301
|
Abstract
The nuclear hormone receptor estrogen receptor alpha (ERα) is a well-known transcription factor present in many breast cancers, where it promotes cancer progression. In this issue of Cell, Xu et al. report that ERα is also an RNA-binding protein and that its post-transcriptional activity enables cancer cell fitness and survival.
Collapse
|
302
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|
303
|
Nishimura K, Mori J, Sawada T, Nomura S, Kouzmenko A, Yamashita K, Kanemoto Y, Kurokawa T, Hayakawa A, Tokiwa S, Ochi M, Shimmura H, Kato S. Profiling of Androgen-Dependent Enhancer RNAs Expression in Human Prostate Tumors: Search for Malignancy Transition Markers. Res Rep Urol 2021; 13:705-713. [PMID: 34549035 PMCID: PMC8449685 DOI: 10.2147/rru.s328661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction Although the ability of androgens to promote prostate cancer development has been known for decades, the molecular mechanisms of androgen receptor (AR) signaling in the tumorigenesis remain unclear. Enhancer RNAs (eRNAs) transcribed from strong enhancers, or super-enhancers (SEs), have recently emerged as a novel class of regulatory non-coding RNAs (ncRNAs) that facilitate transcription, including that of androgen target genes, through chromatin looping to position enhancers proximate to the promoters. The aim of this study was to assess androgen-dependent transcription in prostate tumors of eRNAs (designated as KLK3eRNAs) from the SE of the KLK3 gene encoding the prostate-specific antigen (PSA) protein, a clinical marker of prostate carcinogenesis. Materials and Methods The androgen-induced KLK3eRNAs were identified in the LNCaP human prostate cancer cell line. The expressions of these KLK3eRNAs together with KLK3 and AR mRNA transcripts were assessed by qRT-PCR in prostate tumor samples from five prostate cancer patients. Results Androgen-induced KLK3eRNAs have been identified in the LNCaP cells, and their expression was further analyzed in tumors of prostate cancer patients. Transcripts of the tested KLK3eRNAs have been detected in all clinical samples, but their expression patterns differed between individual tumor specimens. We found a statistically significant correlation between the levels of the KLK3 and AR mRNAs with those of the previously reported KLK3eRNAs, while such correlation was not observed for novel KLK3eRNAs described in our recent report. Conclusion Presented data suggest that prostate tumor development may associate with epigenetic reorganization in the KLK3 genomic regulatory elements reflected by changes of the KLK3eRNA expression. Our findings support a potential of eRNAs profiling to be used as diagnostic marker.
Collapse
Affiliation(s)
- Koichi Nishimura
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Jinichi Mori
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan.,Department of Hematology, Jyoban Hospital, Iwaki, Japan
| | - Takahiro Sawada
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Shuhei Nomura
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Yoshiaki Kanemoto
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Tomohiro Kurokawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| | - Akira Hayakawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan
| | - Suguru Tokiwa
- Department of Urology, Jyoban Hospital, Iwaki, Japan
| | | | | | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Japan.,Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Japan
| |
Collapse
|
304
|
Sawada T, Nishimura K, Mori J, Kanemoto Y, Kouzmenko A, Amano R, Hayakawa A, Tokiwa S, Shimmura H, Kato S. Androgen-dependent and DNA-binding-independent association of androgen receptor with chromatic regions coding androgen-induced noncoding RNAs. Biosci Biotechnol Biochem 2021; 85:2121-2130. [PMID: 34297060 DOI: 10.1093/bbb/zbab135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 11/14/2022]
Abstract
Androgen induces the binding of its receptor (AR) to androgen-responsive elements (AREs), while genome-wide studies showed that most androgen-induced AR binding sites on chromatin were unrelated to AREs. Enhancer RNAs (eRNAs), a class of noncoding RNAs (ncRNAs), are transcribed from superenhancers (SEs) and trigger the formation of large ribonucleoprotein condensates of transcription factors. By in silico search, an SE is found to be located on the locus of KLK3 that encodes prostate specific antigen. On the KLK3 SE, androgen-induced expression of ncRNAs was detected and designated as KLK3eRNAs in LNCaP cells, and androgen-induced association of AR and FOXA1 on the KLK3eRNA coding regions was detected. Such androgen-induced association of an AR mutant lacking DNA binding activity on the KLK3eRNA coding regions was undetectable on an exogenous ARE. Thus, the present findings suggest a molecular basis of androgen-induced association of AR with chromatin on ARE-unrelated sequences.
Collapse
Affiliation(s)
- Takahiro Sawada
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Koichi Nishimura
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Jinichi Mori
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- Department of Hematology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Yoshiaki Kanemoto
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Alexander Kouzmenko
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Rei Amano
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Akira Hayakawa
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
| | - Suguru Tokiwa
- Department of Urology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Hiroaki Shimmura
- Department of Urology, Jyoban Hospital, Tokiwa Foundation, Iwaki, Fukushima, Japan
| | - Shigeaki Kato
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukushima, Japan
- Graduate School of Life Science and Engineering, Iryo Sosei University, Iino, Chuo-dai, Iwaki, Fukushima, Japan
- School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
305
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
306
|
Wang Q, Huang F, Duan X, Cheng H, Zhang C, Li L, Ruan X, He Q, Niu W, Yang H, Lu D, Zheng L, Zhao H. The ERβ-CXCL19/CXCR4-NFκB pathway is critical in mediating the E2-induced inflammation response in the orange-spotted grouper (Epinephelus coioides). J Steroid Biochem Mol Biol 2021; 212:105926. [PMID: 34091027 DOI: 10.1016/j.jsbmb.2021.105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/15/2021] [Accepted: 05/30/2021] [Indexed: 01/19/2023]
Abstract
The main physiological function of 17β-estradiol (E2) in vertebrates is to regulate sexual development and reproduction. In fish, especially hermaphroditic fish, estrogen is often used to aid reproduction, but it also can trigger an inflammatory response. However, the molecular mechanism for this E2-induced inflammatory reaction is not clear. In this study, we found that the ERβ-CXCL19/CXCR4-NFκB cascade regulated the E2-induced inflammatory response in the orange-spotted grouper (Epinephelus coioides). Strikingly, E2 treatment resulted in significantly high expression of inflammatory cytokines and induced phosphorylation and degradation of IκBα and translocation of NFκB subunit p65 to the nucleus in grouper spleen cells. However, the E2-induced inflammatory response could be prevented by the broad estrogen receptor (ER) ligand ICI 182,780. Moreover, the luciferase assay showed that E2 induced the inflammatory response by activating the promotor of chemokine CXCL19 through ERβ1 and ERβ2. Knockdown of CXCL19 blocked the E2-induced inflammatory response and NFκB nucleus translocation. Additionally, knockdown of chemokines CXCR4a and CXCR4b together, but not alone, blocked the E2-induced inflammatory response. The immunofluorescence assay and co-immunoprecipitation analysis showed that CXCL19 mediated the E2-induced inflammatory response by activating CXCR4a or CXCR4b. Taken together, these results showed that the ERβ-CXCL19/CXCR4-NFκB pathway mediated the E2-induced inflammatory response in grouper. These findings are valuable for future comparative immunological studies and provide a theoretical basis for mitigating the adverse reactions that occur when using E2 to help fish reproduce.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huitao Cheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chunli Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenbiao Niu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Leyun Zheng
- Fisheries Research Institute of Fujian, Xiamen, 361000, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China.
| |
Collapse
|
307
|
Nuwormegbe S, Park NY, Kim SW. Lobeglitazone attenuates fibrosis in corneal fibroblasts by interrupting TGF-beta-mediated Smad signaling. Graefes Arch Clin Exp Ophthalmol 2021; 260:149-162. [PMID: 34468828 DOI: 10.1007/s00417-021-05370-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transforming growth factor beta 1 (TGF-β1) is an important cytokine released after ocular surface injury to promote wound healing. However, its persistence at the injury site triggers a fibrotic response that leads to corneal scarring and opacity. Thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands used to regulate glucose and lipid metabolism in the management of type 2 diabetes. Studies have also showed TZDs have antifibrotic effect. In this study, we investigated the antifibrotic effect of the TZD lobeglitazone on TGF-β1-induced fibrosis in corneal fibroblasts. METHODS Human primary corneal fibroblasts were cultivated and treated with TGF-β1 (5 ng/mL) to induce fibrosis, with or without pre-treatments with different concentrations of lobeglitazone. Myofibroblast differentiation and extracellular matrix (ECM) protein expression was evaluated by western blotting, immunofluorescence, real-time PCR, and collagen gel contraction assay. The effect of lobeglitazone on TGF-β1-induced reactive oxygen species (ROS) generation was evaluated by DCFDA-cellular ROS detection assay kit. Signaling proteins were evaluated by western blotting to determine the mechanism underlying the antifibrotic effect. RESULTS Our results showed lobeglitazone attenuated TGF-β1-induced ECM synthesis and myofibroblast differentiation of corneal fibroblasts. This antifibrotic effect appeared to be independent of PPAR signaling and rather due to the inhibition of the TGF-β1-induced Smad signaling. Lobeglitazone also blocked TGF-β1-induced ROS generation and nicotinamide adenine dinucleotide phosphate oxidase (Nox) 4 transcription. CONCLUSION These findings indicate that lobeglitazone may be a promising therapeutic agent for corneal scarring. KEY MESSAGES.
