301
|
Jiang LF, Liao HL, Huang HM, Zhou LX, Li L, Cheng SX, Du CZ. Potential prevention and treatment of maifanite for Alzheimer's disease based on behavior test, oxidative stress assay, and trace element analysis in hippocampus of Aβ(₂₅₋₃₅)-induced AD rats. Biol Trace Elem Res 2013; 152:50-6. [PMID: 23279943 DOI: 10.1007/s12011-012-9590-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 12/20/2012] [Indexed: 01/20/2023]
Abstract
This study aimed to assess whether maifanite can improve the learning and memory, and antioxidant abilities of Alzheimer's disease (AD) rats. The 70 rats were divided into seven groups: [A] normal control group, [B] AD model group, [C] sham group, [D] positive control group (donepezil), [E] low-dose maifanite group, [F] middle-dose maifanite group, [G] high-dose maifanite group. For [B], [D], [E], [F], and [G] groups, Aβ(25-35) ventricle injection was carried out, then respective medicine were administered once a day for 60 consecutive days. The step-down and step-through test were used to measure learning and memory ability. The hippocampus levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were assayed. The hippocampus contents of Al, Fe, Cu, Zn, Se, and Mn were analyzed by inductively coupled plasma-atomic emission spectrometer. Maifanite decreased the acquisition errors and the retention errors while prolonging the step-down latency, and decreased the number of electric shocks while prolonging the first latency of AD rats. Aβ(25-35) ventricle injection initiated the decrease of SOD and GSH-Px activities and the increase of MDA content, and triggered the rise of Al, Fe, and Cu levels and the decline of Mn, Zn, and Se levels. The SOD and GSH-Px activities were enhanced followed by reduced MDA level, and the levels of Mn, Zn, and Se increased accompanied by Al, Fe, and Cu decreased in the maifanite treat groups. Maifanite could improve the learning and memory, and the antioxidant abilities of AD rats. Maifanite had the potential prevention and treatment for AD.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, 6# post box, 179 Mingxiudong Road, Nanning, Guangxi 530001, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
302
|
Zhang Y, Wang B, Wan H, Zhou Q, Li T. Meta-analysis of the insulin degrading enzyme polymorphisms and susceptibility to Alzheimer's disease. Neurosci Lett 2013; 541:132-7. [DOI: 10.1016/j.neulet.2013.01.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/29/2013] [Indexed: 11/26/2022]
|
303
|
Tiiman A, Palumaa P, Tõugu V. The missing link in the amyloid cascade of Alzheimer's disease - metal ions. Neurochem Int 2013; 62:367-78. [PMID: 23395747 DOI: 10.1016/j.neuint.2013.01.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 01/23/2023]
Abstract
Progressive deposition of amyloid beta (Aβ) peptides into amyloid plaques is the pathological hallmark of Alzheimer's disease (AD). The amyloid cascade hypothesis pins this deposition as the primary cause of the disease, but the mechanisms that causes this deposition remain elusive. An increasing amount of evidence shows that biometals Zn(II) and Cu(II) can interact with Aβ, thus influencing the fibrillization and toxicity. This review focuses on the role of Zn(II) and Cu(II) in AD, and revisits the amyloid cascade hypothesis demonstrating the possible roles of Zn(II) and Cu(II) in the disease pathogenesis.
Collapse
Affiliation(s)
- Ann Tiiman
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.
| | | | | |
Collapse
|
304
|
Vascular endothelial growth factor polymorphisms and risk of Alzheimer's disease: a meta-analysis. Gene 2013; 518:296-302. [PMID: 23370341 DOI: 10.1016/j.gene.2013.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 01/11/2023]
Abstract
There were conflicting results about whether promoter polymorphisms (-2578C/A, -1154G/A) of vascular endothelial growth factor (VEGF) gene is a risk factor of Alzheimer's disease (AD). To determine the relationship between them, a meta-analysis is needed urgently. We searched all the reports about VEGF promoter polymorphisms (-2578C/A, -1154G/A) and AD risk from PubMed, Web of Science, Cochrane Collaboration and Google Scholar database for the period up to 1 August, 2012. A total of 7 studies were included in this meta-analysis. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated applying fixed or random effects models. There was no significant association between VEGF -2578C/A polymorphisms and AD risk in all gene models (OR=1.08, 95% CI=0.94-1.23 for A vs. C; OR=1.19, 95% CI=0.89-1.59 for AA vs. CC; OR=1.15, 95% CI=0.91-1.45 for AA vs. CC+CA; OR=1.11, 95% CI=0.98-1.25 for AA+CA vs. CC). Similar results were provided in subgroup analysis by ethnicity. For the VEGF -1154G/A polymorphisms, lack of an association was also found (A vs. G: OR=0.89, 95% CI=0.79-1.01; AA vs. GG: OR=0.82, 95% CI=0.62-1.08; AA vs. GA+GG: OR=0.89, 95% CI=0.68-1.16; AA+AG vs. GG: OR=0.85, 95% CI=0.72-1.00). Conclusively, the result of this meta-analysis suggested that VEGF promoter polymorphisms (-2578C/A, -1154G/A) might not contribute to the susceptibility of AD.
Collapse
|
305
|
The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int 2013; 62:796-802. [PMID: 23333339 DOI: 10.1016/j.neuint.2013.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 11/23/2022]
Abstract
Thiamine (vitamin B1) deficiency, the underlying cause of Wernicke-Korsakoff syndrome, is associated with the development of focal neuronal loss in vulnerable areas of the brain. Although the actual mechanism(s) that lead to the selective histological lesions characteristic of this disorder remain unresolved, oxidative stress has been shown to play a major role in its pathophysiology. In this review, the multifactorial influence of oxidative stress on a variety of processes known to take part in the development of structural lesions in TD including excitotoxicity, neuroinflammation, blood-brain barrier integrity, mitochondrial integrity, apoptosis, nucleic acid function, and neural stem cells will be discussed, and therapeutic strategies undertaken for treating neurodegeneration examined which may have an impact on the future treatment of this important vitamin deficiency.
Collapse
|
306
|
Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K. Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 2013; 368:107-16. [PMID: 23150908 PMCID: PMC3677583 DOI: 10.1056/nejmoa1211103] [Citation(s) in RCA: 1941] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sequence variants, including the ε4 allele of apolipoprotein E, have been associated with the risk of the common late-onset form of Alzheimer's disease. Few rare variants affecting the risk of late-onset Alzheimer's disease have been found. METHODS We obtained the genome sequences of 2261 Icelanders and identified sequence variants that were likely to affect protein function. We imputed these variants into the genomes of patients with Alzheimer's disease and control participants and then tested for an association with Alzheimer's disease. We performed replication tests using case-control series from the United States, Norway, The Netherlands, and Germany. We also tested for a genetic association with cognitive function in a population of unaffected elderly persons. RESULTS A rare missense mutation (rs75932628-T) in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2), which was predicted to result in an R47H substitution, was found to confer a significant risk of Alzheimer's disease in Iceland (odds ratio, 2.92; 95% confidence interval [CI], 2.09 to 4.09; P=3.42×10(-10)). The mutation had a frequency of 0.46% in controls 85 years of age or older. We observed the association in additional sample sets (odds ratio, 2.90; 95% CI, 2.16 to 3.91; P=2.1×10(-12) in combined discovery and replication samples). We also found that carriers of rs75932628-T between the ages of 80 and 100 years without Alzheimer's disease had poorer cognitive function than noncarriers (P=0.003). CONCLUSIONS Our findings strongly implicate variant TREM2 in the pathogenesis of Alzheimer's disease. Given the reported antiinflammatory role of TREM2 in the brain, the R47H substitution may lead to an increased predisposition to Alzheimer's disease through impaired containment of inflammatory processes. (Funded by the National Institute on Aging and others.).
