTF transcriptional coactivators, where they control MRTF subcellular localisation and activity by sensing signal-induced changes in G-actin concentration. However, whether G-actin binding controls Phactr protein function - and its relation to signalling - has not been investigated. Here, we show that Rho-actin signalling induced by serum stimulation promotes the nuclear accumulation of Phactr1, but not other Phactr family members. Actin binding by the three Phactr1 C-terminal RPEL motifs is required for Phactr1 cytoplasmic localisation in resting cells. Phactr1 nuclear accumulation is importin α-β dependent. G-actin and importin α-β bind competitively to nuclear import signals associated with the N- and C-terminal RPEL motifs. All four motifs are required for the inhibition of serum-induced Phactr1 nuclear accumulation when G-actin is elevated. G-actin and PP1 bind competitively to the Phactr1 C-terminal region, and Phactr1 C-terminal RPEL mutants that cannot bind G-actin induce aberrant actomyosin structures dependent on their nuclear accumulation and on PP1 binding. In CHL-1 melanoma cells, Phactr1 exhibits actin-regulated subcellular localisation and is required for stress fibre assembly, motility and invasiveness. These data support a role for Phactr1 in actomyosin assembly and suggest that Phactr1 G-actin sensing allows its coordination with F-actin availability.
Collapse
Affiliation(s)
- Maria Wiezlak
- Transcription Group, CRUK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | |
Collapse
|
289
|
Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. J Neurosci 2012; 32:12421-30. [PMID: 22956833 DOI: 10.1523/jneurosci.6381-11.2012] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Small GTPases mediate transmembrane signaling and regulate the actin cytoskeleton in eukaryotic cells. Here, we characterize the auditory pathology of adult male CBA/J mice exposed to traumatic noise (2-20 kHz; 106 dB; 2 h). Loss of outer hair cells was evident 1 h after noise exposure in the basal region of the cochlea and spread apically with time, leading to permanent threshold shifts of 35, 60, and 65 dB at 8, 16, and 32 kHz. Several biochemical and molecular changes correlated temporally with the loss of cells. Immediately after exposure, the concentration of ATP decreased in cochlear tissue and reached a minimum after 1 h while the immunofluorescent signal for p-AMPKα significantly increased in sensory hair cells at that time. Levels of active Rac1 increased, whereas those of active RhoA decreased significantly 1 h after noise attaining a plateau at 1-3 h; the formation of a RhoA-p140mDia complex was consistent with an activation of Rho GTPase pathways. Also at 1-3 h after exposure, the caspase-independent cell death marker, Endo G, translocated to the nuclei of outer hair cells. Finally, experiments with the inner ear HEI-OC1 cell line demonstrated that the energy-depleting agent oligomycin enhanced both Rac1 activity and cell death. The sum of the results suggests that traumatic noise induces transient cellular ATP depletion and activates Rho GTPase pathways, leading to death of outer hair cells in the cochlea.
Collapse
|
290
|
Tong H, Tian D, He Z, Liu Y, Chu X, Sun X. Polysaccharides from Bupleurum chinense impact the recruitment and migration of neutrophils by blocking fMLP chemoattractant receptor-mediated functions. Carbohydr Polym 2012; 92:1071-7. [PMID: 23399130 DOI: 10.1016/j.carbpol.2012.10.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 12/21/2022]
Abstract
Although neutrophils play important roles in host defense, sometimes they contribute to inflammation-related tissue injuries. Thus, restriction of their recruitment to the inflammatory sites is a promising strategy in the amelioration of inflammatory disease. The previous studies reported the anti-inflammatory effects of Bupleurum chinense, but the active ingredients and possible mechanism are still unclear. Here, we isolated water-soluble polysaccharides (BCPs) from B. chinense, to evaluate its anti-inflammatory effects and possible mechanism. The present results showed that BCPs significantly impaired the in vivo neutrophil infiltration, as well as the migration capacity of dHL-60 cells in vitro. In addition, BCPs inhibits chemoattractant fMLP-induced activation and clustering of β2 integrin. BCPs impacted fMLP-induced actin polymerization and the activation of cytoskeleton regulatory molecules, Vav1 and Rac1. Together, BCPs significantly impacted recruitment and migration of neutrophils by blocking chemoattractant receptor-mediated functions, and it possesses a potential as novel anti-inflammatory drug.