Collapse
Affiliation(s)
- Selikem Nuwormegbe
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Na-Young Park
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Sun Woong Kim
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
308
|
Abey NO, Ebuehi OAT, Imaga NA. Perinatal dietary protein deficiency alters ovarian genes critical to reproductive health from one generation to another in female rat models. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
309
|
Xiao B, Li DD, Wang Y, Kim EL, Zhao N, Jin SW, Bai DH, Sun LD, Jung JH. Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay. Biomol Ther (Seoul) 2021; 29:519-526. [PMID: 33883322 PMCID: PMC8411028 DOI: 10.4062/biomolther.2021.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.
Collapse
Affiliation(s)
- Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| | - Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Ying Wang
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Na Zhao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos 017000, China
| | - Shang-Wu Jin
- The Fourth People's Hospital of Ordos, Ordos 017000, China
| | - Dong-Hao Bai
- The Fourth People's Hospital of Ordos, Ordos 017000, China
| | - Li-Dong Sun
- The Fourth People's Hospital of Ordos, Ordos 017000, China
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
310
|
Westaby D, Maza MDLDFDL, Paschalis A, Jimenez-Vacas JM, Welti J, de Bono J, Sharp A. A New Old Target: Androgen Receptor Signaling and Advanced Prostate Cancer. Annu Rev Pharmacol Toxicol 2021; 62:131-153. [PMID: 34449248 DOI: 10.1146/annurev-pharmtox-052220-015912] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to the development of multiple novel therapies, there has been major progress in the treatment of advanced prostate cancer over the last two decades; however, the disease remains invariably fatal. Androgens and the androgen receptor (AR) play a critical role in prostate carcinogenesis, and targeting the AR signaling axis with abiraterone, enzalutamide, darolutamide, and apalutamide has improved outcomes for men with this lethal disease. Targeting the AR and elucidating mechanisms of resistance to these agents remains central to drug development efforts. This review provides an overview of the evolution and current approaches for targeting the AR in advanced prostate cancer. It describes the biology of AR signaling, explores AR-targeting resistance mechanisms, and discusses future perspectives and promising novel therapeutic strategies. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | | | - Alec Paschalis
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | | | - Jon Welti
- The Institute of Cancer Research, London SM2 5NG, United Kingdom;
| | - Johann de Bono
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London SM2 5NG, United Kingdom; .,The Royal Marsden Hospital, London SM2 5PT, United Kingdom
| |
Collapse
|
311
|
Ishii S. The Role of Histone Deacetylase 3 Complex in Nuclear Hormone Receptor Action. Int J Mol Sci 2021; 22:ijms22179138. [PMID: 34502048 PMCID: PMC8431225 DOI: 10.3390/ijms22179138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Nuclear hormone receptors (NRs) regulate transcription of the target genes in a ligand-dependent manner in either a positive or negative direction, depending on the case. Deacetylation of histone tails is associated with transcriptional repression. A nuclear receptor corepressor (N-CoR) and a silencing mediator for retinoid and thyroid hormone receptors (SMRT) are the main corepressors responsible for gene suppression mediated by NRs. Among numerous histone deacetylases (HDACs), HDAC3 is the core component of the N-CoR/SMRT complex, and plays a central role in NR-dependent repression. Here, the roles of HDAC3 in ligand-independent repression, gene repression by orphan NRs, NRs antagonist action, ligand-induced repression, and the activation of a transcriptional coactivator are reviewed. In addition, some perspectives regarding the non-canonical mechanisms of HDAC3 action are discussed.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8501, Japan
| |
Collapse
|
312
|
Vitamin A5/X controls stress-adaptation and prevents depressive-like behaviors in a mouse model of chronic stress. Neurobiol Stress 2021; 15:100375. [PMID: 34401411 PMCID: PMC8355947 DOI: 10.1016/j.ynstr.2021.100375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
9-cis-13,14-dihydroretinoic acid (9CDHRA), acts as an endogenous ligand of the retinoid X receptors (RXRs), and is an active form of a suggested new vitamin, vitamin A5/X. Nutritional-relevance of this pathway as well as its detailed role in vertebrate physiology, remain largely unknown. Since recent GWAS data and experimental studies associated RXR-mediated signaling with depression, we explored here the relevance of RXR and vitamin A5/X-mediated signaling in the control of stress adaptation and depressive-like behaviors in mice. We found that compromised availability of 9CDHRA in Rbp1−/− mice was associated with increased despair in the forced swim and anhedonia in the sucrose preference test. 9CDHRA similarly to synthetic RXR agonist, BMS649, normalized despair behaviors in Rbp1−/− but not Rxrγ−/− mice, supporting involvement of RXR signaling in anti-despair activity of these ligands. Importantly, similarly to BMS649, the 9CDHRA and its nutritional-precursor, 9-cis-13,14-dihydroretinol (vitamin A5/X alcohol), prevented development of depressive-like behaviors in mice exposed to chronic social defeat stress, revealing the beneficial role of RXRs and its endogenous ligand in stress adaptation process. These data point to the need for relevant nutritional, biochemical and pharmacological studies of this signaling pathway in human, both in physiological conditions and in pathologies of stress-related disorders.
Collapse
|
313
|
Kondra S, Chen F, Chen Y, Chen Y, Collette CJ, Xu W. A study of a hierarchical structure of proteins and ligand binding sites of receptors using the triangular spatial relationship-based structure comparison method and development of a size-filtering feature designed for comparing different sizes of protein structures. Proteins 2021; 90:239-257. [PMID: 34392570 DOI: 10.1002/prot.26215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The presence of receptors and the specific binding of the ligands determine nearly all cellular responses. Binding of a ligand to its receptor causes conformational changes of the receptor that triggers the subsequent signaling cascade. Therefore, systematically studying structures of receptors will provide insight into their functions. We have developed the triangular spatial relationship (TSR)-based method where all possible triangles are constructed with Cα atoms of a protein as vertices. Every triangle is represented by an integer denoted as a "key" computed through the TSR algorithm. A structure is thereby represented by a vector of integers. In this study, we have first defined substructures using different types of keys. Second, using different types of keys represents a new way to interpret structure hierarchical relations and differences between structures and sequences. Third, we demonstrate the effects of sequence similarity as well as sample size on the structure-based classifications. Fourth, we show identification of structure motifs, and the motifs containing multiple triangles connected by either an edge or a vertex are mapped to the ligand binding sites of the receptors. The structure motifs are valuable resources for the researchers in the field of signal transduction. Next, we propose amino-acid scoring matrices that capture "evolutionary closeness" information based on BLOSUM62 matrix, and present the development of a new visualization method where keys are organized according to evolutionary closeness and shown in a 2D image. This new visualization opens a window for developing tools with the aim of identification of specific and common substructures by scanning pixels and neighboring pixels. Finally, we report a new algorithm called as size filtering that is designed to improve structure comparison of large proteins with small proteins. Collectively, we provide an in-depth interpretation of structure relations through the detailed analyses of different types of keys and their associated key occurrence frequencies, geometries, and labels. In summary, we consider this study as a new computational platform where keys are served as a bridge to connect sequence and structure as well as structure and function for a deep understanding of sequence, structure, and function relationships of the protein family.
