301
|
Haddad D, Nakamura K. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease. FEBS Lett 2015; 589:3702-13. [PMID: 26526613 DOI: 10.1016/j.febslet.2015.10.021] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria are undoubtedly changed in Parkinson's disease (PD), and mitochondrial functions are disrupted in genetic and pharmacologic models of PD. However, many of these changes might not truly drive neurodegeneration. PD is defined by the particular susceptibility of nigrostriatal dopamine (DA) neurons, but little is understood about the mitochondria in these cells. Here, we critically review the evidence that mitochondrial stressors cause PD. We then consider how changes in the intrinsic function of mitochondria and in their mass, distribution, and dynamics might synergize with an increased need for mitochondria and produce PD, and the importance of understanding how mitochondria contribute to its pathogenesis.
Collapse
Affiliation(s)
- Dominik Haddad
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, and Graduate Programs in Neuroscience and Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
302
|
Lai YC, Kondapalli C, Lehneck R, Procter JB, Dill BD, Woodroof HI, Gourlay R, Peggie M, Macartney TJ, Corti O, Corvol JC, Campbell DG, Itzen A, Trost M, Muqit MM. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1. EMBO J 2015; 34:2840-61. [PMID: 26471730 PMCID: PMC4654935 DOI: 10.15252/embj.201591593] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the PTEN‐induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser65) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1‐dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub‐family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser111) in response to PINK1 activation. Using phospho‐specific antibodies raised against Ser111 of each of the Rabs, we demonstrate that Rab Ser111 phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient‐derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser111 phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser111 phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser65. We further show mechanistically that phosphorylation at Ser111 significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser111 may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase‐mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.
Collapse
Affiliation(s)
- Yu-Chiang Lai
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Chandana Kondapalli
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Ronny Lehneck
- Centre for Integrated Protein Science Munich, Department Chemistry Technische Universität München, Garching, Germany
| | - James B Procter
- Division of Computational Biology, College of Life Sciences University of Dundee, Dundee, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Helen I Woodroof
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Mark Peggie
- Division of Signal Transduction Therapy, College of Life Sciences University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Division of Signal Transduction Therapy, College of Life Sciences University of Dundee, Dundee, UK
| | - Olga Corti
- Inserm U 1127, Paris, France CNRS UMR 7225, Paris, France Sorbonne Universités UPMC Paris 06 UMR S 1127, Paris, France Institut du Cerveau et de la Moelle épinière ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U 1127, Paris, France CNRS UMR 7225, Paris, France Sorbonne Universités UPMC Paris 06 UMR S 1127, Paris, France Institut du Cerveau et de la Moelle épinière ICM, Paris, France Inserm Centre d'Investigation Clinique (CIC), Paris, France AP-HP, Département des maladies du système nerveux, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Aymelt Itzen
- Centre for Integrated Protein Science Munich, Department Chemistry Technische Universität München, Garching, Germany
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences University of Dundee, Dundee, UK College of Medicine, Dentistry & Nursing, University of Dundee, Dundee, UK
| |
Collapse
|
303
|
Cecatto C, Hickmann FH, Rodrigues MDN, Amaral AU, Wajner M. Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders. FEBS J 2015; 282:4714-26. [PMID: 26408230 DOI: 10.1111/febs.13526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies are fatty acid oxidation disorders biochemically characterized by tissue accumulation of long-chain fatty acids and derivatives, including the monocarboxylic long-chain 3-hydroxy fatty acids (LCHFAs) 3-hydroxytetradecanoic acid (3HTA) and 3-hydroxypalmitic acid (3HPA). Patients commonly present severe cardiomyopathy for which the pathogenesis is still poorly established. We investigated the effects of 3HTA and 3HPA, the major metabolites accumulating in these disorders, on important parameters of mitochondrial homeostasis in Ca(2+) -loaded heart mitochondria. 3HTA and 3HPA significantly decreased mitochondrial membrane potential, the matrix NAD(P)H pool and Ca(2+) retention capacity, and also induced mitochondrial swelling. These fatty acids also provoked a marked decrease of ATP production reflecting severe energy dysfunction. Furthermore, 3HTA-induced mitochondrial alterations were completely prevented by the classical mitochondrial permeability transition (mPT) inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca(2+) uptake blocker, indicating that LCHFAs induced Ca(2+)-dependent mPT pore opening. Milder effects only achieved at higher doses of LCHFAs were observed in brain mitochondria, implying a higher vulnerability of heart to these fatty acids. By contrast, 3HTA and docosanoic acids did not change mitochondrial homeostasis, indicating selective effects for monocarboxylic LCHFAs. The present data indicate that the major LCHFAs accumulating in mitochondrial trifunctional protein and long-chain 3-hydroxyacyl-CoA dehydrogenase deficiencies induce mPT pore opening, compromising Ca(2+) homeostasis and oxidative phosphorylation more intensely in the heart. It is proposed that these pathomechanisms may contribute at least in part to the severe cardiac alterations characteristic of patients affected by these diseases.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda H Hickmann
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marília D N Rodrigues
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre U Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
304
|
Abstract
In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation.
Collapse
|
305
|
PKA Phosphorylation of NCLX Reverses Mitochondrial Calcium Overload and Depolarization, Promoting Survival of PINK1-Deficient Dopaminergic Neurons. Cell Rep 2015; 13:376-86. [PMID: 26440884 PMCID: PMC4709126 DOI: 10.1016/j.celrep.2015.08.079] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial Ca(2+) overload is a critical, preceding event in neuronal damage encountered during neurodegenerative and ischemic insults. We found that loss of PTEN-induced putative kinase 1 (PINK1) function, implicated in Parkinson disease, inhibits the mitochondrial Na(+)/Ca(2+) exchanger (NCLX), leading to impaired mitochondrial Ca(2+) extrusion. NCLX activity was, however, fully rescued by activation of the protein kinase A (PKA) pathway. We further show that PKA rescues NCLX activity by phosphorylating serine 258, a putative regulatory NCLX site. Remarkably, a constitutively active phosphomimetic mutant of NCLX (NCLX(S258D)) prevents mitochondrial Ca(2+) overload and mitochondrial depolarization in PINK1 knockout neurons, thereby enhancing neuronal survival. Our results identify an mitochondrial Ca(2+) transport regulatory pathway that protects against mitochondrial Ca(2+) overload. Because mitochondrial Ca(2+) dyshomeostasis is a prominent feature of multiple disorders, the link between NCLX and PKA may offer a therapeutic target.
