301
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
302
|
Hussain S, Khan F, Hussain HA, Nie L. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:116. [PMID: 26904078 PMCID: PMC4746480 DOI: 10.3389/fpls.2016.00116] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/21/2016] [Indexed: 05/18/2023]
Abstract
Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18°C) and normal temperatures (28°C) in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism, and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress.
Collapse
Affiliation(s)
- Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Fahad Khan
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Hafiz A. Hussain
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
- *Correspondence: Lixiao Nie,
| |
Collapse
|
303
|
Kumar N, Dubey AK, Jaiswal PK, Sahu N, Behera SK, Tripathi RD, Mallick S. Selenite supplementation reduces arsenate uptake greater than phosphate but compromises the phosphate level and physiological performance in hydroponically grown Oryza sativa L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:163-172. [PMID: 26189439 DOI: 10.1002/etc.3171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/17/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
The present study evaluates the reduction of arsenate (As[V]) uptake in rice seedlings through individual and combined supplementation of phosphate (PO4(3-)) and selenite (Se[IV]) in a hydroponic condition. The toxic response in seedlings receiving As(V) manifested as inhibition in physiological parameters such as water use efficiency, stomatal conductance, photosynthetic assimilation rate, transpiration rate, photochemical quenching, and electron transport rate, along with growth. Arsenic accumulation significantly decreased with Se(IV) treatment (0.5 μg mL(-1), 1 μg mL(-1), and 2 μg mL(-1)) in a dose-dependent manner (20%, 35%, and 53%, respectively); however, it compromised the PO4(3-) level and physiological performance. The lower level of Se(IV), (0.5 μg mL(-1)), was relatively beneficial in terms of reduction in As accumulation than the higher level of Se(IV), (2 μg mL(-1)), which was rather toxic. Further, decrease in As uptake, replenished the level of PO4(3-) and physiological performance in seedlings treated with As+Se+P compared with those treated with As+Se. However, supplementation with only PO4(3-) (10 μg mL(-1) and 20 μg mL(-1)) along with As(V) was less effective in reducing As accumulation compared with As+Se. Seedlings receiving As+Se+P also exhibited lower thiobarbituric acid-reactive substances (TBARS) and electrical conductivity levels compared with both As+Se and As+P. Among all the treatments, the activity of antioxidant enzymes was highest in plants treated with As+Se+P. Hence, the higher antioxidant enzyme activity in As+Se+P along with lower levels of TBARS, H2 O2 , and As accumulation are attributed to the competitive reduction in As uptake in the presence of Se(IV) and PO4(3-).
Collapse
Affiliation(s)
- Navin Kumar
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Arvind Kumar Dubey
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Praveen Kumar Jaiswal
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Nayan Sahu
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Soumit Kumar Behera
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Rudra Deo Tripathi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Shekhar Mallick
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
304
|
Longchamp M, Angeli N, Castrec-Rouelle M. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 98:128-137. [PMID: 26686285 DOI: 10.1016/j.plaphy.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite.
Collapse
Affiliation(s)
- M Longchamp
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR7619 METIS, 4 Place Jussieu, 75005 Paris, France
| | - N Angeli
- UMR 1137 INRA-UHP Ecologie et Ecophysiologie Forestières, INRA - Centre de Nancy, 54280 Champenoux, France
| | - M Castrec-Rouelle
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, UMR7619 METIS, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
305
|
Tomasi N, Pinton R, Dalla Costa L, Cortella G, Terzano R, Mimmo T, Scampicchio M, Cesco S. New ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
306
|
Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chem 2015; 185:441-8. [DOI: 10.1016/j.foodchem.2015.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/14/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
|
307
|
Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU. Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:95-103. [PMID: 26057700 DOI: 10.1016/j.plaphy.2015.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/05/2015] [Accepted: 05/27/2015] [Indexed: 05/03/2023]
Abstract
Heat stress (HS) is a worldwide threat to productivity of wheat, especially in arid and semiarid regions of the world. Earlier studies suggested the beneficial effects of selenium (Se) on the growth of some crop species grown under stressful environments. In the present study, we assessed whether Se application could increase antioxidative potential, and thus enhance tolerance to heat in wheat at the sensitive stage i.e., heading stage. At the heading stage, after foliar application of sodium selenate solutions (0, 2 and 4 mg Se L(-1)), the plants of wheat cultivars, namely Chakwal-97 (drought tolerant) and Faisalabad-08 (drought sensitive), were subjected to HS (38 ± 2 °C). The HS significantly altered antioxidative potential, affected growth, photosynthetic pigments and grain yield in both cultivars. Exogenous application of low (2 mg L(-1)) Se increased chlorophyll a and total chlorophyll contents and modulated the growth of wheat plants under HS. However, high concentration (4 mg L(-1)) of Se was much more effective in increasing grains per spike and grain yield in heat stressed plants of both wheat cultivars. Exogenous Se increased both enzymatic (catalase and ascorbate peroxidase activities) and non-enzymatic (carotenoids, anthocyanins and ascorbic acid contents) antioxidants while decreased oxidants (hydrogen peroxide and malondialdehyde contents) under HS in both wheat cultivars. In conclusion, foliar application of Se (4 mg L(-1)) was much more effective in mitigating the deleterious effects of HS on grain yield of wheat plants. The results suggested that Se-mediated up-regulation of antioxidative system (both enzymatic and non-enzymatic) helped the wheat plants to increase fertility, and hence avoid reduction of grain yield under HS.