Collapse
Affiliation(s)
- Sarika Kondra
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Yixin Chen
- Department of Computer and Information Science, The University of Mississippi, University, Mississippi, USA
| | - Yuwu Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Caleb J Collette
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| |
Collapse
|
314
|
Carty F, Dunbar H, Hawthorne IJ, Ting AE, Stubblefield SR, Van't Hof W, English K. IFN-γ and PPARδ influence the efficacy and retention of multipotent adult progenitor cells in graft vs host disease. Stem Cells Transl Med 2021; 10:1561-1574. [PMID: 34397170 PMCID: PMC8550699 DOI: 10.1002/sctm.21-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 01/14/2023] Open
Abstract
Cell‐based therapy for the treatment of inflammatory disorders has focused on the application of mesenchymal stromal cells (MSCs) and multipotent adult progenitor cells (MAPCs). Despite the recent positive findings in industry‐sponsored clinical trials of MSCs and MAPCs for graft vs host disease (GvHD), cell therapy is efficacious in some but not all patients, highlighting the need to identify strategies to enhance cell‐based therapeutic efficacy. Here, we demonstrate the capacity for interferon (IFN)‐γ licensing to enhance human MAPC efficacy and retention following early administration in a humanized mouse model of acute GvHD (aGvHD). Activation of the nuclear receptor peroxisome proliferator‐activated receptor delta (PPARδ) negatively influenced the retention and efficacy of human MAPCs as well as IFN‐γ‐licensed MAPCs in the aGvHD model. PPARδ antagonism significantly enhanced the efficacy of human MAPCs when administered early in the humanized aGvHD model. COX‐2 expression in human MAPC was significantly decreased in IFN‐γ licensed MAPCs exposed to a PPARδ agonist. Importantly, MAPC exposure to the PPARδ antagonist in the presence of a COX‐2 inhibitor indomethacin before administration significantly reduced the efficacy of PPARδ antagonized MAPCs in the aGvHD humanized mouse model. This is the first study to demonstrate the importance of PPARδ in human MAPC efficacy in vivo and highlights the importance of understanding the disease microenvironment in which cell‐based therapies are to be administered. In particular, the presence of PPARδ ligands may negatively influence MAPC or MSC therapeutic efficacy.
Collapse
Affiliation(s)
- Fiona Carty
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Hazel Dunbar
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ian J Hawthorne
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | | | - Wouter Van't Hof
- Athersys, Inc, Cleveland, Ohio, USA.,Cleveland Cord Blood Center, Cleveland, Ohio, USA
| | - Karen English
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
315
|
Xenoextracellular matrix-rosiglitazone complex-mediated immune evasion promotes xenogenic bioengineered root regeneration by altering M1/M2 macrophage polarization. Biomaterials 2021; 276:121066. [PMID: 34392099 DOI: 10.1016/j.biomaterials.2021.121066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023]
Abstract
Xenogenic extracellular matrix (xECM)-based organ transplantation will be a promising approach to address the problem of donor shortage for allotransplantation, which has achieved great success in organ regeneration. However, current approaches to utilize xECM-based organ have limited capacity to yield the host a biofriendly microenvironment for long-term immunity homeostasis, compromising the application of these xenografts for repairing and replacing damaged tissues. As the key innate immune cells, macrophages directly determine the prognosis of xenografts in long term. However, it has not been fully elucidated that how to modulate their biological behavior for microenvironment homeostasis in tissue reconstruction. In this study, we report a robust strategy to impart an immunosuppressive surface to naturally sponge-like porous xECM scaffolds by loading rosiglitazone (RSG) to activate peroxisome proliferators receptors-γ (PPAR-γ). The resultant xECM-RSG complex, enabling RSG to be delivered sequentially and continuously to cells without obvious systemic side effects, is recognized as "self" to escape immune monitoring in local immunoregulation by downregulating the expression of proinflammatory NOS2+ M1 macrophages and oxygen species (ROS) through suppressing NF-κB expression, greatly facilitating the regeneration of enthesis anchoring between the transplanted xenograft and host in both heterotopic and orthotopic models. The newly formed bio-root is morphologically and biomechanically equivalent to native tooth root with a significant expression of odontogenic differentiation-related critical proteins. Therefore, the PPAR-γ-NF-κB axis activated by the xECM-RSG complex enables the xenografts to converse towards M2 macrophages with a modest immunosuppressive capacity for facilitating in xECM-based tissue or organ regeneration.
Collapse
|
316
|
Chung MK, Rappaport SM, Wheelock CE, Nguyen VK, van der Meer TP, Miller GW, Vermeulen R, Patel CJ. Utilizing a Biology-Driven Approach to Map the Exposome in Health and Disease: An Essential Investment to Drive the Next Generation of Environmental Discovery. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:85001. [PMID: 34435882 PMCID: PMC8388254 DOI: 10.1289/ehp8327] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/28/2021] [Accepted: 07/13/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome-the totality of the biologically active exposures relevant to disease development-through coupling biochemical receptor-binding assays with affinity purification-mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conventional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen M. Rappaport
- Program in Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vy Kim Nguyen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas P. van der Meer
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Roel Vermeulen
- Utrecht University & Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
317
|
Lim WF, Forouhan M, Roberts TC, Dabney J, Ellerington R, Speciale AA, Manzano R, Lieto M, Sangha G, Banerjee S, Conceição M, Cravo L, Biscans A, Roux L, Pourshafie N, Grunseich C, Duguez S, Khvorova A, Pennuto M, Cortes CJ, La Spada AR, Fischbeck KH, Wood MJA, Rinaldi C. Gene therapy with AR isoform 2 rescues spinal and bulbar muscular atrophy phenotype by modulating AR transcriptional activity. SCIENCE ADVANCES 2021; 7:7/34/eabi6896. [PMID: 34417184 PMCID: PMC8378820 DOI: 10.1126/sciadv.abi6896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked, adult-onset neuromuscular condition caused by an abnormal polyglutamine (polyQ) tract expansion in androgen receptor (AR) protein. SBMA is a disease with high unmet clinical need. Recent studies have shown that mutant AR-altered transcriptional activity is key to disease pathogenesis. Restoring the transcriptional dysregulation without affecting other AR critical functions holds great promise for the treatment of SBMA and other AR-related conditions; however, how this targeted approach can be achieved and translated into a clinical application remains to be understood. Here, we characterized the role of AR isoform 2, a naturally occurring variant encoding a truncated AR lacking the polyQ-harboring domain, as a regulatory switch of AR genomic functions in androgen-responsive tissues. Delivery of this isoform using a recombinant adeno-associated virus vector type 9 resulted in amelioration of the disease phenotype in SBMA mice by restoring polyQ AR-dysregulated transcriptional activity.
Collapse
Affiliation(s)
- Wooi F Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Mitra Forouhan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Jesse Dabney
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maria Lieto
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Gavinda Sangha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Subhashis Banerjee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Lara Cravo
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loïc Roux
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Naemeh Pourshafie
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Stephanie Duguez
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Londonderry, UK
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Constanza J Cortes
- Department of Neurology, Duke Center for Neurodegeneration and Neurotherapeutics, Duke University School of Medicine, Durham, NC, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry and the UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
318
|
Ishii S, Amano I, Koibuchi N. The Role of Thyroid Hormone in the Regulation of Cerebellar Development. Endocrinol Metab (Seoul) 2021; 36:703-716. [PMID: 34365775 PMCID: PMC8419606 DOI: 10.3803/enm.2021.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
The proper organized expression of specific genes in time and space is responsible for the organogenesis of the central nervous system including the cerebellum. The epigenetic regulation of gene expression is tightly regulated by an intrinsic intracellular genetic program, local stimuli such as synaptic inputs and trophic factors, and peripheral stimuli from outside of the brain including hormones. Some hormone receptors are expressed in the cerebellum. Thyroid hormones (THs), among numerous circulating hormones, are well-known major regulators of cerebellar development. In both rodents and human, hypothyroidism during the postnatal developmental period results in abnormal morphogenesis or altered function. THs bind to the thyroid hormone receptors (TRs) in the nuclei and with the help of transcriptional cofactors regulate the transcription of target genes. Gene regulation by TR induces cell proliferation, migration, and differentiation, which are necessary for brain development and plasticity. Thus, the lack of TH action mediators may directly cause aberrant cerebellar development. Various kinds of animal models have been established in a bid to study the mechanism of TH action in the cerebellum. Interestingly, the phenotypes differ greatly depending on the models. Herein we summarize the actions of TH and TR particularly in the developing cerebellum.
Collapse
Affiliation(s)
- Sumiyasu Ishii
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
319
|
Königshofer P, Brusilovskaya K, Petrenko O, Hofer BS, Schwabl P, Trauner M, Reiberger T. Nuclear Receptors in Liver Fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166235. [PMID: 34339839 DOI: 10.1016/j.bbadis.2021.166235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that regulate gene expression of a variety of key molecular signals involved in liver fibrosis. The primary cellular driver of liver fibrogenesis are activated hepatic stellate cells. Different NRs regulate the hepatic expression of pro-inflammatory and pro-fibrogenic cytokines that promote the transformation of hepatic stellate cells into fibrogenic myofibroblasts. Importantly, nuclear receptors regulate gene expression circuits that promote hepatic fibrogenesis and/or allow liver fibrosis regression. In this review, we highlight the direct and indirect influence of nuclear receptors on liver fibrosis, with a focus on hepatic stellate cells, and discuss potential therapeutic effects of nuclear receptor modulation in regard to anti-fibrotic and anti-inflammatory effects. Further research on nuclear receptors-related signaling may lead to the clinical development of effective anti-fibrotic therapies for patients with liver disease.