Collapse
Affiliation(s)
- Haibin Tong
- Life Science Research Center, Beihua University, Jilin 132013, China.
| | | | | | | | | | | |
Collapse
|
291
|
Maddox AS, Azoury J, Dumont J. Polar body cytokinesis. Cytoskeleton (Hoboken) 2012; 69:855-68. [PMID: 22927361 DOI: 10.1002/cm.21064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
Polar body cytokinesis is the physical separation of a small polar body from a larger oocyte or ovum. This maternal meiotic division shares many similarities with mitotic and spermatogenic cytokinesis, but there are several distinctions, which will be discussed in this review. We synthesize results from many different model species, including those popular for their genetics and several that are more obscure in modern cell biology. The site of polar body division is determined before anaphase, by the eccentric, cortically associated meiotic spindle. Depending on the species, either the actin or microtubule cytoskeleton is required for spindle anchoring. Chromatin is necessary and sufficient to elicit differentiation of the associated cortex, via Ran-based signaling. The midzone of the anaphase spindle serves as a hub for regulatory complexes that elicit Rho activation, and ultimately actomyosin contractile ring assembly and contraction. Polar body cytokinesis uniquely requires another Rho family GTPase, Cdc42, for dynamic reorganization of the polar cortex. This is perhaps due to the considerable asymmetry of this division, wherein the polar body and the oocyte/ovum have distinct fates and very different sizes. Thus, maternal meiotic cytokinesis appears to occur via simultaneous polar relaxation and equatorial contraction, since the polar body is extruded from the spherical oocyte through the nascent contractile ring. As such, polar body cytokinesis is an interesting and important variation on the theme of cell division.
Collapse
Affiliation(s)
- Amy Shaub Maddox
- Institut de recherche en immunology et en cancerologie (IRIC), Université de Montréal, Montréal, Quebec, Canada.
| | | | | |
Collapse
|
292
|
Delprato A. Topological and functional properties of the small GTPases protein interaction network. PLoS One 2012; 7:e44882. [PMID: 23028658 PMCID: PMC3441499 DOI: 10.1371/journal.pone.0044882] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022] Open
Abstract
Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING) database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.
Collapse
Affiliation(s)
- Anna Delprato
- BioScience Project, Wakefield, Massachusetts, United States of America.
| |
Collapse
|
293
|
Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene 2012; 32:3754-64. [PMID: 22964635 PMCID: PMC3525797 DOI: 10.1038/onc.2012.383] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 02/07/2023]
Abstract
Rho signaling is increasingly recognized to contribute to invasion and metastasis. In this study, we discovered that metastasis-associated protein S100A4 interacts with the Rho-binding domain (RBD) of Rhotekin, thus connecting S100A4 to the Rho pathway. Glutathione S-transferase pull-down and immunoprecipitation assays demonstrated that S100A4 specifically and directly binds to Rhotekin RBD, but not the other Rho effector RBDs. S100A4 binding to Rhotekin is calcium-dependent and uses residues distinct from those bound by active Rho. Interestingly, we found that S100A4 and Rhotekin can form a complex with active RhoA. Using RNA interference, we determined that suppression of both S100A4 and Rhotekin leads to loss of Rho-dependent membrane ruffling in response to epidermal growth factor, an increase in contractile F-actin 'stress' fibers and blocks invasive growth in three-dimensional culture. Accordingly, our data suggest that interaction of S100A4 and Rhotekin permits S100A4 to complex with RhoA and switch Rho function from stress fiber formation to membrane ruffling to confer an invasive phenotype.
Collapse
|
294
|
Gates J. Drosophila egg chamber elongation: insights into how tissues and organs are shaped. Fly (Austin) 2012; 6:213-27. [PMID: 22940759 PMCID: PMC3519655 DOI: 10.4161/fly.21969] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.