Collapse
Affiliation(s)
- Muhammad Iqbal
- Department of Botany, Government College University, Faisalabad 38000, Pakistan.
| | - Iqbal Hussain
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Hena Liaqat
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - M Arslan Ashraf
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad 38000, Pakistan
| | - Aziz Ur Rehman
- Wheat Research Institute, Ayub Agricultural Research Institute (AARI), Faisalabad, Pakistan
| |
Collapse
|
308
|
DeTar RA, Alford ÉR, Pilon-Smits EAH. Molybdenum accumulation, tolerance and molybdenum-selenium-sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:32-40. [PMID: 26074355 DOI: 10.1016/j.jplph.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/02/2023]
Abstract
Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate.
Collapse
Affiliation(s)
- Rachael Ann DeTar
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Élan R Alford
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA; Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
309
|
Tang H, Liu Y, Gong X, Zeng G, Zheng B, Wang D, Sun Z, Zhou L, Zeng X. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9999-10008. [PMID: 25666476 DOI: 10.1007/s11356-015-4187-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/29/2015] [Indexed: 05/20/2023]
Abstract
Hydroponic experiments were performed to investigate the ameliorating effects and mitigation mechanisms of selenium and silicon on Cd toxicity in Boehmeria nivea (L.) Gaud. Metal accumulation, chlorophyll content, activities of antioxidant enzymes, and antioxidant contents in ramie were evaluated. The results revealed that cadmium was mainly accumulated in the roots of plants rather than in the aerial parts. Additionally, under 5 mg L(-1) Cd stress, both Se (1 μmol L(-1)) and Si (1 mmol L(-1)) treatments decreased the Cd concentrations in plants. Besides, the treatments also inhibited the translocation ability of Cd from roots to the aboveground parts, which might be related to the decline of generation of reactive oxygen species (ROS). The application of Se and/or Si ameliorated Cd toxicity via stimulating the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), and ascorbate peroxidase (APX), which resulted in the significant decrease of the contents of malondialdialdehyde (MDA) and hydrogen peroxide (H2O2) in ramie leaves. In addition, the content of nonenzymatic antioxidant such as glutathione (GSH) was increased significantly through the addition of selenite and silicate. Also, ascorbate (AsA) and vitamin E played a crucial role in scavenging excess ROS within plants. On the whole, appropriate doses of Se and Si were found to benefit plant growth and enhance the ability of ramie to alleviate Cd-induced stress. Moerover, the effects of combination of Se and Si appeared to be more superior compared to addition separately in response to Cd stress.