Collapse
|
307
|
Moraes CF, Benedet AL, Souza VC, Lins TC, Camargos EF, Naves JOS, Brito CJ, Córdova C, Pereira RW, Nóbrega OT. Cytokine gene polymorphisms and Alzheimer's disease in Brazil. Neuroimmunomodulation 2013; 20:239-46. [PMID: 23838435 DOI: 10.1159/000350368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms in genes encoding immunological mediators can affect the biological activity of these molecules by regulating transcription, translation, or secretion, modulating the genetic risk of inflammatory damage in Alzheimer's disease (AD). Nonetheless, the Brazilian contingent is highly admixed, and few association trials performed herein with AD patients have considered genetic ancestry estimates as co-variables when investigating markers for this complex trait. METHODS We analyzed polymorphisms in 10 inflammatory genes and compared the genotype distribution across outpatients with late-onset AD and noncognitively impaired subjects from Midwest Brazil under a strict criterion, and controlling for ancestry heritage and ApoE genotype. RESULTS Our findings show an almost 40% lower chance of AD (p = 0.004) among homozygotes of the IL10 -1082A allele (rs1800896). Dichotomization to ApoE and mean ancestry levels did not affect protection, except among those with greater European or minor African heritage. CONCLUSION The IL10 locus seems to affect the onset of AD in a context sensitive to the genetic ancestry of Brazilian older adults.
Collapse
Affiliation(s)
- Clayton F Moraes
- Programa de Pós-Graduação em Ciências Médicas, Universidade de Brasília, Brasília, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Benedet AL, Moraes CF, Camargos EF, Oliveira LF, Souza VC, Lins TC, Henriques AD, Carmo DGS, Machado-Silva W, Araújo CN, Córdova C, Pereira RW, Nóbrega OT. Amerindian genetic ancestry protects against Alzheimer's disease. Dement Geriatr Cogn Disord 2012; 33:311-7. [PMID: 22759767 DOI: 10.1159/000339672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia worldwide, and bears remarkable evidence for a differential prevalence among continental populations. In this scenario, estimating ancestry proportions in recently admixed populations is a strategy that can help increasing knowledge about the genetic structure of this complex trait. AIM/METHODS Our purpose was to assess mean ancestry estimates for the three main parental contributors to the Brazilian contingent (European, African and Amerindian) using a panel of 12 ancestry informative markers. Outpatients with the late-onset form of AD (n = 120) were compared for ancestry levels with non-cognitively impaired subjects (n = 412) in the Midwest Brazil, controlling for classic clinical, social and anthropometric risk factors. RESULTS Our findings show a 3-fold greater genetic Amerindian content among control subjects compared to AD patients (p < 0.001). CONCLUSION Our results suggest that the allelic architecture of Native Americans can confer protection against the onset of the disease.
Collapse
Affiliation(s)
- Andrea L Benedet
- Programa de Pós-Graduação em Ciências Médicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Metti AL, Cauley JA. How predictive of dementia are peripheral inflammatory markers in the elderly? Neurodegener Dis Manag 2012; 2:609-622. [PMID: 23441140 DOI: 10.2217/nmt.12.68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dementia is a huge public health concern today owing to the exponentially increasing number of older adults it affects each year, and there has been a large number of investigators looking at potential biomarkers of dementia. Peripheral inflammatory markers have emerged as one potential class of markers that may be useful in predicting those individuals at a greater risk of developing dementia, or in expounding the underlying mechanisms or pathways of this complex disease. Although some evidence has been promising, indicating that peripheral inflammatory markers are indeed crucial in brain changes that occur in both normal aging and in dementia, results have been mixed on their usefulness for predicting dementia or cognitive decline in older adults. Here, the authors present a review of existing studies investigating inflammatory markers as potential biomarkers of dementia, highlighting some strengths and limitations of the current research and discuss the future directions for this field.
Collapse
Affiliation(s)
- Andrea L Metti
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, PA, USA ; University of Pittsburgh Department of Epidemiology, Center for Aging & Population Health, 130 N Bellefield, Room 456, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
310
|
Abstract
Despite tremendous investments in understanding the complex molecular mechanisms underlying Alzheimer disease (AD), recent clinical trials have failed to show efficacy. A potential problem underlying these failures is the assumption that the molecular mechanism mediating the genetically determined form of the disease is identical to the one resulting in late-onset AD. Here, we integrate experimental evidence outside the 'spotlight' of the genetic drivers of amyloid-β (Aβ) generation published during the past two decades, and present a mechanistic explanation for the pathophysiological changes that characterize late-onset AD. We propose that chronic inflammatory conditions cause dysregulation of mechanisms to clear misfolded or damaged neuronal proteins that accumulate with age, and concomitantly lead to tau-associated impairments of axonal integrity and transport. Such changes have several neuropathological consequences: focal accumulation of mitochondria, resulting in metabolic impairments; induction of axonal swelling and leakage, followed by destabilization of synaptic contacts; deposition of amyloid precursor protein in swollen neurites, and generation of aggregation-prone peptides; further tau hyperphosphorylation, ultimately resulting in neurofibrillary tangle formation and neuronal death. The proposed sequence of events provides a link between Aβ and tau-related neuropathology, and underscores the concept that degenerating neurites represent a cause rather than a consequence of Aβ accumulation in late-onset AD.
Collapse
|
311
|
Mullane K, Williams M. Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond? Biochem Pharmacol 2012. [PMID: 23178653 DOI: 10.1016/j.bcp.2012.11.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The worldwide incidence of Alzheimer's disease (AD) is increasing with estimates that 115 million individuals will have AD by 2050, creating an unsustainable healthcare challenge due to a lack of effective treatment options highlighted by multiple clinical failures of agents designed to reduce the brain amyloid burden considered synonymous with the disease. The amyloid hypothesis that has been the overarching focus of AD research efforts for more than two decades has been questioned in terms of its causality but has not been unequivocally disproven despite multiple clinical failures, This is due to issues related to the quality of compounds advanced to late stage clinical trials and the lack of validated biomarkers that allow the recruitment of AD patients into trials before they are at a sufficiently advanced stage in the disease where therapeutic intervention is deemed futile. Pursuit of a linear, reductionistic amyloidocentric approach to AD research, which some have compared to a religious faith, has resulted in other, equally plausible but as yet unvalidated AD hypotheses being underfunded leading to a disastrous roadblock in the search for urgently needed AD therapeutics. Genetic evidence supporting amyloid causality in AD is reviewed in the context of the clinical failures, and progress in tau-based and alternative approaches to AD, where an evolving modus operandi in biomedical research fosters excessive optimism and a preoccupation with unproven, and often ephemeral, biomarker/genome-based approaches that override transparency, objectivity and data-driven decision making, resulting in low probability environments where data are subordinate to self propagating hypotheses.