Collapse
|
306
|
Abeti R, Abramov AY. Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol Res 2015; 99:377-81. [DOI: 10.1016/j.phrs.2015.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 01/08/2023]
|
307
|
Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 2015; 74:101-10. [PMID: 26349970 DOI: 10.1016/j.biopha.2015.07.025] [Citation(s) in RCA: 654] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/26/2015] [Indexed: 12/23/2022] Open
Abstract
Mitochondria is one of the main source of oxidative stress (ROS), as it utilizes the oxygen for the energy production. ROS and RNS are normally generated by tightly regulated enzymes. Excessive stimulation of NAD(P)H and electron transport chain leads to the overproduction of ROS, results in oxidative stress, which is a good mediator to injure the cell structures, lipids, proteins, and DNA. Various oxidative events implicated in many diseases due to oxidative stress include alteration in mitochondrial proteins, mitochondrial lipids and mitochondrial DNA, Which in turn leads to the damage to nerve cell as they are metabolically very active. ROS/RNS at moderate concentrations also play roles in normal physiology of many processes like signaling pathways, induction of mitogenic response and in defense against infectious pathogens. Oxidative stress has been considered to be the main cause in the etiology of many diseases, which includes Parkinson's and Alzheimer diseases. Several PD associated genes have been found to be involved in mitochondrial function, dynamics and morphology as well. This review includes source of free radical generation, chemistry and biochemistry of ROS/RNS and mitochondrial dysfunction and the mechanism involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Suhail Anees
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | | | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Manzoor Ahmad Sofi
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
308
|
The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem Soc Trans 2015; 43:602-10. [PMID: 26551700 PMCID: PMC4613514 DOI: 10.1042/bst20150003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 12/30/2022]
Abstract
The Kelch-like ECH associated protein 1 (Keap1)–NF-E2 p45-related factor 2 (Nrf2) pathway regulates networks of proteins that protect against the cumulative damage of oxidants, electrophiles and misfolded proteins. The interaction between transcription factor Nrf2 and its main negative cytoplasmic regulator Keap1 follows a cycle whereby the protein complex sequentially adopts two conformations: ‘open’, in which Nrf2 binds to one monomer of Keap1, followed by ‘closed’, in which Nrf2 interacts with both members of the Keap1 dimer. Electrophiles and oxidants (inducers) are recognized by cysteine sensors within Keap1, disrupting its ability to target Nrf2 for ubiquitination and degradation. Consequently, the protein complex accumulates in the ‘closed’ conformation, free Keap1 is not regenerated and newly synthesized Nrf2 is stabilized to activate target-gene transcription. The prevailing view of the Keap1–Nrf2 pathway, for which there exists a wealth of experimental evidence, is that it lies at the heart of cellular defence, playing crucial roles in adaptation and survival under conditions of stress. More recently, the significance of Nrf2 in intermediary metabolism and mitochondrial physiology has also been recognized, adding another layer of cytoprotection to the repertoire of functions of Nrf2. One way by which Nrf2 influences mitochondrial activity is through increasing the availability of substrates (NADH and FADH2) for respiration. Another way is through accelerating fatty acid oxidation (FAO). These findings reinforce the reciprocal relationship between oxidative phosphorylation and the cellular redox state, and highlight the key role of Nrf2 in regulating this balance.
Collapse
|
309
|
Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:498401. [PMID: 26301042 PMCID: PMC4537740 DOI: 10.1155/2015/498401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.
Collapse
|
310
|
Sekler I. Standing of giants shoulders the story of the mitochondrial Na(+)Ca(2+) exchanger. Biochem Biophys Res Commun 2015; 460:50-2. [PMID: 25998733 DOI: 10.1016/j.bbrc.2015.02.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/23/2023]
Abstract
It is now the 40th anniversary of the Journal of Molecular and Cellular Cardiology paper by Ernesto Carafoli and colleagues. This seminal study described for the first time mitochondrial Ca(2+) extrusion and its coupling to Na(+). This short review will describe the profound impact that this work had on mitochondrial signaling and the cross talk between the mitochondria, the ER, and the plasma membrane. It will further tell how the functional identification and in particular its unique cation selectivity to both Li(+) and Na(+) eventually contributed to the identification of the mitochondrial Na(+)/Ca(2+) exchanger gene NCLX many years later. The last part will describe how molecular tools derived from NCLX identification are used to study the novel physiological aspects of Ca(2+) signaling.
Collapse
|
311
|
De Rosa P, Marini ES, Gelmetti V, Valente EM. Candidate genes for Parkinson disease: Lessons from pathogenesis. Clin Chim Acta 2015; 449:68-76. [PMID: 26048192 DOI: 10.1016/j.cca.2015.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023]
Abstract
Parkinson disease (PD) is a multifactorial neurodegenerative disease characterized by the progressive loss of specific neuronal populations and accumulation of Lewy bodies in the brain, leading to motor and non-motor symptoms. In a small subset of patients, PD is dominantly or recessively inherited, while a number of susceptibility genetic loci have been identified through genome wide association studies. The discovery of genes mutated in PD and functional studies on their protein products have provided new insights into the molecular events leading to neurodegeneration, suggesting that few interconnected molecular pathways may be deranged in all forms of PD, triggering neuronal loss. Here, we summarize the most relevant findings implicating the main PD-related proteins in biological processes such as mitochondrial dysfunction, misfolded protein damage, alteration of cellular clearance systems, abnormal calcium handling and altered inflammatory response, which represent key targets for neuroprotection.
Collapse
Affiliation(s)
- Priscilla De Rosa
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Elettra Sara Marini
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Dept. of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Vania Gelmetti
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Section of Neurosciences, Dept. of Medicine and Surgery, University of Salerno, Salerno, Italy.
| |
Collapse
|
312
|
Abstract
BACKGROUND Parkinson's disease (PD) was previously described as the prototypical sporadic disease; however, rapid advances in population and molecular genetics have revealed the existence of a significant number genetic risk factors, prompting its redefinition as a primarily genetic disorder. SOURCES OF DATA Data for this review have been gathered from the published literature. AREAS OF AGREEMENT Multiple haplotypes conveying variable but quantifiable genetic risk, acting concurrently and possibly interacting with one another, provide the basis for a new model of PD. The beginning of this revolution in our understanding came from the clinical observation of parkinsonism with a Mendelian pattern of inheritance in a number of families. The functional work that followed elucidated multiple disease pathways leading to the degeneration of the substantia nigra that characterizes PD. It is however only in recent years, with the emergence of large cohort genome-wide association studies (GWAS), that the relevance of these pathways to so-called sporadic PD has become apparent. AREAS OF CONTROVERSY A substantial portion of the presumed genetic inheritance of PD remains at present undefined. Although it is likely that so-called intermediate risk genetic risk factors are the principal component of this 'missing heritability', this is yet to be proved. GROWING POINTS Although the picture is by now means complete, the beginnings of rational basis for genetic screening of PD risk have begun to emerge. Equally, this enhanced understanding of the various genetic and in turn biochemical pathways shows promising signs of producing fruitful therapeutic strategies. Technological advances promise to reduce the costs associated with and further increase our capability to understand the complex influence of genetics on the pathogenesis of PD. AREAS TIMELY FOR DEVELOPING RESEARCH The coming years will require the enhancement of current techniques and the development of new ones to define PD's missing heritability. It will also require functional work to define better and in turn potentially reverse the mechanisms that contribute with large effect sizes to the risk of sporadic PD.