Collapse
Affiliation(s)
- Hui Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Sieprawska A, Kornaś A, Filek M. Involvement of Selenium in Protective Mechanisms of Plants under Environmental Stress Conditions – Review. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/abcsb-2015-0014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn recent years there has been growing interest in selenium (Se) as an important micronutrient not only for animals and humans but also for plants. In particular, its protective effect in plants exposed to stress conditions has been suggested. In spite of many studies, the mechanism of Se action is not fully understood. In this review, possible ways of interaction of Se with stress factors leading to optimal growth and development of plants are presented. As the majority of experiments have focused on the effects of Se application under stress conditions induced by heavy metals, special attention is paid to the results obtained in such studies. Changes of physiological and biochemical properties of plant cells, with particular regard to the influence of Se on the activation of enzymatic and non-enzymatic antioxidants under this stress, are summarized. Experiments in which Se was used in some other environmental stresses (drought, UV, cold and high temperature) are also cited. On the basis of the presented literature it is suggested that a positive effect of Se depends on both its doses and on chosen plant genotypes and is mainly connected with activation of antioxidative defense in plant cells.
Collapse
|
311
|
Xue L, Ren H, Li S, Gao M, Shi S, Chang E, Wei Y, Yao X, Jiang Z, Liu J. Comparative proteomic analysis in Miscanthus sinensis exposed to antimony stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 201:150-60. [PMID: 25800729 DOI: 10.1016/j.envpol.2015.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 05/17/2023]
Abstract
To explore the molecular basis of Sb tolerance mechanism in plant, a comparative proteomic analysis of both roots and leaves in Miscanthus sinensis has been conducted in combination with physiological and biochemical analyses. M. sinensis seedlings were exposed to different doses of Sb, and both roots and leaves were collected after 3 days of treatment. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 29 protein spots showed 1.5-fold change in abundance in leaves and 19 spots in roots, of which 31 were identified by MALDI-TOF-MS and MALDI-TOF-TOF-MS. Proteins involved in antioxidant defense and stress response generally increased their expression all over the Sb treatments. In addition, proteins relative to transcription, signal transduction, energy metabolism and cell division and cell structure showed a variable expression pattern over Sb concentrations. Overall these findings provide new insights into the probable survival mechanisms by which M. sinensis could be adapting to Sb phytotoxicity.
Collapse
Affiliation(s)
- Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Huadong Ren
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China
| | - Sheng Li
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China
| | - Ming Gao
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Wei
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy Forestry, Fuyang, Zhejiang 311400, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
312
|
Ding Y, Wang R, Guo J, Wu F, Xu Y, Feng R. The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5111-23. [PMID: 25471712 DOI: 10.1007/s11356-014-3865-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 11/16/2014] [Indexed: 05/12/2023]
Abstract
Selenium (Se) can alleviate the toxicity of antimony (Sb) in plants; however, the associated mechanisms have not been fully clarified. In this study, we hypothesize that Se can affect the subcellular distribution of Sb to regulate Sb toxicity. To test our hypothesis, two nested hydroponic experiments were performed by using paddy rice (Fengmeizhan). The results showed that Sb exerted toxic effects on the growth of paddy rice, and Se caused beneficial effects that were limited to the shoot growth. In general, Se and Sb mutually showed antagonistic effects on their uptake and concentrations in different subcellular fractions. However, in some cases, the stimulation effects of Sb on the Se concentration in chlorophyll (Chl) and cytosol (Cy) fractions or of Se on the Sb concentration in the cell wall fraction (Cw) were also observed in the shoots, which might suggest that Sb detoxification by Se is also related to the migration of both Se and Sb in cells. Selenium and Sb were primarily concentrated in the Cw and Cy, suggesting the important roles of these two fractions in detoxifying Se and Sb. When paddy rice was subjected to increasing Sb concentrations and a fixed Se concentration, most of the Se in the shoots was sequestered in the Cy (59.81-79.51% of total Se) and more Se was transferred into the inner cell from Cw; however, in the roots, Se was primarily concentrated in the Cw (53.28-72.10%). When paddy rice was exposed to increasing Se concentrations with a fixed Sb concentration, the Cw in both the shoots and roots might play an important role in binding Se, especially in the roots where up to 78.92% of the total Se was sequestered in the Cw.