Collapse
|
312
|
Torres M, Jimenez S, Sanchez-Varo R, Navarro V, Trujillo-Estrada L, Sanchez-Mejias E, Carmona I, Davila JC, Vizuete M, Gutierrez A, Vitorica J. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. Mol Neurodegener 2012; 7:59. [PMID: 23173743 PMCID: PMC3575255 DOI: 10.1186/1750-1326-7-59] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/04/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer's patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months) and aged (18 months) PS1(M146L)/APP(751sl) transgenic mice. RESULTS Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. CONCLUSION A progressive age-dependent cytoskeletal pathology along with a reduction of lysosomal and, in minor extent, proteasomal activity could be directly implicated in the progressive accumulation of APP derived fragments (and Abeta peptides) in parallel with the increase of BACE-1 and gamma-secretase activities. This retard in the APP metabolism seemed to be directly implicated in the synaptic Abeta accumulation and, in consequence, in the pathology progression between synaptically connected regions.
Collapse
Affiliation(s)
- Manuel Torres
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, 41013, Sevilla, Spain
- Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastian Jimenez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, 41013, Sevilla, Spain
- Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Malaga, Malaga, 29071, Spain
| | - Victoria Navarro
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, 41013, Sevilla, Spain
- Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Trujillo-Estrada
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Malaga, Malaga, 29071, Spain
| | - Elisabeth Sanchez-Mejias
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Malaga, Malaga, 29071, Spain
| | - Irene Carmona
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, 41013, Sevilla, Spain
- Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Malaga, Malaga, 29071, Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, 41013, Sevilla, Spain
- Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Universidad de Malaga, Malaga, 29071, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas Universidad de Sevilla, c/ Manuel Siurot s/n, 41013, Sevilla, Spain
- Department Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, 41012, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
313
|
Penke B, Tóth AM, Földi I, Szűcs M, Janáky T. Intraneuronal β-amyloid and its interactions with proteins and subcellular organelles. Electrophoresis 2012; 33:3608-16. [PMID: 23161402 DOI: 10.1002/elps.201200297] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/09/2012] [Accepted: 08/21/2012] [Indexed: 11/09/2022]
Abstract
Amyloidogenic aggregation and misfolding of proteins are linked to neurodegeneration. The mechanism of neurodegeneration in Alzheimer's disease, which gives rise to severe neuronal death and memory loss, is not yet fully understood. The amyloid hypothesis remains the most accepted theory for the pathomechanism of the disease. It was suggested that β-amyloid accumulation may play a key role in initiating the neurodegenerative processes. The recent intracellular β-amyloid (iAβ) hypothesis emphasizes the primary role of iAβ to initiate the disease by interaction with cytoplasmic proteins and cell organelles, thereby triggering apoptosis. Sophisticated methods (proteomics, protein microarray, and super resolution microscopy) have been used for studying iAβ interactions with proteins and membraneous structures. The present review summarizes the studies on the origin of iAβ and the base of its neurotoxicity: interactions with cytosolic proteins and several cell organelles such as endoplasmic reticulum, endosomes, lysosomes, ribosomes, mitochondria, and the microtubular system.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | |
Collapse
|
314
|
Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer's disease. Arch Med Res 2012; 43:600-8. [PMID: 23159715 DOI: 10.1016/j.arcmed.2012.11.003] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Global population aging has been one of the defining processes of the twentieth century, with profound economic, political and social consequences. It is driving the current epidemic of dementia, both in terms of its extent and global distribution. The aim of the study was to summarize recent findings relevant to the epidemiological knowledge of dementia and Alzheimer's disease (AD). METHODS A narrative mini-review of the literature relevant to the epidemiology of dementia and AD is presented, summarizing important findings and analyzing their implications. RESULTS It was estimated that in 2010 there were 36.5 million people living with dementia, with 7.7 million new cases yearly and a new case of dementia every 4 sec. The number of persons living with dementia will nearly double every 20 years. Most of these persons will be living in low- and middle-income countries (LMIC). CONCLUSIONS There are a substantial number of people with dementia worldwide and these numbers will continue to increase mainly in LMIC, producing a wide range of impacts. It is important to make dementia a national public health and social care priority worldwide. Recent reviews and meta-analyses have failed to clearly identify a singular causal or preventive pathway for AD that seems to be a multicausal, heterogeneous and age-related condition.
Collapse
Affiliation(s)
- Ana Luisa Sosa-Ortiz
- Laboratorio de Demencias, Instituto Nacional de Neurología y Neurocirugía, Mexico, D.F., México.
| | | | | |
Collapse
|
315
|
Yan XX, Cai Y, Shelton J, Deng SH, Luo XG, Oddo S, LaFerla FM, Cai H, Rose GM, Patrylo PR. Chronic temporal lobe epilepsy is associated with enhanced Alzheimer-like neuropathology in 3×Tg-AD mice. PLoS One 2012; 7:e48782. [PMID: 23155407 PMCID: PMC3498246 DOI: 10.1371/journal.pone.0048782] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
The comorbidity between epilepsy and Alzheimer's disease (AD) is a topic of growing interest. Senile plaques and tauopathy are found in epileptic human temporal lobe structures, and individuals with AD have an increased incidence of spontaneous seizures. However, why and how epilepsy is associated with enhanced AD-like pathology remains unknown. We have recently shown β-secretase-1 (BACE1) elevation associated with aberrant limbic axonal sprouting in epileptic CD1 mice. Here we sought to explore whether BACE1 upregulation affected the development of Alzheimer-type neuropathology in mice expressing mutant human APP, presenilin and tau proteins, the triple transgenic model of AD (3×Tg-AD). 3×Tg-AD mice were treated with pilocarpine or saline (i.p.) at 6-8 months of age. Immunoreactivity (IR) for BACE1, β-amyloid (Aβ) and phosphorylated tau (p-tau) was subsequently examined at 9, 11 or 14 months of age. Recurrent convulsive seizures, as well as mossy fiber sprouting and neuronal death in the hippocampus and limbic cortex, were observed in all epileptic mice. Neuritic plaques composed of BACE1-labeled swollen/sprouting axons and extracellular AβIR were seen in the hippocampal formation, amygdala and piriform cortices of 9 month-old epileptic, but not control, 3×Tg-AD mice. Densities of plaque-associated BACE1 and AβIR were elevated in epileptic versus control mice at 11 and 14 months of age. p-Tau IR was increased in dentate granule cells and mossy fibers in epileptic mice relative to controls at all time points examined. Thus, pilocarpine-induced chronic epilepsy was associated with accelerated and enhanced neuritic plaque formation and altered intraneuronal p-tau expression in temporal lobe structures in 3×Tg-AD mice, with these pathologies occurring in regions showing neuronal death and axonal dystrophy.
