301
|
Alejandro EU, Bozadjieva N, Kumusoglu D, Abdulhamid S, Levine H, Haataja L, Vadrevu S, Satin LS, Arvan P, Bernal-Mizrachi E. Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure. Cell Rep 2015; 13:2527-2538. [PMID: 26673325 PMCID: PMC4839001 DOI: 10.1016/j.celrep.2015.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Nutrient levels dictate the activity of O-linked N-acetylglucosamine transferase (OGT) to regulate O-GlcNAcylation, a post-translational modification mechanism to "fine-tune" intracellular signaling and metabolic status. However, the requirement of O-GlcNAcylation for maintaining glucose homeostasis by regulating pancreatic β cell mass and function is unclear. Here, we reveal that mice lacking β cell OGT (βOGT-KO) develop diabetes and β cell failure. βOGT-KO mice demonstrated increased ER stress and distended ER architecture, and these changes ultimately caused the loss of β cell mass due to ER-stress-induced apoptosis and decreased proliferation. Akt1/2 signaling was also dampened in βOGT-KO islets. The mechanistic role of these processes was demonstrated by rescuing the phenotype of βOGT-KO mice with concomitant Chop gene deletion or genetic reconstitution of Akt2. These findings identify OGT as a regulator of β cell mass and function and provide a direct link between O-GlcNAcylation and β cell survival by regulation of ER stress responses and modulation of Akt1/2 signaling.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Nadejda Bozadjieva
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Doga Kumusoglu
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Sarah Abdulhamid
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Hannah Levine
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Leena Haataja
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Suryakiran Vadrevu
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Leslie S Satin
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Peter Arvan
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
302
|
Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, Kong C, Li B, Peng C, Wong CCL, Hou F, Zhang Y. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7). PLoS One 2015; 10:e0145023. [PMID: 26678539 PMCID: PMC4683056 DOI: 10.1371/journal.pone.0145023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Mixed lineage leukemia 5 (MLL5) protein is a trithorax family histone 3 lysine 4 (H3K4) methyltransferase that regulates diverse biological processes, including cell cycle progression, hematopoiesis and cancer. The mechanisms by which MLL5 protein stability is regulated have remained unclear to date. Here, we showed that MLL5 protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin-specific protease 7 (USP7). Depletion of OGT in cells led to a decrease in the MLL5 protein level through ubiquitin/proteasome-dependent proteolytic degradation, whereas ectopic expression of OGT protein suppressed MLL5 ubiquitylation. We further identified deubiquitinase USP7 as a novel MLL5-associated protein using mass spectrometry. USP7 stabilized the MLL5 protein through direct binding and deubiquitylation. Loss of USP7 induced degradation of MLL5 protein. Conversely, overexpression of USP7, but not a catalytically inactive USP7 mutant, led to decreased ubiquitylation and increased MLL5 stability. Co-immunoprecipitation and co-immunostaining assays revealed that MLL5, OGT and USP7 interact with each other to form a stable ternary complex that is predominantly located in the nucleus. In addition, upregulation of MLL5 expression was correlated with increased expression of OGT and USP7 in human primary cervical adenocarcinomas. Our results collectively reveal a novel molecular mechanism underlying regulation of MLL5 protein stability and provide new insights into the functional interplay among O-GlcNAc transferase, deubiquitinase and histone methyltransferase.
Collapse
Affiliation(s)
- Xiaodan Ding
- Department of Immunology, Nanjing Medical University, Jiangsu, China
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Jiang
- Shanghai Red House Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- * E-mail: (WJ); (YZ)
| | - Peipei Zhou
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lulu Liu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Institute of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Xiaoling Wan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiujie Yuan
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xizi Wang
- College of life science, Sun Yet-Sen University, Guangzhou, China
| | - Miao Chen
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jun Chen
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jing Yang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Kong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catherine C. L. Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fajian Hou
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (WJ); (YZ)
| |
Collapse
|
303
|
Inhibition of HIF-1α Affects Autophagy Mediated Glycosylation in Oral Squamous Cell Carcinoma Cells. DISEASE MARKERS 2015; 2015:239479. [PMID: 26640316 PMCID: PMC4658405 DOI: 10.1155/2015/239479] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023]
Abstract
Purpose. To validate the function of autophagy with the regulation of hypoxia inhibitor-induced glycosylation in oral squamous cell carcinoma cell. Methods. Human Tca8113 cell line was used to detect autophagy and glycosylation related protein expression by western blotting and immunofluorescence with HIF-1α inhibitor. Short interfering RNA (siRNA) transfection blocked human ATG12 and ATG1. Results. HIF-1α inhibitor PX-478 reduced the amount of LC3-II and LC3-I in Tca8113 cells. PX-478 decreased the expression of O-GlcNAc and OGT and increased OGA expression. The tendency of O-GlcNAc showed a similar pattern to OGT. PX-478 gradually decreased OGT expression in Tca8113 cells. Protein level of O-GlcNAc and OGT increased in ATG12 and ATG1 depletion. The expression of OGT decreased at first and then rose slowly with the treatment of Atg12 and Atg1 siRNA and PX-478 fluctuant. Autophagy affected the stability of OGT when HIF-1α signaling was blocked. Conclusions. Autophagy reduced by hypoxic stress inhibited. HIF-1α inhibitor decreased glycosylation. OGT became unstable in the absence of autophagy when HIF-1α signaling was blocked.