Collapse
Affiliation(s)
- Yongzhen Ding
- Institute of Agro-Environmental Protection, The Ministry of Agriculture, 300191, Tianjin, China
| | | | | | | | | | | |
Collapse
|
313
|
Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:191-200. [PMID: 25499052 DOI: 10.1016/j.ecoenv.2014.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 05/07/2023]
Abstract
Selenium (Se) is considered an essential micronutrient for humans, animals and plants due to its physiological and antioxidative properties. The positive role of Se in attenuation of drastic effects of various environmental stresses in plants is, however, still unclear and need to be explored. The present study aimed at investigating the physiological and biochemical changes induced by Se foliar spray to improve the drought tolerance potential of wheat. Additionally, we also examined the effect of supplemental Se on uptake of nutrients using detection by ICP-OES. Foliar Se application significantly lowered osmotic potential (13%) that markedly improved turgor by 63%, enhanced transpiration rate (60%), improved accumulation of total soluble sugars (33%) and free amino acids (118%) and activity of antioxidant system which ultimately increased the grain yield by 24%. Supplemental Se also significantly increased Se contents (5.77µgg(-1)DW) and improved Fe (91%) and Na (16%) uptake, whereas it reduced Zn accumulation by 54% and did not affect Ca contents. The results supported our hypothesis that supplemental Se influences nutrients uptake and wheat yield through maintenance of turgor and gas exchange characteristics and enhancement in antioxidant system activity.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan.
| | - R Ahmad
- Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan
| | - M Y Ashraf
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - E A Waraich
- Department of Crop Physiology, University of Agriculture, Faisalabad, Pakistan
| | - S Z Khan
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
314
|
Mechora Š, Stibilj V, Germ M. Response of duckweed to various concentrations of selenite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2416-2422. [PMID: 25028325 DOI: 10.1007/s11356-014-3270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The uptake of Se(IV) and its effects on the physiological and biochemical characteristics of duckweed (Lemna minor L.) have been studied. Duckweed plants were cultivated in controlled conditions for 7 weeks in different concentrations of Na selenite: 0.5, 1, 2, 5 (exposed 42 days) and 10 mg Se L(-1) (survived 7-21 days). The addition of 1 mg Se L(-1) did not negatively affect photochemical efficiency whilst respiratory potential increased in weeks 2-4 compared to control. The addition of 1 mg Se(IV) L(-1) increased the amount of chlorophyll a in weeks 3 and 4 and the amount of carotenoids in weeks 1, 3 and 5. Concentrations of 2 and 5 mg Se L(-1) negatively affected photochemical efficiency in weeks 3 and 4, and increased respiratory potential in comparison to the control in weeks 1-4, whilst beyond week 4, the respiratory potential decreased. Plants exposed to the highest concentration of Se(IV) had to be replaced twice during the experiment because they were dying. That was reflected in photochemical efficiency as well as in respiratory potential, which decreased in time. The content of Se in duckweed increased with the increasing concentration of Se: plants growing in 0.5 mg Se L(-1) contained 0.9 mg Se g(-1) DM and plants exposed to 5 mg Se L(-1) contained 5.8 mg Se g(-1) DM. The group of plants exposed to 10 mg Se L(-1) for 21 days contained 19.5 mg Se g(-1) DM. Our study revealed that duckweed absorbed high amount of Se(IV) from the water.
Collapse
Affiliation(s)
- Špela Mechora
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, 1000, Slovenia,
| | | | | |
Collapse
|
315
|
Khan MIR, Nazir F, Asgher M, Per TS, Khan NA. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:9-18. [PMID: 25462073 DOI: 10.1016/j.jplph.2014.09.011] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
We have studied the influence of selenium (Se) and sulfur (S) in the protection of photosynthetic capacity of wheat (Triticum aestivum) against cadmium (Cd) stress. The involvement of ethylene and its interaction with proline and antioxidant metabolism in the tolerance of plants to Cd stress was evaluated. Application of Se or S alleviated Cd-induced oxidative stress by increasing proline accumulation as a result of increased activity of glutamyl kinase (GK) and decreased activity of proline oxidase (PROX). These nutrients also induced the activity of ATP-sulfurylase and serine acetyl transferase and the content of cysteine (Cys), a precursor for the synthesis of both reduced glutathione (GSH) and ethylene. Further, application of Se and S to plants under Cd stress reduced ethylene level and increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPX), reduced oxidative stress and improved photosynthesis and growth. The involvement of ethylene in Se and S-mediated alleviation of Cd stress was substantiated with the use of ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The use of AVG reversed the effects of Se and S on ethylene, content of proline and GSH and photosynthesis. The results suggested that Se and S both reversed Cd-induced oxidative stress by regulating ethylene formation, proline and GSH metabolism. Thus, Se or S-induced regulatory interaction between ethylene and proline and GSH metabolism may be used for the reversal of Cd-induced oxidative stress.