Collapse
Affiliation(s)
- Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
- * E-mail: (XXY); (GMR); (PRP)
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, Illinois, United States of America
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Jarod Shelton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Si-Hao Deng
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Xue-Gang Luo
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Salvatore Oddo
- Department of Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Gregory M. Rose
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, Illinois, United States of America
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail: (XXY); (GMR); (PRP)
| | - Peter R. Patrylo
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University Carbondale, Illinois, United States of America
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
- * E-mail: (XXY); (GMR); (PRP)
| |
Collapse
|
316
|
Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Götz M, Dimou L. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 2012; 61:273-86. [PMID: 23090919 DOI: 10.1002/glia.22432] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/11/2012] [Indexed: 11/08/2022]
Abstract
Myelin loss is frequently observed in human Alzheimer's disease (AD) and may constitute to AD-related cognitive decline. A potential source to repair myelin defects are the oligodendrocyte progenitor cells (OPCs) present in an adult brain. However, until now, little is known about the reaction of these cells toward amyloid plaque deposition neither in human AD patients nor in the appropriate mouse models. Therefore, we analyzed cells of the oligodendrocyte lineage in a mouse model with chronic plaque deposition (APPPS1 mice) and samples from human patients. In APPPS1 mice defects in myelin integrity and myelin amount were prevalent at 6 months of age but normalized to control levels in 9-month-old mice. Concomitantly, we observed an increase in the proliferation and differentiation of OPCs in the APPPS1 mice at this specific time window (6-8 months) implying that improvements in myelin aberrations may result from repair mechanisms mediated by OPCs. However, while we observed a higher number of cells of the oligodendrocyte lineage (Olig2+ cells) in APPPS1 mice, OLIG2+ cells were decreased in number in postmortem human AD cortex. Our data demonstrate that oligodendrocyte progenitors specifically react to amyloid plaque deposition in an AD-related mouse model as well as in human AD pathology, although with distinct outcomes. Strikingly, possible repair mechanisms from newly generated oligodendrocytes are evident in APPPS1 mice, whereas a similar reaction of oligodendrocyte progenitors seems to be strongly limited in final stages of human AD pathology.
Collapse
Affiliation(s)
- Gwendolyn Behrendt
- Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Zawisza I, Rózga M, Bal W. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP). Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
318
|
QU MH, FANG CY, ZHANG XR, ZHAO CZ, MAO SM, Gao ZQ. Type 2 Diabetes and Mild Cognitive Impairment*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
319
|
Wilhelmus MMM, Nijland PG, Drukarch B, de Vries HE, van Horssen J. Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radic Biol Med 2012; 53:983-92. [PMID: 22687462 DOI: 10.1016/j.freeradbiomed.2012.05.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
The involvement of parkin, PINK1, and DJ1 in mitochondrial dysfunction, oxidative injury, and impaired functioning of the ubiquitin-proteasome system (UPS) has been intensively investigated in light of Parkinson's disease (PD) pathogenesis. However, these pathological mechanisms are not restricted to PD, but are common denominators of various neurodegenerative and neuroinflammatory disorders. It is therefore conceivable that parkin, PINK1, and DJ1 are also linked to the pathogenesis of other neurological diseases, including Alzheimer's disease (AD) and multiple sclerosis (MS). The importance of these proteins in mechanisms underlying neurodegeneration is reflected by the neuroprotective properties of parkin, DJ1, and PINK1 in counteracting oxidative stress and improvement of mitochondrial and UPS functioning. This review provides a concise overview on the cellular functions of the E3 ubiquitin ligase parkin, the mitochondrial kinase PINK1, and the cytoprotective protein DJ1 and their involvement and interplay in processes underlying neurodegeneration in common neurological disorders.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
320
|
Antioxidant therapies for Alzheimer's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:472932. [PMID: 22888398 PMCID: PMC3410354 DOI: 10.1155/2012/472932] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/17/2012] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease featuring progressive impairments in memory, cognition, and behavior and ultimately leads to death. The histopathological changes of Alzheimer's disease include neuronal and synaptic loss, formation of extracellular senile plaques and intracellular neurofibrillary tangles in brain. Multiple lines of evidence indicate that oxidative stress not only strongly participates in an early stage of Alzheimer's disease prior to cytopathology, but plays an important role in inducing and activating multiple cell signaling pathways that contribute to the lesion formations of toxic substances and then promotes the development of Alzheimer's disease. Many years of studies show that antioxidant therapies have enjoyed general success in preclinical studies. Therefore, this paper mainly focuses on the recent developments of common used antioxidant therapies for Alzheimer's disease and thus provides indications for future potential antioxidant therapeutic strategies of neurodegenerative diseases.
Collapse
|
321
|
Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 2012; 46:151-60. [PMID: 22678467 PMCID: PMC3443477 DOI: 10.1007/s12035-012-8281-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/02/2022]
Abstract
Hormonal deficit in post-menopausal women has been proposed to be one risk factor in Alzheimer's disease (AD) since two thirds of AD patients are women. However, large treatment trials showed negative effects of long-term treatment with oestrogens in older women. Thus, oestrogen treatment after menopause is still under debate, and several hypotheses trying to explain the failure in outcome are under discussion. Concurrently, it was shown that amyloid-beta (Aβ) peptide, the main constituent of senile plaques, as well as abnormally hyperphosphorylated tau protein, the main component of neurofibrillary tangles, can modulate the level of neurosteroids which notably represent neuroactive steroids synthetized within the nervous system, independently of peripheral endocrine glands. In this review, we summarize the role of neurosteroids especially that of oestrogen in AD and discuss their potentially neuroprotective effects with specific regard to the role of oestrogens on the maintenance and function of mitochondria, important organelles which are highly vulnerable to Aβ- and tau-induced toxicity. We also discuss the role of Aβ-binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme able to bind Aβ peptide thereby modifying mitochondrial function as well as oestradiol levels suggesting possible modes of interaction between the three, and the potential therapeutic implication of inhibiting Aβ-ABAD interaction.
Collapse
|
322
|
Hunter JM, Cirrito JR, Restivo JL, Kinley RD, Sullivan PM, Holtzman DM, Koger D, Delong C, Lin S, Zhao L, Liu F, Bales K, Paul SM. Emergence of a seizure phenotype in aged apolipoprotein epsilon 4 targeted replacement mice. Brain Res 2012; 1467:120-32. [PMID: 22682924 DOI: 10.1016/j.brainres.2012.05.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 01/29/2023]
Abstract
The apolipoprotein ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and is associated with earlier age of onset. The incidence of spontaneous seizures has been reported to be increased in sporadic AD as well as in the early onset autosomal dominant forms of AD. We now report the emergence of a seizure phenotype in aged apolipoprotein E4 (apoE4) targeted replacement (TR) mice but not in age-matched apoE2 TR or apoE3 TR mice. Tonic-clonic seizures developed spontaneously after 5 months of age in apoE4 TR mice and are triggered by mild stress. Female mice had increased seizure penetrance compared to male mice, but had slightly reduced overall seizure severity. The majority of seizures were characterized by head and neck jerks, but 25% of aged apoE4 TR mice had more severe tonic-clonic seizures which occasionally progressed to tonic extension and death. Aged apoE4 TR mice progressed through pentylenetetrazol-induced seizure stages more rapidly than did apoE3 TR and apoE2 TR mice. Electroencephalographic (EEG) recordings revealed more frequent bursts of synchronous theta activity in the hippocampus of apoE4 TR mice than in apoE2 TR or apoE3 TR mice. Cortical EEG recordings also revealed sharp spikes and other abnormalities in apoE4 TR mice. Taken together, these findings demonstrate the emergence of an age-dependent seizure phenotype in old apoE4 TR mice in the absence of human amyloid-β peptide (Aβ) overexpression, suggesting increased central nervous system neural network excitability.