Collapse
Affiliation(s)
- Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Silvester Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
320
|
Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 2021; 11:metabo11080502. [PMID: 34436443 PMCID: PMC8398935 DOI: 10.3390/metabo11080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver participates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) or the cell membrane (GPER1). Estrogens also control hepatic lipid and lipoprotein metabolisms, with a triglyceride carrier role for VLDL from the liver to the ovaries during oogenesis. Moreover, the activation of the vitellogenin genes is used as a robust biomarker for exposure to xenoestrogens. In the context of liver diseases, high plasma estrogen levels are observed in fatty liver hemorrhagic syndrome (FLHS) in chicken implicating estrogens in the disease progression. Fishes are also used to investigate liver diseases, including models generated by mutation and transgenesis. In conclusion, studies on the roles of estrogens in the non-mammalian oviparous vertebrate liver have contributed enormously to unveil hormone-dependent physiological and physiopathological processes.
Collapse
|
321
|
Shirwaikar Thomas A, Criss ZK, Shroyer NF, Abraham BP. Vitamin D Receptor Gene Single Nucleotide Polymorphisms and Association With Vitamin D Levels and Endoscopic Disease Activity in Inflammatory Bowel Disease Patients: A Pilot Study. Inflamm Bowel Dis 2021; 27:1263-1269. [PMID: 33165606 PMCID: PMC8785942 DOI: 10.1093/ibd/izaa292] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) comprise a heterogenous group of chronic gastrointestinal disorders that are multifactorial in etiology. Experimental in vitro and in vivo studies suggest that intestinal vitamin D receptor (VDR) signaling plays a role in modulating the immune response in IBD as a cause and/or a consequence of chronic inflammation. AIM The aim of this study is to study the associations between vitamin D receptor gene single nucleotide polymorphisms(SNPs), vitamin D levels, and endoscopic disease activity in IBD. METHODS This is a cross-sectional analysis of IBD patients who underwent endoscopic evaluation at a tertiary care hospital. Demographic variables, IBD disease type and location, medical therapies, vitamin D levels, and endoscopic disease activity were collected. Colonic biopsies obtained were investigated for the presence of VDR SNPs: ApaI, TaqI, BsmI, FokI, and Tru9I. RESULTS Patients in endoscopic remission had higher vitamin D levels compared with those with inflammation found on endoscopy (P = <0.001). Patients with lower vitamin D levels were homozygous for Fok ancestral alleles (P = 0.0045). With regard to endoscopic disease activity, we found no differences in mutations of any of the VDR SNPs in our sample. CONCLUSIONS The association between the presence of the ancestral FokI and lower vitamin D levels suggests a multifactorial etiology for vitamin D deficiency in IBD. Higher vitamin D levels in those in endoscopic remission compared with lower levels in those with active inflammation suggests that the impact of VDR gene SNP on disease activity may be overcome with replacement therapy.
Collapse
|
322
|
Paakinaho V, Palvimo JJ. Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr Relat Cancer 2021; 28:R231-R250. [PMID: 34137734 PMCID: PMC8345902 DOI: 10.1530/erc-21-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Steroid receptors (SRs) constitute an important class of signal-dependent transcription factors (TFs). They regulate a variety of key biological processes and are crucial drug targets in many disease states. In particular, estrogen (ER) and androgen receptors (AR) drive the development and progression of breast and prostate cancer, respectively. Thus, they represent the main specific drug targets in these diseases. Recent evidence has suggested that the crosstalk between signal-dependent TFs is an important step in the reprogramming of chromatin sites; a signal-activated TF can expand or restrict the chromatin binding of another TF. This crosstalk can rewire gene programs and thus alter biological processes and influence the progression of disease. Lately, it has been postulated that there may be an important crosstalk between the AR and the ER with other SRs. Especially, progesterone (PR) and glucocorticoid receptor (GR) can reprogram chromatin binding of ER and gene programs in breast cancer cells. Furthermore, GR can take the place of AR in antiandrogen-resistant prostate cancer cells. Here, we review the current knowledge of the crosstalk between SRs in breast and prostate cancers. We emphasize how the activity of ER and AR on chromatin can be modulated by other SRs on a genome-wide scale. We also highlight the knowledge gaps in the interplay of SRs and their complex interactions with other signaling pathways and suggest how to experimentally fill in these gaps.
Collapse
Affiliation(s)
- Ville Paakinaho
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Correspondence should be addressed to J J Palvimo:
| |
Collapse
|
323
|
Paredes A, Santos-Clemente R, Ricote M. Untangling the Cooperative Role of Nuclear Receptors in Cardiovascular Physiology and Disease. Int J Mol Sci 2021; 22:ijms22157775. [PMID: 34360540 PMCID: PMC8346021 DOI: 10.3390/ijms22157775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.
Collapse
|
324
|
Effects of Androgen Receptor Overexpression on Chondrogenic Ability of Rabbit Articular Chondrocytes. Tissue Eng Regen Med 2021; 18:641-650. [PMID: 34275104 DOI: 10.1007/s13770-021-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The role of sex hormones and their receptors has drawn much attention in the process of cartilage regeneration. This study aimed to investigate the effect of androgen receptor (AR) on the chondrogenic ability of articular chondrocytes and the related mechanism. METHODS Articular chondrocytes were isolated, cultured, identified by toluidine blue staining and then transduced with lentivirus carrying the AR gene. The cell viability was determined using Cell Counting Kit-8, and cell apoptosis was assessed by flow cytometry analysis. The effects of AR overexpression on the expression of cartilage-specific proteins and some signalling molecules were evaluated by real-time PCR and Western blotting. Using 24 New Zealand rabbits, the regeneration of rabbit articular cartilage defects was further investigated in vivo and evaluated histologically. RESULTS The overexpression of AR significantly reduced the apoptosis rate of chondrocytes but did not affect their proliferation. The overexpression of AR also promoted the expression of Sry-related HMG box 9, collagen II and aggrecan, decreased the expression of matrix metalloproteinase-13, and downregulated p-S6 and RICTOR. The experimental group with AR-overexpressing chondrocytes exhibited superior regeneration of cartilage defects. CONCLUSION AR overexpression can maintain the phenotype of chondrocytes and promote chondrogenesis in vitro and in vivo. mTOR-related signalling was inhibited.
Collapse
|
325
|
Shizu R, Nishiguchi H, Tashiro S, Sato T, Sugawara A, Kanno Y, Hosaka T, Sasaki T, Yoshinari K. Helix 12 stabilization contributes to basal transcriptional activity of PXR. J Biol Chem 2021; 297:100978. [PMID: 34284062 PMCID: PMC8390552 DOI: 10.1016/j.jbc.2021.100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Pregnane X receptor (PXR) plays an important role in xenobiotic metabolism. While ligand binding induces PXR-dependent gene transcription, PXR shows constitutive transcriptional activity in the absence of ligands when expressed in cultured cells. This constitutive activity sometimes hampers investigation of PXR activation by compounds of interest. In this study, we investigated the molecular mechanism of PXR activation. In the reported crystal structures of unliganded PXR, helix 12 (H12), including a coactivator binding motif, was stabilized, while it is destabilized in the unliganded structures of other nuclear receptors, suggesting a role for H12 stabilization in the basal activity of PXR. Since Phe420, located in the loop between H11 and H12, is thought to interact with Leu411 and Ile414 to stabilize H12, we substituted alanine at Phe420 (PXR-F420A) and separately inserted three alanine residues directly after Phe420 (PXR-3A) and investigated their influence on PXR-mediated transcription. Reporter gene assays demonstrated that the mutants showed drastically reduced basal activity and enhanced responses to various ligands, which was further enhanced by coexpression of the coactivator peroxisome proliferator-activated receptor gamma coactivator 1α. Mutations of both Leu411 and Ile414 to alanine also suppressed basal activity. Mammalian two-hybrid assays showed that PXR-F420A and PXR-3A bound to corepressors and coactivators in the absence and presence of ligands, respectively. We conclude that the intramolecular interactions of Phe420 with Leu411 and Ile414 stabilize H12 to recruit coactivators even in the absence of ligands, contributing to the basal transcriptional activity of PXR. We propose that the generated mutants might be useful for PXR ligand screening.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Hikaru Nishiguchi
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sarii Tashiro
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takumi Sato
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ayaka Sugawara
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
326
|
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chem Biol 2021; 28:934-951. [PMID: 34004187 PMCID: PMC8286327 DOI: 10.1016/j.chembiol.2021.04.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or "proteostasis," is indispensable for a balanced, healthy environment within the cell. However, when natural proteostasis mechanisms are overwhelmed from excessive loads of dysregulated proteins, their accumulation can lead to disease initiation and progression. Recently, the induced degradation of such disease-causing proteins by heterobifunctional molecules, i.e., PROteolysis TArgeting Chimeras (PROTACs), is emerging as a potential therapeutic modality. In the 2 decades since the PROTAC concept was proposed, several additional Targeted Protein Degradation (TPD) strategies have also been explored to target previously undruggable proteins, such as transcription factors. In this review, we discuss the progress and evolution of the TPD field, the breadth of the proteins targeted by PROTACs and the biological effects of their degradation.
