31951
|
Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol 2015; 33:736-42. [PMID: 25985263 DOI: 10.1038/nbt.3242] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/21/2015] [Indexed: 01/02/2023]
Abstract
Alternative splicing shapes mammalian transcriptomes, with many RNA molecules undergoing multiple distant alternative splicing events. Comprehensive transcriptome analysis, including analysis of exon co-association in the same molecule, requires deep, long-read sequencing. Here we introduce an RNA sequencing method, synthetic long-read RNA sequencing (SLR-RNA-seq), in which small pools (≤1,000 molecules/pool, ≤1 molecule/gene for most genes) of full-length cDNAs are amplified, fragmented and short-read-sequenced. We demonstrate that these RNA sequences reconstructed from the short reads from each of the pools are mostly close to full length and contain few insertion and deletion errors. We report many previously undescribed isoforms (human brain: ∼13,800 affected genes, 14.5% of molecules; mouse brain ∼8,600 genes, 18% of molecules) and up to 165 human distant molecularly associated exon pairs (dMAPs) and distant molecularly and mutually exclusive pairs (dMEPs). Of 16 associated pairs detected in the mouse brain, 9 are conserved in human. Our results indicate conserved mechanisms that can produce distant but phased features on transcript and proteome isoforms.
Collapse
|
31952
|
Toward Rare Blood Cell Preservation for RNA Sequencing. J Mol Diagn 2015; 17:352-9. [PMID: 25989392 DOI: 10.1016/j.jmoldx.2015.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 02/04/2023] Open
Abstract
Cancer is driven by various events leading to cell differentiation and disease progression. Molecular tools are powerful approaches for describing how and why these events occur. With the growing field of next-generation DNA sequencing, there is an increasing need for high-quality nucleic acids derived from human cells and tissues-a prerequisite for successful cell profiling. Although advances in RNA preservation have been made, some of the largest biobanks still do not employ RNA blood preservation as standard because of limitations in low blood-input volume and RNA stability over the whole gene body. Therefore, we have developed a robust protocol for blood preservation and long-term storage while maintaining RNA integrity. Furthermore, we explored the possibility of using the protocol for preserving rare cell samples, such as circulating tumor cells. The results of our study confirmed that gene expression was not impacted by the preservation procedure (r(2) > 0.88) or by long-term storage (r(2) = 0.95), with RNA integrity number values averaging over 8. Similarly, cell surface antigens were still available for antibody selection (r(2) = 0.95). Lastly, data mining for fusion events showed that it was possible to detect rare tumor cells among a background of other cells present in blood irrespective of fixation. Thus, the developed protocol would be suitable for rare blood cell preservation followed by RNA sequencing analysis.
Collapse
|
31953
|
Han BW, Wang W, Li C, Weng Z, Zamore PD. Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 2015; 348:817-21. [PMID: 25977554 PMCID: PMC4545291 DOI: 10.1126/science.aaa1264] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PIWI-interacting RNAs (piRNAs) protect the animal germ line by silencing transposons. Primary piRNAs, generated from transcripts of genomic transposon "junkyards" (piRNA clusters), are amplified by the "ping-pong" pathway, yielding secondary piRNAs. We report that secondary piRNAs, bound to the PIWI protein Ago3, can initiate primary piRNA production from cleaved transposon RNAs. The first ~26 nucleotides (nt) of each cleaved RNA becomes a secondary piRNA, but the subsequent ~26 nt become the first in a series of phased primary piRNAs that bind Piwi, allowing piRNAs to spread beyond the site of RNA cleavage. The ping-pong pathway increases only the abundance of piRNAs, whereas production of phased primary piRNAs from cleaved transposon RNAs adds sequence diversity to the piRNA pool, allowing adaptation to changes in transposon sequence.
Collapse
Affiliation(s)
- Bo W Han
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Wei Wang
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Chengjian Li
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
31954
|
High resolution mapping of enhancer-promoter interactions. PLoS One 2015; 10:e0122420. [PMID: 25970635 PMCID: PMC4430501 DOI: 10.1371/journal.pone.0122420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 01/19/2023] Open
Abstract
RNA Polymerase II ChIA-PET data has revealed enhancers that are active in a profiled cell type and the genes that the enhancers regulate through chromatin interactions. The most commonly used computational method for analyzing ChIA-PET data, the ChIA-PET Tool, discovers interaction anchors at a spatial resolution that is insufficient to accurately identify individual enhancers. We introduce Germ, a computational method that estimates the likelihood that any two narrowly defined genomic locations are jointly occupied by RNA Polymerase II. Germ takes a blind deconvolution approach to simultaneously estimate the likelihood of RNA Polymerase II occupation as well as a model of the arrangement of read alignments relative to locations occupied by RNA Polymerase II. Both types of information are utilized to estimate the likelihood that RNA Polymerase II jointly occupies any two genomic locations. We apply Germ to RNA Polymerase II ChIA-PET data from embryonic stem cells to identify the genomic locations that are jointly occupied along with transcription start sites. We show that these genomic locations align more closely with features of active enhancers measured by ChIP-Seq than the locations identified using the ChIA-PET Tool. We also apply Germ to RNA Polymerase II ChIA-PET data from motor neuron progenitors. Based on the Germ results, we observe that a combination of cell type specific and cell type independent regulatory interactions are utilized by cells to regulate gene expression.
Collapse
|
31955
|
Väremo L, Scheele C, Broholm C, Mardinoglu A, Kampf C, Asplund A, Nookaew I, Uhlén M, Pedersen BK, Nielsen J. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep 2015; 11:921-933. [PMID: 25937284 DOI: 10.1016/j.celrep.2015.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 11/16/2022] Open
Abstract
Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D.
Collapse
Affiliation(s)
- Leif Väremo
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Camilla Scheele
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Christa Broholm
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Adil Mardinoglu
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Caroline Kampf
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Intawat Nookaew
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Mathias Uhlén
- Department of Proteomics, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), 10691 Stockholm, Sweden; Science for Life Laboratory, Royal Institute of Technology (KTH), 17121 Stockholm, Sweden
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden; Science for Life Laboratory, Royal Institute of Technology (KTH), 17121 Stockholm, Sweden.
| |
Collapse
|
31956
|
Li W, Calder RB, Mar JC, Vijg J. Single-cell transcriptogenomics reveals transcriptional exclusion of ENU-mutated alleles. Mutat Res 2015; 772:55-62. [PMID: 25733965 DOI: 10.1016/j.mrfmmm.2015.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, great progress has been made in single cell genomics and transcriptomics. Here, we present an integrative method, termed single-cell transcriptogenomics (SCTG), in which whole exome sequencing and RNA-seq is performed concurrently on single cells. This methodology enables one to track germline and somatic variants directly from the genome to the transcriptome in individual cells. Mouse embryonic fibroblasts were treated with the powerful mutagen ethylnitrosourea (ENU) and subjected to SCTG. Interestingly, while germline variants were found to be transcribed in an allelically balanced fashion, a significantly different pattern of allelic exclusion was observed for ENU-mutant variants. These results suggest that the adverse effects of induced mutations, in contrast to germline variants, may be mitigated by allelically biased transcription. They also illustrate how SCTG can be instrumental in the direct assessment of phenotypic consequences of genomic variants.
