301
|
Guo Y, Wang J, Zhang L, Shen S, Guo R, Yang Y, Chen W, Wang Y, Chen G, Shuai X. Theranostical nanosystem-mediated identification of an oncogene and highly effective therapy in hepatocellular carcinoma. Hepatology 2016; 63:1240-55. [PMID: 26680504 DOI: 10.1002/hep.28409] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022]
Abstract
UNLABELLED Because the primary surgical treatment options for hepatocellular carcinoma (HCC)-including hepatic resection and liver transplantation-often fail due to recurrence and metastasis, identifying early prognostic biomarkers and therapeutic targets for HCC is of great importance. This study shows that transducin β-like protein 1-related protein (TBLR1) is a key HCC oncogene that plays important roles in HCC proliferation, antiapoptosis, and angiogenesis by regulating the Wnt/β-catenin pathway. The folate-targeted theranostic small interfering RNA (siRNA) nanomedicine Fa-PEG-g-PEI-SPION/psiRNA-TBLR1 effectively silences the TBLR1 gene in different human HCC cell lines in vitro and in human HCC samples in vivo, resulting in the simultaneous suppression of HCC cell proliferation, antiapoptosis, and angiogenesis. Because of its multi-anticancer functions against HCC, intravenous injection of the folate-targeted siRNA nanomedicine into nude mice bearing intrahepatic or subcutaneous xenografts of human HCC has a significant therapeutic effect. Tumor growth in those animals was almost completely inhibited by treatment with Fa-PEG-g-PEI-SPION/psiRNA-TBLR1. Moreover, the SPION-encapsulated polyplexes possess high magnetic resonance imaging (MRI) detection sensitivity, which makes tumor-targeted siRNA delivery easily trackable using the clinical MRI technique. CONCLUSION The theranostic siRNA nanomedicine examined here possesses great theranostic potential for combined gene therapy and MRI diagnosis of HCC.
Collapse
Affiliation(s)
- Yu Guo
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
- Experimental Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Experimental Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lu Zhang
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shunli Shen
- Experimental Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruomi Guo
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, China
| | - Yiru Wang
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Hepatology Laboratory, Hospital for Liver Disease, Sun Yat-Sen University, Guangzhou, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
302
|
Hida K, Maishi N, Sakurai Y, Hida Y, Harashima H. Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev 2016; 99:140-147. [PMID: 26626622 DOI: 10.1016/j.addr.2015.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
To date anti-angiogenic therapy has been used for cancer therapy widely, yielding promising results. However, it has been elucidated that current anti-angiogenic drug has several issues to be solved, such as side-effects and drug resistance. It has been reported that tumor endothelial cells (TECs) differ from normal counterparts. In addition, it was shown that the TECs are heterogeneous according to the malignancy status of tumor. The development of novel strategy for targeting tumor vasculature is required. Recently, we have developed an active targeting system, which targets TECs specifically. In this review, we will discuss how TECs in tumor vasculature are heterogeneous and offer new perspectives on a drug delivery system, which can target heterogeneous tumor blood vessels from a viewpoint of personalized medicine.
Collapse
|
303
|
PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016; 99:28-51. [PMID: 26456916 DOI: 10.1016/j.addr.2015.09.012] [Citation(s) in RCA: 2647] [Impact Index Per Article: 294.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 12/12/2022]
Abstract
Coating the surface of nanoparticles with polyethylene glycol (PEG), or "PEGylation", is a commonly used approach for improving the efficiency of drug and gene delivery to target cells and tissues. Building from the success of PEGylating proteins to improve systemic circulation time and decrease immunogenicity, the impact of PEG coatings on the fate of systemically administered nanoparticle formulations has, and continues to be, widely studied. PEG coatings on nanoparticles shield the surface from aggregation, opsonization, and phagocytosis, prolonging systemic circulation time. Here, we briefly describe the history of the development of PEGylated nanoparticle formulations for systemic administration, including how factors such as PEG molecular weight, PEG surface density, nanoparticle core properties, and repeated administration impact circulation time. A less frequently discussed topic, we then describe how PEG coatings on nanoparticles have also been utilized for overcoming various biological barriers to efficient drug and gene delivery associated with other modes of administration, ranging from gastrointestinal to ocular. Finally, we describe both methods for PEGylating nanoparticles and methods for characterizing PEG surface density, a key factor in the effectiveness of the PEG surface coating for improving drug and gene delivery.
Collapse
|
304
|
Kuai R, Li D, Chen YE, Moon JJ, Schwendeman A. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles. ACS NANO 2016; 10:3015-41. [PMID: 26889958 PMCID: PMC4918468 DOI: 10.1021/acsnano.5b07522] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles,
Collapse
Affiliation(s)
- Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y. Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to A. S. () or J.J.M. ()
| |
Collapse
|
305
|
Tanaka H, Sato Y, Harashima H, Akita H. Cellular environment-responsive nanomaterials for use in gene and siRNA delivery: molecular design for biomembrane destabilization and intracellular collapse. Expert Opin Drug Deliv 2016; 13:1015-27. [DOI: 10.1517/17425247.2016.1154531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroki Tanaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
306
|
Sato Y, Note Y, Maeki M, Kaji N, Baba Y, Tokeshi M, Harashima H. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J Control Release 2016; 229:48-57. [PMID: 26995758 DOI: 10.1016/j.jconrel.2016.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Because nanoparticles with diameters less than 50nm penetrate stromal-rich tumor tissues more efficiently, the synthesis of small-sized nanoparticles encapsulating short interfering RNA (siRNA) is important in terms of realizing novel siRNA medicine for the treatment of various cancers. Lipid nanoparticles (LNPs) are the leading systems for the delivery of siRNA in vivo. Limit size LNPs were successfully synthesized using a microfluidic mixing technique. However, the physicochemical properties and potential for in vivo siRNA delivery of the limit-size LNPs have not been examined in detail. In the present study, we prepared LNPs with different diameters from 32 to 67nm using a microfluidic mixing devise and examined the physicochemical properties of the particles and the potential for their use in delivering siRNA in vitro and in vivo to liver. Reducing the size of the LNPs causes poor-packing and an increased surface area, which result in their instability in serum. Moreover, it was revealed that the ability of endosomal escape (cytosolic siRNA release) of the smaller LNPs is subject to inhibition by serum compared to that of larger counterparts. Taken together, an increase in packing and avoiding the adsorption of serum components are key strategies for the development of next-generation highly potent and small-sized LNPs.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yusuke Note
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan; ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
307
|
Oh KS, Kim K, Yoon BD, Lee HJ, Park DY, Kim EY, Lee K, Seo JH, Yuk SH. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy. Int J Nanomedicine 2016; 11:1077-87. [PMID: 27042062 PMCID: PMC4801198 DOI: 10.2147/ijn.s100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Collapse
Affiliation(s)
- Keun Sang Oh
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Byeong Deok Yoon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hye Jin Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dal Yong Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jae Hong Seo
- Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| | - Soon Hong Yuk
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| |
Collapse
|
308
|
Shi J, Wang B, Chen Z, Liu W, Pan J, Hou L, Zhang Z. A Multi-Functional Tumor Theranostic Nanoplatform for MRI Guided Photothermal-Chemotherapy. Pharm Res 2016; 33:1472-85. [PMID: 26984128 DOI: 10.1007/s11095-016-1891-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop a multi-functional theranostic nanoplatform with increased tumor retention, improving antitumor efficacy and decreased side effects of chemotherapy drugs. METHODS GO@Gd nanocomposites was synthesized via decorating gadolinium (Gd) nanoparticles (GdNP) onto graphene oxide (GO), and then functionalized by polyethylene glycol (PEG2000), folic acid (FA), a widely used tumor targeting molecule, was linked to GO@Gd-PEG, finally, doxorubicin (DOX) was loaded onto GO@Gd-PEG-FA and obtained a tumor-targeting drug delivery system (GO@Gd-PEG-FA/DOX). GO@Gd-PEG-FA/DOX was characterized and explored its theranostic applications both in a cultured MCF-7 cells and tumor-bearing mice. RESULTS GO@Gd-PEG-FA/DOX could efficiently cross the cell membranes, lead to more apoptosis and afford higher antitumor efficacy without obvious toxic effects to normal organs owing to its prolonged blood circulation and 7.6-fold higher DOX uptake of tumor than DOX. Besides, GO@Gd-PEG-FA/DOX also served as a powerful photothermal therapy (PTT) agent for thermal ablation of tumor and a strong T1-weighted contrast agent for tumor MRI diagnosis. The multi-functional nanoplatform also could selectively kill cancer cells in highly localized regions via the excellent tumor-targeting and MRI guided PTT abilities. CONCLUSIONS GO@Gd-PEG-FA/DOX exhibited excellent photothermal-chemotherapeutic efficacy, tumor-targeting property and tumor diagnostic ability.