Collapse
Affiliation(s)
- Julie Gates
- Department of Biology, Bucknell University,Lewisburg, PA, USA.
| |
Collapse
|
295
|
Ard R, Mulatz K, Abramovici H, Maillet JC, Fottinger A, Foley T, Byham MR, Iqbal TA, Yoneda A, Couchman JR, Parks RJ, Gee SH. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism. Mol Biol Cell 2012; 23:4008-19. [PMID: 22918940 PMCID: PMC3469516 DOI: 10.1091/mbc.e12-01-0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The dissociation of individual Rho GTPases from RhoGDI ensures appropriate responses to cellular signals. The enzyme diacylglycerol kinase ζ (DGKζ) serves as a scaffold to assemble a signaling complex that functions as a RhoA-specific RhoGDI dissociation factor. DGKζ deficiency impairs RhoA activation and stress fiber formation in fibroblasts. Rho GTPases share a common inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI), which regulates their expression levels, membrane localization, and activation state. The selective dissociation of individual Rho GTPases from RhoGDI ensures appropriate responses to cellular signals, but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα) selectively releases RhoA. Here we show DGKζ is required for RhoA activation and Ser-34 phosphorylation, which were decreased in DGKζ-deficient fibroblasts and rescued by wild-type DGKζ or a catalytically inactive mutant. DGKζ bound directly to the C-terminus of RhoA and the regulatory arm of RhoGDI and was required for efficient interaction of PKCα and RhoA. DGKζ-null fibroblasts had condensed F-actin bundles and altered focal adhesion distribution, indicative of aberrant RhoA signaling. Two targets of the RhoA effector ROCK showed reduced phosphorylation in DGKζ-null cells. Collectively our findings suggest DGKζ functions as a scaffold to assemble a signaling complex that functions as a RhoA-selective, GDI dissociation factor. As a regulator of Rac1 and RhoA activity, DGKζ is a critical factor linking changes in lipid signaling to actin reorganization.
Collapse
Affiliation(s)
- Ryan Ard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Aguilera MO, Berón W, Colombo MI. The actin cytoskeleton participates in the early events of autophagosome formation upon starvation induced autophagy. Autophagy 2012; 8:1590-603. [PMID: 22863730 DOI: 10.4161/auto.21459] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a process by which cytoplasmic material is sequestered in a double-membrane vesicle destined for degradation. Nutrient deprivation stimulates the pathway and the number of autophagosomes in the cell increases in response to such stimulus. In the current report we have demonstrated that actin is necessary for starvation-mediated autophagy. When the actin cytoskeleton is depolymerized, the increase in autophagic vacuoles in response to the starvation stimulus was abolished without affecting maturation of remaining autophagosomes. In addition, actin filaments colocalized with ATG14, BECN1/Beclin1 and PtdIns3P-rich structures, and some of them have a typical omegasome shape stained with the double FYVE domain or ZFYVE1/DFCP1. In contrast, no major colocalization between actin and ULK1, ULK2, ATG5 or MAP1LC3/LC3 was observed. Taken together, our data indicate that actin has a role at very early stages of autophagosome formation linked to the PtdIns3P generation step. In addition, we have found that two members of the Rho family of proteins, RHOA and RAC1 have a regulatory function on starvation-mediated autophagy, but with opposite roles. Indeed, RHOA has an activatory role whereas Rac has an inhibitory one. We have also found that inhibition of the RHOA effector ROCK impaired the starvation-mediated autophagic response. We propose that actin participates in the initial membrane remodeling stage when cells require an enhanced rate of autophagosome formation, and this actin function would be tightly regulated by different members of the Rho family.