Collapse
Affiliation(s)
- Jesse M Hunter
- Neuroscience Discovery, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Endolysosome involvement in LDL cholesterol-induced Alzheimer's disease-like pathology in primary cultured neurons. Life Sci 2012; 91:1159-68. [PMID: 22580286 DOI: 10.1016/j.lfs.2012.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 12/26/2022]
Abstract
AIMS Elevated levels of circulating cholesterol are extrinsic factors contributing to the pathogenesis of sporadic Alzheimer's disease (AD). We showed previously that rabbits fed a cholesterol-enriched diet exhibited blood-brain barrier (BBB) dysfunction, increased accumulation of apolipoprotein B (ApoB) in brain neurons, and endolysosomes in brain had disturbed structures and functions. These effects were linked to increased amyloid beta (Aβ) production, increased tau-pathology, and disrupted synaptic integrity. Because pathological changes to endolysosomes represent a very early event in sporadic AD, we determined here the extent to which ApoB-containing LDL cholesterol altered the structure and function of endolysosomes and contributed to the development of AD-like pathology in primary cultured neurons. MAIN METHODS Cholesterol distribution and endolysosome morphology were determined histologically. Endolysosome pH was measured ratio-metrically with LysoSensor dye. Endolysosome enzyme activity was measured for acid phosphatase, cathepsins B and D, and beta-site APP cleaving enzyme 1 (BACE-1). AD-like pathologies, including increased production of Aβ, increased tau-pathology, and disrupted synaptic integrity were determined using ELISA, immunoblotting, and immunostaining techniques. KEY FINDINGS Treatment of neurons with ApoB-containing LDL cholesterol increased endolysosome accumulation of cholesterol, enlarged endolysosomes, and elevated endolysosome pH. In addition, ApoB-containing LDL cholesterol increased endolysosome accumulation of BACE-1, enhanced BACE-1 activity, increased Aβ levels, increased levels of phosphorylated tau, and decreased levels of synaptophysin. SIGNIFICANCE Our findings suggest strongly that alterations in the structure and function of endolysosomes play a key role in the exhibition of pathological features of AD that result from neuronal exposure to ApoB-containing LDL cholesterol.
Collapse
|
324
|
Chen C, Zhou Z, Li M, Qu M, Ma Q, Zhong M, Zhang Y, Yu Z. Presenilin-2 polymorphisms and risk of sporadic AD: evidence from a meta-analysis. Gene 2012; 503:194-9. [PMID: 22580083 DOI: 10.1016/j.gene.2012.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/19/2012] [Accepted: 05/02/2012] [Indexed: 12/31/2022]
Abstract
Association studies of presenilin-2 (PSEN2) polymorphisms and sporadic Alzheimer's disease (AD) have yielded inconsistent results, possibly because single studies often lack sufficient statistical power. In this study, we performed a meta-analysis to evaluate the association of the two most extensively studied PSEN2 polymorphisms, rs8383 and 5'indel, with the risk of sporadic AD. We systematically reviewed relevant studies retrieved by Medline, Pubmed, Embase, AlzGene, and CNKI. Data were analyzed using the Stata (v11.0) software package. The fixed effects model or random-effects model were applied depending on between-study heterogeneity. Publication bias was evaluated using Egger's test and Begg's funnel plots. Overall, the meta-analysis included 6 case-control studies for each polymorphism with 2186 confirmed AD cases and 2507 healthy controls in total. Analysis suggested a significant association between SNP rs8383 polymorphism and AD risk with no evidence of between-study heterogeneity or publication bias. In contrast, we found no evidence for an association between the 5'indel polymorphism and AD risk. Further stratified analyses by apolipoprotein ε4 status or ethnicity also failed to reveal a statistically significant association between the 5'indel polymorphism of PSEN2 and AD risk. Our analysis supports the hypothesis that the PSEN2 rs8383 polymorphism is associated with an enlarged risk of sporadic AD. However, larger scale association studies are necessary to further validate the association of PSEN2 polymorphisms with sporadic AD risk and to define potential gene-gene interactions.
Collapse
Affiliation(s)
- Chunhai Chen
- Department of Occupational Health, Faculty of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Abstract
PURPOSE OF REVIEW Sirtuins are a family of enzymes highly conserved in evolution and involved in mechanisms known to promote healthy ageing and longevity. This review aims to discuss recent advances in understanding the role of sirtuins, in particular mammalian SIRT1, in promoting longevity and its potential molecular basis for neuroprotection against cognitive ageing and Alzheimer's disease pathology. RECENT FINDINGS Accumulative increase in oxidative stress during ageing has been shown to decrease SIRT1 activity in catabolic tissue, possibly by direct inactivation by reactive oxygen. SIRT1 overexpression prevents oxidative stress-induced apoptosis and increases resistance to oxidative stress through regulation of the FOXO family of forkhead transcription factors. In addition, resveratrol strongly stimulates SIRT1 deacetylase activity in a dose-dependent manner by increasing its binding affinity to both the acetylated substrate and NAD(+). Recently, SIRT1 has been shown to affect amyloid production through its influence over the ADAM10 gene. Upregulation of SIRT1 can also induce the Notch pathway and inhibit mTOR signalling. SUMMARY Recent studies have revealed some of the mechanisms and pathways that are associated with the neuroprotective effects of SIRT1.
Collapse
|
326
|
Fu W, Ruangkittisakul A, MacTavish D, Shi JY, Ballanyi K, Jhamandas JH. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. J Biol Chem 2012; 287:18820-30. [PMID: 22500019 DOI: 10.1074/jbc.m111.331181] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two age-prevalent diseases Alzheimer disease and type 2 diabetes mellitus share many common features including the deposition of amyloidogenic proteins, amyloid β protein (Aβ) and amylin (islet amyloid polypeptide), respectively. Recent evidence suggests that both Aβ and amylin may express their effects through the amylin receptor, although the precise mechanisms for this interaction at a cellular level are unknown. Here, we studied this by generating HEK293 cells with stable expression of an isoform of the amylin receptor family, amylin receptor-3 (AMY3). Aβ1-42 and human amylin (hAmylin) increase cytosolic cAMP and Ca(2+), trigger multiple pathways involving the signal transduction mediators protein kinase A, MAPK, Akt, and cFos. Aβ1-42 and hAmylin also induce cell death during exposure for 24-48 h at low micromolar concentrations. In the presence of hAmylin, Aβ1-42 effects on HEK293-AMY3-expressing cells are occluded, suggesting a shared mechanism of action between the two peptides. Amylin receptor antagonist AC253 blocks increases in intracellular Ca(2+), activation of protein kinase A, MAPK, Akt, cFos, and cell death, which occur upon AMY3 activation with hAmylin, Aβ1-42, or their co-application. Our data suggest that AMY3 plays an important role by serving as a receptor target for actions Aβ and thus may represent a novel therapeutic target for development of compounds to treat neurodegenerative conditions such as Alzheimer disease.