Collapse
|
31957
|
Suárez-Vega A, Gutiérrez-Gil B, Benavides J, Perez V, Tosser-Klopp G, Klopp C, Keennel SJ, Arranz JJ. Combining GWAS and RNA-Seq Approaches for Detection of the Causal Mutation for Hereditary Junctional Epidermolysis Bullosa in Sheep. PLoS One 2015; 10:e0126416. [PMID: 25955497 PMCID: PMC4425408 DOI: 10.1371/journal.pone.0126416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022] Open
Abstract
In this study, we demonstrate the use of a genome-wide association mapping together with RNA-seq in a reduced number of samples, as an efficient approach to detect the causal mutation for a Mendelian disease. Junctional epidermolysis bullosa is a recessive genodermatosis that manifests with neonatal mechanical fragility of the skin, blistering confined to the lamina lucida of the basement membrane and severe alteration of the hemidesmosomal junctions. In Spanish Churra sheep, junctional epidermolysis bullosa (JEB) has been detected in two commercial flocks. The JEB locus was mapped to Ovis aries chromosome 11 by GWAS and subsequently fine-mapped to an 868-kb homozygous segment using the identical-by-descent method. The ITGB4, which is located within this region, was identified as the best positional and functional candidate gene. The RNA-seq variant analysis enabled us to discover a 4-bp deletion within exon 33 of the ITGB4 gene (c.4412_4415del). The c.4412_4415del mutation causes a frameshift resulting in a premature stop codon at position 1472 of the integrin β4 protein. A functional analysis of this deletion revealed decreased levels of mRNA in JEB skin samples and the absence of integrin β4 labeling in immunohistochemical assays. Genotyping of c.4412_4415del showed perfect concordance with the recessive mode of the disease phenotype. Selection against this causal mutation will now be used to solve the problem of JEB in flocks of Churra sheep. Furthermore, the identification of the ITGB4 mutation means that affected sheep can be used as a large mammal animal model for the human form of epidermolysis bullosa with aplasia cutis. Our approach evidences that RNA-seq offers cost-effective alternative to identify variants in the species in which high resolution exome-sequencing is not straightforward.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal (Anatomía Patológica), Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Valentín Perez
- Departamento de Sanidad Animal (Anatomía Patológica), Instituto de Ganadería de Montaña (CSIC-ULE), Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Gwenola Tosser-Klopp
- INRA, UMR1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076, Toulouse, France
| | - Christophe Klopp
- INRA, Plateforme bioinformatique Toulouse Midi-Pyrénées, UR875 Biométrie et Intelligence Artificielle, BP 52627, 31326, Castanet-Tolosan Cedex, France
| | - Stephen J. Keennel
- Graduate School of Medicine, University of Tennessee, Knoxville, 37920, Tennessee, United States of America
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| |
Collapse
|
31958
|
Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, Maller JB, Kukurba KR, DeLuca DS, Fromer M, Ferreira PG, Smith KS, Zhang R, Zhao F, Banks E, Poplin R, Ruderfer DM, Purcell SM, Tukiainen T, Minikel EV, Stenson PD, Cooper DN, Huang KH, Sullivan TJ, Nedzel J, Bustamante CD, Li JB, Daly MJ, Guigo R, Donnelly P, Ardlie K, Sammeth M, Dermitzakis ET, McCarthy MI, Montgomery SB, Lappalainen T, MacArthur DG. Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science 2015; 348:666-9. [PMID: 25954003 PMCID: PMC4537935 DOI: 10.1126/science.1261877] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Accurate prediction of the functional effect of genetic variation is critical for clinical genome interpretation. We systematically characterized the transcriptome effects of protein-truncating variants, a class of variants expected to have profound effects on gene function, using data from the Genotype-Tissue Expression (GTEx) and Geuvadis projects. We quantitated tissue-specific and positional effects on nonsense-mediated transcript decay and present an improved predictive model for this decay. We directly measured the effect of variants both proximal and distal to splice junctions. Furthermore, we found that robustness to heterozygous gene inactivation is not due to dosage compensation. Our results illustrate the value of transcriptome data in the functional interpretation of genetic variants.
Collapse
Affiliation(s)
- Manuel A Rivas
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Matti Pirinen
- FInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Monkol Lek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily K Tsang
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA. Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Konrad J Karczewski
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Julian B Maller
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Kimberly R Kukurba
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Menachem Fromer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Psychiatry, Mt. Sinai Hospital, NY, USA
| | - Pedro G Ferreira
- Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Kevin S Smith
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Fengmei Zhao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan Poplin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Douglas M Ruderfer
- Department of Psychiatry, Mt. Sinai Hospital, NY, USA. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Shaun M Purcell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Psychiatry, Mt. Sinai Hospital, NY, USA. Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Taru Tukiainen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eric V Minikel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | - Jared Nedzel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Roderic Guigo
- Center for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. Department of Statistics, University of Oxford, Oxford, UK
| | | | - Michael Sammeth
- Center for Genomic Regulation (CRG), Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain. National Institute for Scientific Computing (LNCC), Petropolis, Rio de Janeiro, Brazil
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK. Oxford Center for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Pathology, Stanford University, Stanford, CA, USA
| | - Tuuli Lappalainen
- Department of Genetics, Stanford University, Stanford, CA, USA. Department of Genetic Medicine and Development,University of Geneva, Geneva, Switzerland. Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland. Swiss Institute of Bioinformatics, Geneva, Switzerland. New York Genome Center, New York, NY, USA. Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Daniel G MacArthur
- Broad Institute of MIT and Harvard, Cambridge, MA, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31959
|
Pino M, Erkizia I, Benet S, Erikson E, Fernández-Figueras MT, Guerrero D, Dalmau J, Ouchi D, Rausell A, Ciuffi A, Keppler OT, Telenti A, Kräusslich HG, Martinez-Picado J, Izquierdo-Useros N. HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology 2015; 12:37. [PMID: 25947229 PMCID: PMC4423124 DOI: 10.1186/s12977-015-0160-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Myeloid cells are key players in the recognition and response of the host against invading viruses. Paradoxically, upon HIV-1 infection, myeloid cells might also promote viral pathogenesis through trans-infection, a mechanism that promotes HIV-1 transmission to target cells via viral capture and storage. The receptor Siglec-1 (CD169) potently enhances HIV-1 trans-infection and is regulated by immune activating signals present throughout the course of HIV-1 infection, such as interferon α (IFNα). RESULTS Here we show that IFNα-activated dendritic cells, monocytes and macrophages have an enhanced ability to capture and trans-infect HIV-1 via Siglec-1 recognition of viral membrane gangliosides. Monocytes from untreated HIV-1-infected individuals trans-infect HIV-1 via Siglec-1, but this capacity diminishes after effective antiretroviral treatment. Furthermore, Siglec-1 is expressed on myeloid cells residing in lymphoid tissues, where it can mediate viral trans-infection. CONCLUSIONS Siglec-1 on myeloid cells could fuel novel CD4(+) T-cell infections and contribute to HIV-1 dissemination in vivo.
Collapse
Affiliation(s)
- Maria Pino
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Susana Benet
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Elina Erikson
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Frankfurt, Germany. .,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | | | | | - Judith Dalmau
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Dan Ouchi
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Antonio Rausell
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics (SIB) - Vital-IT, Lausanne, Switzerland.
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| | - Oliver T Keppler
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Frankfurt, Frankfurt, Germany.
| | - Amalio Telenti
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland. .,Current address: The J. Craig Venter Institute, La Jolla, CA, USA.
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain. .,Institució Catalana de Recerca i Estudis Avançats ICREA, Barcelona, Spain. .,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.
| | - Nuria Izquierdo-Useros
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol IGTP, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
31960
|
Cui H, Dhroso A, Johnson N, Korkin D. The variation game: Cracking complex genetic disorders with NGS and omics data. Methods 2015; 79-80:18-31. [PMID: 25944472 DOI: 10.1016/j.ymeth.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.
Collapse
Affiliation(s)
- Hongzhu Cui
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Andi Dhroso
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Nathan Johnson
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| |
Collapse
|
31961
|
Complement inhibitor CD55 governs the integrity of membrane rafts in pancreatic beta cells, but plays no role in insulin secretion. Biochem Biophys Res Commun 2015; 460:518-24. [DOI: 10.1016/j.bbrc.2015.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 11/19/2022]
|
31962
|
The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS One 2015; 10:e0125414. [PMID: 25933067 PMCID: PMC4416735 DOI: 10.1371/journal.pone.0125414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/23/2015] [Indexed: 11/30/2022] Open
Abstract
Cell number in the mouse thymus increases steadily during the first two weeks after birth. It then plateaus and begins to decline by seven weeks after birth. The factors governing these dramatic changes in cell production are not well understood. The data herein correlate levels of High mobility group A 2 protein (Hmga2) expression with these temporal changes in thymopoiesis. Hmga2 is expressed at high levels in murine fetal and neonatal early T cell progenitors (ETP), which are the most immature intrathymic precursors, and becomes almost undetectable in these progenitors after 5 weeks of age. Hmga2 expression is critical for the initial, exponential expansion of thymopoiesis, as Hmga2 deficient mice have a deficit of ETPs within days after birth, and total thymocyte number is repressed compared to wild type littermates. Finally, our data raise the possibility that similar events occur in humans, because Hmga2 expression is high in human fetal thymic progenitors and falls in these cells during early infancy.
Collapse
|
31963
|
Bahrami-Samani E, Vo DT, de Araujo PR, Vogel C, Smith AD, Penalva LOF, Uren PJ. Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput. WILEY INTERDISCIPLINARY REVIEWS. RNA 2015; 6:291-310. [PMID: 25515586 PMCID: PMC4397117 DOI: 10.1002/wrna.1274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
Co- and post-transcriptional regulation of gene expression is complex and multifaceted, spanning the complete RNA lifecycle from genesis to decay. High-throughput profiling of the constituent events and processes is achieved through a range of technologies that continue to expand and evolve. Fully leveraging the resulting data is nontrivial, and requires the use of computational methods and tools carefully crafted for specific data sources and often intended to probe particular biological processes. Drawing upon databases of information pre-compiled by other researchers can further elevate analyses. Within this review, we describe the major co- and post-transcriptional events in the RNA lifecycle that are amenable to high-throughput profiling. We place specific emphasis on the analysis of the resulting data, in particular the computational tools and resources available, as well as looking toward future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Dat T. Vo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute and Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX
| | - Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
31964
|
Peng Z, Yuan C, Zellmer L, Liu S, Xu N, Liao DJ. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J Cancer 2015; 6:555-67. [PMID: 26000048 PMCID: PMC4439942 DOI: 10.7150/jca.11997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.