Collapse
Affiliation(s)
- Stephen Mullin
- Leonard Wolfson Clinical Research Fellow, UCL, Institute of Neurology, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| | - Anthony Schapira
- Department of Clinical Neurosciences, UCL, Institute of Neurology, Hampstead, London, UK
| |
Collapse
|
313
|
Braatz EM, Coleman RA. A mathematical model of insulin resistance in Parkinson’s disease. Comput Biol Chem 2015; 56:84-97. [DOI: 10.1016/j.compbiolchem.2015.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 01/04/2023]
|
314
|
van der Merwe C, Jalali Sefid Dashti Z, Christoffels A, Loos B, Bardien S. Evidence for a common biological pathway linking three Parkinson's disease-causing genes: parkin, PINK1 and DJ-1. Eur J Neurosci 2015; 41:1113-25. [PMID: 25761903 DOI: 10.1111/ejn.12872] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterised by the loss of dopaminergic neurons in the midbrain. Autosomal recessive, early-onset cases of PD are predominantly caused by mutations in the parkin, PINK1 and DJ-1 genes. Animal and cellular models have verified a direct link between parkin and PINK1, whereby PINK1 phosphorylates and activates parkin at the outer mitochondrial membrane, resulting in removal of dysfunctional mitochondria via mitophagy. Despite the overwhelming evidence for this interaction, few studies have been able to identify a link for DJ-1 with parkin or PINK1. The aim of this review is to summarise the functions of these three proteins, and to analyse the existing evidence for direct and indirect interactions between them. DJ-1 is able to rescue the phenotype of PINK1-knockout Drosophila models, but not of parkin-knockouts, suggesting that DJ-1 may act in a parallel pathway to that of the PINK1/parkin pathway. To further elucidate a commonality between these three proteins, bioinformatics analysis established that Miro (RHOT1) interacts with parkin and PINK1, and HSPA4 interacts with all three proteins. Furthermore, 30 transcription factors were found to be common amongst all three proteins, with many of them being involved in transcriptional regulation. Interestingly, expression of these proteins and their associated transcription factors are found to be significantly down-regulated in PD patients compared to healthy controls. In summary, this review provides insight into common pathways linking three PD-causing genes and highlights some key questions, the answers to which may provide critical insight into the disease process.
Collapse
Affiliation(s)
- Celia van der Merwe
- Division of Molecular Biology & Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 19063, Cape Town, 7505, South Africa
| | | | | | | | | |
Collapse
|
315
|
Li R, Wang Y, Yang Z, He Y, Zhao T, Fan M, Wang X, Zhu L, Wang X. Hypoxia-inducible factor-1α regulates the expression of L-type voltage-dependent Ca(2+) channels in PC12 cells under hypoxia. Cell Stress Chaperones 2015; 20:507-16. [PMID: 25648081 PMCID: PMC4406929 DOI: 10.1007/s12192-015-0575-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022] Open
Abstract
Hypoxia is an important factor in regulation of cell behavior both under physiological and pathological conditions. The mechanisms of hypoxia-induced cell death have not been completely elucidated yet. It is well known that Ca(2+) is critically related to cell survival. Hypoxia-inducible factor-1α (HIF-1α) is a core regulatory factor during hypoxia, and L-type voltage-dependent Ca(2+) channels (L-VDCCs) have been reported to play a critical role in cell survival. This study was conducted to explore the relationship between L-VDCC expression and HIF-1α regulation in PC12 cells under hypoxia. PC12 cells were treated at 20 or 3 % O2 to observe its proliferation and the intracellular calcium concentration. Then, we detected the protein expression of HIF-1α and L-VDCCs subtypes, Cav1.2 and Cav1.3. At last, to verify the relationship between HIF-1α and Cav1.2 and Cav1.3, we got the expression of Cav1.2 and Cav1.3 with Western blot and luciferase report gene assays after PC12 cells were treated by echinomycin, which is an HIF-1α inhibitor. Compared with 20 % O2 (normoxia), 3 % O2 (hypoxia) inhibited cell proliferation, increased the intracellular calcium concentration, and induced protein expression of HIF-1α. The protein expression of two L-VDCCs subtypes expressed in the nervous system, Cav1.2 and Cav1.3, was upregulated by hypoxia and reduced dose dependently by treatment with echinomycin, a HIF-1α inhibitor. Luciferase report gene assays showed that the expression of Cav1.2 and Cav1.3 genes was augmented under 3 % O2. However, echinomycin only slightly and dose dependently decreased expression of the Cav1.2 gene, but not that of the Cav1.3 gene. These data indicated that Cav1.2 might be regulated by HIF-1α as one of its downstream target genes and involved in regulation of PC12 cells death under hypoxia.
Collapse
Affiliation(s)
- Ran Li
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
- />Department of Rehabilitation Medicine, Xuan Xu Hospital, Capital Medical University, 45# Changchun Street, Beijing, 100053 People’s Republic of China
| | - Yong Wang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
| | - Zhaofei Yang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
| | - Yunling He
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Tong Zhao
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xuan Wang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
| | - Lingling Zhu
- />Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, 27# Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xiaomin Wang
- />Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, 10# You An Men, Beijing, 100069 People’s Republic of China
- />Beijing Institute for Brain Disorder, 10# You An Men, Beijing, 100069 People’s Republic of China
| |
Collapse
|
316
|
Mitochondrial dysfunctions during progression of dystrophic cardiomyopathy. Cell Calcium 2015; 58:186-95. [PMID: 25975620 DOI: 10.1016/j.ceca.2015.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 01/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle disease with severe cardiac complications. It is believed that cellular oxidative stress and augmented Ca(2+) signaling drives the development of cardiac pathology. Some mitochondrial and metabolic dysfunctions have also been reported. Here we investigate cellular mechanisms responsible for impaired mitochondrial metabolism in dystrophic cardiomyopathy at early stages of the disease. We employed electrophysiological and imaging techniques to study mitochondrial structure and function in cardiomyocytes from mdx mice, an animal model of DMD. Here we show that mitochondrial matrix was progressively oxidized in myocytes isolated from mdx mice. Moreover, an abrupt increase in workload resulted in significantly more pronounced oxidation of mitochondria in dystrophic cells. Electron micrographs revealed a gradually increased number of damaged mitochondria in mdx myocytes. Degradation in mitochondrial structure was correlated with progressive increase in mitochondrial Ca(2+) sequestration and mitochondrial depolarization, despite a substantial and persistent elevation in resting cytosolic sodium levels. Treatment of mdx cells with cyclosporine A, an inhibitor of mitochondrial permeability transition pore (mPTP), shifted both resting and workload-dependent mitochondrial redox state to the levels recorded in control myocytes. It also significantly reduced workload dependent depolarization of mitochondrial membrane in dystrophic cardiomyocytes. Overall, our studies highlight age dependent deterioration of mitochondrial function in dystrophic cardiomyocytes, which seems to be associated with excessive opening of mPTP due to oxidative stress and cellular Ca(2+) overload.