Collapse
Affiliation(s)
- M Iqbal R Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Faroza Nazir
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Mohd Asgher
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Tasir S Per
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India
| | - Nafees A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202 002, India.
| |
Collapse
|
316
|
Wang ZN, Xu XT, Lv X, Bai FY, Liu SQ, Xing YH. Synthesis, crystal structure, fluorescence and antimicrobial activity of a series of rare-earth complexes based on indolebutyric acid. RSC Adv 2015. [DOI: 10.1039/c5ra19376a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antimicrobial activity of a series of rare earth complexes was investigated in detail.
Collapse
Affiliation(s)
- Zhi-Nan Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- P. R. China
| | - Xue-Ting Xu
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- P. R. China
| | - Xiao Lv
- Department of Biochemistry and Molecular Biology
- Dalian Medical University
- Dalian
- P. R. China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- P. R. China
| | - Shu-Qing Liu
- Department of Biochemistry and Molecular Biology
- Dalian Medical University
- Dalian
- P. R. China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian
- P. R. China
| |
Collapse
|
317
|
Hasanuzzaman M, Nahar K, Alam MM, Fujita M. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 2014; 161:297-307. [PMID: 25249068 DOI: 10.1007/s12011-014-0120-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan,
| | | | | | | |
Collapse
|
318
|
Schild F, Kieffer-Jaquinod S, Palencia A, Cobessi D, Sarret G, Zubieta C, Jourdain A, Dumas R, Forge V, Testemale D, Bourguignon J, Hugouvieux V. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1. J Biol Chem 2014; 289:31765-31776. [PMID: 25274629 PMCID: PMC4231655 DOI: 10.1074/jbc.m114.571208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism.
Collapse
Affiliation(s)
- Florie Schild
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Sylvie Kieffer-Jaquinod
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Biologie à Grande Echelle, Université Grenoble Alpes, CEA, INSERM, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Andrés Palencia
- European Molecular Biology Laboratory Outstation, 71 avenue des Martyrs, F-38042 Grenoble, France and Unit for Virus Host-Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, 38042 France
| | - David Cobessi
- Université Grenoble Alpes, CEA, CNRS, Direction des Sciences du Vivant, Institut de Biologie Structurale, 6 rue Jules Horowitz, F-38044 Grenoble, France
| | - Géraldine Sarret
- Université Grenoble Alpes, CNRS & IRD, ISTerre, BP 53, F-38041 Grenoble, France
| | - Chloé Zubieta
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Agnès Jourdain
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Renaud Dumas
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Vincent Forge
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA, CNRS, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 rue des Martyrs, F-38000 Grenoble, France, and
| | - Denis Testemale
- Université Grenoble Alpes, CNRS, Institut NEEL, 25 rue des Martyrs, F-38042 Grenoble, France
| | - Jacques Bourguignon
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359
| | - Véronique Hugouvieux
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CEA, Université Grenoble Alpes, CNRS UMR5168, INRA USC1359,.
| |
Collapse
|
319
|
Chen Y, Mo HZ, Zheng MY, Xian M, Qi ZQ, Li YQ, Hu LB, Chen J, Yang LF. Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa. PLoS One 2014; 9:e110904. [PMID: 25333279 PMCID: PMC4204939 DOI: 10.1371/journal.pone.0110904] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots.