Collapse
Affiliation(s)
- Wen Fu
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
327
|
Van Gorp B, Vercruysse T. Frames and counter-frames giving meaning to dementia: A framing analysis of media content. Soc Sci Med 2012; 74:1274-81. [DOI: 10.1016/j.socscimed.2011.12.045] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/25/2022]
|
328
|
Kroker KS, Rast G, Giovannini R, Marti A, Dorner-Ciossek C, Rosenbrock H. Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology 2012; 62:1964-74. [DOI: 10.1016/j.neuropharm.2011.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 01/19/2023]
|
329
|
Miller LA, Spitznagel MB, Alosco ML, Cohen RA, Raz N, Sweet LH, Colbert L, Josephson R, Hughes J, Rosneck J, Gunstad J. Cognitive profiles in heart failure: a cluster analytic approach. J Clin Exp Neuropsychol 2012; 34:509-20. [PMID: 22375800 DOI: 10.1080/13803395.2012.663344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cognitive impairment is common among individuals with heart failure (HF), but the exact nature of these impairments remains unclear. The current study examined 140 older adults with heart failure and sought to determine whether there are distinct cognitive profiles using a cluster analytic approach. Results indicated three unique profiles comprising individuals who were cognitively intact, memory impaired, and globally impaired. Clusters differed on several important demographic and clinical characteristics. These findings suggest that cognitive impairment in persons with HF is more heterogeneous than commonly believed and has important implications for treatment recommendations.
Collapse
|
330
|
Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2012; 2:PBA-2-14980. [PMID: 22953035 PMCID: PMC3417541 DOI: 10.3402/pba.v2i0.14980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.
Collapse
Affiliation(s)
- Tom C Karagiannis
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | |
Collapse
|
331
|
Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, Oliveira CR, Moreira PI. Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer's disease and diabetes interrelation. Brain Res 2012; 1441:64-78. [PMID: 22290178 DOI: 10.1016/j.brainres.2011.12.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 11/07/2011] [Accepted: 12/31/2011] [Indexed: 12/24/2022]
Abstract
Many epidemiological studies have shown that diabetes, particularly type 2 diabetes, significantly increases the risk to develop Alzheimer's disease. Both diseases share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and deposition of amyloidogenic proteins. It has been suggested that these two diseases disrupt common cellular and molecular pathways and each disease potentiates the progression of the other. This review discusses clinical and biochemical features shared by Alzheimer's disease and diabetes, giving special attention to the involvement of insulin signaling, glucose metabolism and mitochondria. Understanding the key mechanisms underlying this deleterious interaction may provide opportunities for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- Sónia C Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC. Protein phosphatases and Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:343-79. [PMID: 22340724 PMCID: PMC3739963 DOI: 10.1016/b978-0-12-396456-4.00012-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's Disease (AD) is characterized by progressive loss of cognitive function, linked to marked neuronal loss. Pathological hallmarks of the disease are the accumulation of the amyloid-β (Aβ) peptide in the form of amyloid plaques and the intracellular formation of neurofibrillary tangles (NFTs). Accumulating evidence supports a key role for protein phosphorylation in both the normal and pathological actions of Aβ as well as the formation of NFTs. NFTs contain hyperphosphorylated forms of the microtubule-binding protein tau, and phosphorylation of tau by several different kinases leads to its aggregation. The protein kinases involved in the generation and/or actions of tau or Aβ are viable drug targets to prevent or alleviate AD pathology. However, it has also been recognized that the protein phosphatases that reverse the actions of these protein kinases are equally important. Here, we review recent advances in our understanding of serine/threonine and tyrosine protein phosphatases in the pathology of AD.
Collapse
|
333
|
Languille S, Blanc S, Blin O, Canale CI, Dal-Pan A, Devau G, Dhenain M, Dorieux O, Epelbaum J, Gomez D, Hardy I, Henry PY, Irving EA, Marchal J, Mestre-Francés N, Perret M, Picq JL, Pifferi F, Rahman A, Schenker E, Terrien J, Théry M, Verdier JM, Aujard F. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev 2012; 11:150-62. [PMID: 21802530 DOI: 10.1016/j.arr.2011.07.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 07/08/2011] [Indexed: 01/27/2023]
Abstract
The use of non-human primate models is required to understand the ageing process and evaluate new therapies against age-associated pathologies. The present article summarizes all the contributions of the grey mouse lemur Microcebus murinus, a small nocturnal prosimian primate, to the understanding of the mechanisms of ageing. Results from studies of both healthy and pathological ageing research on the grey mouse lemur demonstrated that this animal is a unique model to study age-dependent changes in endocrine systems, biological rhythms, thermoregulation, sensorial, cerebral and cognitive functions.
Collapse
|
334
|
Xu J, Kurup P, Nairn AC, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase in Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:303-25. [PMID: 22840751 PMCID: PMC3740556 DOI: 10.1016/b978-0-12-394816-8.00009-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly, affecting millions of people worldwide and representing a substantial economic burden. AD is a progressive disease associated with memory loss and impaired cognitive function. The neuropathology is characterized by cortical accumulation of amyloid plaques and neurofibrillary tangles (NFTs). Amyloid plaques are small, aggregated peptides called beta amyloid (Aβ) and NFTs are aggregates of hyperphosphorylated Tau protein. Because Aβ disrupts multiple intracellular signaling pathways, resulting in some of the clinical symptoms of AD, understanding the underlying molecular mechanisms has implications for the diagnosis and treatment of AD. Recent studies have demonstrated that Aβ regulates striatal-enriched protein tyrosine phosphatase (STEP) (PTPN5). Aβ accumulation is associated with increases in STEP levels and activity that in turn disrupts glutamate receptor trafficking to and from the neuronal membrane. These findings indicate that modulating STEP levels or inhibiting its activity may have beneficial effects for patients with AD, making it an important target for drug discovery. This article reviews the biology of STEP and its role in AD as well as the potential clinical applications.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
335
|
Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S, Ruano D, Vizuete M, Davila JC, Garcia-Verdugo JM, Jimenez AJ, Vitorica J, Gutierrez A. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer's mice hippocampus. Acta Neuropathol 2012; 123:53-70. [PMID: 22020633 PMCID: PMC3249205 DOI: 10.1007/s00401-011-0896-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/27/2011] [Accepted: 10/13/2011] [Indexed: 12/25/2022]
Abstract
Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer's disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1(M146L)/APP(751SL) mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin-cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages.
Collapse
|
336
|
Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2011:467180. [PMID: 22191013 PMCID: PMC3236428 DOI: 10.1155/2011/467180] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 02/07/2023]
Abstract
The incidence and prevalence of neurodegenerative diseases (ND) increase with life expectancy. This paper reviews the role of oxidative stress (OS) in ND and pharmacological attempts to fight against reactive oxygen species (ROS)-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.