Collapse
Affiliation(s)
- Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Binghua Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Zhaoyang Chen
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Jingjing Pan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China. .,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, China.
| |
Collapse
|
309
|
Williford JM, Archang MM, Minn I, Ren Y, Wo M, Vandermark J, Fisher PB, Pomper MG, Mao HQ. Critical Length of PEG Grafts on lPEI/DNA Nanoparticles for Efficient in Vivo Delivery. ACS Biomater Sci Eng 2016; 2:567-578. [PMID: 27088129 PMCID: PMC4829937 DOI: 10.1021/acsbiomaterials.5b00551] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 12/03/2022]
Abstract
![]()
Nanoparticle-mediated
gene delivery is a promising alternative
to viral methods; however, its use in vivo, particularly following
systemic injection, has suffered from poor delivery efficiency. Although
PEGylation of nanoparticles has been successfully demonstrated as
a strategy to enhance colloidal stability, its success in improving
delivery efficiency has been limited, largely due to reduced cell
binding and uptake, leading to poor transfection efficiency. Here
we identified an optimized PEGylation scheme for DNA micellar nanoparticles
that delivers balanced colloidal stability and transfection activity.
Using linear polyethylenimine (lPEI)-g-PEG as a carrier,
we characterized the effect of graft length and density of polyethylene
glycol (PEG) on nanoparticle assembly, micelle stability, and gene
delivery efficiency. Through variation of PEG grafting degree, lPEI
with short PEG grafts (molecular weight, MW 500–700 Da) generated
micellar nanoparticles with various shapes including spherical, rodlike,
and wormlike nanoparticles. DNA micellar nanoparticles prepared with
short PEG grafts showed comparable colloidal stability in salt and
serum-containing media to those prepared with longer PEG grafts (MW
2 kDa). Corresponding to this trend, nanoparticles prepared with short
PEG grafts displayed significantly higher in vitro transfection efficiency
compared to those with longer PEG grafts. More importantly, short
PEG grafts permitted marked increase in transfection efficiency following
ligand conjugation to the PEG terminal in metastatic prostate cancer-bearing
mice. This study identifies that lPEI-g-PEG with
short PEG grafts (MW 500–700 Da) is the most effective to ensure
shape control and deliver high colloidal stability, transfection activity,
and ligand effect for DNA nanoparticles in vitro and in vivo following
intravenous administration.
Collapse
Affiliation(s)
- John-Michael Williford
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland 21205, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maani M Archang
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions , 601 N. Caroline Street, Baltimore, Maryland 21287, United States
| | - Yong Ren
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Mark Wo
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - John Vandermark
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, 1101 East Marshall Street, Richmond, Virginia 23298, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, 1220 East Broad Street, Richmond, Virginia 23298, United States; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23298, United States
| | - Martin G Pomper
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, 601 N. Caroline Street, Baltimore, Maryland 21287, United States
| | - Hai-Quan Mao
- Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Institute for NanoBioTechnology and Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States; Translational Tissue Engineering Center and Whitaker Biomedical Engineering Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, Maryland 21287, United States
| |
Collapse
|
310
|
Liu X, Xiang J, Zhu D, Jiang L, Zhou Z, Tang J, Liu X, Huang Y, Shen Y. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1743-1752. [PMID: 26663349 DOI: 10.1002/adma.201504288] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/28/2015] [Indexed: 06/05/2023]
Abstract
A novel fusogenic lipidic polyplex (FLPP) vector is designed to fuse with cell membranes, mimicking viropexis, and eject the polyplex into the cytosol, where the cationic polymer is subsequently oxidized by intracellular reactive oxygen species and converts to being negatively charged, efficiently releasing the DNA. The vector delivering suicide gene achieves significantly better inhibition of tumor growth than doxorubicin.
Collapse
Affiliation(s)
- Xin Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiajia Xiang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liming Jiang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
311
|
Muley P, Kumar S, El Kourati F, Kesharwani SS, Tummala H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int J Pharm 2016; 500:32-41. [DOI: 10.1016/j.ijpharm.2016.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
|
312
|
Zhang Q, Lu L, Zhang L, Shi K, Cun X, Yang Y, Liu Y, Gao H, He Q. Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. Sci Rep 2016; 6:19800. [PMID: 26842655 PMCID: PMC4740748 DOI: 10.1038/srep19800] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
[D]-H6L9, as a pH-responsive anti-microbial peptide (AMP), has been evidenced by us to be an excellent choice in tumor microenvironment-responsive delivery as it could render liposomes responsive to the acidified tumor microenvironment. However, [D]-H6L9-modified liposomes could not actively target to tumor area. Therefore, integrin αvβ3-targeted peptide RGD was co-modified with [D]-H6L9 onto liposomes [(R + D)-Lip] for improved tumor delivery efficiency. Under pH 6.3, (R + D)-Lip could be taken up by C26 cells and C26 tumor spheroids (integrin αvβ3-positive) with significantly improved efficiency compared with other groups, which was contributed by both RGD and [D]-H6L9, while RGD did not increase the cellular uptake performance on MCF-7 cells (integrin αvβ3-negative). Results showed that RGD could decrease cellular uptake of (R + D)-Lip while [D]-H6L9 could increase it, implying the role of both RGD and [D]-H6L9 in cellular internalization of (R + D)-Lip. On the other hand, (R + D)-Lip could escape the entrapment of lysosomes. PTX-loaded (R + D)-Lip could further increase the cellular toxicity against C26 cells compared with liposomes modified only with RGD and [D]-H6L9 respectively, and achieve remarkable tumor inhibition effect on C26 tumor models.