Collapse
|
304
|
O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun 2015; 6:8468. [PMID: 26399441 PMCID: PMC4598839 DOI: 10.1038/ncomms9468] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
The pentose phosphate pathway (PPP) plays a critical role in macromolecule biosynthesis and maintaining cellular redox homoeostasis in rapidly proliferating cells. Upregulation of the PPP has been shown in several types of cancer. However, how the PPP is regulated to confer a selective growth advantage on cancer cells is not well understood. Here we show that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked β-N-acetylglucosamine sugar in response to hypoxia. Glycosylation activates G6PD activity and increases glucose flux through the PPP, thereby providing precursors for nucleotide and lipid biosynthesis, and reducing equivalents for antioxidant defense. Blocking glycosylation of G6PD reduces cancer cell proliferation in vitro and impairs tumor growth in vivo. Importantly, G6PD glycosylation is increased in human lung cancers. Our findings reveal a mechanistic understanding of how O-glycosylation directly regulates the PPP to confer a selective growth advantage to tumours. The pentose phosphate pathway is aberrantly activated in cancer cells but the mechanism is unclear. Here, the authors show that G6PD, the rate-limiting enzyme in the pathway, is post-translationally modified with a sugar moiety under hypoxic conditions leading to increased production of precursors for macromolecular synthesis and antioxidants.
Collapse
|
305
|
Wen T, Hou K, Li Z, Li L, Yu H, Liu Y, Li Y, Yin Z. Silencing β-linked N-acetylglucosamine transferase induces apoptosis in human gastric cancer cells through PUMA and caspase-3 pathways. Oncol Rep 2015; 34:3140-6. [PMID: 26397041 DOI: 10.3892/or.2015.4276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
β-linked N-acetylglucosamine (GlcNAc) is a monosaccharide that is catalyzed by O-GlcNAcylation transferase (OGT) to bind serine or threonine hydroxyl moieties of numerous nuclear and cytoplasmic proteins. Recent studies have shown that O-GlcNAcylation is elevated in various cancer types, which is associated with oncogenesis and tumor progression. However, whether OGT is expressed and/or plays a role in gastric cancer is unknown. In the present study, we used qPCR to determine that OGT mRNA levels are significantly elevated in gastric cancer tissues compared with that in corresponding adjacent tissues. In addition, in vivo silencing of OGT in nude mice suppressed tumor proliferation and decreased tumor burden. Furthermore, in vitro OGT knockdown induced more cell apoptosis through increasing PUMA and caspase-3 expression. We used a glycan-binding protein gene microarray to identify potential downstream target genes of OGT, and found that apoptosis-related genes such as galectin and HBEGF were decreased after OGT suppression, suggesting that OGT silencing induces apoptosis in gastric cancer tissues. We concluded that OGT plays a key role in gastric cancer proliferation and survival, and could be a potential target for therapy.
Collapse
Affiliation(s)
- Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Lu Li
- Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Beilin, Xi'an, Shaanxi 710069, P.R. China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| | - Yangguang Li
- Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, USA
| | - Zhinan Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
306
|
Abstract
Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.
Collapse
Affiliation(s)
- Salomé S Pinho
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
307
|
Cooper J, Maupin K, Merrill N. Origins of cancer symposium 2015: posttranslational modifications and cancer. Genes Cancer 2015. [DOI: 10.18632/genesandcancer.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jason Cooper
- Van Andel Institute Graduate School, Grand Rapids, Michigan, USA
| | - Kevin Maupin
- Van Andel Institute Graduate School, Grand Rapids, Michigan, USA
| | - Nathan Merrill
- Van Andel Institute Graduate School, Grand Rapids, Michigan, USA
| |
Collapse
|
308
|
Yang YR, Jang HJ, Lee YH, Kim IS, Lee H, Ryu SH, Suh PG. O-GlcNAc cycling enzymes control vascular development of the placenta by modulating the levels of HIF-1α. Placenta 2015; 36:1063-8. [PMID: 26286378 DOI: 10.1016/j.placenta.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/27/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Placental vasculogenesis is essential for fetal growth and development, and is affected profoundly by oxygen tension (hypoxia). Hypoxia-inducible factor-1α (HIF-1α), which is stabilized at the protein level in response to hypoxia, is essential for vascular morphogenesis in the placenta. Many studies suggested that responses to hypoxia is influenced by O-GlcNAcylation. O-GlcNAcylation is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) that catalyze the addition and removal of O-GlcNAc respectively. METHODS We generated OGA deficient mice and evaluated OGA(-/-) placentas. The analysis of OGA(-/-) placentas was focused on morphological change and placental vasculogenesis. HIF-1α protein stability or transcriptional activity under dysregulation of O-GlcNAcylation were evaluated by Western blot, RT-qPCR and luciferase reporter gene assays in MEFs or MS1 cell line. RESULTS Deletion of OGA results in defective placental vasculogenesis. OGA(-/-) placentas showed an abnormal placental shape and reduced vasculature in the labyrinth, which caused a developmental delay in the embryos. OGA deletion, which elevates O-GlcNAcylation and downregulates O-GlcNAc transferase (OGT), suppressed HIF-1α stabilization and the transcription of its target genes. In contrast, the overexpression of O-GlcNAc cycling enzymes enhanced the expression and transcriptional activity of HIF-1α. DISCUSSION These results suggest that OGA plays a critical role in placental vasculogenesis by modulating HIF-1α stabilization. Control of O-GlcNAcylation is essential for placental development.