Collapse
|
337
|
Maarouf CL, Daugs ID, Kokjohn TA, Walker DG, Hunter JM, Kruchowsky JC, Woltjer R, Kaye J, Castaño EM, Sabbagh MN, Beach TG, Roher AE. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS One 2011; 6:e27291. [PMID: 22087282 PMCID: PMC3210154 DOI: 10.1371/journal.pone.0027291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer's disease (AD) dementia and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Aβ/tau metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical in AD dementia, such as soluble or insoluble Aβ40, Aβ42 and tau were quantified by ELISA. Interestingly, only Aβ42 demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium derived factor levels were lower. The lack of clear Aβ-related pathological/biochemical demarcation between AD and ND-HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity, must play important roles in cognitive failure.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jane C. Kruchowsky
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Kaye
- Layton Aging and Alzheimer's Disease Center, Department of Neurology, Oregon Health and Science University, United States of America
| | | | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| |
Collapse
|
338
|
Zhu LH, Bi W, Qi RB, Wang HD, Wang ZG, Zeng Q, Zhao YR, Lu DX. Luteolin reduces primary hippocampal neurons death induced by neuroinflammation. Neurol Res 2011; 33:927-34. [PMID: 22080993 DOI: 10.1179/1743132811y.0000000023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES This study examined whether luteolin may exert an anti-inflammatory effect in microglia and may be neuroprotective by regulating microglia activation. METHODS We treated BV2 microglia with 1.0 μg/ml lipopolysaccharide (LPS) after incubation with luteolin for 1 hour, the nitric oxide (NO) levels were determined by a Griess reaction, the inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), and interleukin 1beta (IL-1beta) mRNA expression were determined by real-time PCR analysis, the iNOS and COX-2 protein induction were determined by Western blot analysis, and the levels of prostaglandin E(2) (PGE(2)), TNF-alpha, and IL-1beta were determined by enzyme-linked immunosorbent assay (ELISA) kits. Rat primary hippocampal neurons were co-cultured with LPS-activated BV2 microglia with 20 μM luteolin for 24 hours, the hippocampal neurons viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the number of apoptotic hippocampal neurons was determined by immunofluorescence detection. RESULTS Luteolin significantly inhibited the expression of iNOS and COX-2 in LPS-induced BV2 microglia. Moreover, the compound down-regulated the proinflammatory cytokines (TNF-alpha and IL-1beta) as well as the production of NO and PGE(2) in these cells. When hippocampal neurons were co-cultured with LPS-stimulated BV2 microglia, the administration of 20 μM luteolin increased the neurons viability and reduced the number of apoptotic neurons. CONCLUSION These data demonstrate that anti-inflammatory activity of luteolin in microglia contributes to its neuroprotective effect and suggest that it may have a potential therapeutic application in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Li-Hong Zhu
- Department of Pathophysiology, Institute of Brain Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Abstract
Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | |
Collapse
|
340
|
Lachaine J, Beauchemin C, Legault M, Bineau S. Economic evaluation of the impact of memantine on time to nursing home admission in the treatment of Alzheimer disease. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2011; 56:596-604. [PMID: 22014692 DOI: 10.1177/070674371105601005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE An observational study showed that combining memantine with a cholinesterase inhibitor (ChEI) treatment significantly delayed admission to nursing homes in patients with Alzheimer disease (AD). Our study aimed to evaluate the economic impact of the concomitant use of memantine and a ChEI, compared with a ChEI alone, in a Canadian population of patients with AD. METHOD A cost-utility analysis using a Markov model during a 7-year time horizon was performed according to a societal and Canadian health care system perspective. The Markov model includes the following states: noninstitutionalized, institutionalized, and deceased. The model includes transition probabilities for institutionalization and death, adjusted with mortality rates specific to AD. Utilities associated with institutionalization and noninstitutionalization were included. For the health care system perspective, costs of medication as well as costs of care provided in the community and in nursing homes were considered. For the societal perspective, costs of direct care and supervision provided by caregivers were added. RESULTS From both perspectives, the concomitant use of a ChEI and memantine is a dominant strategy, compared with the use of a ChEI alone. On a per patient basis, there was a gain of 0.26 quality-adjusted life years with the treatment including memantine and cost decreases of Can$21 391 and Can$30 512, respectively, for the societal and health care system perspective. CONCLUSIONS This economic evaluation indicates that institutionalization is the largest cost component in AD management and that the use of memantine, combined with a ChEI, to treat AD is a cost-effective alternative, compared with the use of a ChEI alone.
Collapse
|
341
|
Davinelli S, Intrieri M, Russo C, Di Costanzo A, Zella D, Bosco P, Scapagnini G. The "Alzheimer's disease signature": potential perspectives for novel biomarkers. IMMUNITY & AGEING 2011; 8:7. [PMID: 21933389 PMCID: PMC3192749 DOI: 10.1186/1742-4933-8-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/20/2011] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is a progressive and neurodegenerative disorder which involves multiple molecular mechanisms. Intense research during the last years has accumulated a large body of data and the search for sensitive and specific biomarkers has undergone a rapid evolution. However, the diagnosis remains problematic and the current tests do not accurately detect the process leading to neurodegeneration. Biomarkers discovery and validation are considered the key aspects to support clinical diagnosis and provide discriminatory power between different stages of the disorder. A considerable challenge is to integrate different types of data from new potent approach to reach a common interpretation and replicate the findings across studies and populations. Furthermore, long-term clinical follow-up and combined analysis of several biomarkers are among the most promising perspectives to diagnose and manage the disease. The present review will focus on the recent published data providing an updated overview of the main achievements in the genetic and biochemical research of the Alzheimer's disease. We also discuss the latest and most significant results that will help to define a specific disease signature whose validity might be clinically relevant for future AD diagnosis.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Health Sciences, University of Molise, Campobasso, Italy.
| | | | | | | | | | | | | |
Collapse
|
342
|
Tran TT, Srivareerat M, Alhaider IA, Alkadhi KA. Chronic psychosocial stress enhances long-term depression in a subthreshold amyloid-beta rat model of Alzheimer's disease. J Neurochem 2011; 119:408-16. [PMID: 21854392 DOI: 10.1111/j.1471-4159.2011.07437.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to genetic aspects, environmental factors such as stress may also play a critical role in the etiology of the late onset, sporadic Alzheimer's disease (AD). The present study examined the effect of chronic psychosocial stress in a sub-threshold Aβ (subAβ) rat model of AD on long-term depression by two techniques: electrophysiological recordings of synaptic plasticity in anesthetized rats, and immunoblot analysis of memory- and AD-related signaling molecules. Chronic psychosocial stress was induced using a rat intruder model. The subAβ rat model of AD, which was intended to represent outwardly normal individuals with a pre-disposition to AD, was induced by continuous infusion of 160 pmol/day Aβ₁₋₄₂ via a 14-day i.c.v. osmotic pump. Results from electrophysiological recordings showed that long-term depression evoked in stress/subAβ animals was significantly enhanced compared with that in animals exposed to stress or subAβ infusion alone. Molecular analysis of various signaling molecules 1 h after induction of long-term depression revealed an increase in the levels of calcineurin and phosphorylated CaMKII in groups exposed to stress compared with other groups. The levels of the brain-derived neurotrophic factor (BDNF) were significantly decreased in stress/subAβ animals but not in stress or subAβ animals. In addition, the levels of beta-site amyloid precursor protein cleaving enzyme were markedly increased in stress/subAβ. These findings suggest that chronic stress may accelerate the impairment of synaptic plasticity and consequently cognition in individuals 'at-risk' for AD.