Collapse
Affiliation(s)
- Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Libao Lu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Kairong Shi
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Xingli Cun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Yuting Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Yayuan Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern RenminRoad, Chengdu 610041, China
| |
Collapse
|
313
|
Belletti D, Tosi G, Forni F, Lagreca I, Barozzi P, Pederzoli F, Vandelli MA, Riva G, Luppi M, Ruozi B. PEGylated siRNA lipoplexes for silencing of BLIMP-1 in Primary Effusion Lymphoma: In vitro evidences of antitumoral activity. Eur J Pharm Biopharm 2016; 99:7-17. [DOI: 10.1016/j.ejpb.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023]
|
314
|
Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:317-32. [DOI: 10.1016/j.nano.2015.10.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
|
315
|
Palao-Suay R, Aguilar MR, Parra-Ruiz FJ, Maji S, Hoogenboom R, Rohner N, Thomas SN, Román JS. α-Tocopheryl succinate-based amphiphilic block copolymers obtained by RAFT and their nanoparticles for the treatment of cancer. Polym Chem 2016; 7:838-850. [PMID: 27004068 PMCID: PMC4797642 DOI: 10.1039/c5py01811k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound. However, the major factor limiting the use of α-TOS is its low solubility in physiological media. To overcome this problem, the aim of this work is the preparation of new polymeric and active α-TOS-based nanovehicle with a precise control over its macromolecular architecture. Reversible addition-fragmentation chain transfer polymerization (RAFT) is used to synthesize an α-TOS amphiphilic block copolymer with highly homogeneous molecular weight and relatively narrow dispersity. Macro-chain transfer agents (macro-CTA) based on poly(ethylene glycol) (PEG) of different molecular weights (MW, ranging from 4.6 to 20 kDa) are used to obtain block copolymers with different hydrophilic/hydrophobic ratios with PEG being the hydrophilic block and a methacrylic derivative of α-tocopheryl succinate (MTOS) being the monomer that formed the hydrophobic block. PEG-b-poly(MTOS) form spherical nanoparticles (NPs) by self-organized precipitation (SORP) or solvent exchange in aqueous media enabling to encapsulate and deliver hydrophobic molecules in their core. The resulting NPs are rapidly endocytosed by cancer cells. The biological activity of the synthesized NPs are found to depend on the MW of PEG, with NP comprised of the higher MW copolymer resulting in the lower bioactivity due to PEG shielding inhibiting cellular uptake by endocytosis. Moreover, the biological activity also depends on the MTOS content, as the biological activity increases as a function of MTOS concentration.
Collapse
Affiliation(s)
- Raquel Palao-Suay
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - María Rosa Aguilar
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Francisco J. Parra-Ruiz
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Samarendra Maji
- Supramolecular Chemistry Group. Department of Organic and Macromolecular Chemistry. Ghent University. Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group. Department of Organic and Macromolecular Chemistry. Ghent University. Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - N.A. Rohner
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332 Georgia, USA
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, 30332 Georgia, USA
| | - Julio San Román
- Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| |
Collapse
|
316
|
Shen X, Su H. In vitro stability and cytotoxicity analysis of liposomes anchored with octylamine-graft-poly (aspartic). RSC Adv 2016. [DOI: 10.1039/c6ra08299h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Due to the polymer, octylamine-graft-poly (aspartic) (PASP-g-C8), which acted as acidic triggered molecules, liposomes anchored with PASP-g-C8 (OPLPs) could be safe and efficient pH sensitive drug carriers and target tumor cells.
Collapse
Affiliation(s)
- Xiangyi Shen
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing
- P. R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess
- Beijing University of Chemical Technology (BUCT)
- Beijing
- P. R. China
| |
Collapse
|
317
|
Sun Q, Ma X, Zhang B, Zhou Z, Jin E, Shen Y, Van Kirk EA, Murdoch WJ, Radosz M, Sun W. Fabrication of dendrimer-releasing lipidic nanoassembly for cancer drug delivery. Biomater Sci 2016; 4:958-69. [DOI: 10.1039/c6bm00189k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dendrimer/lipid nanoassemblies could intracellularly or extracellularly release small dendrimers to facilitate cancer drug tumor penetration.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xinpeng Ma
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Bo Zhang
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Zhuxian Zhou
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Erlei Jin
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering
- Department of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | | | | | - Maciej Radosz
- Department of Chemical and Petroleum Engineering
- Soft Materials Laboratory
- University of Wyoming
- Laramie
- USA
| | - Weilin Sun
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
318
|
|
319
|
Fan G, Fan M, Wang Q, Jiang J, Wan Y, Gong T, Zhang Z, Sun X. Bio-inspired polymer envelopes around adenoviral vectors to reduce immunogenicity and improve in vivo kinetics. Acta Biomater 2016; 30:94-105. [PMID: 26546972 DOI: 10.1016/j.actbio.2015.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Adenoviral vectors have attracted substantial interest for systemic tumor gene therapy, but further work is needed to reduce their immunogenicity and alter their biodistribution before they can be used in the clinic. Here we describe a bio-inspired, cleavable PEGylated β-cyclodextrin-polyethyleneimine conjugate (CDPCP) that spontaneously coats adenovirus in solution. This cleavable PEG coating reduces the innate and adaptive immunogenicity of adenovirus particles, as well as improves their biodistribution away from the liver and into the tumor. Insertion of a matrix metalloproteinase substrate sequence into the conjugate allows PEG cleavage at the tumor site, simultaneously reducing liver biodistribution and increasing transgene expression in tumors, thereby avoiding the "PEG dilemma". Cationic β-cyclodextrin-PEI not only provides electrostatic attraction to promote envelope attachment to the viral capsid, but it also improves vector internalization and transduction after PEG cleavage. These results suggest that CDPCP may help expand the use of adenoviral vectors in cancer gene therapy. STATEMENT OF SIGNIFICANCE The synthesized β-cyclodextrin-PEI-MMP-cleavable-PEG polymer (CDPCP), held great potential for gene therapy when applied for adenovirus coating. The β-cyclodextrin-PEI provided a powerful electrostatic attraction to attach the whole polymer onto the viral capsid, while the MMPs-cleavable PEG reduced innate and adaptive immunogenicity and improved the biodistribution of adenovirus vectors due to the tumor-specific enzyme triggered PEG cleavage. More importantly, an ingenious cooperation between the two components could solve the PEG dilemma. The CDPCP/Ad complexes exhibited a comprehensive and valued profile to be a candidate vector for future tumor gene therapy, we believe the current investigation on this kind of biomaterial may be of particular interest to the readership of Acta biomaterialia.