Collapse
Affiliation(s)
- Yong Ryoul Yang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Yong Hwa Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Il Shin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ho Lee
- Cancer Experimental Resources Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
309
|
Origins of cancer symposium 2015: posttranslational modifications and cancer. Genes Cancer 2015. [PMCID: PMC4575917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sixth annual Origins of Cancer Symposium was held July 10, 2015, at the Van Andel Research Institute in Grand Rapids, MI. Its theme was Beyond the Genome, with talks focused on the various influences of posttranslational modifications in malignant transformation and the spread of cancer. This event was organized by senior Ph.D. students as part of their professional development training at the Van Andel Institute Graduate School and is a successor to the original Oncogene meetings established by the Foundation for Advanced Cancer Studies in the 1980s. The symposium featured eight world-renowned scientists who disclosed their new findings and reflected upon past work related to the array of posttranslational modifications that contribute to cancer.
Collapse
|
310
|
Kawate T, Iwaya K, Koshikawa K, Moriya T, Yamasaki T, Hasegawa S, Kaise H, Fujita T, Matsuo H, Nakamura T, Ishikawa T, Hiroi S, Iguchi-Ariga SMM, Ariga H, Murota K, Fujimori M, Yamamoto J, Matsubara O, Kohno N. High levels of DJ-1 protein and isoelectric point 6.3 isoform in sera of breast cancer patients. Cancer Sci 2015; 106:938-43. [PMID: 25867058 PMCID: PMC4520647 DOI: 10.1111/cas.12673] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/12/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
In patients with cancer and Parkinson's disease, the DJ-1 protein may be secreted into the serum during the impaired response of the underlying cell-protective mechanisms. In order to determine the clinical significance of DJ-1 protein in the sera of breast cancer patients, we examined blood samples from a breast cancer group (n = 180) and a non-cancerous control group (n = 300). Higher levels of DJ-1 were detected in the breast cancer group (mean level, 42.7 ng/mL) than the control group (28.3 ng/mL) by ELISA (P = 0.019). Higher DJ-1 levels were significantly associated with advanced clinical grade, according to the TNM classification, negative hormone receptor status, and high Ki-67 labeling index, of biopsied materials; samples showed low DJ-1 protein expression despite upregulated DJ-1 mRNA. DJ-1 isoforms could be detected clearly in 17 blood samples (from 11 breast cancer patients, and 6 non-cancerous controls) by 2-D gel electrophoresis and immunoblot analysis. The isoform at the pI of 6.3 showed the highest intensity in all 11 cancer cases. Conversely, in the 6 non-cancerous cases, isoforms other than the pI 6.3 isoform were highly expressed, and there was a significant difference in the isoform pattern between breast cancer cases and controls (P = 0.00025). These data indicate that high levels of DJ-1, probably of isoform at pI 6.3, is a candidate serum marker of breast cancer.
Collapse
Affiliation(s)
- Takahiko Kawate
- Department of Pathology, National Defense Medical CollegeSaitama, Japan
- Department of Breast Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Keiichi Iwaya
- Department of Pathology, National Defense Medical CollegeSaitama, Japan
- Department of Breast Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kayoko Koshikawa
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Tomoyuki Moriya
- Department of Surgery, National Defense Medical CollegeSaitama, Japan
| | - Tamio Yamasaki
- Department of Surgery, National Defense Medical CollegeSaitama, Japan
| | - Sho Hasegawa
- Department of Surgery, National Defense Medical CollegeSaitama, Japan
| | - Hiroshi Kaise
- Department of Breast Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Tomoyuki Fujita
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical CollegeSaitama, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical CollegeSaitama, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Sadayuki Hiroi
- Department of Pathology, National Defense Medical CollegeSaitama, Japan
| | | | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Science, Hokkaido UniversitySapporo, Japan
| | - Keiichi Murota
- Kasumigaura Institute for Health EvaluationIbaraki, Japan
| | - Minoru Fujimori
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical CenterIbaraki, Japan
| | - Junji Yamamoto
- Department of Surgery, National Defense Medical CollegeSaitama, Japan
| | - Osamu Matsubara
- Department of Pathology, National Defense Medical CollegeSaitama, Japan
| | - Norio Kohno
- Department of Breast Oncology, Tokyo Medical UniversityTokyo, Japan
| |
Collapse
|
311
|
Nagaraju GP, Bramhachari PV, Raghu G, El-Rayes BF. Hypoxia inducible factor-1α: Its role in colorectal carcinogenesis and metastasis. Cancer Lett 2015; 366:11-8. [PMID: 26116902 DOI: 10.1016/j.canlet.2015.06.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/29/2015] [Accepted: 06/09/2015] [Indexed: 01/05/2023]
Abstract
Tumor growth creates a hypoxic microenvironment, which promotes angiogenesis and aggressive tumor growth and invasion. HIF1α is a central molecule involved in mediating these effects of hypoxia. In colorectal cancer (CRC), hypoxia stabilizes the transcription factor HIF1α, leading to the expression of genes that are involved in tumor vascularization, metastasis/migration, cell survival and chemo-resistance. Therefore, HIF1α is a rational target for the development of new therapeutics for CRC. This article reviews the central role of HIF1α in CRC angiogenesis, metastasis, and progression as well as the strategies to target HIF1α stabilization.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | - Godi Raghu
- Department of Biotechnology, Krishna University, Machilipatnam, AP-521001, India
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
312
|
Ortiz-Meoz RF, Jiang J, Lazarus MB, Orman M, Janetzko J, Fan C, Duveau DY, Tan ZW, Thomas CJ, Walker S. A small molecule that inhibits OGT activity in cells. ACS Chem Biol 2015; 10:1392-7. [PMID: 25751766 DOI: 10.1021/acschembio.5b00004] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
O-GlcNAc transferase (OGT) is an essential mammalian enzyme that regulates numerous cellular processes through the attachment of O-linked N-acetylglucosamine (O-GlcNAc) residues to nuclear and cytoplasmic proteins. Its targets include kinases, phosphatases, transcription factors, histones, and many other intracellular proteins. The biology of O-GlcNAc modification is still not well understood, and cell-permeable inhibitors of OGT are needed both as research tools and for validating OGT as a therapeutic target. Here, we report a small molecule OGT inhibitor, OSMI-1, developed from a high-throughput screening hit. It is cell-permeable and inhibits protein O-GlcNAcylation in several mammalian cell lines without qualitatively altering cell surface N- or O-linked glycans. The development of this molecule validates high-throughput screening approaches for the discovery of glycosyltransferase inhibitors, and further optimization of this scaffold may lead to yet more potent OGT inhibitors useful for studying OGT in animal models.