Collapse
Affiliation(s)
- Kusal T G Samarasinghe
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
327
|
Dean AE, Reichardt F, Anakk S. Sex differences feed into nuclear receptor signaling along the digestive tract. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166211. [PMID: 34273530 DOI: 10.1016/j.bbadis.2021.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sex differences in physiology are noted in clinical and animal studies. However, mechanisms underlying these observed differences between males and females remain elusive. Nuclear receptors control a wide range of physiological pathways and are expressed in the gastrointestinal tract, including the mouth, stomach, liver and intestine. We investigated the literature pertaining to ER, AR, FXR, and PPAR regulation and highlight the sex differences in nutrient metabolism along the digestive system. We chose these nuclear receptors based on their metabolic functions, and hormonal actions. Intriguingly, we noted an overlap in target genes of ER and FXR that modulate mucosal integrity and GLP-1 secretion, whereas overlap in target genes of PPARα with ER and AR modulate lipid metabolism. Sex differences were seen not only in the basal expression of nuclear receptors, but also in activation as their endogenous ligand concentrations fluctuate depending on nutrient availability. Finally, in this review, we speculate that interactions between the nuclear receptors may influence overall metabolic decisions in the gastrointestinal tract in a sex-specific manner.
Collapse
Affiliation(s)
- Angela E Dean
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - François Reichardt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Sayeepriyadarshini Anakk
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States of America; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America; Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
| |
Collapse
|
328
|
Zeng L, Li X, Preusch CB, He GJ, Xu N, Cheung TH, Qu J, Mak HY. Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans. PLoS Genet 2021; 17:e1009635. [PMID: 34237064 PMCID: PMC8291716 DOI: 10.1371/journal.pgen.1009635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022] Open
Abstract
The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes. Fatty aldehydes are generated during the turnover of membrane lipids and when cells are under oxidative stress. Because excess fatty aldehydes form toxic adducts with proteins and lipids, their levels are tightly controlled by a family of aldehyde dehydrogenases whose dysfunction has been implicated in genetic disease and cancer in humans. Here, we characterize mutant C. elegans that lack a conserved, membrane-associated aldehyde dehydrogenase ALH-4. Despite elevated levels of fatty aldehydes, these mutant worms survive by increasing the abundance of peroxisomes, which are important organelles for lipid metabolism. Such peroxisome proliferative response depends on the activation of transcription factors NHR-49 and NHR-79, via putative endocrine signals. Accordingly, the fertility of alh-4 mutant worms relies on NHR-49. Our work suggests a latent mechanism that may be activated during aldehyde dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lidan Zeng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xuesong Li
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Christopher B. Preusch
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gary J. He
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ningyi Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tom H. Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Center for Stem Cell Research, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory in Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jianan Qu
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
329
|
Theile D, Wizgall P. Acquired ABC-transporter overexpression in cancer cells: transcriptional induction or Darwinian selection? Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1621-1632. [PMID: 34236499 PMCID: PMC8298356 DOI: 10.1007/s00210-021-02112-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Acquired multidrug resistance (MDR) in tumor diseases has repeatedly been associated with overexpression of ATP-binding cassette transporters (ABC-transporters) such as P-glycoprotein. Both in vitro and in vivo data suggest that these efflux transporters can cause MDR, albeit its actual relevance for clinical chemotherapy unresponsiveness remains uncertain. The overexpression can experimentally be achieved by exposure of tumor cells to cytotoxic drugs. For simplification, the drug-mediated transporter overexpression can be attributed to two opposite mechanisms: First, increased transcription of ABC-transporter genes mediated by nuclear receptors sensing the respective compound. Second, Darwinian selection of sub-clones intrinsically overexpressing drug transporters being capable of extruding the respective drug. To date, there is no definite data indicating which mechanism truly applies or whether there are circumstances promoting either mode of action. This review summarizes experimental evidence for both theories, suggests an algorithm discriminating between these two modes, and finally points out future experimental approaches of research to answer this basic question in cancer pharmacology.
Collapse
Affiliation(s)
- Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Pauline Wizgall
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
330
|
The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells. Nat Commun 2021; 12:4068. [PMID: 34210968 PMCID: PMC8249423 DOI: 10.1038/s41467-021-24342-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19. TMPRSS2 is regulated by androgen receptor signalling in the prostate, however it is unclear if blocking this signalling is beneficial in the context of SARS-CoV-2 lung infection. Here the authors show that antiandrogen treatment downregulates TMPRSS2 in the lung and reduces viral entry and infection.
Collapse
|
331
|
Lokeshwar SD, Klaassen Z, Saad F. Treatment and trials in non-metastatic castration-resistant prostate cancer. Nat Rev Urol 2021; 18:433-442. [PMID: 34002069 DOI: 10.1038/s41585-021-00470-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
Metastatic prostate cancer is associated with considerable morbidity and mortality. Standard treatment for non-metastatic prostate cancer, to prevent metastatic progression, is androgen deprivation therapy (ADT); however, many patients will eventually develop castration-resistant prostate cancer (CRPC), which can prove challenging to treat. Between the stages of non-metastatic androgen-sensitive disease and metastatic CRPC is an intermediate disease state that has been termed non-metastatic CRPC (nmCRPC), which is a heterogeneous, man-made disease stage that occurs after a patient who has no radiological evidence of metastasis shows evidence of cancer progression even after ADT. Awareness of nmCRPC has risen owing to an increased use of ADT and its eventual failure. Men with nmCRPC are at a high risk of progression to mCRPC, with historically few options to halt this process. However, in the past two decades, multiple therapies have been investigated for the treatment of nmCRPC, including endothelin receptor antagonists and bone-targeted therapies, but none has changed the standard of care. In the past decade, the efficacy of androgen receptor pathway-targeting modalities has been investigated. Three novel nonsteroidal antiandrogen agents for treating high-risk nmCRPC have been investigated; the PROSPER, SPARTAN and ARAMIS trials were phase III, randomized, placebo-controlled clinical trials that investigated the efficacy and safety of enzalutamide, apalutamide and darolutamide, respectively. All three therapeutics showed statistically significant improvements in metastasis-free survival, progression to antineoplastic therapy was lengthened and at final analysis, overall survival was significantly improved. The comparative efficacy and safety of all three agents has not yet been investigated in a comprehensive clinical trial, but approval of these medications by the FDA and other regulatory agencies means that providers now have three effective therapeutic options to augment ADT for patients with nmCRPC.
Collapse
Affiliation(s)
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Augusta University - Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Augusta, GA, USA
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
| |
Collapse
|
332
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
333
|
Wu F, Chen W, Kang X, Jin L, Bai J, Zhang H, Zhang X. A seven-nuclear receptor-based prognostic signature in breast cancer. Clin Transl Oncol 2021; 23:1292-1303. [PMID: 33210236 DOI: 10.1007/s12094-020-02517-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Breast cancer (BRCA) is a malignant cancer that threatened the life of female with unsatisfactory prognosis. The aim of this study was to identify prognostic nuclear receptors (NRs) signature of BRCA. METHODS BRCA patient samples were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Consensus clustering analysis, univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis were performed to evaluate, select NRs as prognostic factors and build Risk Score model. GSEA analysis was explored to check signaling differences between High- and Low-Risk group. Nomogram model basing on age and Risk Score was established to predict the 1-, 3- and 5-year survival. Model performance was assessed by a time-dependent receiver operating characteristic (ROC) curve and calibration plot. CIBERSORT, ESTIMATE and TIMER algorithm were introduced to evaluate the immune landscape. RESULTS NR3C1, NR4A3, THRA, RXRG, NR2F6, NR1D2 and RORB were optimized as a prognostic signature for BRCA. This seven-NR-based Risk Score could effectively predict overall survival status. The area under the curve (AUC) of 1-, 3- and 5-year overall survival are 0.702, 0.734 and 0.722 in TCGA training cohort, and 0.630, 0.721 and 0.823 in GEO validation cohort, respectively. Calibration plot demonstrated satisfactory agreement between predictive and observed outcomes. Nomogram model worked well on predicting survival probabilities. Multiple cancer-related pathways were highly enriched in High-Risk group. High- and Low-Risk groups showed significant differed immune cell infiltration. There exists an obvious connection between Risk Score and immune checkpoints LAG3, PD1 and TIM3. CONCLUSION The seven-NR-based Risk Score represents a promising signature for estimating overall survival in patients with BRCA, and is correlated with the immune microenvironment.