Collapse
|
320
|
Yang D, Zhang S, Hu Y, Chen J, Bao B, Yuwen L, Weng L, Cheng Y, Wang L. AIE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. RSC Adv 2016. [DOI: 10.1039/c6ra18678e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Novel AIE-active conjugated polymer nanoparticles with bright fluorescence emission and excellent photostability have been prepared for imaging in cells and zebrafish.
Collapse
Affiliation(s)
- Dongliang Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210046
- China
| | - Shuwei Zhang
- Key Lab of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yanling Hu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210046
- China
| | - Jia Chen
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210046
- China
| | - Biqing Bao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210046
- China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210046
- China
| | - Lixing Weng
- College of Geography and Biological Information
- Nanjing University of Posts and Telecommunications
- Nanjing 210046
- China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210046
- China
| |
Collapse
|
321
|
Hatakeyama H, Wu SY, Mangala LS, Lopez-Berestein G, Sood AK. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Methods Mol Biol 2016; 1402:189-197. [PMID: 26721492 DOI: 10.1007/978-1-4939-3378-5_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RNA interference (RNAi) has rapidly become a powerful tool for target discovery and therapeutics. Small interfering RNAs (siRNAs) are highly effective in mediating sequence-specific gene silencing. However, the major obstacle for using siRNAs as cancer therapeutics is their systemic delivery from the administration site to target cells in vivo. This chapter describes approaches to deliver siRNA effectively for cancer treatment and discusses in detail the current methods to assess pharmacokinetics and biodistribution of siRNAs in vivo.
Collapse
Affiliation(s)
- Hiroto Hatakeyama
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA.,Department of Experimental Therapeutics, The University of Texas MDAnderson Cancer Center (MDACC), Houston, TX, 77054, USA.,Department of Cancer Biology, The University of Texas MDAnderson Cancer Center (MDACC), Houston, TX, 77054, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, 77054, USA. .,Department of Cancer Biology, The University of Texas MDAnderson Cancer Center (MDACC), Houston, TX, 77054, USA.
| |
Collapse
|
322
|
Shi J, Chen Z, Wang L, Wang B, Xu L, Hou L, Zhang Z. A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater 2016; 29:282-297. [PMID: 26485168 DOI: 10.1016/j.actbio.2015.10.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Taking advantages of fullerene (C60) and gold nanoparticles (AuNPs) for potentials in photodynamic therapy (PDT), drug delivery and radio frequency thermal therapy (RTT), a C60@Au hybrid nanocomposite was synthesized by chemical deposition of Au nanoparticles onto C60, and functionalized by PEG5000 via a pH cleavable hydrazone bond, making C60@Au-PEG keep the PEG on the surface of drug delivery system during circulation but dissociate PEG from the system after accumulation in tumor tissue, then doxorubicin (DOX) was loaded onto C60@Au-PEG with a very high drug loading efficiency. The release profiles of DOX from C60@Au-PEG/DOX showed strong dependences on radio frequency (RF). For the drug delivery, C60@Au-PEG/DOX afforded much higher antitumor efficacy owing to 8.6-fold higher DOX uptake of tumor than DOX. Besides, in this work, C60@Au-PEG/DOX not only served as a powerful RTT agent for RF-thermal ablation of tumor and a strong photosensitizer (PS) for PDT, but also as an X-ray contrast agent for tumor diagnosis. In the in vitro and in vivo studies, C60@Au-PEG/DOX showed excellent chemo-RF thermal-photodynamic therapeutic efficacy, RF-controlled drug releasing function, tumor targeting property, tumoral acid PEG dissociating character and X-ray imaging ability, demonstrating that there is a great potential of C60@Au-PEG/DOX for simultaneous diagnosis and therapy in cancer treatment. STATEMENT OF SIGNIFICANCE A significant challenge in cancer therapy is to maximize the therapeutic efficacy and minimize the side effects. In the past decade, a lot of nanoparticles have been used as the carriers for efficient drug delivery. However, the design of drug delivery system (DDS) with stimuli-responsive controlled-release property, simultaneous diagnosis and therapy functions is still a challenge. Herein, we developed a new drug delivery system (C60@Au-PEG/DOX), and explored its applications in tumor therapy. The in vitro and in vivo results showed C60@Au-PEG/DOX could significantly improve the therapeutic efficacy and reduce the systemic toxicity through X-ray imaging guided locatable DOX release, photodynamic and photothermal therapies. These results are of interest as they demonstrate a multi-functional DDS for tumor theranostic applications.
Collapse
|
323
|
Wen H, Dong H, Liu J, Shen A, Li Y, Shi D. Redox-mediated dissociation of PEG–polypeptide-based micelles for on-demand release of anticancer drugs. J Mater Chem B 2016; 4:7859-7869. [PMID: 32263776 DOI: 10.1039/c6tb02364a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biocompatible polypeptide-based micelles that can rapidly disassemble for on-demand release of DOX under a redox environment are reported.
Collapse
Affiliation(s)
- Huiyun Wen
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| | - Haiqing Dong
- The Institute for Translational Nanomedicine
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO) Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Jie Liu
- School of Chemical Engineering
- Northwest University
- Xi'an
- P. R. China
| | - Aijun Shen
- Department of Medical Imaging
- Nantong Tumor Hospital
- Nantong University
- Nantong
- P. R. China
| | - Yongyong Li
- The Institute for Translational Nanomedicine
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO) Tongji University School of Medicine
- Shanghai
- P. R. China
| | - Donglu Shi
- The Institute for Translational Nanomedicine
- Shanghai East Hospital
- The Institute for Biomedical Engineering & Nano Science (iNANO) Tongji University School of Medicine
- Shanghai
- P. R. China
| |
Collapse
|
324
|
Kurrikoff K, Gestin M, Langel Ü. Recentin vivoadvances in cell-penetrating peptide-assisted drug delivery. Expert Opin Drug Deliv 2015; 13:373-87. [DOI: 10.1517/17425247.2016.1125879] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
325
|
Sun CY, Shen S, Xu CF, Li HJ, Liu Y, Cao ZT, Yang XZ, Xia JX, Wang J. Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. J Am Chem Soc 2015; 137:15217-24. [DOI: 10.1021/jacs.5b09602] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chun-Yang Sun
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Song Shen
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Cong-Fei Xu
- Hefei
National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Hong-Jun Li
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Zhi-Ting Cao
- Hefei
National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xian-Zhu Yang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jin-Xing Xia
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jun Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
- Hefei
National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230027, PR China
- Innovation
Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| |
Collapse
|
326
|
Zhang L, Tian B, Li Y, Lei T, Meng J, Yang L, Zhang Y, Chen F, Zhang H, Xu H, Zhang Y, Tang X. A Copper-Mediated Disulfiram-Loaded pH-Triggered PEG-Shedding TAT Peptide-Modified Lipid Nanocapsules for Use in Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25147-25161. [PMID: 26501354 DOI: 10.1021/acsami.5b06488] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Disulfiram, which exhibits marked tumor inhibition mediated by copper, was encapsulated in lipid nanocapsules modified with TAT peptide (TATp) and pH-triggered sheddable PEG to target cancer cells on the basis of tumor environmental specificity. PEG-shedding lipid nanocapsules (S-LNCs) were fabricated from LNCs by decorating short PEG chains with TATp (HS-PEG(1k)-TATp) to form TATp-LNCs and then covered by pH-sensitive graft copolymers of long PEG chains (PGA-g-PEG(2k)). The DSF-S-LNCs had sizes in the range of 60-90 nm and were stable in the presence of 50% plasma. DSF-S-LNCs exhibited higher intracellular uptake and antitumor activity at pH 6.5 than at pH 7.4. The preincubation of Cu showed that the DSF cytotoxicity was based on the accumulation of Cu in Hep G2 cells. Pharmacokinetic studies showed the markedly improved pharmacokinetic profiles of DSF-S-LNCs (AUC= 3921.391 μg/L·h, t(1/2z) = 1.294 h) compared with free DSF (AUC = 907.724 μg/L·h, t(1/2z) = 0.252 h). The in vivo distribution of S-LNCs was investigated using Cy5.5 as a fluorescent probe. In tumor-bearing mice, the delivery efficiency of S-LNCs was found to be 496.5% higher than that of free Cy5.5 and 74.5% higher than that of LNCs in tumors. In conclusion, DSF-S-LNCs increased both the stability and tumor internalization and further increased the cytotoxicity because of the higher copper content.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Bin Tian