Collapse
Affiliation(s)
- Zhiyu Peng
- 1. Beijing Genomics Institute at Shenzhen, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P. R. China
| | - Chengfu Yuan
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- 3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P. R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
31965
|
Adhikary T, Wortmann A, Schumann T, Finkernagel F, Lieber S, Roth K, Toth PM, Diederich WE, Nist A, Stiewe T, Kleinesudeik L, Reinartz S, Müller-Brüsselbach S, Müller R. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state. Nucleic Acids Res 2015; 43:5033-51. [PMID: 25934804 PMCID: PMC4446423 DOI: 10.1093/nar/gkv331] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation.
Collapse
Affiliation(s)
- Till Adhikary
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Annika Wortmann
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Tim Schumann
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Katrin Roth
- Cellular Imaging Core Facility, Philipps University, Center for Tumor Biology and Immunology (ZTI), 35043 Marburg, Germany
| | - Philipp M Toth
- Medicinal Chemistry Core Facility and Institute of Pharmaceutical Chemistry, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Wibke E Diederich
- Medicinal Chemistry Core Facility and Institute of Pharmaceutical Chemistry, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Lara Kleinesudeik
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Sabine Müller-Brüsselbach
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology (ZTI), Philipps University, 35043 Marburg, Germany
| |
Collapse
|
31966
|
Gustafson CB, Yang C, Dickson KM, Shao H, Van Booven D, Harbour JW, Liu ZJ, Wang G. Epigenetic reprogramming of melanoma cells by vitamin C treatment. Clin Epigenetics 2015; 7:51. [PMID: 25977731 PMCID: PMC4430922 DOI: 10.1186/s13148-015-0087-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/20/2015] [Indexed: 01/09/2023] Open
Abstract
Background The loss of 5-hydroxymethylcytosine (5hmC) has been identified as a novel epigenetic hallmark for melanoma. One of the known mechanisms underlying the loss of 5hmC is the decrease in expression of ten-eleven translocation family dioxygenase (TET) genes, which encode enzymes that catalyze the generation of 5hmC. Overexpressing TET2 was shown to partially reestablish a normal 5hmC profile in melanoma and decrease invasiveness in rodents. However, the feasibility to overexpress TETs in patients remains unclear. We and others have recently demonstrated that TETs require vitamin C as a cofactor to generate 5hmC. This finding prompted us to test whether vitamin C, as an alternative to overexpressing TETs, could rebuild 5hmC content in melanoma. Results Consistent with previous reports, we found that the expression of TETs was decreased in various melanoma cell lines. In contrast, the expressions of sodium-dependent vitamin C transporters (SVCTs) were down-regulated in cell lines derived from melanoma metastases. Treatment of vitamin C at the physiological level (0.1 mM) promoted the content of 5hmC in melanoma cell lines derived from different stages toward the level of healthy melanocytes, which was comparable to the effect of overexpressing TET2. Vitamin C treatment decreased the malignancy of metastatic A2058 cells by inhibiting migration and anchorage-independent growth, while not exerting any effect on the rate of proliferation. Further, vitamin C treatment caused alterations in genome-wide transcriptions shown by RNA-seq, predominantly in ArhGAP30 and genes involved in extracellular matrix remodeling, which could underlie the decreased malignant phenotypes. Conclusions Our data support the idea that vitamin C treatment increases 5hmC content in melanoma cells, while causing a decrease in tumor-cell invasiveness and clonogenic growth in soft agar. Thus, vitamin C could be a potential epigenetic treatment for melanoma.
Collapse
Affiliation(s)
- Christopher B Gustafson
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Cuixia Yang
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233 China
| | - Kevin M Dickson
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Hongwei Shao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - J William Harbour
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Zhao-Jun Liu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA ; Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
31967
|
Binary gene expression patterning of the molt cycle: the case of chitin metabolism. PLoS One 2015; 10:e0122602. [PMID: 25919476 PMCID: PMC4412622 DOI: 10.1371/journal.pone.0122602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes.
Collapse
|
31968
|
Herzel L, Neugebauer KM. Quantification of co-transcriptional splicing from RNA-Seq data. Methods 2015; 85:36-43. [PMID: 25929182 DOI: 10.1016/j.ymeth.2015.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
During gene expression, protein-coding transcripts are shaped by multiple processing events: 5' end capping, pre-mRNA splicing, RNA editing, and 3' end cleavage and polyadenylation. These events are required to produce mature mRNA, which can be subsequently translated. Nearly all of these RNA processing steps occur during transcription, while the nascent RNA is still attached to the DNA template by RNA polymerase II (i.e. co-transcriptionally). Polyadenylation occurs after 3' end cleavage or post-transcriptionally. Pre-mRNA splicing - the removal of introns and ligation of exons - can be initiated and concluded co-transcriptionally, although this is not strictly required. Recently, a number of studies using global methods have shown that the majority of splicing is co-transcriptional, yet not all published studies agree in their conclusions. Short read sequencing of RNA (RNA-Seq) is the prevailing approach to measuring splicing levels in nascent RNA, mRNA or total RNA. Here, we compare four different strategies for analyzing and quantifying co-transcriptional splicing. To do so, we reanalyze two nascent RNA-Seq datasets of the same species, but different cell type and RNA isolation procedure. Average co-transcriptional splicing values calculated on a per intron basis are similar, independent of the strategy used. We emphasize the technical requirements for identifying co-transcriptional splicing events with high confidence, e.g. how to calculate co-transcriptional splicing from nascent RNA- versus mRNA-Seq data, the number of biological replicates needed, depletion of polyA+RNA, and appropriate normalization. Finally, we present guidelines for planning a nascent RNA-Seq experiment.
Collapse
Affiliation(s)
- Lydia Herzel
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
31969
|
Abstract
The clustered, regularly interspaced, short palindromic repeats associated endonuclease, Cas9, has quickly become a revolutionary tool in genome engineering. Utilizing small guiding RNAs, Cas9 can be targeted to specific DNA sequences of interest, where it catalyzes DNA cleavage. We now demonstrate that Cas9 from the Gram-negative bacterium Francisella novicida (FnCas9) can be reprogrammed to target a specific RNA substrate, the genome of the +ssRNA virus, hepatitis C virus, in eukaryotic cells. Further, this targeting results in inhibition of viral protein production. Overall, programmable Cas9-mediated viral RNA targeting likely represents one of myriad potential applications of FnCas9 in RNA targeting in eukaryotic cells. Clustered, regularly interspaced, short palindromic repeats–CRISPR associated (CRISPR-Cas) systems are prokaryotic RNA-directed endonuclease machineries that act as an adaptive immune system against foreign genetic elements. Using small CRISPR RNAs that provide specificity, Cas proteins recognize and degrade nucleic acids. Our previous work demonstrated that the Cas9 endonuclease from Francisella novicida (FnCas9) is capable of targeting endogenous bacterial RNA. Here, we show that FnCas9 can be directed by an engineered RNA-targeting guide RNA to target and inhibit a human +ssRNA virus, hepatitis C virus, within eukaryotic cells. This work reveals a versatile and portable RNA-targeting system that can effectively function in eukaryotic cells and be programmed as an antiviral defense.
Collapse
|
31970
|
Targeting Human Long Noncoding Transcripts by Endoribonuclease-Prepared siRNAs. ACTA ACUST UNITED AC 2015; 20:1018-26. [DOI: 10.1177/1087057115583448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
Broad sequencing enterprises such as the FANTOM or ENCODE projects have substantially extended our knowledge of the human transcriptome. They have revealed that a large portion of genomic DNA is actively transcribed and have identified a plethora of novel transcripts. Many newly identified transcripts belong to the class of long noncoding RNAs (lncRNAs), which range from a few hundred bases to multiple kilobases in length and harbor no protein-coding potential. Although the biological activity of some lncRNAs is understood, the functions of most lncRNAs remain elusive. Tools that allow rapid and cost-effective access to functional data of lncRNAs are therefore essential. Here, we describe the construction and validation of an endoribonuclease-prepared siRNA (esiRNA) library designed to target 1779 individual human lncRNAs by RNA interference. We present a compendium of lncRNA expression data for 11 human cancer cell lines. Furthermore, we show that the resource is suitable for combined knockdown and localization analysis. We discuss challenges in sequence annotation of lncRNAs with respect to their often low and cell type–specific expression and specify esiRNAs that are suitable for targeting lncRNAs in commonly used human cell lines.