Collapse
Affiliation(s)
- Rodrigo F. Ortiz-Meoz
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jiaoyang Jiang
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Michael B. Lazarus
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Marina Orman
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - John Janetzko
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Chenguang Fan
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Damien Y. Duveau
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Zhi-Wei Tan
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| | - Craig J. Thomas
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States
| | - Suzanne Walker
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
313
|
Kim EJ. The Utilities of Chemical Reactions and Molecular Tools for O-GlcNAc Proteomic Studies. Chembiochem 2015; 16:1397-409. [PMID: 26096757 DOI: 10.1002/cbic.201500183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 11/05/2022]
Abstract
The post-translational modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) is involved in a wide variety of cellular processes and is associated with the pathological progression of chronic diseases. Considering its emerging biological significance, systematic identification, site mapping, and quantification of O-GlcNAc proteins are essential and have led to the development of several approaches for O-GlcNAc protein profiling. This minireview mainly focuses on the various useful chemical reactions and molecular tools with detailed reaction mechanisms widely adopted for O-GlcNAc protein/peptide enrichment and its quantification for comprehensive O-GlcNAc protein profiling.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongsan-si, GyeongBuk 712-714 (Republic of Korea). ,
| |
Collapse
|
314
|
Yang X, Du T, Wang X, Zhang Y, Hu W, Du X, Miao L, Han C. IDH1, a CHOP and C/EBPβ-responsive gene under ER stress, sensitizes human melanoma cells to hypoxia-induced apoptosis. Cancer Lett 2015; 365:201-10. [PMID: 26049021 DOI: 10.1016/j.canlet.2015.05.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
Abstract
Isocitrate dehydrogenase1 (IDH1) is of great importance in cell metabolism and energy conversion. However, alterations in IDH1 in response to stress and excise-regulated mechanisms are not well described. Here we investigated gene expression profiles under ER stress in melanoma cells and found that IDH1 was dramatically increased with ER stress induced by tunicamycin. Elevated IDH1 subsequently sensitized human melanoma cells to hypoxia-induced apoptosis and promoted HIF-1α degradation. In addition, we revealed that CHOP and C/EBPβ were involved in hypoxia-induced apoptosis via transcriptional regulation of IDH1 expression. Our data indicate that IDH1, regulated by CHOP and C/EBPβ in response to ER stress treatment, inhibits survival of melanoma cells under hypoxia and promotes HIF-1α degradation. Therefore, we propose that IDH1 may serve as a valuable target for melanoma therapy.
Collapse
Affiliation(s)
- Xuejun Yang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Tongde Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaofeng Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lin Miao
- Oncology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
315
|
Vasseur S, Guillaumond F. LDL Receptor: An open route to feed pancreatic tumor cells. Mol Cell Oncol 2015; 3:e1033586. [PMID: 27308549 DOI: 10.1080/23723556.2015.1033586] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 12/23/2022]
Abstract
The role of altered lipid metabolism in pancreatic ductal adenocarcinoma (PDAC) is poorly appreciated. We recently identified the lipid signature of PDAC and revealed low-density lipoprotein receptor (Ldlr) as a metabolic driver of this disease. Here, we comment our findings that disruption of Ldlr leads to intratumoral cholesterol imbalance and improves chemotherapy efficiency.
Collapse
Affiliation(s)
- Sophie Vasseur
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France; Institut Paoli-Calmettes, Marseille, France; CNRS, UMR7258, Marseille, France; Université Aix-Marseille, Marseille, France
| | - Fabienne Guillaumond
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France; Institut Paoli-Calmettes, Marseille, France; CNRS, UMR7258, Marseille, France; Université Aix-Marseille, Marseille, France
| |
Collapse
|
316
|
Vasseur S, Manié SN. ER stress and hexosamine pathway during tumourigenesis: A pas de deux? Semin Cancer Biol 2015; 33:34-9. [PMID: 25931390 DOI: 10.1016/j.semcancer.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/16/2015] [Indexed: 12/28/2022]
Abstract
Both the hexosamine biosynthetic pathway (HBP) and the endoplasmic reticulum (ER) are considered sensors for the nutritional state of the cell. The former is a branch of the glucose metabolic pathway that provides donor molecules for glycosylation processes, whereas the second requires co-translational N-glycosylation to ensure proper protein folding. It has become clear that the microenvironment of solid tumours, characterised by poor oxygen and nutrient supply, challenges optimal functions of the ER and the HBP. Here, we review recent advances demonstrating that the ER stress (ERS) response and HBP pathways are interconnected to promote cell viability. We then develop the idea that communication between ER and HBP is a survival feature of neoplastic cells that plays a prominent role during tumourigenesis.