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yi Li
- Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Tian Lei
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Jia Meng
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Liu Yang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yan Zhang
- Normal College, Shenyang University , Shenyang, Liaoning, PR China
| | - Fen Chen
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine , Shenyang, Liaoning, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Hui Xu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University , Shenyang, Liaoning, PR China
| |
Collapse
|
327
|
Yu H, Chen J, Liu S, Lu Q, He J, Zhou Z, Hu Y. Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin. J Control Release 2015; 216:111-120. [PMID: 26282096 DOI: 10.1016/j.jconrel.2015.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
To achieve a drug delivery system combining the programmable long circulation and targeting ability, surface engineering nanoparticles (NPs), having a sandwich structure consisting of a long circulating outmost layer, a targeting middle layer and a hydrophobic innermost core were constructed by mixing a matrix metalloproteinase MMP2 and MMP9-sensitive copolymers (mPEG-Pep-PCL) and folate receptor targeted copolymers (FA-PEG-PCL). Their physiochemical traits including morphology, particle size, drug loading content, and in vitro release profiles were studied. In vitro studies validated that the inhibition efficiency of tumor cells was effectively correlated with NP concentrations. Furthermore, The PEG layer would detach from the NPs due to the up-regulated extracellular MMP2 and MMP9 in tumors, resulting in the exposure of folate to enhance the cellular internalization via folate receptor mediated endocytosis, which accelerated the release rate of CPT in vivo. The antitumor efficacy, tumor targeting ability and bio-distribution of the NPs were examined in a B16 melanoma cells xenograft mouse model. These NPs showed improved tumor target ability and enhanced aggregation of camptothecin (CPT) in tumor site and prominent suppression of tumor growth. Thus this mPEG-Pep-PCL@FA-PEG-PCL core-shell structure NP could be a better candidate for the tumor specific delivery of hydrophobic drug.
Collapse
Affiliation(s)
- Hongliang Yu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Jiao Chen
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Sen Liu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Qian Lu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China
| | - Jian He
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, 210093, China
| | - Zhengyang Zhou
- Department of Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, 210093, China.
| | - Yong Hu
- Institute of Materials Engineering, National Laboratory of Solid State Microstructure, College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China.
| |
Collapse
|
328
|
Bennett R, Yakkundi A, McKeen HD, McClements L, McKeogh TJ, McCrudden CM, Arthur K, Robson T, McCarthy HO. RALA-mediated delivery of FKBPL nucleic acid therapeutics. Nanomedicine (Lond) 2015; 10:2989-3001. [PMID: 26419658 DOI: 10.2217/nnm.15.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AIMS RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like - FKBPL gene (pFKBPL) - a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). MATERIALS & METHODS The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. RESULTS RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. CONCLUSION RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.
Collapse
Affiliation(s)
- Rachel Bennett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Anita Yakkundi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Hayley D McKeen
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Lana McClements
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Thomas J McKeogh
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Cian M McCrudden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Kenneth Arthur
- Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Tracy Robson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
329
|
Han B, Wang Y, Wang L, Shang Z, Wang S, Pei J. Preparation of GST Inhibitor Nanoparticle Drug Delivery System and Its Reversal Effect on the Multidrug Resistance in Oral Carcinoma. NANOMATERIALS 2015; 5:1571-1587. [PMID: 28347082 PMCID: PMC5304786 DOI: 10.3390/nano5041571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
During the chemotherapy of cancer, drug resistance is the first issue that chemotherapeutic drugs cannot be effectively used for the treatment of cancers repeatedly for a long term, and the main reason for this is that tumor cell detoxification is mediated by GSH (glutathione) catalyzed by GST (glutathione-S-transferase). In this study, a GST inhibitor, ethacrynic acid (ECA), was designed to be coupled with methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) by disulfide bonds to prepare methoxy poly(ethylene glycol)-poly(lactide)-disulphide bond-mthacrynic acid (MPEG-PLA-SS-ECA) as a carrier material of the nanoparticles. Nanoparticles of pingyangmycin (PYM) and carboplatin (CBP) were prepared, respectively, and their physicochemical properties were investigated. The ECA at the disulfide could be released in the presence of GSH, the pingyangmycin, carboplatin and ECA were all uniformly released, and the nanoparticles could release all the drugs completely within 10 days. The half maximal inhibitory concentration (IC50) of the prepared MPEG-PLA-SS-ECA/CBP and MPEG-PLA-SS-ECA/PYM nanoparticles in drug-resistant oral squamous cell carcinoma cell lines SCC15/CBP and SCC15/PYM cells was 12.68 μg·mL-¹ and 12.76 μg·mL-¹, respectively; the resistant factor RF of them in the drug-resistant cells were 1.51 and 1.24, respectively, indicating that MPEG-PLA-SS-ECA nanoparticles can reverse the drug resistance of these two drug-resistant cells.
Collapse
Affiliation(s)
- Bing Han
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Changchun 130012, China.
| | - Yanli Wang
- Changchun Women and Children Health Hospital, No. 962 Xinfa Road, Changchun 130061, China.
| | - Lan Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China.
| | - Zuhui Shang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China.
| | - Shuang Wang
- China Japan Union Hospital, Jilin University, No. 126 Xiantai Street, Changchun 130033, China.
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Changchun 130012, China.
| |
Collapse
|
330
|
Jhaveri A, Torchilin V. Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Deliv 2015; 13:49-70. [DOI: 10.1517/17425247.2015.1086745] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
331
|
Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 2015; 219:205-214. [PMID: 26341694 DOI: 10.1016/j.jconrel.2015.08.050] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
One of the most challenging and clinically important goals in nanomedicine is to deliver imaging and therapeutic agents to solid tumors. Here we discuss the recent design and development of stimuli-responsive smart nanoparticles for targeting the common attributes of solid tumors such as their acidic and hypoxic microenvironments. This class of stimuli-responsive nanoparticles is inactive during blood circulation and under normal physiological conditions, but is activated by acidic pH, enzymatic up-regulation, or hypoxia once they extravasate into the tumor microenvironment. The nanoparticles are often designed to first "navigate" the body's vascular system, "dock" at the tumor sites, and then "activate" for action inside the tumor interstitial space. They combine the favorable biodistribution and pharmacokinetic properties of nanodelivery vehicles and the rapid diffusion and penetration properties of smaller drug cargos. By targeting the broad tumor habitats rather than tumor-specific receptors, this strategy has the potential to overcome the tumor heterogeneity problem and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.