Collapse
Affiliation(s)
- Yi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hai-Zhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, China
| | - Mei-Yu Zheng
- Lishui Plant Science Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Zhong-Qiang Qi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - You-Qin Li
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang-Bin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (JC); (L-FY)
| | - Li-Fei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JC); (L-FY)
| |
Collapse
|
320
|
Thiruvengadam M, Chung IM. Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica rapa ssp. rapa). Food Chem 2014; 173:185-93. [PMID: 25466011 DOI: 10.1016/j.foodchem.2014.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/11/2022]
Abstract
The effects of selenium, putrescine, and cadmium on the contents of glucosinolates, total phenolics, flavonoids, carotenoids, chlorophyll, anthocyanin, malondialdehyde, hydrogen peroxide, and antioxidant capacities as well as gene regulation of phenolics, flavonoids, carotenoids, and glucosinolates biosynthesis were investigated in turnip plants. Selenium dioxide (SeO2) treatment significantly induced the amount of gluconasturtiin, glucobrassicanapin, glucoallysin, glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Cadmium chloride (CdCl2)- and putrescine-treated plants had considerably enhanced gluconasturtiin and 4-hydroxyglucobrassicin levels, respectively. Total phenolic and flavonoid content as well as antioxidant capacities were significantly increased in SeO2-treated plants. Lutein was higher in control plants followed by, in decreasing order, SeO2-, putrescine-, and CdCl2-treated plants. The chlorophyll content was significantly decreased and anthocyanin, MDA, and H2O2 levels were significantly increased with CdCl2 treatment. Moreover, plants treated with selenium and cadmium showed significant induction of genes related to glucosinolate, phenolic, and carotenoid biosynthesis. These results demonstrated that SeO2 significantly increased the contents of health-promoting compounds and enhanced the antioxidant capacities of turnip plants.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 143 701, South Korea
| | - Ill-Min Chung
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 143 701, South Korea.
| |
Collapse
|
321
|
DalCorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants. Metallomics 2014; 6:1770-88. [DOI: 10.1039/c4mt00173g] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
322
|
Abstract
It has long been observed that rare earth elements (REEs) regulate multiple facets of plant growth and development. However, the underlying mechanisms remain largely unclear. Here, using electron microscopic autoradiography, we show the life cycle of a light REE (lanthanum) and a heavy REE (terbium) in horseradish leaf cells. Our data indicate that REEs were first anchored on the plasma membrane in the form of nanoscale particles, and then entered the cells by endocytosis. Consistently, REEs activated endocytosis in plant cells, which may be the cellular basis of REE actions in plants. Moreover, we discovered that a portion of REEs was successively released into the cytoplasm, self-assembled to form nanoscale clusters, and finally deposited in horseradish leaf cells. Taken together, our data reveal the life cycle of REEs and their cellular behaviors in plant cells, which shed light on the cellular mechanisms of REE actions in living organisms.
Collapse
|
323
|
Wang X, Tam NFY, Fu S, Ametkhan A, Ouyang Y, Ye Z. Selenium addition alters mercury uptake, bioavailability in the rhizosphere and root anatomy of rice (Oryza sativa). ANNALS OF BOTANY 2014; 114:271-8. [PMID: 24948669 PMCID: PMC4111379 DOI: 10.1093/aob/mcu117] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects. METHODS Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied. KEY RESULTS The high Se treatment (5 μg g(-1)) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced 'water-soluble' Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis. CONCLUSIONS Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, PR China State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China
| | - Shi Fu
- Fine Arts College, Sichuan Normal University, Chengdu 610110, PR China
| | - Aray Ametkhan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yun Ouyang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhihong Ye
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| |
Collapse
|
324
|
Mozafariyan M, Shekari L, Hawrylak-Nowak B, Kamelmanesh MM. Protective role of selenium on pepper exposed to cadmium stress during reproductive stage. Biol Trace Elem Res 2014; 160:97-107. [PMID: 24894830 DOI: 10.1007/s12011-014-0028-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/26/2014] [Indexed: 12/17/2022]
Abstract
The aim of the present study was to examine the effects of exogenous selenium (Se) supplementation on the tolerance of pepper (Capsicum annuum L.) cv. Suryamukhi Cluster plants to cadmium (Cd) phytotoxicity at the reproductive stage. The pepper plants were supplied with Cd (0, 0.25 or 0.50 mM) and Se (0, 3 or 7 μM), individually or simultaneously, three times during the experiment. The obtained results show that Cd had deleterious effect on pepper plants at the reproductive stage. However, Se supplementation improved the flower number, fruit number and fruit diameter in plants exposed to 0.50 mM Cd. Moreover, both Se concentrations used in 0.25 mM Cd-treated plants and 3 μM Se in 0.50 mM Cd-treated plants enhanced fruit yield per plant as compared to Cd-alone treatment. The chlorophyll concentrations significantly increased in the fruits of Cd-exposed plants after Se addition. However, Se supplementation reduced total carotenoids and total soluble solid (TSS) concentrations in the pepper fruits exposed to Cd. Selenium also generally enhanced the total antioxidant activity of pepper fruits subjected to Cd. Both Se concentrations used increased mean productivity (MP), stress tolerance index (STI) and yield stability index (YSI) in plants grown in the medium containing 0.25 mM Cd. At low concentration (3 μM), Se significantly increased geometric mean productivity (GMP), STI and YSI of plant exposed to 0.50 mM Cd. The highest Cd concentration in the fruits was achieved at 0.50 mM Cd and Se application significantly reduced Cd accumulation in the Cd-exposed plants. Our results indicate that application of Se can alleviate Cd toxicity in pepper plants at the reproductive stage by restricting Cd accumulation in fruits, enhancing their antioxidant activity and thus improving the reproductive and stress tolerance parameters.