Collapse
Affiliation(s)
- Sophie Vasseur
- INSERM U1068, Centre de Recherche en Cancérologie de Marseille, France; Institut Paoli-Calmettes, France; CNRS, UMR7258, F-13009 Marseille, France; Université Aix-Marseille, F-13284 Marseille, France
| | - Serge N Manié
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, Université Lyon 1, F-69000 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France.
| |
Collapse
|
317
|
Leach HJ, Devonish JA, Bebb DG, Krenz KA, Culos-Reed SN. Exercise preferences, levels and quality of life in lung cancer survivors. Support Care Cancer 2015; 23:3239-47. [PMID: 25832895 DOI: 10.1007/s00520-015-2717-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE Lung cancer poses multiple challenges to adopting an exercise (EX) program, and the ideal timing of an EX program to improve quality of life (QoL) is unknown. This study explored the EX counselling and programming preferences of lung cancer survivors and examined the association of EX before diagnosis, during treatment and after treatment on QoL. METHODS Cross-sectional, retrospective survey design in a sample of lung cancer survivors. EX preferences were compared between patients who had received radical chest radiation or lung surgery versus those who had not. EX was measured by self-report using the Godin Leisure Time Exercise Questionnaire (GLTEQ). Separate linear regression models, controlling for significant covariates, examined the association of EX at each time point with scores on QoL measures and subscales. RESULTS Participants (N = 66, M age 66.4 ± 9.1) were between 4 months and 11.5 years after lung cancer diagnosis (M = 31.7 ± 22.9 months). Patients who had lung surgery were more likely to prefer to start an EX program during adjuvant treatment than those who did not have surgery (t(33) = 2.43, p = .025). Compared to prediagnosis EX (M = 36.7 ± 56.0 MET h/week), EX levels declined significantly during (M = 12.4 ± 25.0 MET h/week) and after (M = 12.3 ± 17.4 MET h/week) treatment (p < .05). After controlling for disease stage and income, regression models were not significant, but EX after treatment was a significant individual predictor of fatigue (β = .049, p = .006) and QoL measured by the Chronic Respiratory Disease Questionnaire (β = .163, p = .025). CONCLUSIONS Lung cancer patient preferences indicate that EX program timing should take into account whether the patient has undergone surgery. Lung cancer survivors' EX levels declined after diagnosis and engaging in EX after treatment may improve fatigue and QoL.
Collapse
Affiliation(s)
- H J Leach
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - J A Devonish
- Medical University of the Americas, Calgary, AB, Canada.
| | - D G Bebb
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| | - K A Krenz
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - S N Culos-Reed
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada. .,Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Psychosocial Resources, Tom Baker Cancer Centre, Alberta Health Services, Calgary, AB, Canada.
| |
Collapse
|
318
|
Abstract
Unlike the complex glycans decorating the cell surface, the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification is a simple intracellular Ser/Thr-linked monosaccharide that is important for disease-relevant signaling and enzyme regulation. O-GlcNAcylation requires uridine diphosphate-GlcNAc, a precursor responsive to nutrient status and other environmental cues. Alternative splicing of the genes encoding the O-GlcNAc cycling enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) yields isoforms targeted to discrete sites in the nucleus, cytoplasm, and mitochondria. OGT and OGA also partner with cellular effectors and act in tandem with other posttranslational modifications. The enzymes of O-GlcNAc cycling act preferentially on intrinsically disordered domains of target proteins impacting transcription, metabolism, apoptosis, organelle biogenesis, and transport.
Collapse
|
319
|
Vercoutter-Edouart AS, El Yazidi-Belkoura I, Guinez C, Baldini S, Leturcq M, Mortuaire M, Mir AM, Steenackers A, Dehennaut V, Pierce A, Lefebvre T. Detection and identification ofO-GlcNAcylated proteins by proteomic approaches. Proteomics 2015; 15:1039-50. [DOI: 10.1002/pmic.201400326] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Céline Guinez
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Steffi Baldini
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Maïté Leturcq
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Marlène Mortuaire
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Anne-Marie Mir
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Agata Steenackers
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Vanessa Dehennaut
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Annick Pierce
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Tony Lefebvre
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| |
Collapse
|
320
|
Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ, Seagroves TN, Reginato MJ. mTOR/MYC Axis Regulates O-GlcNAc Transferase Expression and O-GlcNAcylation in Breast Cancer. Mol Cancer Res 2015; 13:923-33. [PMID: 25636967 DOI: 10.1158/1541-7786.mcr-14-0536] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/22/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED Cancers exhibit altered metabolism characterized by increased glucose and glutamine uptake. The hexosamine biosynthetic pathway (HBP) uses glucose and glutamine, and directly contributes to O-linked-β-N-acetylglucosamine (O-GlcNAc) modifications on intracellular proteins. Multiple tumor types contain elevated total O-GlcNAcylation, in part, by increasing O-GlcNAc transferase (OGT) levels, the enzyme that catalyzes this modification. Although cancer cells require OGT for oncogenesis, it is not clear how tumor cells regulate OGT expression and O-GlcNAcylation. Here, it is shown that the PI3K-mTOR-MYC signaling pathway is required for elevation of OGT and O-GlcNAcylation in breast cancer cells. Treatment with PI3K and mTOR inhibitors reduced OGT protein expression and decreased levels of overall O-GlcNAcylation. In addition, both AKT and mTOR activation is sufficient to elevate OGT/O-GlcNAcylation. Downstream of mTOR, the oncogenic transcription factor c-MYC is required and sufficient for increased OGT protein expression in an RNA-independent manner and c-MYC regulation of OGT mechanistically requires the expression of c-MYC transcriptional target HSP90A. Finally, mammary tumor epithelial cells derived from MMTV-c-myc transgenic mice contain elevated OGT and O-GlcNAcylation and OGT inhibition in this model induces apoptosis. Thus, OGT and O-GlcNAcylation levels are elevated via activation of an mTOR/MYC cascade. IMPLICATIONS Evidence indicates OGT as a therapeutic target in c-MYC-amplified cancers.