Collapse
Affiliation(s)
- F Wu
- Ambuiatory Surgery Treatment Department, Cangzhou Central Hospital, Cangzhou, 061001, Hebei Province, China
| | - W Chen
- Department of Diagnostic Imaging, Affiliated Hospital of North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - X Kang
- Ultrasound Department II, Cangzhou Central Hospital, Cangzhou, 061001, Hebei Province, China
| | - L Jin
- Department of Thyroid and Mammary Gland III, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061001, Hebei Province, China
| | - J Bai
- Department of Thyroid and Mammary Gland III, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061001, Hebei Province, China
| | - H Zhang
- Department of Thyroid and Mammary Gland III, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061001, Hebei Province, China
| | - X Zhang
- Department of Thyroid and Mammary Gland III, Cangzhou Central Hospital, No. 16 Xinhua West Road, Yunhe District, Cangzhou, 061001, Hebei Province, China.
| |
Collapse
|
334
|
Rusidzé M, Adlanmérini M, Chantalat E, Raymond-Letron I, Cayre S, Arnal JF, Deugnier MA, Lenfant F. Estrogen receptor-α signaling in post-natal mammary development and breast cancers. Cell Mol Life Sci 2021; 78:5681-5705. [PMID: 34156490 PMCID: PMC8316234 DOI: 10.1007/s00018-021-03860-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
17β-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear “genomic” or membrane “non-genomic” actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.
Collapse
Affiliation(s)
- Mariam Rusidzé
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marine Adlanmérini
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Elodie Chantalat
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - I Raymond-Letron
- LabHPEC et Institut RESTORE, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Jean-François Arnal
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR144, Paris, France
| | - Françoise Lenfant
- INSERM U1297, Institut Des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse - UPS, CHU, Toulouse, France.
| |
Collapse
|
335
|
Pauletto E, Eickhoff N, Padrão NA, Blattner C, Zwart W. TRIMming Down Hormone-Driven Cancers: The Biological Impact of TRIM Proteins on Tumor Development, Progression and Prognostication. Cells 2021; 10:1517. [PMID: 34208621 PMCID: PMC8234875 DOI: 10.3390/cells10061517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
The tripartite motif (TRIM) protein family is attracting increasing interest in oncology. As a protein family based on structure rather than function, a plethora of biological activities are described for TRIM proteins, which are implicated in multiple diseases including cancer. With hormone-driven cancers being among the leading causes of cancer-related death, TRIM proteins have been described to portrait tumor suppressive or oncogenic activities in these tumor types. This review describes the biological impact of TRIM proteins in relation to hormone receptor biology, as well as hormone-independent mechanisms that contribute to tumor cell biology in prostate, breast, ovarian and endometrial cancer. Furthermore, we point out common functions of TRIM proteins throughout the group of hormone-driven cancers. An improved understanding of the biological impact of TRIM proteins in cancer may pave the way for improved prognostication and novel therapeutics, ultimately improving cancer care for patients with hormone-driven cancers.
Collapse
Affiliation(s)
- Eleonora Pauletto
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Nuno A. Padrão
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| | - Christine Blattner
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology, PO-Box 3640, 76021 Karlsruhe, Germany;
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands; (N.E.); (N.A.P.)
| |
Collapse
|
336
|
Sahu R, Mishra R, Kumar R, Salahuddin, Majee C, Mazumder A, Kumar A. Pyridine moiety: An insight into recent advances in treatment of cancer. Mini Rev Med Chem 2021; 22:248-272. [PMID: 34126914 DOI: 10.2174/1389557521666210614162031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The incidence of cancer is increasing worldwide, affecting a vast majority of the human population. As new different anticancer agents are being developed now, the requirement is to deal somehow with them and evaluate their safety. Among them, pyridine based drugs are contributing a lot, as it is one of the imperative pharmacophores occurring synthetically as well as naturally in heterocyclic compounds, and having a wide range of therapeutic applications in the area of drug discovery, thereby offering many chances for further improvement in antitumor agents via acting onto numerous receptors of extreme prominence. Many pyridine derivatives have been reported to inhibit enzymes, receptors and many other targets for controlling and curing the global health issue of cancer. Nowadays, in combination with other moieties, researchers are focusing on the development of pyridine-based new derivatives for cancer treatment. Therefore, this review sheds light on the recent therapeutic expansions of pyridine together with its molecular docking, structure-activity-relationship, availability in the market, and a summary of recently patented and published research works that shall jointly help the scientists to produce effective drugs with the desired pharmacological activity.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida-201310, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Chandana Majee
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Ajay Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| |
Collapse
|
337
|
Takioku M, Takamura Y, Fujihara M, Watanabe M, Yamada S, Kawasaki M, Ito S, Nakano S, Kakuta H. Creation of Fluorescent RXR Antagonists Based on CBTF-EE and Application to a Fluorescence Polarization Binding Assay. ACS Med Chem Lett 2021; 12:1024-1029. [PMID: 34141088 DOI: 10.1021/acsmedchemlett.1c00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Retinoid X receptor (RXR) ligands often bind in modes in which the carboxy group forms a hydrogen bond inside the ligand-binding pocket (LBP). However, our previously reported RXR antagonist, CBTF-EE (4a), binds with its carboxy group directed outside the LBP and its alkoxy side chain located inside the LBP. Here, we examined the binding modes of 4b and 4c bearing a nitrobenzoxadiazole (NBD) or boron-dipyrromethene (BODIPY) fluorophore, respectively, at the end of the alkoxy chain of 4a. Both compounds function as RXR antagonists. 4c, but not 4b, was available for a fluorescence polarization binding assay, indicating that rotation of BODIPY, but not NBD, is restricted in the bound state. The fluorescence findings, supported by docking simulations, suggest the fluorophores are located outside the LBP, so that the binding mode of 4b and 4c is different from that of 4a. The assay results were highly correlated with those of a [3H]9-cis-retinoic acid assay.
Collapse
Affiliation(s)
- Maho Takioku
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- AIBIOS Co. Ltd., Tri-Seven Roppongi 8F 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Shoya Yamada
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
- Research Fellowship Division, Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Mayu Kawasaki
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52- 1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52- 1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52- 1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
338
|
Rao A, Douglas SC, Hall JM. Endocrine Disrupting Chemicals, Hormone Receptors, and Acne Vulgaris: A Connecting Hypothesis. Cells 2021; 10:cells10061439. [PMID: 34207527 PMCID: PMC8228950 DOI: 10.3390/cells10061439] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The relationship between endocrine disrupting chemicals (EDCs) and the pathogenesis of acne vulgaris has yet to be explored in the literature. Acne vulgaris is a chronic inflammatory skin disease of the pilosebaceous unit. The pathogenesis of acne involves several hormonal pathways, including androgens, insulin-like growth factor 1(IGF-1), estrogens, and corticosteroids. EDCs influence these pathways primarily through two mechanisms: altering endogenous hormone levels and interfering with hormone receptor function. This review article describes the mechanistic links between EDCs and the development of acne lesions. Highlighted is the contributory role of androgen receptor ligands, such as bisphenol A (BPA) and mono-2-ethylhexyl Phthalate (MEHP), via upregulation of lipogenic genes and resultant exacerbation of cholesterol synthesis. Additionally discussed is the protective role of phytoestrogen EDCs in counteracting androgen-induced sebocyte maturation through attenuation of PPARy transcriptional activity (i.e., resveratrol) and restoration of estrogen-regulated TGF-B expression in skin cells (i.e., genistein). Examination of the relationship between EDCs and acne vulgaris may inform adjunctive avenues of treatment such as limiting environmental exposures, and increasing low-glycemic, plant-rich foods in the diet. With a better understanding of the cumulative role that EDCs play in acne, clinicians can be better equipped to treat and ultimately improve the lives of their patients.