Collapse
Affiliation(s)
- Milton Osmar Aguilera
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | | |
Collapse
|
297
|
Abstract
Gastrulation is a fundamental phase of animal embryogenesis during which germ layers are specified, rearranged, and shaped into a body plan with organ rudiments. Gastrulation involves four evolutionarily conserved morphogenetic movements, each of which results in a specific morphologic transformation. During emboly, mesodermal and endodermal cells become internalized beneath the ectoderm. Epibolic movements spread and thin germ layers. Convergence movements narrow germ layers dorsoventrally, while concurrent extension movements elongate them anteroposteriorly. Each gastrulation movement can be achieved by single or multiple motile cell behaviors, including cell shape changes, directed migration, planar and radial intercalations, and cell divisions. Recent studies delineate cyclical and ratchet-like behaviors of the actomyosin cytoskeleton as a common mechanism underlying various gastrulation cell behaviors. Gastrulation movements are guided by differential cell adhesion, chemotaxis, chemokinesis, and planar polarity. Coordination of gastrulation movements with embryonic polarity involves regulation by anteroposterior and dorsoventral patterning systems of planar polarity signaling, expression of chemokines, and cell adhesion molecules.
Collapse
Affiliation(s)
- Lila Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
298
|
Goldberg SR, Georgiou J, Glogauer M, Grynpas MD. A 3D scanning confocal imaging method measures pit volume and captures the role of Rac in osteoclast function. Bone 2012; 51:145-52. [PMID: 22561898 DOI: 10.1016/j.bone.2012.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 01/09/2023]
Abstract
Modulation of Rho GTPases Rac1 and Rac2 impacts bone development, remodeling, and disease. In addition, GTPases are considered treatment targets for dysplastic and erosive bone diseases including Neurofibromatosis type 1. While it is important to understand the effects of Rac modulation on osteoclast function, two-dimensional resorption pit area measurements fall short in elucidating the volume aspect of bone resorption activity. Bone marrow from wild-type, Rac1 and Rac2 null mice was isolated from femora. Osteoclastogenesis was induced by adding M-CSF and RANKL in culture plates containing dentin slices and later stained with Picro Sirius Red to image resorption lacunae. Osteoclasts were also plated on glass cover slips and stained with phalloidin and DAPI to measure their surface area and the number of nuclei. Volumetric images were collected on a laser-scanning confocal system. Sirius Red confocal imaging provided an unambiguous, continuous definition of the pit boundary compared to reflected and transmitted light imaging. Rac1- and Rac2-deficient osteoclasts had fewer nuclei in comparison to wild-type counterparts. Rac1-deficient osteoclasts showed reduced resorption pit volume and surface area. Lacunae made by single Rac2 null osteoclasts had reduced volume but surprisingly surface area was unaffected. Surface area measures are deceiving since volume changed independently in resorption pits made by individual Rac2 null osteoclasts. Our innovative confocal imaging technique allows us to derive novel conclusions about Rac1 and Rac2 in osteoclast function. The data and method can be applied to study effects of genes and drugs including Rho GTPase modulators on osteoclast function and to develop pharmacotherapeutics to treat bone lytic disorders.
Collapse
Affiliation(s)
- Stephanie R Goldberg
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
299
|
Steele BM, Harper MT, Smolenski AP, Alkazemi N, Poole AW, Fitzgerald DJ, Maguire PB. WNT-3a modulates platelet function by regulating small GTPase activity. FEBS Lett 2012; 586:2267-72. [PMID: 22705156 DOI: 10.1016/j.febslet.2012.05.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/04/2012] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
Abstract
Here we provide evidence that WNT-3a modulates platelet function by regulating the activity of four key GTPase proteins: Rap1, Cdc42, Rac1 and RhoA. We observe WNT-3a to differentially regulate small GTPase activity in platelets, promoting the GDP-bound form of Rap1b to inhibit integrin-α(IIb)β(3) adhesion, while concomitantly increasing Cdc42 and Rac1-GTP levels thereby disrupting normal platelet spreading. We demonstrate that Daam-1 interacts with Dishevelled upon platelet activation, which correlates with increased RhoA-GTP levels. Upon pre-treatment with WNT-3a, this complex disassociates, concurrent with a reduction in RhoA-GTP. Together these data implicate WNT-3a as a novel upstream regulator of small GTPase activity in platelets.
Collapse
Affiliation(s)
- Brian M Steele
- UCD Conway Institute, University College Dublin, Belfield, Dublin D4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
300
|
Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol 2012; 8:165-77. [PMID: 22335581 DOI: 10.2217/fon.11.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|