Collapse
Affiliation(s)
- Valerie L Sodi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sakina Khaku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Raisa Krutilina
- Center for Adult Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Luciana P Schwab
- Center for Adult Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - David J Vocadlo
- Department of Chemistry, Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Tiffany N Seagroves
- Center for Adult Cancer Research and the Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
321
|
Kucharzewska P, Christianson HC, Belting M. Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS One 2015; 10:e0116740. [PMID: 25633823 PMCID: PMC4310608 DOI: 10.1371/journal.pone.0116740] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/12/2014] [Indexed: 01/09/2023] Open
Abstract
Oncogenetic events and unique phenomena of the tumor microenvironment together induce adaptive metabolic responses that may offer new diagnostic tools and therapeutic targets of cancer. Hypoxia, or low oxygen tension, represents a well-established and universal feature of the tumor microenvironment and has been linked to increased tumor aggressiveness as well as resistance to conventional oncological treatments. Previous studies have provided important insights into hypoxia induced changes of the transcriptome and proteome; however, how this translates into changes at the metabolite level remains to be defined. Here, we have investigated dynamic, time-dependent effects of hypoxia on the cancer cell metabolome across all families of macromolecules, i.e., carbohydrate, protein, lipid and nucleic acid, in human glioblastoma cells. Using GC/MS and LC/MS/MS, 345 and 126 metabolites were identified and quantified in cells and corresponding media, respectively, at short (6 h), intermediate (24 h), and prolonged (48 h) incubation at normoxic or hypoxic (1% O2) conditions. In conjunction, we performed gene array studies with hypoxic and normoxic cells following short and prolonged incubation. We found that levels of several key metabolites varied with the duration of hypoxic stress. In some cases, metabolic changes corresponded with hypoxic regulation of key pathways at the transcriptional level. Our results provide new insights into the metabolic response of glioblastoma cells to hypoxia, which should stimulate further work aimed at targeting cancer cell adaptive mechanisms to microenvironmental stress.
Collapse
Affiliation(s)
- Paulina Kucharzewska
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Helena C. Christianson
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology and Pathology, Lund University, Lund, Sweden
- Skåne Oncology Clinic, Skåne University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
322
|
Nagel AK, Ball LE. Intracellular protein O-GlcNAc modification integrates nutrient status with transcriptional and metabolic regulation. Adv Cancer Res 2015; 126:137-66. [PMID: 25727147 DOI: 10.1016/bs.acr.2014.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked β-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.
Collapse
|
323
|
Li S, Wang J, Wei Y, Liu Y, Ding X, Dong B, Xu Y, Wang Y. Critical role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J Cell Sci 2015; 128:3317-29. [PMID: 26187851 DOI: 10.1242/jcs.173161] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcriptional factor responsible for the expression of a broad range of genes that facilitate acclimatization to hypoxia. Its stability is predominantly controlled by rapid hydroxylation of two prolines on its α subunit. However, how the rapid hydroxylation of HIF-1α is regulated is not fully understood. Here, we report that transient receptor potential canonical (TRPC) 6 channels control hydroxylation and stability of HIF-1α in human glioma cells under hypoxia. TRPC6 was rapidly activated by IGF-1R-PLCγ-IP3R pathway in hypoxia. Inhibition of TRPC6 enhanced the levels of α-ketoglutarate (α-KG) and promoted hydroxylation of HIF-1α to suppress HIF-1α accumulation without affecting its transcription or translation. Dimethyloxalylglycine N-(methoxyoxoacetyl)-glycine methyl ester (DMOG), an analog of α-KG, reversed the inhibition of HIF-1α accumulation. Moreover, TRPC6 regulated GLUT1 expression depending on HIF-1α accumulation to affect glucose uptake in hypoxia. Our results suggest that TRPC6 regulates metabolism to affect HIF-1α stability and consequent glucose metabolism in human glioma cells under hypoxia.