Collapse
|
332
|
Zhang Q, Gao H, He Q. Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Mol Pharm 2015; 12:3105-18. [PMID: 26237247 DOI: 10.1021/acs.molpharmaceut.5b00428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems,
West China School of Pharmacy, and State
Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy,
West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin
Road, Chengdu 610041, P. R. China
| |
Collapse
|
333
|
Sobczynski DJ, Fish MB, Fromen CA, Carasco-Teja M, Coleman RM, Eniola-Adefeso O. Drug carrier interaction with blood: a critical aspect for high-efficient vascular-targeted drug delivery systems. Ther Deliv 2015; 6:915-34. [PMID: 26272334 PMCID: PMC4618056 DOI: 10.4155/tde.15.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vascular wall endothelial cells control several physiological processes and are implicated in many diseases, making them an attractive candidate for drug targeting. Vascular-targeted drug carriers (VTCs) offer potential for reduced side effects and improved therapeutic efficacy, however, only limited therapeutic success has been achieved to date. This is perhaps due to complex interactions of VTCs with blood components, which dictate VTC transport and adhesion to endothelial cells. This review focuses on VTC interaction with blood as well as novel 'bio-inspired' designs to mimic and exploit features of blood in VTC development. Advanced approaches for enhancing VTCs are discussed along with applications in regenerative medicine, an area of massive potential growth and expansion of VTC utility in the near future.
Collapse
Affiliation(s)
- Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Margaret B Fish
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Catherine A Fromen
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Mariana Carasco-Teja
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
| | - Rhima M Coleman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor MI, USA 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
334
|
Hyaluronic acid-grafted polyamidoamine dendrimers enable long circulation and active tumor targeting simultaneously. Carbohydr Polym 2015; 126:231-9. [DOI: 10.1016/j.carbpol.2015.03.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
|
335
|
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect (EPR) promotes nanoparticle (NP) extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of NP and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of NP in nontumor-stroma cells damages the nontumor cells, and interferes with tumor-stroma crosstalk. This can lead to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a crucial, yet controversial role in regulating NP distribution and their biological effects. In this review, we summarize recent studies on the stroma barriers for NP extravasation, and discuss the consequential effects of NP distribution in stroma cells. We also highlight design considerations to improve NP delivery and propose potential combinatory strategies to overcome acquired resistance induced by damaged stroma cells.
Collapse
Affiliation(s)
- Lei Miao
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
336
|
Abstract
Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.
Collapse
|
337
|
Choi JW, Kim J, Bui QN, Li Y, Yun CO, Lee DS, Kim SW. Tuning Surface Charge and PEGylation of Biocompatible Polymers for Efficient Delivery of Nucleic Acid or Adenoviral Vector. Bioconjug Chem 2015; 26:1818-29. [PMID: 26158495 DOI: 10.1021/acs.bioconjchem.5b00357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As an effective and safe strategy to overcome the limits of therapeutic nucleic acid or adenovirus (Ad) vectors for in vivo application, various technologies to modify the surface of vectors with nonimmunogenic/biocompatible polymers have been emerging in the field of gene therapy. However, the transfection efficacy of the polymer to transfer genetic materials is still relatively weak. To develop more advanced and effective polymers to deliver not only Ad vectors, but also nucleic acids, 6 biocompatible polymers were newly designed and synthesized to different sizes (2k, 3.4k, or 5k) of poly(ethylene) glycol (PEG) and different numbers of amine groups (2 or 5) based on methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-l-glutamate (PNLG). We characterized size distribution and surface charge of 6 PNLGs after complexation with either nucleic acid or Ad. Among all 6 PNLGs, the 5 amine group PNLG showed the strongest efficacy in delivering nucleic acid as well as Ad vectors. Interestingly, cellular uptake results showed higher uptake ability in Ad complexed with 2 amine group PNLG than Ad/5 amine group PNLG, suggesting that the size of Ad/PNLGs is more essential than the surface charge for cellular uptake in polymers with charges greater than 30 mV. Moreover, the endosome escape ability of Ad/PNLGs increased depending on the number of amine groups, but decreased by PEG size. Cancer cell killing efficacy and immune response studies of oncolytic Ad/PNLGs showed 5 amine group PNLG to be a more effective and safe carrier for delivering Ad. Overall, these studies provide new insights into the functional mechanism of polymer-based approaches to either nucleic acid or Ad/nanocomplex. Furthermore, the identified ideal biocompatible PNLG polymer formulation (5 amine/2k PEG for nucleic acid, 5 amine/5k PEG for Ad) demonstrated high transduction efficiency as well as therapeutic value (efficacy and safety) and thus has strong potential for in vivo therapeutic use in the future.
Collapse
Affiliation(s)
- Joung-Woo Choi
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jaesung Kim
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Quang Nam Bui
- ‡Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yi Li
- ‡Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chae-Ok Yun
- §Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Doo Sung Lee
- ‡Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Wan Kim
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.,§Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
338
|
Candesartan-graft-polyethyleneimine cationic micelles for effective co-delivery of drug and gene in anti-angiogenic lung cancer therapy. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0858-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
339
|
Zou H, Wang Z, Feng M. Nanocarriers with tunable surface properties to unblock bottlenecks in systemic drug and gene delivery. J Control Release 2015. [PMID: 26208425 DOI: 10.1016/j.jconrel.2015.07.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanocarrier-mediated drug and gene delivery systems hold great promise for providing more refined delivery (especially in cancer treatments) to maximize therapeutic efficacy while minimizing unfavorable side effects. Despite their promise, the highly effective transport of therapeutics in vivo remains a challenge. Over the last 20years, there has been a large amount of research directed toward the development of a multitude of nanocarriers for drug and gene delivery, but only a very small part has progressed into clinical trials. This suggests that the properties of current nanocarriers are not yet ideal for effective drug and gene delivery in vivo. Nanocarrier-mediated drug and gene delivery is a multi-step process, and inefficient delivery at any stage would ultimately result in an unsuccessful delivery. Unfortunately, existing nanocarriers with fixed surface properties, such as a PEGylated, cationized and bioconjugated surface, are not versatile enough to overcome the extracellular and intracellular barriers which require different surface properties. Consequently, their delivery efficacy is not optimal, leading to doubts and debates on the value of nanocarrier-based product development. To resolve the "fixed surface dilemma", the switchable surfaces of nanocarriers, which can surmount both extracellular and intracellular barriers, open up the possibility of highly efficient delivery in vivo. Here, we review and highlight the recent developments in the design of nanocarrier delivery systems with tunable surface properties in response to microenvironment triggers. Strategies including zwitterionic nanocarriers, polymer brushes, layer-by-layer nanocarriers and cleavable conjugated nanocarriers are presented. These representative examples and their respective outcomes elaborate the benefits and efficiencies of these nanocarriers at the individual stages of drug and gene delivery.