Collapse
Affiliation(s)
- Trinh T Tran
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | | | | | | |
Collapse
|
343
|
Mancuso C, Siciliano R, Barone E, Butterfield DA, Preziosi P. Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before. Expert Opin Investig Drugs 2011; 20:1243-61. [DOI: 10.1517/13543784.2011.601740] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
344
|
Davis NJ, Hendrix CC, Superville JG. Supportive approaches for Alzheimer disease. Nurse Pract 2011; 36:22-29. [PMID: 21747305 DOI: 10.1097/01.npr.0000399724.54519.ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer disease (AD) accounts for most dementia diagnoses. Acetylcholinesterase inhibitors and antipsychotics are first-line drug therapies for cognitive decline and to manage neuropsychiatric symptoms, respectively. Because AD is relentlessly progressive, NPs will need to provide long-term support to patients and their caregivers.
Collapse
Affiliation(s)
- Nicole J Davis
- Byrdine F. Lewis School of Nursing, Georgia State University, GA, USA
| | | | | |
Collapse
|
345
|
Cai Y, Zhang XM, Macklin LN, Cai H, Luo XG, Oddo S, Laferla FM, Struble RG, Rose GM, Patrylo PR, Yan XX. BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer's disease: differential Aβ antibody labeling of early-onset axon terminal pathology. Neurotox Res 2011; 21:160-74. [PMID: 21725719 DOI: 10.1007/s12640-011-9256-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/01/2011] [Accepted: 06/22/2011] [Indexed: 12/25/2022]
Abstract
β-amyloid precursor protein (APP) and presenilins mutations cause early-onset familial Alzheimer's disease (FAD). Some FAD-based mouse models produce amyloid plaques, others do not. β-Amyloid (Aβ) deposition can manifest as compact and diffuse plaques; it is unclear why the same Aβ molecules aggregate in different patterns. Is there a basic cellular process governing Aβ plaque pathogenesis? We showed in some FAD mouse models that compact plaque formation is associated with a progressive axonal pathology inherent with increased expression of β-secretase (BACE1), the enzyme initiating the amyloidogenic processing of APP. A monoclonal Aβ antibody, 3D6, visualized distinct axon terminal labeling before plaque onset. The present study was set to understand BACE1 and axonal changes relative to diffuse plaque development and to further characterize the novel axonal Aβ antibody immunoreactivity (IR), using triple transgenic AD (3xTg-AD) mice as experimental model. Diffuse-like plaques existed in the forebrain in aged transgenics and were regionally associated with increased BACE1 labeled swollen/sprouting axon terminals. Increased BACE1/3D6 IR at axon terminals occurred in young animals before plaque onset. These axonal elements were also co-labeled by other antibodies targeting the N-terminal and mid-region of Aβ domain and the C-terminal of APP, but not co-labeled by antibodies against the Aβ C-terminal and APP N-terminal. The results suggest that amyloidogenic axonal pathology precedes diffuse plaque formation in the 3xTg-AD mice, and that the early-onset axonal Aβ antibody IR in transgenic models of AD might relate to a cross-reactivity of putative APP β-carboxyl terminal fragments.
Collapse
Affiliation(s)
- Yan Cai
- Department of Human Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Hoekstra JG, Montine KS, Zhang J, Montine TJ. Mitochondrial therapeutics in Alzheimer's disease and Parkinson's disease. ALZHEIMERS RESEARCH & THERAPY 2011; 3:21. [PMID: 21722346 PMCID: PMC3226310 DOI: 10.1186/alzrt83] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurons, mitochondria serve a wide variety of processes that are integral to their function and survival. It is, therefore, not surprising that evidence of mitochondrial dysfunction is observed across numerous neurodegenerative diseases. Alzheimer's disease and Parkinson's disease are two such diseases in which aberrant mitochondrial activity is proposed to contribute to pathogenesis. Current therapies for each disease target various mechanisms, but few, if any, directly target improved mitochondrial function. Recent discoveries pertaining to mitochondrial dynamics reveal that regulation of mitochondrial fission and fusion may play a key role in the pathogenesis of these diseases and consequently could be novel future therapeutic targets.
Collapse
Affiliation(s)
- Jake G Hoekstra
- Department of Pathology, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA.
| | | | | | | |
Collapse
|
347
|
Palmer CS, Osellame LD, Stojanovski D, Ryan MT. The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 2011; 23:1534-45. [PMID: 21683788 DOI: 10.1016/j.cellsig.2011.05.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/31/2011] [Indexed: 01/04/2023]
Abstract
Mitochondria typically form a reticular network radiating from the nucleus, creating an interconnected system that supplies the cell with essential energy and metabolites. These mitochondrial networks are regulated through the complex coordination of fission, fusion and distribution events. While a number of key mitochondrial morphology proteins have been identified, the precise mechanisms which govern their activity remain elusive. Moreover, post translational modifications including ubiquitination, phosphorylation and sumoylation of the core machinery are thought to regulate both fusion and division of the network. These proteins can undergo several different modifications depending on cellular signals, environment and energetic demands of the cell. Proteins involved in mitochondrial morphology may also have dual roles in both dynamics and apoptosis, with regulation of these proteins under tight control of the cell to ensure correct function. The absolute reliance of the cell on a functional mitochondrial network is highlighted in neurons, which are particularly vulnerable to any changes in organelle dynamics due to their unique biochemical requirements. Recent evidence suggests that defects in the shape or distribution of mitochondria correlate with the progression of neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease. This review focuses on our current understanding of the mitochondrial morphology machinery in cell homeostasis, apoptosis and neurodegeneration, and the post translational modifications that regulate these processes.
Collapse
Affiliation(s)
- Catherine S Palmer
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | | | | | | |
Collapse
|
348
|
Juhász G, Földi I, Penke B. Systems biology of Alzheimer's disease: How diverse molecular changes result in memory impairment in AD. Neurochem Int 2011; 58:739-50. [DOI: 10.1016/j.neuint.2011.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/19/2011] [Accepted: 02/10/2011] [Indexed: 01/13/2023]
|
349
|
Santos RX, Correia SC, Cardoso S, Carvalho C, Santos MS, Moreira PI. Effects of rapamycin and TOR on aging and memory: implications for Alzheimer's disease. J Neurochem 2011; 117:927-36. [PMID: 21447003 DOI: 10.1111/j.1471-4159.2011.07262.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapamycin is a macrolide immunosuppressant drug, originally used as an anti-fungal agent, which is widely used in transplantation medicine to prevent organ rejection. Target of rapamycin (TOR) is an evolutionarily conserved serine/threonine kinase with pleiotropic cellular functions, regulating processes such as growth and metabolism, cell survival, transcription and autophagy. TOR intervenes in two distinct enzymatic complexes with different functions, a rapamycin-sensitive complex TORC1 and a rapamycin-insensitive complex TORC2. Rapamycin has an inhibitory effect on TORC1 activity and it has been suggested to increase life span, an effect correlated with decreased protein biosynthesis and autophagy activation. In the CNS, rapamycin shows beneficial effects in neuronal survival and plasticity, thus contributing to memory improvement. In this review, evidence implying rapamycin and TOR in aging/life span extension and memory improvement will be discussed. Recent findings about the effects of rapamycin on Alzheimer's disease-associated neuropathology will be also discussed.
Collapse
Affiliation(s)
- Renato X Santos
- Department of Life Sciences - Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
350
|
Blood-CNS barrier, neurodegeneration and neuroprotection: recent therapeutic advancements and nano-drug delivery. J Neural Transm (Vienna) 2011; 118:3-6. [PMID: 21225296 DOI: 10.1007/s00702-010-0542-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|