Collapse
|
317
|
Steer EK, Dail MK, Chu CT. Beyond mitophagy: cytosolic PINK1 as a messenger of mitochondrial health. Antioxid Redox Signal 2015; 22:1047-59. [PMID: 25557302 PMCID: PMC4390087 DOI: 10.1089/ars.2014.6206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Disruptions in mitochondrial homeostasis are implicated in human diseases across the lifespan. Recessive mutations in PINK1, which encodes the mitochondrially targeted PTEN-induced putative kinase 1 (PINK1), cause an autosomal recessive form of Parkinson's disease. As with all kinases, PINK1 participates in multiple functional pathways, and its dysregulation has been implicated in a growing number of diseases. RECENT ADVANCES In addition to its heavily studied role in mitophagy, PINK1 regulates mitochondrial respiratory function, reactive oxygen species generation, and mitochondrial transport. Moreover, recent studies implicate processed PINK1 in cytosolic signaling cascades that promote cell survival and neuron differentiation. Cytosolic PINK1 is also capable of suppressing autophagy and mitophagy. We propose a working hypothesis that PINK1 is released by functional mitochondria as a signal to coordinate cell growth and differentiation in response to mitochondrial status. CRITICAL ISSUES PINK1 biology needs to be better understood in primary neurons, as the stability and subcellular localization of PINK1 is differentially regulated in different cell types. Delineating factors that regulate its mitochondrial import/export, processing by different peptidases, kinase activity, subcellular localization, and degradation will be important for defining relevant downstream kinase targets. FUTURE DIRECTIONS It is becoming clear that different subcellular pools of PINK1 mediate distinct functions. Future studies will undoubtedly expand on the spectrum of cellular functions regulated by PINK1. Continued study of cytosolic PINK1 may offer novel insights into how functional mitochondria communicate their status with the rest of the cell.
Collapse
Affiliation(s)
- Erin K Steer
- 1 Department of Pathology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
318
|
Trudler D, Nash Y, Frenkel D. New insights on Parkinson’s disease genes: the link between mitochondria impairment and neuroinflammation. J Neural Transm (Vienna) 2015; 122:1409-19. [DOI: 10.1007/s00702-015-1399-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022]
|
319
|
Abstract
Parkinson disease (PD) is a degenerative disorder of the central nervous system resulting from depletion of dopaminergic neurons and currently remains incurable despite enormous international research efforts. The development of induced pluripotent stem cell (iPSC) technology opened up the unique possibility of studying disease mechanisms in human tissue that was otherwise not accessible, such as the brain. Of particular interest are the monogenetic forms of PD as they closely resemble the more common ‘idiopathic’ PD and, through the mutated protein, provide a clear research target in iPSC-derived neurons. Recessively inherited Parkin and PTEN-induced putative kinase 1 (PINK1) mutations have been investigated in this context and the present review describes the first insights gained from studies in iPSC-derived dopaminergic neurons, which comprise abnormalities in mitochondrial and dopamine homoeostasis, microtubular stability and axonal outgrowth. These new models of PD have a high translational potential that includes the identification of druggable targets, testing of known and novel therapeutic agents in the disease-relevant tissue using well-defined read-outs and potential regenerative approaches.
Collapse
|
320
|
Autophagy in axonal degeneration in glaucomatous optic neuropathy. Prog Retin Eye Res 2015; 47:1-18. [PMID: 25816798 DOI: 10.1016/j.preteyeres.2015.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 01/07/2023]
Abstract
The role of autophagy in retinal ganglion cell (RGC) death is still controversial. Several studies focused on RGC body death, although the axonal degeneration pathway in the optic nerve has not been well documented in spite of evidence that the mechanisms of degeneration of neuronal cell bodies and their axons differ. Axonal degeneration of RGCs is a hallmark of glaucoma, and a pattern of localized retinal nerve fiber layer defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. As models of preceding axonal degeneration, both the tumor necrosis factor (TNF) injection model and hypertensive glaucoma model may be useful in understanding the mechanism of axonal degeneration of RGCs, and the concept of axonal protection can be an attractive approach to the prevention of neurodegenerative optic nerve disease. Since mitochondria play crucial roles in glaucomatous optic neuropathy and can themselves serve as a part of the autophagosome, it seems that mitochondrial function may alter autophagy machinery. Like other neurodegenerative diseases, optic nerve degeneration may exhibit autophagic flux impairment resulting from elevated intraocular pressure, TNF, traumatic injury, ischemia, oxidative stress, and aging. As a model of aging, we used senescence-accelerated mice to provide new insights. In this review, we attempt to describe the relationship between autophagy and recently reported noteworthy factors including Nmnat, ROCK, and SIRT1 in the degeneration of RGCs and their axons and propose possible mechanisms of axonal protection via modulation of autophagy machinery.