Collapse
Affiliation(s)
- Haijuan Zou
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Zhongjuan Wang
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Min Feng
- Department of Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
340
|
Sun L, Wu Q, Peng F, Liu L, Gong C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf B Biointerfaces 2015; 135:56-72. [PMID: 26241917 DOI: 10.1016/j.colsurfb.2015.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
In order to achieve long circulation time and high drug accumulation in the tumor sites via the EPR effects, anticancer drugs have to be protected by non-fouling polymers such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), dextran, and poly(acrylic acid) (PAA). However, the dense layer of stealth polymer also prohibits efficient uptake of anticancer drugs by target cancer cells. For cancer therapy, it is often more desirable to accomplish rapid cellular uptake after anticancer drugs arriving at the pathological site, which could on one hand maximize the therapeutic efficacy and on the other hand reduce probability of drug resistance in cells. In this review, special attention will be focused on the recent potential strategies that can enable drug-loaded polymeric nanoparticles to rapidly recognize cancer cells, leading to enhanced internalization.
Collapse
Affiliation(s)
- Lu Sun
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Feng Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
341
|
Parodi A, Corbo C, Cevenini A, Molinaro R, Palomba R, Pandolfi L, Agostini M, Salvatore F, Tasciotti E. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond) 2015; 10:1923-40. [PMID: 26139126 PMCID: PMC5561781 DOI: 10.2217/nnm.15.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanocarriers are designed to specifically accumulate in diseased tissues. In this context, targeting of intracellular compartments was shown to enhance the efficacy of many drugs and to offer new and more effective therapeutic approaches. This is especially true for therapies based on biologicals that must be encapsulated to favor cell internalization, and to avoid intracellular endosomal sequestration and degradation of the payload. In this review, we discuss specific surface modifications designed to achieve cell cytoplasm delivery and to improve targeting of major organelles; we also discuss the therapeutic applications of these approaches. Last, we describe some integrated strategies designed to sequentially overcome the biological barriers that separate the site of administration from the cell cytoplasm, which is the drug's site of action.
Collapse
Affiliation(s)
- Alessandro Parodi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Claudia Corbo
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Armando Cevenini
- Department of Molecular Medicine & Medical Biotechnology, University of Naples “Federico II”, Via Sergio Pansini 5, Naples 80131, Italy
- CEINGE, Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Roberto Molinaro
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- Clinica Chirurgica I, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroeterologiche, Università di Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Roberto Palomba
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Laura Pandolfi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- College of Materials Science & Optoelectronic Technology, University of Chinese Academy of Science, 19A Yuquanlu, Beijing, China
| | - Marco Agostini
- Clinica Chirurgica I, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroeterologiche, Università di Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Francesco Salvatore
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
342
|
Guo Q, Guan D, Dong B, Nan F, Zhang Y. Charge-Conversional Binary Drug Delivery Polymeric Micelles for Combined Chemotherapy of Cervical Cancer. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1038819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
343
|
Kim SW, Khang D. Multiple cues on the physiochemical, mesenchymal, and intracellular trafficking interactions with nanocarriers to maximize tumor target efficiency. Int J Nanomedicine 2015; 10:3989-4008. [PMID: 26124658 PMCID: PMC4476429 DOI: 10.2147/ijn.s83951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Over the past 60 years, numerous medical strategies have been employed to overcome neoplasms. In fact, with the exception of lung, bronchial, and pancreatic cancers, the 5-year survival rate of most cancers currently exceeds 70%. However, the quality of life of patients during chemotherapy remains unsatisfactory despite the increase in survival rate. The side effects of current chemotherapies stem from poor target efficiency at tumor sites due to the uncontrolled biodistribution of anticancer agents (ie, conventional or current approved nanodrugs). This review discusses the effective physiochemical factors for determining biodistribution of nanocarriers and, ultimately, increasing tumor-targeting probability by avoiding the reticuloendothelial system. Second, stem cell-conjugated nanotherapeutics was addressed to maximize the tumor searching ability and to inhibit tumor growth. Lastly, physicochemical material properties of anticancer nanodrugs were discussed for targeting cellular organelles with modulation of drug-release time. A better understanding of suggested topics will increase the tumor-targeting ability of anticancer drugs and, ultimately, promote the quality of life of cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Dongwoo Khang
- Nanomedicine Laboratory, Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
344
|
Hayashi Y, Hatakeyama H, Kajimoto K, Hyodo M, Akita H, Harashima H. Multifunctional Envelope-Type Nano Device: Evolution from Nonselective to Active Targeting System. Bioconjug Chem 2015; 26:1266-76. [PMID: 25938819 DOI: 10.1021/acs.bioconjchem.5b00184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A paradigm shift has occurred in the field of drug delivery systems (DDS), one being intracellular targeting, and the other, active targeting. An important aspect of intracellular targeting involves delivering nucleic acids such as siRNA/pDNA rather than small molecular compounds, since the mechanism responsible for their entering a target cell is usually via endocytosis, and the efficiency of endosomal escape is a critical factor in determining the functional activities of siRNA/pDNA. A multifunctional envelope-type nano device (MEND) was developed to control the intracellular trafficking of nano carriers containing siRNA/pDNA. An octaarginine (R8) modified MEND was developed to achieve this. Considerable progress has been made in active targeting to selective tissue vasculature such as tumor, adipose tissue, and the lung where endothelial barrier is tight against nanoparticles with diameters larger than 50 nm. A dual-ligand system is proposed to enhance active targeting ability by virtue of a synergistic interaction between a selective ligand and a cell penetrating ligand. Prohibitin targeted nanoparticles (PTNP) were developed to target endothelial cells in adipose tissue, which deliver apoptotic peptides/proteins to the adipose vasculature. Lung endothelial cells can be targeted by means of the GALA peptide, which is usually used to enhance endosomal escape. These active targeting systems can induce pharmacological effects in in vivo conditions. Finally, a novel strategy for producing an original ligand has been developed, especially for the tumor vasculature. This progress in DDS promises to extend the area of nanomedicine as a breakthrough technology.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan 060-0812
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan 060-0812
| | - Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan 060-0812
| | - Mamoru Hyodo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan 060-0812
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan 060-0812
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan 060-0812
| |
Collapse
|
345
|