Collapse
Affiliation(s)
- Maryam Mozafariyan
- Young Researchers and Elite Club, Shiraz Branch, Islamic Azad University of Shiraz, Shiraz, Iran,
| | | | | | | |
Collapse
|
325
|
Ibrahim HM. Selenium Pretreatment Regulates the Antioxidant Defense System and Reduces Oxidative Stress on Drought-Stressed Wheat (Triticum aestivum L.) Plants. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajps.2014.120.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
326
|
Saidi I, Chtourou Y, Djebali W. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:85-91. [PMID: 24484961 DOI: 10.1016/j.jplph.2013.09.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 05/20/2023]
Abstract
The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.
Collapse
Affiliation(s)
- Issam Saidi
- Unité de recherche de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Tunisia.
| | - Yacine Chtourou
- Unité de recherche de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Tunisia
| | - Wahbi Djebali
- Unité de recherche de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Tunisia
| |
Collapse
|
327
|
Feng R, Wei C, Tu S, Ding Y, Wang R, Guo J. The uptake and detoxification of antimony by plants: A review. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2013. [PMID: 0 DOI: 10.1016/j.envexpbot.2013.08.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
328
|
Van Hoewyk D. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. ANNALS OF BOTANY 2013; 112:965-72. [PMID: 23904445 PMCID: PMC3783228 DOI: 10.1093/aob/mct163] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/28/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. SCOPE This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. CONCLUSIONS Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium.
Collapse
Affiliation(s)
- Doug Van Hoewyk
- Coastal Carolina University, Biology Department, Conway, SC 29526, USA
| |
Collapse
|
329
|
Gómez Ojeda A, Corrales Escobosa AR, Wrobel K, Yanez Barrientos E, Wrobel K. Effect of Cd(ii) and Se(iv) exposure on cellular distribution of both elements and concentration levels of glyoxal and methylglyoxal in Lepidium sativum. Metallomics 2013; 5:1254-61. [DOI: 10.1039/c3mt00058c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
330
|
Di Giacomo G, Rizza S, Montagna C, Filomeni G. Established Principles and Emerging Concepts on the Interplay between Mitochondrial Physiology and S-(De)nitrosylation: Implications in Cancer and Neurodegeneration. Int J Cell Biol 2012. [PMID: 22927857 DOI: 10.1016/j.scienta.2014.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
S-nitrosylation is a posttranslational modification of cysteine residues that has been frequently indicated as potential molecular mechanism governing cell response upon redox unbalance downstream of nitric oxide (over)production. In the last years, increased levels of S-nitrosothiols (SNOs) have been tightly associated with the onset of nitroxidative stress-based pathologies (e.g., cancer and neurodegeneration), conditions in which alterations of mitochondrial homeostasis and activation of cellular processes dependent on it have been reported as well. In this paper we aim at summarizing the current knowledge of mitochondria-related proteins undergoing S-nitrosylation and how this redox modification might impact on mitochondrial functions, whose impairment has been correlated to tumorigenesis and neuronal cell death. In particular, emphasis will be given to the possible, but still neglected implication of denitrosylation reactions in the modulation of mitochondrial SNOs and how they can affect mitochondrion-related cellular process, such as oxidative phosphorylation, mitochondrial dynamics, and mitophagy.
Collapse
Affiliation(s)
- Giuseppina Di Giacomo
- Research Centre IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | | | | | | |
Collapse
|