Collapse
|
321
|
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85:257-73. [PMID: 25611507 DOI: 10.1016/j.neuron.2014.12.007] [Citation(s) in RCA: 1608] [Impact Index Per Article: 160.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of parkinsonism have been identified. Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease. PINK1 accumulates on the outer membrane of damaged mitochondria, activates Parkin's E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins to trigger selective autophagy. This review covers the normal functions that PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
322
|
Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson's: from familial to sporadic disease. Trends Biochem Sci 2015; 40:200-10. [PMID: 25757399 DOI: 10.1016/j.tibs.2015.02.003] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterised by the preferential loss of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction is increasingly appreciated as a key determinant of dopaminergic neuronal susceptibility in PD and is a feature of both familial and sporadic disease, as well as in toxin-induced Parkinsonism. Recently, the mechanisms by which PD-associated mitochondrial proteins phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced putative kinase 1 (PINK1) and parkin function and induce neurodegeneration have been identified. In addition, increasing evidence implicates other PD-associated proteins such as α-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) in mitochondrial dysfunction in genetic cases of PD with the potential for a large functional overlap with sporadic disease. This review highlights how recent advances in understanding familial PD-associated proteins have identified novel mechanisms and therapeutic strategies for addressing mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Brent J Ryan
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Selim Hoek
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Edward A Fon
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
323
|
Abstract
Disruptions in mitochondrial dynamics may contribute to the selective degeneration of dopamine (DA) neurons in Parkinson's disease (PD). However, little is known about the normal functions of mitochondrial dynamics in these neurons, especially in axons where degeneration begins, and this makes it difficult to understand the disease process. To study one aspect of mitochondrial dynamics-mitochondrial fission-in mouse DA neurons, we deleted the central fission protein dynamin-related protein 1 (Drp1). Drp1 loss rapidly eliminates the DA terminals in the caudate-putamen and causes cell bodies in the midbrain to degenerate and lose α-synuclein. Without Drp1, mitochondrial mass dramatically decreases, especially in axons, where the mitochondrial movement becomes uncoordinated. However, in the ventral tegmental area (VTA), a subset of midbrain DA neurons characterized by small hyperpolarization-activated cation currents (Ih) is spared, despite near complete loss of their axonal mitochondria. Drp1 is thus critical for targeting mitochondria to the nerve terminal, and a disruption in mitochondrial fission can contribute to the preferential death of nigrostriatal DA neurons.
Collapse
|
324
|
Life after the birth of the mitochondrial Na+/Ca2+ exchanger, NCLX. SCIENCE CHINA-LIFE SCIENCES 2015; 58:59-65. [DOI: 10.1007/s11427-014-4789-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/17/2014] [Indexed: 02/07/2023]
|
325
|
Petrucci S, Arena G, Valente EM. Genetics and Molecular Biology of Parkinson Disease. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
326
|
Takeuchi A, Kim B, Matsuoka S. The destiny of Ca(2+) released by mitochondria. J Physiol Sci 2015; 65:11-24. [PMID: 24994533 PMCID: PMC4276810 DOI: 10.1007/s12576-014-0326-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Mitochondrial Ca(2+) is known to regulate diverse cellular functions, for example energy production and cell death, by modulating mitochondrial dehydrogenases, inducing production of reactive oxygen species, and opening mitochondrial permeability transition pores. In addition to the action of Ca(2+) within mitochondria, Ca(2+) released from mitochondria is also important in a variety of cellular functions. In the last 5 years, the molecules responsible for mitochondrial Ca(2+) dynamics have been identified: a mitochondrial Ca(2+) uniporter (MCU), a mitochondrial Na(+)-Ca(2+) exchanger (NCLX), and a candidate for a mitochondrial H(+)-Ca(2+) exchanger (Letm1). In this review, we focus on the mitochondrial Ca(2+) release system, and discuss its physiological and pathophysiological significance. Accumulating evidence suggests that the mitochondrial Ca(2+) release system is not only crucial in maintaining mitochondrial Ca(2+) homeostasis but also participates in the Ca(2+) crosstalk between mitochondria and the plasma membrane and between mitochondria and the endoplasmic/sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems Physiology, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan,
| | | | | |
Collapse
|
327
|
Blesa J, Przedborski S. Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 2014; 8:155. [PMID: 25565980 PMCID: PMC4266040 DOI: 10.3389/fnana.2014.00155] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects about 1.5% of the global population over 65 years of age. A hallmark feature of PD is the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the consequent striatal DA deficiency. Yet, the pathogenesis of PD remains unclear. Despite tremendous growth in recent years in our knowledge of the molecular basis of PD and the molecular pathways of cell death, important questions remain, such as: (1) why are SNc cells especially vulnerable; (2) which mechanisms underlie progressive SNc cell loss; and (3) what do Lewy bodies or α-synuclein reveal about disease progression. Understanding the variable vulnerability of the dopaminergic neurons from the midbrain and the mechanisms whereby pathology becomes widespread are some of the primary objectives of research in PD. Animal models are the best tools to study the pathogenesis of PD. The identification of PD-related genes has led to the development of genetic PD models as an alternative to the classical toxin-based ones, but does the dopaminergic neuronal loss in actual animal models adequately recapitulate that of the human disease? The selection of a particular animal model is very important for the specific goals of the different experiments. In this review, we provide a summary of our current knowledge about the different in vivo models of PD that are used in relation to the vulnerability of the dopaminergic neurons in the midbrain in the pathogenesis of PD.
Collapse
Affiliation(s)
- Javier Blesa
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | | |
Collapse
|
328
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|
329
|
Osellame LD, Duchen MR. Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol 2014; 171:1958-72. [PMID: 24116849 PMCID: PMC3976615 DOI: 10.1111/bph.12453] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/04/2013] [Accepted: 09/23/2013] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cell possesses specialized pathways to turn over and degrade redundant proteins and organelles. Each pathway is unique and responsible for degradation of distinctive cytosolic material. The ubiquitin-proteasome system and autophagy (chaperone-mediated, macro, micro and organelle specific) act synergistically to maintain proteostasis. Defects in this equilibrium can be deleterious at cellular and organism level, giving rise to various disease states. Dysfunction of quality control pathways are implicated in neurodegenerative diseases and appear particularly important in Parkinson's disease and the lysosomal storage disorders. Neurodegeneration resulting from impaired degradation of ubiquitinated proteins and α-synuclein is often accompanied by mitochondrial dysfunction. Mitochondria have evolved to control a diverse number of processes, including cellular energy production, calcium signalling and apoptosis, and like every other organelle within the cell, they must be ‘recycled.’ Failure to do so is potentially lethal as these once indispensible organelles become destructive, leaking reactive oxygen species and activating the intrinsic cell death pathway. This process is paramount in neurons which have an absolute dependence on mitochondrial oxidative phosphorylation as they cannot up-regulate glycolysis. As such, mitochondrial bioenergetic failure can underpin neural death and neurodegenerative disease. In this review, we discuss the links between cellular quality control and neurodegenerative diseases associated with mitochondrial dysfunction, with particular attention to the emerging links between Parkinson's and Gaucher diseases in which defective quality control is a defining factor. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8
Collapse
Affiliation(s)
- L D Osellame
- Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Research, University College London, London, UK
| | | |
Collapse
|
330
|
Celardo I, Martins LM, Gandhi S. Unravelling mitochondrial pathways to Parkinson's disease. Br J Pharmacol 2014; 171:1943-57. [PMID: 24117181 PMCID: PMC3976614 DOI: 10.1111/bph.12433] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are essential for cellular function due to their role in ATP production, calcium homeostasis and apoptotic signalling. Neurons are heavily reliant on mitochondrial integrity for their complex signalling, plasticity and excitability properties, and to ensure cell survival over decades. The maintenance of a pool of healthy mitochondria that can meet the bioenergetic demands of a neuron, is therefore of critical importance; this is achieved by maintaining a careful balance between mitochondrial biogenesis, mitochondrial trafficking, mitochondrial dynamics and mitophagy. The molecular mechanisms that underlie these processes are gradually being elucidated. It is widely recognized that mitochondrial dysfunction occurs in many neurodegenerative diseases, including Parkinson's disease. Mitochondrial dysfunction in the form of reduced bioenergetic capacity, increased oxidative stress and reduced resistance to stress, is observed in several Parkinson's disease models. However, identification of the recessive genes implicated in Parkinson's disease has revealed a common pathway involving mitochondrial dynamics, transport, turnover and mitophagy. This body of work has led to the hypothesis that the homeostatic mechanisms that ensure a healthy mitochondrial pool are key to neuronal function and integrity. In this paradigm, impaired mitochondrial dynamics and clearance result in the accumulation of damaged and dysfunctional mitochondria, which may directly induce neuronal dysfunction and death. In this review, we consider the mechanisms by which mitochondrial dysfunction may lead to neurodegeneration. In particular, we focus on the mechanisms that underlie mitochondrial homeostasis, and discuss their importance in neuronal integrity and neurodegeneration in Parkinson's disease.