Collapse
|
31971
|
Danan-Gotthold M, Golan-Gerstl R, Eisenberg E, Meir K, Karni R, Levanon EY. Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res 2015; 43:5130-44. [PMID: 25908786 PMCID: PMC4446417 DOI: 10.1093/nar/gkv210] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is a complex disease that involves aberrant gene expression regulation. Discriminating the modified expression patterns driving tumor biology from the many that have no or little contribution is important for understanding cancer molecular basis. Recurrent deregulation patterns observed in multiple cancer types are enriched for such driver events. Here, we studied splicing alterations in hundreds of matched tumor and normal RNA-seq samples of eight solid cancer types. We found hundreds of cassette exons for which splicing was altered in multiple cancer types and identified a set of highly frequent altered splicing events. Specific splicing regulators, including RBFOX2, MBNL1/2 and QKI, appear to account for many splicing alteration events in multiple cancer types. Together, our results provide a first global analysis of regulated splicing alterations in cancer and identify common events with a potential causative role in solid tumor development.
Collapse
Affiliation(s)
- Miri Danan-Gotthold
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Regina Golan-Gerstl
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, 91120 Jerusalem, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren Meir
- Department of Pathology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, 91120 Jerusalem, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
31972
|
Puto LA, Benner C, Hunter T. The DAXX co-repressor is directly recruited to active regulatory elements genome-wide to regulate autophagy programs in a model of human prostate cancer. Oncoscience 2015; 2:362-72. [PMID: 26097870 PMCID: PMC4468322 DOI: 10.18632/oncoscience.152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/08/2015] [Indexed: 01/09/2023] Open
Abstract
While carcinoma of the prostate is the second most common cause of cancer death in the US, current methods and markers used to predict prostate cancer (PCa) outcome are inadequate. This study was aimed at understanding the genome-wide binding and regulatory role of the DAXX transcriptional repressor, recently implicated in PCa. ChIP-Seq analysis of genome-wide distribution of DAXX in PC3 cells revealed over 59,000 DAXX binding sites, found at regulatory enhancers and promoters. ChIP-Seq analysis of DNA methyltransferase 1 (DNMT1), which is a key epigenetic partner for DAXX repression, revealed that DNMT1 binding was restricted to a small number of DAXX sites. DNMT1 and DAXX bound close to transcriptional activator motifs. DNMT1 sites were found to be dependent on DAXX for recruitment by analyzing DNMT1 ChIP-Seq following DAXX knockdown (K/D), corroborating previous findings that DAXX recruits DNMT1 to repress its target genes. Massively parallel RNA sequencing (RNA-Seq) was used to compare the transcriptomes of WT and DAXX K/D PC3 cells. Genes induced by DAXX K/D included those involved in autophagy, and DAXX ChIP-Seq peaks were found close to the transcription start sites (TSS) of autophagy genes, implying they are more likely to be regulated by DAXX. In conclusion, DAXX binds active regulatory elements and co-localizes with DNMT1 in the prostate cancer genome. Given DAXX's putative regulatory role in autophagy, future studies may consider DAXX as a candidate marker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Lorena A Puto
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christopher Benner
- Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
31973
|
Bonfert T, Kirner E, Csaba G, Zimmer R, Friedel CC. ContextMap 2: fast and accurate context-based RNA-seq mapping. BMC Bioinformatics 2015; 16:122. [PMID: 25928589 PMCID: PMC4411664 DOI: 10.1186/s12859-015-0557-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/30/2015] [Indexed: 01/24/2023] Open
Abstract
Background Mapping of short sequencing reads is a crucial step in the analysis of RNA sequencing (RNA-seq) data. ContextMap is an RNA-seq mapping algorithm that uses a context-based approach to identify the best alignment for each read and allows parallel mapping against several reference genomes. Results In this article, we present ContextMap 2, a new and improved version of ContextMap. Its key novel features are: (i) a plug-in structure that allows easily integrating novel short read alignment programs with improved accuracy and runtime; (ii) context-based identification of insertions and deletions (indels); (iii) mapping of reads spanning an arbitrary number of exons and indels. ContextMap 2 using Bowtie, Bowtie 2 or BWA was evaluated on both simulated and real-life data from the recently published RGASP study. Conclusions We show that ContextMap 2 generally combines similar or higher recall compared to other state-of-the-art approaches with significantly higher precision in read placement and junction and indel prediction. Furthermore, runtime was significantly lower than for the best competing approaches. ContextMap 2 is freely available at http://www.bio.ifi.lmu.de/ContextMap. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0557-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Bonfert
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich, 80333, Germany.
| | - Evelyn Kirner
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich, 80333, Germany.
| | - Gergely Csaba
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich, 80333, Germany.
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich, 80333, Germany.
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich, 80333, Germany.
| |
Collapse
|
31974
|
Tourancheau A, Margaillan G, Rouleau M, Gilbert I, Villeneuve L, Lévesque E, Droit A, Guillemette C. Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing. THE PHARMACOGENOMICS JOURNAL 2015; 16:60-70. [PMID: 25869014 DOI: 10.1038/tpj.2015.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual's UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.
Collapse
Affiliation(s)
- A Tourancheau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - G Margaillan
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - M Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - I Gilbert
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - L Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - E Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - A Droit
- Faculty of Medicine, Laval University, Québec, QC, Canada
| | - C Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada.,Canada Research Chair in Pharmacogenomics, Pharmacogenomics Laboratory, CHU de Quebec Research Center, Quebec, QC, Canada
| |
Collapse
|
31975
|
A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat Neurosci 2015; 18:666-73. [PMID: 25867122 DOI: 10.1038/nn.3996] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
The E3 ubiquitin ligase Ube3a is an important regulator of activity-dependent synapse development and plasticity. Ube3a mutations cause Angelman syndrome and have been associated with autism spectrum disorders (ASD). However, the biological significance of alternative Ube3a transcripts generated in mammalian neurons remains unknown. We report here that Ube3a1 RNA, a transcript that encodes a truncated Ube3a protein lacking catalytic activity, prevents exuberant dendrite growth and promotes spine maturation in rat hippocampal neurons. Surprisingly, Ube3a1 RNA function was independent of its coding sequence but instead required a unique 3' untranslated region and an intact microRNA pathway. Ube3a1 RNA knockdown increased activity of the plasticity-regulating miR-134, suggesting that Ube3a1 RNA acts as a dendritic competing endogenous RNA. Accordingly, the dendrite-growth-promoting effect of Ube3a1 RNA knockdown in vivo is abolished in mice lacking miR-134. Taken together, our results define a noncoding function of an alternative Ube3a transcript in dendritic protein synthesis, with potential implications for Angelman syndrome and ASD.
Collapse
|
31976
|
Abstract
RNA sequencing (RNA-Seq) uses the capabilities of high-throughput sequencing methods to provide insight into the transcriptome of a cell. Compared to previous Sanger sequencing- and microarray-based methods, RNA-Seq provides far higher coverage and greater resolution of the dynamic nature of the transcriptome. Beyond quantifying gene expression, the data generated by RNA-Seq facilitate the discovery of novel transcripts, identification of alternatively spliced genes, and detection of allele-specific expression. Recent advances in the RNA-Seq workflow, from sample preparation to library construction to data analysis, have enabled researchers to further elucidate the functional complexity of the transcription. In addition to polyadenylated messenger RNA (mRNA) transcripts, RNA-Seq can be applied to investigate different populations of RNA, including total RNA, pre-mRNA, and noncoding RNA, such as microRNA and long ncRNA. This article provides an introduction to RNA-Seq methods, including applications, experimental design, and technical challenges.
Collapse
Affiliation(s)
- Kimberly R Kukurba
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305; Department of Computer Science, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
31977
|
Rochman Y, Yukawa M, Kartashov AV, Barski A. Functional characterization of human T cell hyporesponsiveness induced by CTLA4-Ig. PLoS One 2015; 10:e0122198. [PMID: 25860138 PMCID: PMC4393265 DOI: 10.1371/journal.pone.0122198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/08/2015] [Indexed: 01/08/2023] Open
Abstract
During activation, T cells integrate multiple signals from APCs and cytokine milieu. The blockade of these signals can have clinical benefits as exemplified by CTLA4-Ig, which blocks interaction of B7 co-stimulatory molecules on APCs with CD28 on T cells. Variants of CTLA4-Ig, abatacept and belatacept are FDA approved as immunosuppressive agents in arthritis and transplantation, yet murine studies suggested that CTLA4-Ig could be beneficial in a number of other diseases. However, detailed analysis of human CD4 cell hyporesponsivness induced by CTLA4-Ig has not been performed. Herein, we established a model to study the effect of CTLA4-Ig on the activation of human naïve T cells in a human mixed lymphocytes system. Comparison of human CD4 cells activated in the presence or absence of CTLA4-Ig showed that co-stimulation blockade during TCR activation does not affect NFAT signaling but results in decreased activation of NF-κB and AP-1 transcription factors followed by a profound decrease in proliferation and cytokine production. The resulting T cells become hyporesponsive to secondary activation and, although capable of receiving TCR signals, fail to proliferate or produce cytokines, demonstrating properties of anergic cells. However, unlike some models of T cell anergy, these cells did not possess increased levels of the TCR signaling inhibitor CBLB. Rather, the CTLA4-Ig-induced hyporesponsiveness was associated with an elevated level of p27kip1 cyclin-dependent kinase inhibitor.