Collapse
|
339
|
Li X, Zhang Y, Jia L, Xing Y, Zhao B, Sui L, Liu D, Xu X. Downregulation of Prolactin-Induced Protein Promotes Osteogenic Differentiation of Periodontal Ligament Stem Cells. Med Sci Monit 2021; 27:e930610. [PMID: 34092782 PMCID: PMC8194291 DOI: 10.12659/msm.930610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Periodontal ligament stem cells (PDLSCs) are promising seed cells for bone tissue engineering and periodontal regeneration applications. However, the mechanism underlying the osteogenic differentiation process remains largely unknown. Previous reports showed that prolactin-induced protein (PIP) was upregulated after PDLSCs osteogenic induction. However, few studies have reported on the function of PIP in osteogenic differentiation. The purpose of the present study was to investigate the effect of PIP on osteogenic differentiation of PDLSCs. Material/Methods The expression pattern of PIP during PDLSCs osteogenic differentiation was detected and the effect of each component in the osteogenic induction medium on PIP was also tested by qRT-PCR. Then, the PIP knockdown cells were established using lentivirus. The knockdown efficiency was measured and the proliferation, apoptosis, and osteogenic differentiation ability were examined to determine the functional role of PIP on PDLSCs. Results QRT-PCR showed that PIP was sustainedly upregulated during the osteogenic induction process and the phenomenon was mainly caused by the stimulation of dexamethasone in the induction medium. CCK-8 and flow cytometer showed that knocking down PIP had no influence on proliferation and apoptosis of PDLSCs. ALP staining and activity, Alizarin Red staining, and western blot analysis demonstrated PIP knockdown enhanced the osteogenic differentiation and mineralization of PDLSCs. Conclusions PIP was upregulated after osteogenic induction; however, PIP knockdown promoted PDLSCs osteogenic differentiation. PIP might be a by-product of osteogenic induction, and downregulating of PIP might be a new target in bone tissue engineering applications.
Collapse
Affiliation(s)
- Xiaomeng Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China (mainland).,Stomatological Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Yunpeng Zhang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China (mainland).,Department of Oral Implantology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China (mainland)
| | - Yixiao Xing
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China (mainland)
| | - Bin Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China (mainland)
| | - Lei Sui
- Stomatological Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Dayong Liu
- Stomatological Hospital, Tianjin Medical University, Tianjin, China (mainland)
| | - Xin Xu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China (mainland)
| |
Collapse
|
340
|
Choe HN, Jarvis ED. The role of sex chromosomes and sex hormones in vocal learning systems. Horm Behav 2021; 132:104978. [PMID: 33895570 DOI: 10.1016/j.yhbeh.2021.104978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Vocal learning is the ability to imitate and modify sounds through auditory experience, a rare trait found in only a few lineages of mammals and birds. It is a critical component of human spoken language, allowing us to verbally transmit speech repertoires and knowledge across generations. In many vocal learning species, the vocal learning trait is sexually dimorphic, where it is either limited to males or present in both sexes to different degrees. In humans, recent findings have revealed subtle sexual dimorphism in vocal learning/spoken language brain regions and some associated disorders. For songbirds, where the neural mechanisms of vocal learning have been well studied, vocal learning appears to have been present in both sexes at the origin of the lineage and was then independently lost in females of some subsequent lineages. This loss is associated with an interplay between sex chromosomes and sex steroid hormones. Even in species with little dimorphism, like humans, sex chromosomes and hormones still have some influence on learned vocalizations. Here we present a brief synthesis of these studies, in the context of sex determination broadly, and identify areas of needed investigation to further understand how sex chromosomes and sex steroid hormones help establish sexually dimorphic neural structures for vocal learning.
Collapse
Affiliation(s)
- Ha Na Choe
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| | - Erich D Jarvis
- Duke University Medical Center, The Rockefeller University, Howard Hughes Medical Institute, United States of America.
| |
Collapse
|
341
|
Steroid receptor-coregulator transcriptional complexes: new insights from CryoEM. Essays Biochem 2021; 65:857-866. [PMID: 34061186 DOI: 10.1042/ebc20210019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/14/2023]
Abstract
Steroid receptors activate gene transcription through recruitment of a number of coregulators to facilitate histone modification, chromatin remodeling, and general transcription machinery stabilization. Understanding the structures of full-length steroid receptor and coregulatory complexes has been difficult due to their large molecular sizes and dynamic structural conformations. Recent developments in cryo-electron microscopy (cryoEM) technology and proteomics have advanced the structural studies of steroid receptor complexes. Here, we will review the insights we learned from cryoEM studies of the estrogen and androgen receptor transcriptional complexes. Despite similar domain organizations, the two receptors have different coregulator interaction modes. The cryoEM structures now have revealed the fundamental differences between the two receptors and their functional mechanisms.
Collapse
|
342
|
Aravindhan S, Almasoody MFM, Selman NA, Andreevna AN, Ravali S, Mohammadi P, Eslami MM, Razi B, Aslani S, Imani D. Vitamin D Receptor gene polymorphisms and susceptibility to type 2 diabetes: evidence from a meta-regression and meta-analysis based on 47 studies. J Diabetes Metab Disord 2021; 20:845-867. [PMID: 34222093 PMCID: PMC8212222 DOI: 10.1007/s40200-020-00704-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Evidence from various studies suggest that vitamin D receptor (VDR) gene polymorphisms are associated with type 2 diabetes (T2D); However, these results have been disputable. Here we conducted a meta-analysis to comprehensively evaluate the effect of VDR gene polymorphisms and susceptibility to T2D. METHODS All relevant studies reporting the association between VDR gene polymorphisms and susceptibility to T2D published up to August 2020 were identified by comprehensive systematic database search in web of science, Scopus, and Medline. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure strength of association. The methodological quality of each study was assessed according to the Newcastle-Ottawa Scale. Subgroup and meta-regression analysis were also performed. RESULTS A total of 47 case-control studies were included in this meta-analysis. The overall population results revealed a significant association between FokI, and BsmI (heterozygote model) polymorphisms and T2D in the overall analysis. However, no association was found with the TaqI and ApaI polymorphisms. Moreover, the pooled results of subgroup analysis by ethnicity suggested significant association between FokI, TaqI, and BsmI polymorphisms and T2D in some subgroups. Meta-regression analyses indicated that none of the publication year, ethnicity, and genotyping method were the source of heterogenicity in all four polymorphisms. CONCLUSIONS This meta-analysis suggested a significant association between VDR gene FokI, and BsmI (heterozygote model) polymorphisms and T2D susceptibility in overall population and ethnic-specific analysis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-020-00704-z.
Collapse
Affiliation(s)
- Surendar Aravindhan
- Department of Electronics and Communication Engineering, Al-ameen Engineering College (Autonomous), Erode, Tamil Nadu 638 104 India
| | | | | | - Alekhina Natalia Andreevna
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Sahithya Ravali
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Chennai, India
| | - Payam Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | | | - Bahman Razi
- Department of Hematology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
343
|
Progesterone receptors in normal breast development and breast cancer. Essays Biochem 2021; 65:951-969. [PMID: 34061163 DOI: 10.1042/ebc20200163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Progesterone receptors (PR) play a pivotal role in many female reproductive tissues such as the uterus, the ovary, and the mammary gland (MG). Moreover, PR play a key role in breast cancer growth and progression. This has led to the development and study of different progestins and antiprogestins, many of which are currently being tested in clinical trials for cancer treatment. Recent reviews have addressed the role of PR in MG development, carcinogenesis, and breast cancer growth. Thus, in this review, in addition to making an overview on PR action in normal and tumor breast, the focus has been put on highlighting the still unresolved topics on hormone treatment involving PR isoforms and breast cancer prognosis.
Collapse
|
344
|
Park YY. Genomic analysis of nuclear receptors and miRNAs identifies a role for the NR3C1/miR-200 axis in colon cancer. Genes Genomics 2021; 43:913-920. [PMID: 34021858 DOI: 10.1007/s13258-021-01112-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Nuclear receptors (NRs) are crucial transcription factors involved in cell proliferation, metabolism and homeostasis. Through the development of novel genomic approaches, unknown NR functions have recently been uncovered. NR networks derived from gene expression profiles revealed that NRs are tightly linked to human disease and that targeting these links could provide new therapeutic options. MicroRNAs (miRNAs) have known functions as transcriptional regulators of NR function. OBJECTIVE I attempted to construct an NR-miRNA transcriptional network based on genomic data from human cancer. METHODS I performed comprehensive analysis with genomic data. Correlation, clustering and survival analysis were done to identify the NR and miRNA correlation in cancer. RESULTS Correlation analysis of genomic data revealed relationships between the expression levels of several NRs and miRNAs in human cancer. Based on my NR-miRNA correlation data, I found that NR3C1 expression was highly correlated with that of miR-200 in colon cancer. In most cases, miRNAs suppress expression of their target genes. Thus, miRNAs function as negative regulators during transcription. My analysis revealed that the miR-200 expression level is negatively correlated with that of NR3C1, demonstrating that miR-200 is a negative regulator of NR3C1 in colon cancer. It is known that miR-200 is a master regulator of EMT and that NR3C1 has a link with an EMT marker. CONCLUSIONS Overall, my genomic analysis revealed that the NR3C1 expression level is correlated with that of miR-200 and that this functional relationship might contribute to colon cancer cell survival. Modulating this axis could be a promising target for treating colon cancer patients.