Collapse
|
331
|
Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta Gen Subj 2014; 1850:794-801. [PMID: 25484314 PMCID: PMC4471129 DOI: 10.1016/j.bbagen.2014.11.021] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/30/2022]
Abstract
Background Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS production within the cell are uncertain. Methods Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultures with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD). Results We here show that ROS production in Nrf2-KO cells and tissues is increased compared to their WT counterparts. Mitochondrial ROS production is regulated by the Keap1–Nrf2 pathway by controlling mitochondrial bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree which paralleled the increases in ROS production. Conclusions These observations suggest that the Keap1–Nrf2 pathway regulates both mitochondrial and cytosolic ROS production through NADPH oxidase. General significance Findings supports a key role of the Keap1–Nrf2 pathway in redox homeostasis within the cell. We studied ROS production/NADPH oxidase expression in Nrf2-KO and Keap1-KD cells. ROS production is increased in Nrf2-KO and Keap1-KD neurons when compared to WT. NOX2/NOX4 mRNA in Nrf2-KO and Keap1-KD paralleled these changes.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Department of Neurology, University of Muenster, Muenster, Germany
| | - Plamena R Angelova
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Kira M Holmström
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Albena T Dinkova-Kostova
- Departments of Pharmacology and Molecular Sciences and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pharmacology and Molecular Sciences and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Andrey Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
332
|
Kazlauskaite A, Muqit MMK. PINK1 and Parkin – mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson's disease. FEBS J 2014; 282:215-23. [PMID: 25345844 PMCID: PMC4368378 DOI: 10.1111/febs.13127] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 12/26/2022]
Abstract
The discovery of mutations in genes encoding protein kinase PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase Parkin in familial Parkinson's disease and their association with mitochondria provides compelling evidence that mitochondrial dysfunction is a major contributor to neurodegeneration in Parkinson's disease. In recent years, tremendous progress has been made in the understanding of how PINK1 and Parkin enzymes are regulated and how they influence downstream mitochondrial signalling processes. We provide a critical overview of the key advances in the field and also discuss the outstanding questions, including novel ways in which this knowledge could be exploited to develop therapies against Parkinson's disease.
Collapse
Affiliation(s)
- Agne Kazlauskaite
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, UK
| | | |
Collapse
|
333
|
|
334
|
Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CMT, Lasorsa FM, Pinton P. Perturbed mitochondrial Ca2+signals as causes or consequences of mitophagy induction. Autophagy 2014; 9:1677-86. [DOI: 10.4161/auto.24795] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
335
|
Kovac S, Domijan AM, Walker MC, Abramov AY. Seizure activity results in calcium- and mitochondria-independent ROS production via NADPH and xanthine oxidase activation. Cell Death Dis 2014; 5:e1442. [PMID: 25275601 PMCID: PMC4649505 DOI: 10.1038/cddis.2014.390] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022]
Abstract
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and their contribution to seizure-induced cell death. Using live cell imaging techniques in glioneuronal cultures, we show that prolonged seizure-like activity increases ROS production in an NMDA receptor-dependent manner. Unexpectedly, however, mitochondria did not contribute to ROS production during seizure-like activity. ROS were generated primarily by NADPH oxidase and later by xanthine oxidase (XO) activity in a calcium-independent manner. This calcium-independent neuronal ROS production was accompanied by an increase in intracellular [Na(+)] through NMDA receptor activation. Inhibition of NADPH or XO markedly reduced seizure-like activity-induced neuronal apoptosis. These findings demonstrate a critical role for ROS in seizure-induced neuronal cell death and identify novel therapeutic targets.
Collapse
Affiliation(s)
- S Kovac
- 1] UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK [2] Department of Neurology, University of Muenster, Muenster 48149, Germany
| | - A-M Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - M C Walker
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - A Y Abramov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
336
|
Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, Switzer RC, Ahmad SO, Sunkin SM, Walker D, Cui X, Fisher DA, McCoy AM, Gamber K, Ding X, Goldberg MS, Benkovic SA, Haupt M, Baptista MA, Fiske BK, Sherer TB, Frasier MA. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol Dis 2014; 70:190-203. [DOI: 10.1016/j.nbd.2014.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 05/30/2014] [Accepted: 06/13/2014] [Indexed: 11/25/2022] Open
|
337
|
Recent advances in Parkinson’s disease genetics. J Neurol 2014; 261:259-66. [PMID: 23798000 DOI: 10.1007/s00415-013-7003-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022]
Abstract
The last 5 years have seen rapid progress in Parkinson’s disease (PD) genetics, with the publication of a series of large-scale genome wide association studies for PD, and evaluation of the roles of the LRRK2 and GBA genes in the aetiology of PD. We are beginning to develop a coherent picture of the interplay of Mendelian and non-Mendelian factors in PD. Pathways involved in mitochondrial quality control (mitophagy), lysosomal function and immune function are emerging as important in the pathogenesis of PD. These pathways represent a target for therapeutic intervention and a way in which the heterogeneity of disease cause, as well as disease mechanism, can be established. In the future, there is likely to be an individualised basis for the treatment of PD, linked to the identification of specific genetic factors.