Collapse
Affiliation(s)
- Yrina Rochman
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Masashi Yukawa
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Andrey V. Kartashov
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
31978
|
Morselli M, Pastor WA, Montanini B, Nee K, Ferrari R, Fu K, Bonora G, Rubbi L, Clark AT, Ottonello S, Jacobsen SE, Pellegrini M. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. eLife 2015; 4:e06205. [PMID: 25848745 PMCID: PMC4412109 DOI: 10.7554/elife.06205] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/02/2015] [Indexed: 12/17/2022] Open
Abstract
Methylation of cytosines (5(me)C) is a widespread heritable DNA modification. During mammalian development, two global demethylation events are followed by waves of de novo DNA methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized. Here, we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin features influencing the activity of the murine DNMT3B. Our data demonstrate that DNMT3B and H3K4 methylation are mutually exclusive and that DNMT3B is co-localized with H3K36 methylated regions. In support of this observation, DNA methylation analysis in yeast strains without Set1 and Set2 shows an increase of relative 5(me)C levels at the transcription start site and a decrease in the gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3 is strongly anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These results show the importance of H3K36 methylation for gene-body DNA methylation in vivo.
Collapse
Affiliation(s)
- Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - William A Pastor
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Barbara Montanini
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, Laboratory of Functional Genomics and Protein Engineering, Parma, Italy
| | - Kevin Nee
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Roberto Ferrari
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Kai Fu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Giancarlo Bonora
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Simone Ottonello
- Biochemistry and Molecular Biology Unit, Department of Life Sciences, Laboratory of Functional Genomics and Protein Engineering, Parma, Italy
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
31979
|
Saha A, Mitchell JA, Nishida Y, Hildreth JE, Ariberre JA, Gilbert WV, Garfinkel DJ. A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control. J Virol 2015; 89:3922-38. [PMID: 25609815 PMCID: PMC4403431 DOI: 10.1128/jvi.03060-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both "host and parasite." To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.
Collapse
Affiliation(s)
- Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jessica A Mitchell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jonathan E Hildreth
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Joshua A Ariberre
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
31980
|
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015. [PMID: 25751142 DOI: 10.1038/nmeth.331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
HISAT (hierarchical indexing for spliced alignment of transcripts) is a highly efficient system for aligning reads from RNA sequencing experiments. HISAT uses an indexing scheme based on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index, employing two types of indexes for alignment: a whole-genome FM index to anchor each alignment and numerous local FM indexes for very rapid extensions of these alignments. HISAT's hierarchical index for the human genome contains 48,000 local FM indexes, each representing a genomic region of ∼64,000 bp. Tests on real and simulated data sets showed that HISAT is the fastest system currently available, with equal or better accuracy than any other method. Despite its large number of indexes, HISAT requires only 4.3 gigabytes of memory. HISAT supports genomes of any size, including those larger than 4 billion bases.
Collapse
Affiliation(s)
- Daehwan Kim
- 1] Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ben Langmead
- 1] Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. [3] Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven L Salzberg
- 1] Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. [3] Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
31981
|
Deelen P, Zhernakova DV, de Haan M, van der Sijde M, Bonder MJ, Karjalainen J, van der Velde KJ, Abbott KM, Fu J, Wijmenga C, Sinke RJ, Swertz MA, Franke L. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels. Genome Med 2015; 7:30. [PMID: 25954321 PMCID: PMC4423486 DOI: 10.1186/s13073-015-0152-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq samples in the public domain, we here studied to what extent eQTLs and ASE effects can be identified when using public RNA-seq data while deriving the genotypes from the RNA-sequencing reads themselves. Methods We downloaded the raw reads for all available human RNA-seq datasets. Using these reads we performed gene expression quantification. All samples were jointly normalized and subjected to a strict quality control. We also derived genotypes using the RNA-seq reads and used imputation to infer non-coding variants. This allowed us to perform eQTL mapping and ASE analyses jointly on all samples that passed quality control. Our results were validated using samples for which DNA-seq genotypes were available. Results 4,978 public human RNA-seq runs, representing many different tissues and cell-types, passed quality control. Even though these data originated from many different laboratories, samples reflecting the same cell type clustered together, suggesting that technical biases due to different sequencing protocols are limited. In a joint analysis on the 1,262 samples with high quality genotypes, we identified cis-eQTLs effects for 8,034 unique genes (at a false discovery rate ≤0.05). eQTL mapping on individual tissues revealed that a limited number of samples already suffice to identify tissue-specific eQTLs for known disease-associated genetic variants. Additionally, we observed strong ASE effects for 34 rare pathogenic variants, corroborating previously observed effects on the corresponding protein levels. Conclusions By deriving and imputing genotypes from RNA-seq data, it is possible to identify both eQTLs and ASE effects. Given the exponential growth of the number of publicly available RNA-seq samples, we expect this approach will become especially relevant for studying the effects of tissue-specific and rare pathogenic genetic variants to aid clinical interpretation of exome and genome sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0152-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick Deelen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands ; University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB Groningen, The Netherlands
| | - Daria V Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Mark de Haan
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands ; University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB Groningen, The Netherlands
| | - Marijke van der Sijde
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Marc Jan Bonder
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Juha Karjalainen
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - K Joeri van der Velde
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands ; University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB Groningen, The Netherlands
| | - Kristin M Abbott
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands ; University of Groningen, University Medical Center Groningen, Genomics Coordination Center, 9700 RB Groningen, The Netherlands
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| |
Collapse
|
31982
|
Lee JW, Chou CL, Knepper MA. Deep Sequencing in Microdissected Renal Tubules Identifies Nephron Segment-Specific Transcriptomes. J Am Soc Nephrol 2015; 26:2669-77. [PMID: 25817355 DOI: 10.1681/asn.2014111067] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 12/24/2022] Open
Abstract
The function of each renal tubule segment depends on the genes expressed therein. High-throughput methods used for global profiling of gene expression in unique cell types have shown low sensitivity and high false positivity, thereby limiting the usefulness of these methods in transcriptomic research. However, deep sequencing of RNA species (RNA-seq) achieves highly sensitive and quantitative transcriptomic profiling by sequencing RNAs in a massive, parallel manner. Here, we used RNA-seq coupled with classic renal tubule microdissection to comprehensively profile gene expression in each of 14 renal tubule segments from the proximal tubule through the inner medullary collecting duct of rat kidneys. Polyadenylated mRNAs were captured by oligo-dT primers and processed into adapter-ligated cDNA libraries that were sequenced using an Illumina platform. Transcriptomes were identified to a median depth of 8261 genes in microdissected renal tubule samples (105 replicates in total) and glomeruli (5 replicates). Manual microdissection allowed a high degree of sample purity, which was evidenced by the observed distributions of well established cell-specific markers. The main product of this work is an extensive database of gene expression along the nephron provided as a publicly accessible webpage (https://helixweb.nih.gov/ESBL/Database/NephronRNAseq/index.html). The data also provide genome-wide maps of alternative exon usage and polyadenylation sites in the kidney. We illustrate the use of the data by profiling transcription factor expression along the renal tubule and mapping metabolic pathways.
Collapse
Affiliation(s)
- Jae Wook Lee
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31983
|
Hsu W, Gonzalez NR, Chien A, Pablo Villablanca J, Pajukanta P, Viñuela F, Bui AAT. An integrated, ontology-driven approach to constructing observational databases for research. J Biomed Inform 2015; 55:132-42. [PMID: 25817919 DOI: 10.1016/j.jbi.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/14/2015] [Accepted: 03/19/2015] [Indexed: 11/28/2022]
Abstract
The electronic health record (EHR) contains a diverse set of clinical observations that are captured as part of routine care, but the incomplete, inconsistent, and sometimes incorrect nature of clinical data poses significant impediments for its secondary use in retrospective studies or comparative effectiveness research. In this work, we describe an ontology-driven approach for extracting and analyzing data from the patient record in a longitudinal and continuous manner. We demonstrate how the ontology helps enforce consistent data representation, integrates phenotypes generated through analyses of available clinical data sources, and facilitates subsequent studies to identify clinical predictors for an outcome of interest. Development and evaluation of our approach are described in the context of studying factors that influence intracranial aneurysm (ICA) growth and rupture. We report our experiences in capturing information on 78 individuals with a total of 120 aneurysms. Two example applications related to assessing the relationship between aneurysm size, growth, gene expression modules, and rupture are described. Our work highlights the challenges with respect to data quality, workflow, and analysis of data and its implications toward a learning health system paradigm.