Zhang L, Wang Y, Yang Y, Liu Y, Ruan S, Zhang Q, Tai X, Chen J, Xia T, Qiu Y, Gao H, He Q. High Tumor Penetration of Paclitaxel Loaded pH Sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9691-9701. [PMID: 25845545 DOI: 10.1021/acsami.5b01473] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The network of collagen I in tumors could prevent the penetration of drugs loaded in nanoparticles, and this would lead to impaired antitumor efficacy. In this study, free losartan (an angiotensin inhibitor) was injected before treatment to reduce the level of collagen I, which could facilitate the penetration of nanoparticles. Then the pH-sensitive cleavable liposomes (Cl-Lip) were injected subsequently to exert the antitumor effect. The Cl-Lip was constituted by PEG(5K)-Hydrazone-PE and DSPE-PEG(2K)-R8. When the Cl-Lip reached to the tumor site by the enhanced permeability and retention (EPR) effect, PEG(5K)-Hydrazone-PE was hydrolyzed from the Cl-Lip under the low extra-cellular pH conditions of tumors, then the R8 peptide was exposed, and finally liposomes could be internalized into tumor cells by the mediation of R8 peptide. In vitro experiments showed both the cellular uptake of Cl-Lip by 4T1 cells and cytotoxicity of paclitaxel loaded Cl-Lip (PTX-Cl-Lip) were pH sensitive. In vivo experiments showed the Cl-Lip had a good tumor targeting ability. After depletion of collagen I, Cl-Lip could penetrate into the deep place of tumors, the tumor accumulation of Cl-Lip was further increased by 22.0%, and the oxygen distributed in tumor tissues was also enhanced. The antitumor study indicated free losartan in combination with PTX-Cl-Lip (59.8%) was more effective than injection with PTX-Cl-Lip only (37.8%) in 4T1 tumor bearing mice. All results suggested that depletion of collagen I by losartan dramatically increased the penetration of PTX-Cl-Lip and combination of free losartan and PTX-CL-Lip could lead to better antitumor efficacy of chemical drugs. Thus, the combination strategy might be a promising tactic for better treatment of solid tumors with a high level of collagen I.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yang Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yuting Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yayuan Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shaobo Ruan
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Qianyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xiaowei Tai
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiantao Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Tai Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yue Qiu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
346
|
Zou Z, He X, He D, Wang K, Qing Z, Yang X, Wen L, Xiong J, Li L, Cai L. Programmed packaging of mesoporous silica nanocarriers for matrix metalloprotease 2-triggered tumor targeting and release. Biomaterials 2015; 58:35-45. [PMID: 25941780 DOI: 10.1016/j.biomaterials.2015.04.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 02/07/2023]
Abstract
The development of multifunctional nanocarrier with each unit functioning at the correct time and location is a challenge for clinical applications. With this in mind, a type of intelligent mesoporous silica nanocarrier (PGFMSN) is proposed for matrix metalloprotease 2 (MMP 2)-triggered tumor targeting and release by integrating programmed packing and MMP 2-degradable gelatin. Mesoporous silica nanoparticles (MSN) are first functionalized with folic acid (FA) as a target ligand to improve cell uptake. Then gelatin is introduced onto FA-MSN via temperature-induced gelation, where gelatin layer blocks drugs inside the mesopores and protects the targeting ligand. To prolong blood-circulation lifetime, PEG is further decorated to obtain PGFMSN. All units are programmatically incorporated in a simple way and coordinated in an optimal fashion. Cells, multicellular spheroids and in vivo results demonstrate that PGFMSN is shielded against nonspecific uptake. After circulating to tumor tissue, the up-regulated MMP-2 hydrolyzes gelatin layer to deshield PEG and switch on the function of FA, which facilitate the selective uptake by tumor cells through folate-receptor-mediated endocytosis. Meanwhile, the packaged drug is released due to the shedding of gelatin layer. It is shown that doxorubicin (DOX)-loaded exhibits superior tumor targeting, drug internalization, cytotoxicity, and antitumor efficacy over free DOX, non-PEGylated and non-targeted nanoparticles, which provides potential applications for targeted cancer therapy.
Collapse
Affiliation(s)
- Zhen Zou
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Dinggeng He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zhihe Qing
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xue Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Li Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Xiong
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liling Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Linli Cai
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
347
|
Skandalis SS, Gialeli C, Theocharis AD, Karamanos NK. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res 2015; 123:277-317. [PMID: 25081534 DOI: 10.1016/b978-0-12-800092-2.00011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
348
|
|
349
|
Zhao J, Chai YD, Zhang J, Huang PF, Nakashima K, Gong YK. Long circulating micelles of an amphiphilic random copolymer bearing cell outer membrane phosphorylcholine zwitterions. Acta Biomater 2015; 16:94-102. [PMID: 25637066 DOI: 10.1016/j.actbio.2015.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/20/2022]
Abstract
Polymeric micelles with cell outer membrane mimetic structure were prepared in water from amphiphilic random copolymers bearing both the hydrophilic phosphorylcholine zwitterions and hydrophobic octadecyl side chains of cell outer membrane. The polymeric micelles showed sizes ranging from 80 nm to 120 nm in hydrodynamic diameter and zeta-potentials from -6.4 mV to -2.4 mV by dynamic light scattering measurements. The micelles loaded with 6-coumarin as a fluorescence probe were stable to investigate their blood circulation and biodistribution. The in vitro phagocytosis results using murine peritoneal macrophages showed 10-fold reduction compared with a reference micelle. The in vivo blood circulation half-life of the polymeric micelles following intravenous administration in New Zealand Rabbits was increased from 0.55 h to 90.5h. More interestingly, tissue distribution results showed that the concentration of the micelles in the kidney is 4-fold higher than that in the liver and other organs 48 h after administration. The results of this work show great promise for designing more effective stealth drug carriers that can minimize reticuloendothelial system clearance and circulate for long time to reach target by using simple cell membrane mimetic random copolymer micelles.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China; School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, PR China
| | - Yu-Dong Chai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Jing Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Peng-Fei Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China
| | - Kenichi Nakashima
- Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, PR China.
| |
Collapse
|
350
|
Reversibly cross-linked polyplexes enable cancer-targeted gene delivery via self-promoted DNA release and self-diminished toxicity. Biomacromolecules 2015; 16:1390-400. [PMID: 25756930 DOI: 10.1021/acs.biomac.5b00180] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycations often suffer from the irreconcilable inconsistency between transfection efficiency and toxicity. Polymers with high molecular weight (MW) and cationic charge feature potent gene delivery capabilities, while in the meantime suffer from strong chemotoxicity, restricted intracellular DNA release, and low stability in vivo. To address these critical challenges, we herein developed pH-responsive, reversibly cross-linked, polyetheleneimine (PEI)-based polyplexes coated with hyaluronic acid (HA) for the effective and targeted gene delivery to cancer cells. Low-MW PEI was cross-linked with the ketal-containing linker, and the obtained high-MW analogue afforded potent gene delivery capabilities during transfection, while rapidly degraded into low-MW segments upon acid treatment in the endosomes, which promoted intracellular DNA release and reduced material toxicity. HA coating of the polyplexes shielded the surface positive charges to enhance their stability under physiological condition and simultaneously reduced the toxicity. Additionally, HA coating allowed active targeting to cancer cells to potentiate the transfection efficiencies in cancer cells in vitro and in vivo. This study therefore provides an effective approach to overcome the efficiency-toxicity inconsistence of nonviral vectors, which contributes insights into the design strategy of effective and safe vectors for cancer gene therapy.
Collapse
|