Collapse
|
338
|
Romero A, Egea J, González-Muñoz GC, Martı́n de Saavedra MD, del Barrio L, Rodríguez-Franco MI, Conde S, López MG, Villarroya M, de los Ríos C. ITH12410/SC058: a new neuroprotective compound with potential in the treatment of Alzheimer's disease. ACS Chem Neurosci 2014; 5:770-5. [PMID: 25008046 DOI: 10.1021/cn500131t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The neuroprotective profile of the dibenzothiadiazepine ITH12410/SC058 (2-chloro-5,6-dihydro-5,6-diacetyldibenzo[b,f][1,4,5]thiadiazepine) against several neurotoxicity models related to neurodegenerative diseases is herein described. ITH12410/SC058 protected SH-SY5Y cells against the loss of cell viability elicited by amyloid beta peptide and okadaic acid, a selective inhibitor of phosphoprotein phosphatase 2A that induces neurofibrillary tangle formation. Furthermore, ITH12410/SC058 is neuroprotective against several in vitro models of oxidative stress, that is, H2O2 exposure or incubation with rotenone plus oligomycin A in SH-SY5Y cells, and oxygen and glucose deprivation followed by reoxygenation in rat hippocampal slices. By contrast, ITH12410/SC058 was unable to significantly protect SH-SY5Y neuroblastoma cells against the toxicity elicited by Ca(2+) overload. Our results confirm the hypothesis that the dibenzothiadiazepine ITH12410/SC058 features its neuroprotective actions in a multitarget fashion, and is a promising drug for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Javier Egea
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | | | - M Dolores Martı́n de Saavedra
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Laura del Barrio
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | | | - Santiago Conde
- Instituto de Química
Médica (IQM-CSIC), C/Juan de
la Cierva 3, 28006 Madrid, Spain
| | - Manuela G. López
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León 62, 28006 Madrid, Spain
| | - Mercedes Villarroya
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
| | - Cristóbal de los Ríos
- Instituto
Teófilo Hernando, Departamento de Farmacología y Terapéutica,
Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo
Morcillo 4, 28029 Madrid, Spain
- Servicio
de Farmacología Clínica, Instituto de Investigación
Sanitaria, Hospital Universitario de la Princesa, C/Diego de
León 62, 28006 Madrid, Spain
| |
Collapse
|
339
|
Impaired mitochondrial homeostasis and neurodegeneration: towards new therapeutic targets? J Bioenerg Biomembr 2014; 47:89-99. [PMID: 25216534 PMCID: PMC4323516 DOI: 10.1007/s10863-014-9576-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
The sustained integrity of the mitochondrial population of a cell is critical for maintained cell health, and disruption of that integrity is linked strongly to human disease, especially to the neurodegenerative diseases. These are appalling diseases causing untold levels of suffering for which treatment is woefully inadequate. Understanding the mechanisms that disturb mitochondrial homeostasis may therefore prove key to identification of potential new therapeutic pathways. Mechanisms causing mitochondrial dysfunction include the acute catastrophic loss of function caused by opening of the mitochondrial permeability transition pore (mPTP), which collapses bioenergetic function and initiates cell death. This is best characterised in ischaemic reperfusion injury, although it may also contribute to a number of other diseases. More insidious disturbances of mitochondrial homeostasis may result from impaired balance in the pathways that promote mitochondrial repair (biogenesis) and pathways that remove dysfunctional mitochondria (mitophagy). Impaired coordination between these processes is emerging as a key feature of a number of neurodegenerative and neuromuscular disorders. Here we review pathways that may prove to be valuable potential therapeutic targets, focussing on the molecular mechanisms that govern the coordination of these processes and their involvement in neurodegenerative diseases.
Collapse
|
340
|
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 2014; 71:2787-814. [PMID: 24442513 PMCID: PMC11113927 DOI: 10.1007/s00018-013-1550-7] [Citation(s) in RCA: 500] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/15/2013] [Accepted: 12/30/2013] [Indexed: 01/07/2023]
Abstract
Calcium (Ca(2+)) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca(2+) signaling pathways to couple the Ca(2+) signal to their biochemical machinery. Ca(2+) influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca(2+) from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca(2+). Inside the cell, Ca(2+) is controlled by the buffering action of cytosolic Ca(2+)-binding proteins and by its uptake and release by mitochondria. The uptake of Ca(2+) in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca(2+) from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na(+)/Ca(2+) exchanger in the plasma membrane also participates in the control of neuronal Ca(2+). The impaired ability of neurons to maintain an adequate energy level may impact Ca(2+) signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca(2+) signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca(2+) signaling in the most important neurological disorders will then be considered.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Tito Calì
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Denis Ottolini
- Department of Biology, University of Padova, Via U.Bassi, 58/b, 35131 Padua, Italy
| | - Ernesto Carafoli
- Venetian Institute for Molecular Medicine (VIMM), Via G.Orus, 2, 35129 Padua, Italy
| |
Collapse
|
341
|
Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1267-72. [PMID: 24055979 PMCID: PMC3991756 DOI: 10.1016/j.bbadis.2013.09.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/07/2013] [Indexed: 01/16/2023]
Abstract
Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Valasani Koteswara Rao
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66047, USA
| | - Emily A Carlson
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66047, USA
| | - Shirley Shidu Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
342
|
Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E, Martins LM, Almeida A, Bolaños JP. PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun 2014; 5:4514. [PMID: 25058378 DOI: 10.1038/ncomms5514] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/25/2014] [Indexed: 01/11/2023] Open
Abstract
PTEN-induced kinase-1 (PINK1) is a Ser/Thr kinase implicated in familial early-onset Parkinson's disease, and was first reported as a growth suppressor. PINK1 loss-of-function compromises both mitochondrial autophagy and oxidative phosphorylation. Here we report that PINK1 deficiency triggers hypoxia-inducible factor-1α (HIF1α) stabilization in cultured Pink1(-/-) mouse embryonic fibroblasts and primary cortical neurons as well as in vivo. This effect, mediated by mitochondrial reactive oxygen species, led to the upregulation of the HIF1 target, pyruvate dehydrogenase kinase-1, which inhibits PDH activity. Furthermore, we show that HIF1α stimulates glycolysis in the absence of Pink1, and that the promotion of intracellular glucose metabolism by HIF1α stabilization is required for cell proliferation in Pink1(-/-) mice. We propose that loss of Pink1 reprograms glucose metabolism through HIF1α, sustaining increased cell proliferation.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- 1] Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain [2] Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Irene Lopez-Fabuel
- 1] Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain [2] Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Emilio Fernandez
- 1] Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain [2] Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Luis M Martins
- MRC Toxicology Unit, Hodgkin Building, Leicester LE1 9HN, UK
| | - Angeles Almeida
- 1] Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain [2] Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Juan P Bolaños
- 1] Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, 37007 Salamanca, Spain [2] Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
343
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
344
|
Khz-cp (crude polysaccharide extract obtained from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia) induces apoptosis by increasing intracellular calcium levels and activating P38 and NADPH oxidase-dependent generation of reactive oxygen species in SNU-1 cells. Altern Ther Health Med 2014; 14:236. [PMID: 25012725 PMCID: PMC4227278 DOI: 10.1186/1472-6882-14-236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 07/01/2014] [Indexed: 12/05/2022]
Abstract
Background Khz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells. Methods Khz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes. Results In the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. Conclusions In summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an increase in [Ca2+]i, P38 activation, and ROS generation via NADPH oxidase and mitochondria.