Collapse
Affiliation(s)
- William Hsu
- Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.
| | - Nestor R Gonzalez
- Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States; Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Aichi Chien
- Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - J Pablo Villablanca
- Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Päivi Pajukanta
- Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Fernando Viñuela
- Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Alex A T Bui
- Department of Radiological Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
31984
|
Combs PA, Eisen MB. Low-cost, low-input RNA-seq protocols perform nearly as well as high-input protocols. PeerJ 2015; 3:e869. [PMID: 25834775 PMCID: PMC4380159 DOI: 10.7717/peerj.869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/11/2015] [Indexed: 01/23/2023] Open
Abstract
Recently, a number of protocols extending RNA-sequencing to the single-cell regime have been published. However, we were concerned that the additional steps to deal with such minute quantities of input sample would introduce serious biases that would make analysis of the data using existing approaches invalid. In this study, we performed a critical evaluation of several of these low-volume RNA-seq protocols, and found that they performed slightly less well in per-gene linearity of response, but with at least two orders of magnitude less sample required. We also explored a simple modification to one of these protocols that, for many samples, reduced the cost of library preparation to approximately $20/sample.
Collapse
Affiliation(s)
- Peter A Combs
- Graduate Program in Biophysics, University of California , Berkeley, CA , USA
| | - Michael B Eisen
- Department of Molecular and Cell Biology, University of California , Berkeley, CA , USA ; Howard Hughes Medical Institute, University of California , Berkeley, CA , USA
| |
Collapse
|
31985
|
Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 2015; 520:368-72. [PMID: 25807485 PMCID: PMC4507807 DOI: 10.1038/nature14336] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/12/2015] [Indexed: 12/11/2022]
Abstract
Drug resistance invariably limits the clinical efficacy of targeted therapy with kinase inhibitors against cancer. Here we show that targeted therapy with BRAF, ALK or EGFR kinase inhibitors induces a complex network of secreted signals in drug-stressed human and mouse melanoma and human lung adenocarcinoma cells. This therapy-induced secretome stimulates the outgrowth, dissemination and metastasis of drug-resistant cancer cell clones and supports the survival of drug-sensitive cancer cells, contributing to incomplete tumour regression. The tumour-promoting secretome of melanoma cells treated with the kinase inhibitor vemurafenib is driven by downregulation of the transcription factor FRA1. In situ transcriptome analysis of drug-resistant melanoma cells responding to the regressing tumour microenvironment revealed hyperactivation of several signalling pathways, most prominently the AKT pathway. Dual inhibition of RAF and the PI(3)K/AKT/mTOR intracellular signalling pathways blunted the outgrowth of the drug-resistant cell population in BRAF mutant human melanoma, suggesting this combination therapy as a strategy against tumour relapse. Thus, therapeutic inhibition of oncogenic drivers induces vast secretome changes in drug-sensitive cancer cells, paradoxically establishing a tumour microenvironment that supports the expansion of drug-resistant clones, but is susceptible to combination therapy.
Collapse
|
31986
|
Farlow JL, Lin H, Sauerbeck L, Lai D, Koller DL, Pugh E, Hetrick K, Ling H, Kleinloog R, van der Vlies P, Deelen P, Swertz MA, Verweij BH, Regli L, Rinkel GJE, Ruigrok YM, Doheny K, Liu Y, Broderick J, Foroud T, FIA Study Investigators. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm. PLoS One 2015; 10:e0121104. [PMID: 25803036 PMCID: PMC4372548 DOI: 10.1371/journal.pone.0121104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.
Collapse
Affiliation(s)
- Janice L. Farlow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Laura Sauerbeck
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Daniel L. Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Kurt Hetrick
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Hua Ling
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Rachel Kleinloog
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Patrick Deelen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Morris A. Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bon H. Verweij
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Luca Regli
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Gabriel J. E. Rinkel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ynte M. Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kimberly Doheny
- Center for Inherited Disease Research, Johns Hopkins University; Baltimore, Maryland, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | |
Collapse
|
31987
|
Immunoglobulin transcript sequence and somatic hypermutation computation from unselected RNA-seq reads in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2015; 112:4322-7. [PMID: 25787252 DOI: 10.1073/pnas.1503587112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins (Ig) are produced by B lymphocytes as secreted antibodies or as part of the B-cell receptor. There is tremendous diversity of potential Ig transcripts (>1 × 10(12)) as a result of hundreds of germ-line gene segments, random nucleotide incorporation during joining of gene segments into a complete transcript, and the process of somatic hypermutation at individual nucleotides. This recombination and mutation process takes place in the maturing B cell and is responsible for the diversity of potential epitope recognition. Cancers arising from mature B cells are characterized by clonal production of Ig heavy (IGH@) and light chain transcripts, although whether the sequence has undergone somatic hypermutation is dependent on the maturation stage at which the neoplastic clone arose. Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults and arises from a mature B cell with either mutated or unmutated IGH@ transcripts, the latter having worse prognosis and the assessment of which is routinely performed in the clinic. Currently, IGHV mutation status is assessed by Sanger sequencing and comparing the transcript to known germ-line genes. In this paper, we demonstrate that complete IGH@ V-D-J sequences can be computed from unselected RNA-seq reads with results equal or superior to the clinical procedure: in the only discordant case, the clinical transcript was out-of-frame. Therefore, a single RNA-seq assay can simultaneously yield gene expression profile, SNP and mutation information, as well as IGHV mutation status, and may one day be performed as a general test to capture multidimensional clinically relevant data in CLL.
Collapse
|
31988
|
Kurmangaliyev YZ, Favorov AV, Osman NM, Lehmann KV, Campo D, Salomon MP, Tower J, Gelfand MS, Nuzhdin SV. Natural variation of gene models in Drosophila melanogaster. BMC Genomics 2015; 16:198. [PMID: 25888292 PMCID: PMC4373058 DOI: 10.1186/s12864-015-1415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/28/2015] [Indexed: 01/10/2025] Open
Abstract
Background Variation within splicing regulatory sequences often leads to differences in gene models among individuals within a species. Two alleles of the same gene may express transcripts with different exon/intron structures and consequently produce functionally different proteins. Matching genomic and transcriptomic data allows us to identify putative regulatory variants associated with changes in splicing patterns. Results Here we analyzed natural variation of splicing patterns in the transcriptomes of 81 natural strains of Drosophila melanogaster with known genotypes. We identified dozens of genotype-specific splicing patterns associated with putative cis-splicing quantitative trait loci (sQTL). The majority of changes can be explained by mutations in splice sites. Allelic-imbalance in splicing patterns confirmed that the majority are regulated mainly by cis-genetic effects. Remarkably, allele-specific splicing changes often lead to qualitative changes in gene models, yielding many isoforms not previously annotated. The observed alterations are typically outside protein-coding regions or affect only very short protein segments. Conclusions Overall, the sets of gene models appear to be flexible within D. melanogaster populations. The observed variation in splicing patterns are predicted to have limited effects on the encoded protein sequences. To our knowledge, this is the first sQTL mapping study in Drosophila. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1415-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- University of Southern California, Los Angeles, CA, USA. .,Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia.
| | - Alexander V Favorov
- Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Vavilov Institute of General Genetics, Moscow, Russia. .,Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.
| | - Noha M Osman
- University of Southern California, Los Angeles, CA, USA. .,National Research Center, Dokki, Giza, Egypt.
| | - Kjong-Van Lehmann
- Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, USA.
| | - Daniel Campo
- University of Southern California, Los Angeles, CA, USA.
| | | | - John Tower
- University of Southern California, Los Angeles, CA, USA.