Collapse
Affiliation(s)
- Shanshan Li
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinkui Wang
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Wei
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yongjian Liu
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xia Ding
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Dong
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yinghui Xu
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
324
|
Levett DZH, Viganò A, Capitanio D, Vasso M, De Palma S, Moriggi M, Martin DS, Murray AJ, Cerretelli P, Grocott MPW, Gelfi C. Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest. Proteomics 2014; 15:160-71. [DOI: 10.1002/pmic.201400306] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/16/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Denny Z. H. Levett
- Centre for Altitude, Space, and Extreme Environment Medicine; University College London (UCL); Institute of Child Health; University College London; London UK
- Anaesthesia and Critical Care Research Unit; University Hospital Southampton; NHS Foundation Trust; Southampton UK
| | - Agnese Viganò
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- IRCCS Policlinico San Donato; San Donato Milanese Milano Italy
| | - Michele Vasso
- CNR-Institute of Bioimaging and Molecular Physiology; Cefalù-Segrate Italy
| | - Sara De Palma
- CNR-Institute of Bioimaging and Molecular Physiology; Cefalù-Segrate Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- IRCCS Policlinico San Donato; San Donato Milanese Milano Italy
| | - Daniel S. Martin
- Centre for Altitude, Space, and Extreme Environment Medicine; University College London (UCL); Institute of Child Health; University College London; London UK
| | - Andrew J. Murray
- Department of Physiology; Development, and Neuroscience; University of Cambridge; Cambridge UK
| | - Paolo Cerretelli
- CNR-Institute of Bioimaging and Molecular Physiology; Cefalù-Segrate Italy
| | - Mike P. W. Grocott
- Anaesthesia and Critical Care Research Unit; University Hospital Southampton; NHS Foundation Trust; Southampton UK
- Integrative Physiology and Critical Illness Group; Division of Clinical and Experimental Science; Faculty of Medicine, University of Southampton; Southampton UK
- Southampton NIHR Respiratory Biomedical Research Unit; Southampton UK
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- IRCCS Policlinico San Donato; San Donato Milanese Milano Italy
- CNR-Institute of Bioimaging and Molecular Physiology; Cefalù-Segrate Italy
| |
Collapse
|
325
|
Garg AD, Maes H, van Vliet AR, Agostinis P. Targeting the hallmarks of cancer with therapy-induced endoplasmic reticulum (ER) stress. Mol Cell Oncol 2014; 2:e975089. [PMID: 27308392 PMCID: PMC4905250 DOI: 10.4161/23723556.2014.975089] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022]
Abstract
The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory; Department for Cellular and Molecular Medicine; KU Leuven University of Leuven ; Leuven, Belgium
| | - Hannelore Maes
- Cell Death Research & Therapy (CDRT) Laboratory; Department for Cellular and Molecular Medicine; KU Leuven University of Leuven ; Leuven, Belgium
| | - Alexander R van Vliet
- Cell Death Research & Therapy (CDRT) Laboratory; Department for Cellular and Molecular Medicine; KU Leuven University of Leuven ; Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory; Department for Cellular and Molecular Medicine; KU Leuven University of Leuven ; Leuven, Belgium
| |
Collapse
|
326
|
Warmoes MO, Locasale JW. Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochem Pharmacol 2014; 92:12-21. [PMID: 25093285 PMCID: PMC4254151 DOI: 10.1016/j.bcp.2014.07.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 12/19/2022]
Abstract
Upregulated glycolysis, both in normoxic and hypoxic environments, is a nearly universal trait of cancer cells. The enormous difference in glucose metabolism offers a target for therapeutic intervention with a potentially low toxicity profile. The past decade has seen a steep rise in the development and clinical assessment of small molecules that target glycolysis. The enzymes in glycolysis have a highly heterogeneous nature that allows for the different bioenergetic, biosynthetic, and signaling demands needed for various tissue functions. In cancers, these properties enable them to respond to the variable requirements of cell survival, proliferation and adaptation to nutrient availability. Heterogeneity in glycolysis occurs through the expression of different isoforms, posttranslational modifications that affect the kinetic and regulatory properties of the enzyme. In this review, we will explore this vast heterogeneity of glycolysis and discuss how this information might be exploited to better target glucose metabolism and offer possibilities for biomarker development.
Collapse
Affiliation(s)
- Marc O Warmoes
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
327
|
Ferrer CM, Reginato MJ. Sweet connections: O-GlcNAcylation links cancer cell metabolism and survival. Mol Cell Oncol 2014; 2:e961809. [PMID: 27308381 PMCID: PMC4905223 DOI: 10.4161/23723548.2014.961809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 07/23/2014] [Accepted: 07/29/2014] [Indexed: 12/28/2022]
Abstract
Increased O-GlcNAcylation is emerging as a general characteristic of cancer cells that is critical for multiple oncogenic phenotypes. Recently, we demonstrated that elevated O-GlcNAcylation contributes to the metabolic shift seen in cancer through stabilization of the glycolytic regulator HIF-1α and links metabolism to stress and cancer cell survival.
Collapse
Affiliation(s)
- Christina M Ferrer
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine ; Philadelphia, PA USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine ; Philadelphia, PA USA
| |
Collapse
|
328
|
Hexosamine pathway and (ER) protein quality control. Curr Opin Cell Biol 2014; 33:14-8. [PMID: 25463841 DOI: 10.1016/j.ceb.2014.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/21/2022]
Abstract
Aminosugars produced in the hexosamine pathway (HP) are utilized in protein glycosylation reactions involved in protein maturation and cellular signaling. Recent evidence revealed a role of the HP in protein quality control and ageing. Elevation of the HP product UDP-N-acetylglucosamine in the nematode Caenorhabditis elegans results in resistance towards toxic aggregation-prone proteins, and extended lifespan. Glutamine-fructose 6 phosphate aminotransferase (GFAT-1), the HP's key enzyme, is a target of the unfolded protein response (UPR). Thus, cardiac stress in mice results in GFAT-1 activation that triggers a cytoprotective response. Feeding of glucosamine to aged mice increases their life expectancy. Here we discuss HP activation and cellular protein quality control mechanisms that result in stress resistance and suppression of age-related proteotoxicity.