Collapse
|
345
|
Zhang H, Duan C, Yang H. Defective autophagy in Parkinson's disease: lessons from genetics. Mol Neurobiol 2014; 51:89-104. [PMID: 24990317 DOI: 10.1007/s12035-014-8787-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder. Genetic studies over the past two decades have greatly advanced our understanding of the etiological basis of PD and elucidated pathways leading to neuronal degeneration. Recent studies have suggested that abnormal autophagy, a well conserved homeostatic process for protein and organelle turnover, may contribute to neurodegeneration in PD. Moreover, many of the proteins related to both autosomal dominant and autosomal recessive PD, such as α-synuclein, PINK1, Parkin, LRRK2, DJ-1, GBA, and ATPA13A2, are also involved in the regulation of autophagy. We propose that reduced autophagy enhances the accumulation of α-synuclein, other pathogenic proteins, and dysfunctional mitochondria in PD, leading to oxidative stress and neuronal death.
Collapse
Affiliation(s)
- H Zhang
- Center of Parkinson's Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
346
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
347
|
Damiano M, Gautier CA, Bulteau AL, Ferrando-Miguel R, Gouarne C, Paoli MG, Pruss R, Auchère F, L'Hermitte-Stead C, Bouillaud F, Brice A, Corti O, Lombès A. Tissue- and cell-specific mitochondrial defect in Parkin-deficient mice. PLoS One 2014; 9:e99898. [PMID: 24959870 PMCID: PMC4069072 DOI: 10.1371/journal.pone.0099898] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
Loss of Parkin, encoded by PARK2 gene, is a major cause of autosomal recessive Parkinson's disease. In Drosophila and mammalian cell models Parkin has been shown in to play a role in various processes essential to maintenance of mitochondrial quality, including mitochondrial dynamics, biogenesis and degradation. However, the relevance of altered mitochondrial quality control mechanisms to neuronal survival in vivo is still under debate. We addressed this issue in the brain of PARK2-/- mice using an integrated mitochondrial evaluation, including analysis of respiration by polarography or by fluorescence, respiratory complexes activity by spectrophotometric assays, mitochondrial membrane potential by rhodamine 123 fluorescence, mitochondrial DNA content by real time PCR, and oxidative stress by total glutathione measurement, proteasome activity, SOD2 expression and proteins oxidative damage. Respiration rates were lowered in PARK2-/- brain with high resolution but not standard respirometry. This defect was specific to the striatum, where it was prominent in neurons but less severe in astrocytes. It was present in primary embryonic cells and did not worsen in vivo from 9 to 24 months of age. It was not associated with any respiratory complex defect, including complex I. Mitochondrial inner membrane potential in PARK2-/- mice was similar to that of wild-type mice but showed increased sensitivity to uncoupling with ageing in striatum. The presence of oxidative stress was suggested in the striatum by increased mitochondrial glutathione content and oxidative adducts but normal proteasome activity showed efficient compensation. SOD2 expression was increased only in the striatum of PARK2-/- mice at 24 months of age. Altogether our results show a tissue-specific mitochondrial defect, present early in life of PARK2-/- mice, mildly affecting respiration, without prominent impact on mitochondrial membrane potential, whose underlying mechanisms remain to be elucidated, as complex I defect and prominent oxidative damage were ruled out.
Collapse
Affiliation(s)
- Maria Damiano
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Clément A. Gautier
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Anne-Laure Bulteau
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
| | - Rosa Ferrando-Miguel
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | | | | | - Rebecca Pruss
- Trophos, SA Parc Scientifique de Luminy Case, Marseille, France
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Caroline L'Hermitte-Stead
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
| | - Frédéric Bouillaud
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
| | - Alexis Brice
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
- AP-HP, Hôpital de la Salpêtrière, Department of Genetics and Cytogenetics, Paris, France
| | - Olga Corti
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Anne Lombès
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
- * E-mail:
| |
Collapse
|
348
|
Rivero-Ríos P, Gómez-Suaga P, Fdez E, Hilfiker S. Upstream deregulation of calcium signaling in Parkinson's disease. Front Mol Neurosci 2014; 7:53. [PMID: 24987329 PMCID: PMC4060956 DOI: 10.3389/fnmol.2014.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a major health problem affecting millions of people worldwide. Recent studies provide compelling evidence that altered Ca2+ homeostasis may underlie disease pathomechanism and be an inherent feature of all vulnerable neurons. The downstream effects of altered Ca2+ handling in the distinct subcellular organelles for proper cellular function are beginning to be elucidated. Here, we summarize the evidence that vulnerable neurons may be exposed to homeostatic Ca2+ stress which may determine their selective vulnerability, and suggest how abnormal Ca2+ handling in the distinct intracellular compartments may compromise neuronal health in the context of aging, environmental, and genetic stress. Gaining a better understanding of the varied effects of Ca2+ dyshomeostasis may allow novel combinatorial therapeutic strategies to slow PD progression.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Patricia Gómez-Suaga
- Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Elena Fdez
- Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Sabine Hilfiker
- Instituto de Parasitología y Biomedicina "López-Neyra," Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
349
|
Tonin AM, Amaral AU, Busanello EN, Gasparotto J, Gelain DP, Gregersen N, Wajner M. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders? Biochim Biophys Acta Mol Basis Dis 2014; 1842:1658-67. [PMID: 24946182 DOI: 10.1016/j.bbadis.2014.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca(2+) retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca(2+)-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca(2+) uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca(2+), respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.
Collapse
Affiliation(s)
- Anelise Miotti Tonin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Research Unit for Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Alexandre Umpierrez Amaral
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Estela Natacha Busanello
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juciano Gasparotto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel P Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, RS, Brazil.
| |
Collapse
|
350
|
Abstract
Progressive neurodegenerative diseases are among the most frequently occurring aging-associated human pathologies. In a screen for Caenorhabditis elegans mutant animals that lack their normal complement of dopaminergic neurons, we identified two strains with progressive loss of dopaminergic neurons during postembryonic life. Through whole-genome sequencing we show that both strains harbor dominant (d), gain-of-function mutations in the Transient Receptor Potential (TRP) mechanosensory channel trp-4, a member of the invertebrate and vertebrate TRPN-type of the TRP family channels. Gain-of-function mutations in TRP channels have not been previously implicated in dopaminergic neuronal degeneration. We show that trp-4(d) induces cell death in dopamine neurons through a defined, calcium-related downstream pathway.
Collapse
|