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia. .,Lomonosov Moscow State University, Moscow, Russia.
| | - Sergey V Nuzhdin
- University of Southern California, Los Angeles, CA, USA. .,Saint Petersburg Polytechnical University, St Petersburg, Russia.
| |
Collapse
|
31989
|
HEB associates with PRC2 and SMAD2/3 to regulate developmental fates. Nat Commun 2015; 6:6546. [PMID: 25775035 DOI: 10.1038/ncomms7546] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/05/2015] [Indexed: 11/09/2022] Open
Abstract
In embryonic stem cells, extracellular signals are required to derepress developmental promoters to drive lineage specification, but the proteins involved in connecting extrinsic cues to relaxation of chromatin remain unknown. We demonstrate that the helix-loop-helix (HLH) protein, HEB, directly associates with the Polycomb repressive complex 2 (PRC2) at a subset of developmental promoters, including at genes involved in mesoderm and endoderm specification and at the Hox and Fox gene families. While we show that depletion of HEB does not affect mouse ESCs, it does cause premature differentiation after exposure to Activin. Further, we find that HEB deposition at developmental promoters is dependent upon PRC2 and independent of Nodal, whereas HEB association with SMAD2/3 elements is dependent of Nodal, but independent of PRC2. We suggest that HEB is a fundamental link between Nodal signalling, the derepression of a specific class of poised promoters during differentiation, and lineage specification in mouse ESCs.
Collapse
|
31990
|
Jalali S, Kapoor S, Sivadas A, Bhartiya D, Scaria V. Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics 2015; 31:2241-51. [DOI: 10.1093/bioinformatics/btv148] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
|
31991
|
DeBoever C, Ghia EM, Shepard PJ, Rassenti L, Barrett CL, Jepsen K, Jamieson CHM, Carson D, Kipps TJ, Frazer KA. Transcriptome sequencing reveals potential mechanism of cryptic 3' splice site selection in SF3B1-mutated cancers. PLoS Comput Biol 2015; 11:e1004105. [PMID: 25768983 PMCID: PMC4358997 DOI: 10.1371/journal.pcbi.1004105] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/29/2014] [Indexed: 01/12/2023] Open
Abstract
Mutations in the splicing factor SF3B1 are found in several cancer types and have been associated with various splicing defects. Using transcriptome sequencing data from chronic lymphocytic leukemia, breast cancer and uveal melanoma tumor samples, we show that hundreds of cryptic 3’ splice sites (3’SSs) are used in cancers with SF3B1 mutations. We define the necessary sequence context for the observed cryptic 3’ SSs and propose that cryptic 3’SS selection is a result of SF3B1 mutations causing a shift in the sterically protected region downstream of the branch point. While most cryptic 3’SSs are present at low frequency (<10%) relative to nearby canonical 3’SSs, we identified ten genes that preferred out-of-frame cryptic 3’SSs. We show that cancers with mutations in the SF3B1 HEAT 5-9 repeats use cryptic 3’SSs downstream of the branch point and provide both a mechanistic model consistent with published experimental data and affected targets that will guide further research into the oncogenic effects of SF3B1 mutation. A key goal of cancer genomics studies is to identify genes that are recurrently mutated at a rate above background and likely contribute to cancer development. Many such recurrently mutated genes have been identified over the last few years, but we often do not know the underlying mechanisms by which they contribute to cancer growth. Unexpectedly, several genes in the spliceosome, the collection of RNAs and proteins that remove introns from transcribed RNAs, are recurrently mutated in different cancers. Here, we have examined mutations in the splicing factor SF3B1, a key component of the spliceosome, and identified a global splicing defect present in different cancers with SF3B1 mutations by comparing the expression of splice junctions using generalized linear models. While prior studies have reported a limited number of aberrant splicing events in SF3B1-mutated cancers, we have established that SF3B1 mutations are associated with usage of hundreds of atypical splice sites at the 3’ end of the intron. We have identified nucleotide sequence requirements for these cryptic splice sites that are consistent with a proposed mechanistic model. These findings greatly expand our understanding of the effect of SF3B1 mutations on splicing and provide new targets for determining the oncogenic effect of SF3B1 mutations.
Collapse
Affiliation(s)
- Christopher DeBoever
- Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emanuela M. Ghia
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Peter J. Shepard
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, California, United States of America
| | - Laura Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Christian L. Barrett
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Catriona H. M. Jamieson
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Dennis Carson
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Thomas J. Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Kelly A. Frazer
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
31992
|
Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, Hemberg M, Ebert DH, Greenberg ME. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 2015; 522:89-93. [PMID: 25762136 PMCID: PMC4480648 DOI: 10.1038/nature14319] [Citation(s) in RCA: 440] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/12/2015] [Indexed: 12/29/2022]
Abstract
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.
Collapse
Affiliation(s)
- Harrison W Gabel
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benyam Kinde
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hume Stroud
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Caitlin S Gilbert
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nathaniel R Kastan
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Martin Hemberg
- Department of Ophthalmology, Children's Hospital Boston, Center for Brain Science and Swartz Center for Theoretical Neuroscience, Harvard University, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Daniel H Ebert
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
31993
|
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015; 12:357-60. [PMID: 25751142 DOI: 10.1038/nmeth.3317] [Citation(s) in RCA: 14617] [Impact Index Per Article: 1461.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Abstract
HISAT (hierarchical indexing for spliced alignment of transcripts) is a highly efficient system for aligning reads from RNA sequencing experiments. HISAT uses an indexing scheme based on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index, employing two types of indexes for alignment: a whole-genome FM index to anchor each alignment and numerous local FM indexes for very rapid extensions of these alignments. HISAT's hierarchical index for the human genome contains 48,000 local FM indexes, each representing a genomic region of ∼64,000 bp. Tests on real and simulated data sets showed that HISAT is the fastest system currently available, with equal or better accuracy than any other method. Despite its large number of indexes, HISAT requires only 4.3 gigabytes of memory. HISAT supports genomes of any size, including those larger than 4 billion bases.
Collapse
Affiliation(s)
- Daehwan Kim
- 1] Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ben Langmead
- 1] Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. [3] Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven L Salzberg
- 1] Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. [3] Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
31994
|
Quantitative gene profiling of long noncoding RNAs with targeted RNA sequencing. Nat Methods 2015; 12:339-42. [PMID: 25751143 DOI: 10.1038/nmeth.3321] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/01/2015] [Indexed: 12/20/2022]
Abstract
We compared quantitative RT-PCR (qRT-PCR), RNA-seq and capture sequencing (CaptureSeq) in terms of their ability to assemble and quantify long noncoding RNAs and novel coding exons across 20 human tissues. CaptureSeq was superior for the detection and quantification of genes with low expression, showed little technical variation and accurately measured differential expression. This approach expands and refines previous annotations and simultaneously generates an expression atlas.
Collapse
|
31995
|
Arboleda VA, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo CF, Manning MA, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom SP, Deignan JL, Grody WW, Vilain E, Nelson SF. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 2015; 96:498-506. [PMID: 25728775 DOI: 10.1016/j.ajhg.2015.01.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Chromatin remodeling through histone acetyltransferase (HAT) and histone deactylase (HDAC) enzymes affects fundamental cellular processes including the cell-cycle, cell differentiation, metabolism, and apoptosis. Nonsense mutations in genes that are involved in histone acetylation and deacetylation result in multiple congenital anomalies with most individuals displaying significant developmental delay, microcephaly and dysmorphism. Here, we report a syndrome caused by de novo heterozygous nonsense mutations in KAT6A (a.k.a., MOZ, MYST3) identified by clinical exome sequencing (CES) in four independent families. The same de novo nonsense mutation (c.3385C>T [p.Arg1129∗]) was observed in three individuals, and the fourth individual had a nearby de novo nonsense mutation (c.3070C>T [p.Arg1024∗]). Neither of these variants was present in 1,815 in-house exomes or in public databases. Common features among all four probands include primary microcephaly, global developmental delay including profound speech delay, and craniofacial dysmorphism, as well as more varied features such as feeding difficulties, cardiac defects, and ocular anomalies. We further demonstrate that KAT6A mutations result in dysregulation of H3K9 and H3K18 acetylation and altered P53 signaling. Through histone and non-histone acetylation, KAT6A affects multiple cellular processes and illustrates the complex role of acetylation in regulating development and disease.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Naghmeh Dorrani
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA
| | - Neda Zadeh
- Division of Medical Genetics, CHOC Children's Hospital of Orange County, CA 92868, USA; Genetics Center, Orange, CA 92868, USA
| | - Mary Willis
- Department of Pediatrics, Naval Medical Center, San Diego, 92134, USA
| | - Colleen Forsyth Macmurdo
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melanie A Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea Kwan
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Louanne Hudgins
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Florian Barthelemy
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - M Carrie Miceli
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sibel Kantarci
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel P Strom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Pediatrics, Division of Medical Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
31996
|
Gibb EA, Warren RL, Wilson GW, Brown SD, Robertson GA, Morin GB, Holt RA. Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Med 2015; 7:22. [PMID: 25821520 PMCID: PMC4375928 DOI: 10.1186/s13073-015-0142-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/12/2015] [Indexed: 11/15/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are emerging as molecules that significantly impact many cellular processes and have been associated with almost every human cancer. Compared to protein-coding genes, lncRNA genes are often associated with transposable elements, particularly with endogenous retroviral elements (ERVs). ERVs can have potentially deleterious effects on genome structure and function, so these elements are typically silenced in normal somatic tissues, albeit with varying efficiency. The aberrant regulation of ERVs associated with lncRNAs (ERV-lncRNAs), coupled with the diverse range of lncRNA functions, creates significant potential for ERV-lncRNAs to impact cancer biology. Methods We used RNA-seq analysis to identify and profile the expression of a novel lncRNA in six large cohorts, including over 7,500 samples from The Cancer Genome Atlas (TCGA). Results We identified the tumor-specific expression of a novel lncRNA that we have named Endogenous retroViral-associated ADenocarcinoma RNA or ‘EVADR’, by analyzing RNA-seq data derived from colorectal tumors and matched normal control tissues. Subsequent analysis of TCGA RNA-seq data revealed the striking association of EVADR with adenocarcinomas, which are tumors of glandular origin. Moderate to high levels of EVADR were detected in 25 to 53% of colon, rectal, lung, pancreas and stomach adenocarcinomas (mean = 30 to 144 FPKM), and EVADR expression correlated with decreased patient survival (Cox regression; hazard ratio = 1.47, 95% confidence interval = 1.06 to 2.04, P = 0.02). In tumor sites of non-glandular origin, EVADR expression was detectable at only very low levels and in less than 10% of patients. For EVADR, a MER48 ERV element provides an active promoter to drive its transcription. Genome-wide, MER48 insertions are associated with nine lncRNAs, but none of the MER48-associated lncRNAs other than EVADR were consistently expressed in adenocarcinomas, demonstrating the specific activation of EVADR. The sequence and structure of the EVADR locus is highly conserved among Old World monkeys and apes but not New World monkeys or prosimians, where the MER48 insertion is absent. Conservation of the EVADR locus suggests a functional role for this novel lncRNA in humans and our closest primate relatives. Conclusions Our results describe the specific activation of a highly conserved ERV-lncRNA in numerous cancers of glandular origin, a finding with diagnostic, prognostic and therapeutic implications. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0142-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewan A Gibb
- Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| | - René L Warren
- Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3 Canada
| | - Gavin W Wilson
- Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3 Canada ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| | - Scott D Brown
- Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3 Canada ; Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| | - Gordon A Robertson
- Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3 Canada
| | - Gregg B Morin
- Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada ; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| | - Robert A Holt
- Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Ave, Vancouver, British Columbia V5Z 1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada ; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 Canada
| |
Collapse
|
31997
|
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 2015; 33:269-276. [PMID: 25664528 PMCID: PMC4374163 DOI: 10.1038/nbt.3154] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
Abstract
Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.