Collapse
Affiliation(s)
- Yun-Yong Park
- Department of Life Science, College of Natural Science, Daejin University, Pocheon, 11159, Republic of Korea. .,Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
345
|
Retinoid X Receptor α Regulates DHA-Dependent Spinogenesis and Functional Synapse Formation In Vivo. Cell Rep 2021; 31:107649. [PMID: 32433958 DOI: 10.1016/j.celrep.2020.107649] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/01/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022] Open
Abstract
Coordinated intracellular and extracellular signaling is critical to synapse development and functional neural circuit wiring. Here, we report that unesterified docosahexaenoic acid (DHA) regulates functional synapse formation in vivo via retinoid X receptor α (Rxra) signaling. Using Rxra conditional knockout (cKO) mice and virus-mediated transient gene expression, we show that endogenous Rxra plays important roles in regulating spinogenesis and excitatory synaptic transmission in cortical pyramidal neurons. We further show that the effects of RXRA are mediated through its DNA-binding domain in a cell-autonomous and reversible manner. Moreover, unesterified DHA increases spine formation and excitatory synaptic transmission in vivo in an Rxra-dependent fashion. Rxra cKO mice generally behave normally but show deficits in behavior tasks associated with social memory. Together, these results demonstrate that unesterified DHA signals through RXRA to regulate spinogenesis and functional synapse formation, providing insight into the mechanism through which DHA promotes brain development and cognitive function.
Collapse
|
346
|
Al-Jaberi FAH, Kongsbak-Wismann M, Aguayo-Orozco A, Krogh N, Buus TB, Lopez DV, Rode AKO, Gravesen E, Olgaard K, Brunak S, Woetmann A, Ødum N, Bonefeld CM, Geisler C. Impaired Vitamin D Signaling in T Cells From a Family With Hereditary Vitamin D Resistant Rickets. Front Immunol 2021; 12:684015. [PMID: 34093587 PMCID: PMC8170129 DOI: 10.3389/fimmu.2021.684015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), mediates its immunomodulatory effects by binding to the vitamin D receptor (VDR). Here, we describe a new point mutation in the DNA-binding domain of the VDR and its consequences for 1,25(OH)2D3 signaling in T cells from heterozygous and homozygous carriers of the mutation. The mutation did not affect the overall structure or the ability of the VDR to bind 1,25(OH)2D3 and the retinoid X receptor. However, the subcellular localization of the VDR was strongly affected and the transcriptional activity was abolished by the mutation. In heterozygous carriers of the mutation, 1,25(OH)2D3-induced gene regulation was reduced by ~ 50% indicating that the expression level of wild-type VDR determines 1,25(OH)2D3 responsiveness in T cells. We show that vitamin D-mediated suppression of vitamin A-induced gene regulation depends on an intact ability of the VDR to bind DNA. Furthermore, we demonstrate that vitamin A inhibits 1,25(OH)2D3-induced translocation of the VDR to the nucleus and 1,25(OH)2D3-induced up-regulation of CYP24A1. Taken together, this study unravels novel aspects of vitamin D signaling and function of the VDR in human T cells.
Collapse
Affiliation(s)
- Fatima A H Al-Jaberi
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Martin Kongsbak-Wismann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Alejandro Aguayo-Orozco
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Nicolai Krogh
- RNA and Gene Medicine Program, Department of Cellular and Molecular Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Terkild B Buus
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Daniel V Lopez
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Anna K O Rode
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Eva Gravesen
- Department of Nephrology, University of Copenhagen, Rigshospitalet and Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Klaus Olgaard
- Department of Nephrology, University of Copenhagen, Rigshospitalet and Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
347
|
Eide M, Zhang X, Karlsen OA, Goldstone JV, Stegeman J, Jonassen I, Goksøyr A. The chemical defensome of five model teleost fish. Sci Rep 2021; 11:10546. [PMID: 34006915 PMCID: PMC8131381 DOI: 10.1038/s41598-021-89948-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.
Collapse
Affiliation(s)
- Marta Eide
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
348
|
Identification of juvenile hormone-induced posttranslational modifications of methoprene tolerant and Krüppel homolog 1 in the yellow fever mosquito, Aedes aegypti. J Proteomics 2021; 242:104257. [PMID: 33957312 DOI: 10.1016/j.jprot.2021.104257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/29/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
Recent studies reported that JH-regulated phosphorylation status of the JH-receptor complex contributes to its transcription activity in Aedes aegypti. However, phosphorylation sites of these proteins have not yet been identified. In this study, we found that the fusion of an EGFP tag to Ae. aegypti Kr-h1 (AaKr-h1) and Met (AaMet) improved their stability in mosquito Aag-2 cells, which allowed their purification. The liquid chromatography and tandem mass spectrometry analysis of the purified AaKr-h1 showed that the phosphoserine residue at position 694, located in the evolutionarily conserved SVIQ motif, is dephosphorylated when the cells are exposed to JH. The AaKr-h1 dephosphorylation mutant (S694V) showed significantly higher activity in inducing the luciferase gene regulated by JH response elements. The phosphorylation profile of Met also changed after exposing Aag-2 cells to JH III. The Ser-77 and Ser-710 residues of Met were phosphorylated after JH III treatment. In contrast, the two phosphoserine residues at positions 73 and 747 were dephosphorylated after JH III treatment. JH exposure also induced transient and reversible phosphorylation of Thr-664 and Ser-723 residues. Overall, these data show that JH induces changes in post-translational modifications of AaMet and AaKr-h1. SIGNIFICANCE: Female Aedes aegypti mosquitoes are known to vector many disease agents, including Zika virus, dengue virus chikungunya virus, and Mayaro and yellow fever virus. In the present study, we developed an efficient method to prepare Ae. aegypti Met and Kr-h1, which are typically difficult to produce and purify, using a mosquito cell line expression system. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approaches were utilized to map the phosphorylation profiles of the isolated proteins. We then monitored the changes induced by JH activation in the phosphorylation profiles to check if the JH modulates post-translation modification of its key transcription factors. We found that the JH induced alterations in the phosphorylation profiles of the multiple residues of AaMet. In contrast, activation of the JH signaling pathway was accompanied by dephosphorylation of AaKr-h1 at phosphoserine-694, increasing its transcriptional activity. In addition, S694 of AaKr-h1 was located in the RMSSVIQYA motif highly conserved in orthologous proteins from other insect species. These results can help us further understand how JH modulates its key transcription factors and provide a basis for the development of novel insect control strategies.
Collapse
|
349
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
350
|
Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021; 14:100301. [PMID: 33614863 PMCID: PMC7879041 DOI: 10.1016/j.ynstr.2021.100301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
The environment experienced by developing organisms can shape the timing and character of developmental processes, generating different phenotypes from the same genotype, each with different probabilities of survival and performance as adults. Chordates have two basic modes of development, indirect and direct. Species with indirect development, which includes most fishes and amphibians, have a complex life cycle with a free-swimming larva that is typically a growth stage, followed by a metamorphosis into the adult form. Species with direct development, which is an evolutionarily derived developmental mode, develop directly from embryo to the juvenile without an intervening larval stage. Among the best studied species with complex life cycles are the amphibians, especially the anurans (frogs and toads). Amphibian tadpoles are exposed to diverse biotic and abiotic factors in their developmental habitat. They have extensive capacity for developmental plasticity, which can lead to the expression of different, adaptive morphologies as tadpoles (polyphenism), variation in the timing of and size at metamorphosis, and carry-over effects on the phenotype of the juvenile/adult. The neuroendocrine stress axis plays a pivotal role in mediating environmental effects on amphibian development. Before initiating metamorphosis, if tadpoles are exposed to predators they upregulate production of the stress hormone corticosterone (CORT), which acts directly on the tail to cause it to grow, thereby increasing escape performance. When tadpoles reach a minimum body size to initiate metamorphosis they can vary the timing of transformation in relation to growth opportunity or mortality risk in the larval habitat. They do this by modulating the production of thyroid hormone (TH), the primary inducer of metamorphosis, and CORT, which synergizes with TH to promote tissue transformation. Hypophysiotropic neurons that release the stress neurohormone corticotropin-releasing factor (CRF) are activated in response to environmental stress (e.g., pond drying, food restriction, etc.), and CRF accelerates metamorphosis by directly inducing secretion of pituitary thyrotropin and corticotropin, thereby increasing secretion of TH and CORT. Although activation of the neuroendocrine stress axis promotes immediate survival in a deteriorating larval habitat, costs may be incurred such as reduced tadpole growth and size at metamorphosis. Small size at transformation can impair performance of the adult, reducing probability of survival in the terrestrial habitat, or fecundity. Furthermore, elevations in CORT in the tadpole caused by environmental stressors cause long term, stable changes in neuroendocrine function, behavior and physiology of the adult, which can affect fitness. Comparative studies show that the roles of stress hormones in developmental plasticity are conserved across vertebrate taxa including humans.
Collapse
Affiliation(s)
- Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|