Collapse
|
329
|
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a carbohydrate post-translational modification on hydroxyl groups of serine and/or threonine residues of cytosolic and nuclear proteins. Analogous to phosphorylation, O-GlcNAcylation plays crucial regulatory roles in cellular signaling. Recent work indicates that increased O-GlcNAcylation is a general feature of cancer and contributes to transformed phenotypes. In this minireview, we discuss how hyper-O-GlcNAcylation may be linked to various hallmarks of cancer, including cancer cell proliferation, survival, invasion, and metastasis; energy metabolism; and epigenetics. We also discuss potential therapeutic modulation of O-GlcNAc levels in cancer treatment.
Collapse
Affiliation(s)
- Zhiyuan Ma
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Keith Vosseller
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
330
|
Manié SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol 2014; 307:C901-7. [PMID: 25186011 DOI: 10.1152/ajpcell.00292.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endoplasmic reticulum (ER)-induced unfolded protein response (UPR) is an adaptive mechanism that is activated upon accumulation of misfolded proteins in the ER and aims at restoring ER homeostasis. In the past 10 years, the UPR has emerged as an important actor in the different phases of tumor growth. The UPR is transduced by three major ER resident stress sensors, which are protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme-1 (IRE1). The signaling pathways elicited by those stress sensors have connections with metabolic pathways and with other plasma membrane receptor signaling networks. As such, the ER has an essential position as a signal integrator in the cell and is instrumental in the different phases of tumor progression. Herein, we describe and discuss the characteristics of an integrated signaling network that might condition the UPR biological outputs in a tissue- or stress-dependent manner. We discuss these issues in the context of the pathophysiological roles of UPR signaling in cancers.
Collapse
Affiliation(s)
- Serge N Manié
- University of Lyon, Lyon, France, and UMR CNRS 5286 - INSERM 1052 - University of Lyon, Cancer Research Center of Lyon, Team ER Stress and Tumorigenesis, Lyon, France;
| | - Justine Lebeau
- University of Lyon, Lyon, France, and UMR CNRS 5286 - INSERM 1052 - University of Lyon, Cancer Research Center of Lyon, Team ER Stress and Tumorigenesis, Lyon, France
| | - Eric Chevet
- Inserm U1053, Team Endoplasmic Reticulum Stress and Cancer, Université de Bordeaux, Bordeaux, France; and Centre Régional de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| |
Collapse
|
331
|
Chaiyawat P, Netsirisawan P, Svasti J, Champattanachai V. Aberrant O-GlcNAcylated Proteins: New Perspectives in Breast and Colorectal Cancer. Front Endocrinol (Lausanne) 2014; 5:193. [PMID: 25426101 PMCID: PMC4227529 DOI: 10.3389/fendo.2014.00193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022] Open
Abstract
Increasing glucose consumption is thought to provide an evolutionary advantage to cancer cells. Alteration of glucose metabolism in cancer influences various important metabolic pathways including the hexosamine biosynthesis pathway (HBP), a relatively minor branch of glycolysis. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an end product of HBP, is a sugar substrate used for classical glycosylation and O-GlcNAcylation, a post-translational protein modification implicated in a wide range of effects on cellular functions. Emerging evidence reveals that certain cellular proteins are abnormally O-GlcNAc modified in many kinds of cancers, indicating O-GlcNAcylation is associated with malignancy. Since O-GlcNAc rapidly on and off modifies in a similar time scale as in phosphorylation and these modifications may occur on proteins at either on the same or adjacent sites, it suggests that both modifications can work to regulate the cellular signaling pathways. This review describes the metabolic shifts related to the HBP, which are commonly found in most cancers. It also describes O-GlcNAc modified proteins identified in primary breast and colorectal cancer, as well as in the related cancer cell lines. Moreover, we also discuss the potential use of aberrant O-GlcNAcylated proteins as novel biomarkers of cancer.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| | - Voraratt Champattanachai
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
- *Correspondence: Voraratt Champattanachai, Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand e-mail:
| |
Collapse
|
332
|
Jóźwiak P, Forma E, Bryś M, Krześlak A. O-GlcNAcylation and Metabolic Reprograming in Cancer. Front Endocrinol (Lausanne) 2014; 5:145. [PMID: 25250015 PMCID: PMC4158873 DOI: 10.3389/fendo.2014.00145] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 01/17/2023] Open
Abstract
Although cancer metabolism has received considerable attention over the past decade, our knowledge on its specifics is still fragmentary. Altered cellular metabolism is one of the most important hallmarks of cancer. Cancer cells exhibit aberrant glucose metabolism characterized by aerobic glycolysis, a phenomenon known as Warburg effect. Accelerated glucose uptake and glycolysis are main characteristics of cancer cells that allow them for intensive growth and proliferation. Accumulating evidence suggests that O-GlcNAc transferase (OGT), an enzyme responsible for modification of proteins with N-acetylglucosamine, may act as a nutrient sensor that links hexosamine biosynthesis pathway to oncogenic signaling and regulation of factors involved in glucose and lipid metabolism. Recent studies suggest that metabolic reprograming in cancer is connected to changes at the epigenetic level. O-GlcNAcylation seems to play an important role in the regulation of the epigenome in response to cellular metabolic status. Through histone modifications and assembly of gene transcription complexes, OGT can impact on expression of genes important for cellular metabolism. This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, transcription factors, enzymes, and epigenetic changes involved in metabolic reprograming of cancer.
Collapse
Affiliation(s)
- Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- *Correspondence: Anna Krześlak, Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland e-mail:
| |
Collapse
|