Collapse
Affiliation(s)
- Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Steven Woodhouse
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Laleh Haghverdi
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Andrew J. Lilly
- Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Yosuke Tanaka
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Adam C. Wilkinson
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Florian Buettner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Iain C. Macaulay
- Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Wajid Jawaid
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Nir Piterman
- Department of Computer Science, University of Leicester, Leicester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Garching, Germany
| | - Jasmin Fisher
- Microsoft Research Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
31998
|
Lai KP, Li JW, Wang SY, Chiu JMY, Tse A, Lau K, Lok S, Au DWT, Tse WKF, Wong CKC, Chan TF, Kong RYC, Wu RSS. Tissue-specific transcriptome assemblies of the marine medaka Oryzias melastigma and comparative analysis with the freshwater medaka Oryzias latipes. BMC Genomics 2015; 16:135. [PMID: 25765076 PMCID: PMC4352242 DOI: 10.1186/s12864-015-1325-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/06/2015] [Indexed: 11/12/2022] Open
Abstract
Background The marine medaka Oryzias melastigma has been demonstrated as a novel model for marine ecotoxicological studies. However, the lack of genome and transcriptome reference has largely restricted the use of O. melastigma in the assessment of in vivo molecular responses to environmental stresses and the analysis of biological toxicity in the marine environment. Although O. melastigma is believed to be phylogenetically closely related to Oryzias latipes, the divergence between these two species is still largely unknown. Using Illumina high-throughput RNA sequencing followed by de novo assembly and comprehensive gene annotation, we provided transcriptomic resources for the brain, liver, ovary and testis of O. melastigma. We also investigated the possible extent of divergence between O. melastigma and O. latipes at the transcriptome level. Results More than 14,000 transcripts across brain, liver, ovary and testis in marine medaka were annotated, of which 5880 transcripts were orthologous between O. melastigma and O. latipes. Tissue-enriched genes were identified in O. melastigma, and Gene Ontology analysis demonstrated the functional specificity of the annotated genes in respective tissue. Lastly, the identification of marine medaka-enriched transcripts suggested the necessity of generating transcriptome dataset of O. melastigma. Conclusions Orthologous transcripts between O. melastigma and O. latipes, tissue-enriched genes and O. melastigma-enriched transcripts were identified. Genome-wide expression studies of marine medaka require an assembled transcriptome, and this sequencing effort has generated a valuable resource of coding DNA for a non-model species. This transcriptome resource will aid future studies assessing in vivo molecular responses to environmental stresses and those analyzing biological toxicity in the marine environment. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1325-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keng Po Lai
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Jing-Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Simon Yuan Wang
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Jill Man-Ying Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Anna Tse
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Karen Lau
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Si Lok
- Genome Research Centre, The Hong Kong Jockey Club Building for Interdisciplinary Research, The University of Hong Kong, 5 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| | - Doris Wai-Ting Au
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - William Ka-Fai Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Chris Kong-Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Ting-Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Richard Yuen-Chong Kong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| | - Rudolf Shiu-Sun Wu
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China. .,The State Key Laboratory in Marine Pollution, Hong Kong, China.
| |
Collapse
|
31999
|
Farkas MH, Au ED, Sousa ME, Pierce EA. RNA-Seq: Improving Our Understanding of Retinal Biology and Disease. Cold Spring Harb Perspect Med 2015; 5:a017152. [PMID: 25722474 PMCID: PMC4561396 DOI: 10.1101/cshperspect.a017152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the past several years, rapid technological advances have allowed for a dramatic increase in our knowledge and understanding of the transcriptional landscape, because of the ability to study gene expression in greater depth and with more detail than previously possible. To this end, RNA-Seq has quickly become one of the most widely used methods for studying transcriptomes of tissues and individual cells. Unlike previously favored analysis methods, RNA-Seq is extremely high-throughput, and is not dependent on an annotated transcriptome, laying the foundation for novel genetic discovery. Additionally, RNA-Seq derived transcriptomes provide a basis for widening the scope of research to identify potential targets in the treatment of retinal disease.
Collapse
Affiliation(s)
- Michael H Farkas
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Elizabeth D Au
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Maria E Sousa
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
32000
|
mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer. PLoS One 2015; 10:e0117818. [PMID: 25710561 PMCID: PMC4339844 DOI: 10.1371/journal.pone.0117818] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022] Open
Abstract
Intrinsic and acquired resistance to the monoclonal antibody drug trastuzumab is a major problem in the treatment of HER2-positive breast cancer. A deeper understanding of the underlying mechanisms could help to develop new agents. Our intention was to detect genes and single nucleotide polymorphisms (SNPs) affecting trastuzumab efficiency in cell culture. Three HER2-positive breast cancer cell lines with different resistance phenotypes were analyzed. We chose BT474 as model of trastuzumab sensitivity, HCC1954 as model of intrinsic resistance, and BTR50, derived from BT474, as model of acquired resistance. Based on RNA-Seq data, we performed differential expression analyses on these cell lines with and without trastuzumab treatment. Differentially expressed genes between the resistant cell lines and BT474 are expected to contribute to resistance. Differentially expressed genes between untreated and trastuzumab treated BT474 are expected to contribute to drug efficacy. To exclude false positives from the candidate gene set, we removed genes that were also differentially expressed between untreated and trastuzumab treated BTR50. We further searched for SNPs in the untreated cell lines which could contribute to trastuzumab resistance. The analysis resulted in 54 differentially expressed candidate genes that might be connected to trastuzumab efficiency. 90% of 40 selected candidates were validated by RT-qPCR. ALPP, CALCOCO1, CAV1, CYP1A2 and IGFBP3 were significantly higher expressed in the trastuzumab treated than in the untreated BT474 cell line. GDF15, IL8, LCN2, PTGS2 and 20 other genes were significantly higher expressed in HCC1954 than in BT474, while NCAM2, COLEC12, AFF3, TFF3, NRCAM, GREB1 and TFF1 were significantly lower expressed. Additionally, we inferred SNPs in HCC1954 for CAV1, PTGS2, IL8 and IGFBP3. The latter also had a variation in BTR50. 20% of the validated subset have already been mentioned in literature. For half of them we called and analyzed SNPs. These results contribute to a better understanding of trastuzumab action and resistance mechanisms.
Collapse
|