301
|
Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, Pletnikova O, Borchelt DR, Ross CA, Margolis RL, Yachnis AT, Troncoso JC, Ranum LPW. RAN Translation in Huntington Disease. Neuron 2016; 88:667-77. [PMID: 26590344 DOI: 10.1016/j.neuron.2015.10.038] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/05/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022]
Abstract
Huntington disease (HD) is caused by a CAG ⋅ CTG expansion in the huntingtin (HTT) gene. While most research has focused on the HTT polyGln-expansion protein, we demonstrate that four additional, novel, homopolymeric expansion proteins (polyAla, polySer, polyLeu, and polyCys) accumulate in HD human brains. These sense and antisense repeat-associated non-ATG (RAN) translation proteins accumulate most abundantly in brain regions with neuronal loss, microglial activation and apoptosis, including caudate/putamen, white matter, and, in juvenile-onset cases, also the cerebellum. RAN protein accumulation and aggregation are length dependent, and individual RAN proteins are toxic to neural cells independent of RNA effects. These data suggest RAN proteins contribute to HD and that therapeutic strategies targeting both sense and antisense genes may be required for efficacy in HD patients. This is the first demonstration that RAN proteins are expressed across an expansion located in an open reading frame and suggests RAN translation may also contribute to other polyglutamine diseases.
Collapse
Affiliation(s)
- Monica Bañez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Fatma Ayhan
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Alex D Tarabochia
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Tao Zu
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Barbara A Perez
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Solaleh Khoramian Tusi
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Olga Pletnikova
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Borchelt
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Christopher A Ross
- Division of Neurobiology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Baltimore Huntington's Disease Center, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Russell L Margolis
- Division of Neurobiology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Baltimore Huntington's Disease Center, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Juan C Troncoso
- Department of Pathology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA; Department of Neurology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
302
|
An amyloid-like cascade hypothesis for C9orf72 ALS/FTD. Curr Opin Neurobiol 2016; 36:99-106. [DOI: 10.1016/j.conb.2015.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
|
303
|
Weber J, Bao H, Hartlmüller C, Wang Z, Windhager A, Janowski R, Madl T, Jin P, Niessing D. Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha. eLife 2016; 5:e11297. [PMID: 26744780 PMCID: PMC4764581 DOI: 10.7554/elife.11297] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023] Open
Abstract
The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Janine Weber
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Han Bao
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Christoph Hartlmüller
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
| | - Zhiqin Wang
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Almut Windhager
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department Cell Biology, Biomedical Center of the Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
304
|
Buijsen RAM, Visser JA, Kramer P, Severijnen EAWFM, Gearing M, Charlet-Berguerand N, Sherman SL, Berman RF, Willemsen R, Hukema RK. Presence of inclusions positive for polyglycine containing protein, FMRpolyG, indicates that repeat-associated non-AUG translation plays a role in fragile X-associated primary ovarian insufficiency. Hum Reprod 2015; 31:158-68. [PMID: 26537920 DOI: 10.1093/humrep/dev280] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does repeat-associated non-AUG (RAN) translation play a role in fragile X-associated primary ovarian insufficiency (FXPOI), leading to the presence of polyglycine containing protein (FMRpolyG)-positive inclusions in ovarian tissue? SUMMARY ANSWER Ovaries of a woman with FXPOI and of an Fmr1 premutation (PM) mouse model (exCGG-KI) contain intranuclear inclusions that stain positive for both FMRpolyG and ubiquitin. WHAT IS KNOWN ALREADY Women who carry the FMR1 PM are at 20-fold increased risk to develop primary ovarian insufficiency (FXPOI). A toxic RNA gain-of-function has been suggested as the underlying mechanism since the PM results in increased levels of mRNA containing an expanded repeat, but reduced protein levels of fragile X mental retardation protein (FMRP). Recently, RAN translation has been shown to occur from FMR1 mRNA that contains PM repeat expansions, leading to FMRpolyG inclusions in brain and non-CNS tissues of fragile X-associated tremor/ataxia syndrome (FXTAS) patients. STUDY DESIGN, SIZE, DURATION Ovaries of a woman with FXPOI and women without PM (controls), and ovaries from wild-type and exCGG-KI mice were analyzed by immunohistochemistry for the presence of inclusions that stained for ubiquitin and FMRpolyG . The ovaries from wild-type and exCGG-KI mice were further characterized for the number of follicles, Fmr1 mRNA levels and FMRP protein expression. The presence of inclusions was also analyzed in pituitaries of a man with FXTAS and the exCGG-KI mice. PARTICIPANTS/MATERIALS, SETTING, METHODS Human ovaries from a woman with FXPOI and two control subjects and pituitaries from a man with FXTAS and a control subjects were fixed in 4% formalin. Ovaries and pituitaries of wild-type and exCGG mice were fixed in Bouin's fluid or 4% paraformaldehyde. Immunohistochemistry was performed on the human and mouse samples using FMRpolyG, ubiquitin and Fmrp antibodies. Fmr1 mRNA and protein expression were determined in mouse ovaries by quantitative RT-PCR and Western blot analysis. Follicle numbers in mouse ovaries were determined in serial sections by microscopy. MAIN RESULTS AND THE ROLE OF CHANCE FMRpolyG-positive inclusions were present in ovarian stromal cells of a woman with FXPOI but not in the ovaries of control subjects. The FMRpolyG-positive inclusions colocalized with ubiquitin-positive inclusions. Similar inclusions were also observed in the pituitary of a man with FXTAS but not in control subjects. Similarly, ovaries of 40-week-old exCGG-KI mice, but not wild-type mice, contained numerous inclusions in the stromal cells that stained for both FMRpolyG- and ubiquitin, while the ovaries of 20-week-old exCGG-KI contained fewer inclusions. At 40 weeks ovarian Fmr1 mRNA expression was increased by 5-fold in exCGG-KI mice compared with wild-type mice, while Fmrp expression was reduced by 2-fold. With respect to ovarian function in exCGG-KI mice: (i) although the number of healthy growing follicles did not differ between wild-type and exCGG-KI mice, the number of atretic large antral follicles was increased by nearly 9-fold in 40-week old exCGG-KI mice (P < 0.001); (ii) at 40 weeks of age only 50% of exCGG-KI mice had recent ovulations compared with 89% in wild-type mice (P = 0.07) and (iii) those exCGG-KI mice with recent ovulations tended to have a reduced number of fresh corpora lutea (4.8 ± 1.74 versus 8.50 ± 0.98, exCGG-KI versus wild-type mice, respectively, P = 0.07). LIMITATIONS, REASONS FOR CAUTION Although FMRpolyG-positive inclusions were detected in ovaries of both a woman with FXPOI and a mouse model of the FMR1 PM, we only analyzed one ovary from a FXPOI subject. Caution is needed to extrapolate these results to all women with the FMR1 PM. Furthermore, the functional consequence of FMRpolyG-positive inclusions in the ovaries for reproduction remains to be determined. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that a dysfunctional hypothalamic-pituitary-gonadal-axis may contribute to FXPOI in FMR1 PM carriers. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from NFXF, ZonMW, the Netherlands Brain Foundation and NIH. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- R A M Buijsen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
| | - J A Visser
- Department of Internal Medicine, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
| | - P Kramer
- Department of Internal Medicine, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
| | - E A W F M Severijnen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
| | - M Gearing
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - N Charlet-Berguerand
- Department of Neurobiology and Genetics, IGBMC, INSERM U964, CNRS UMR7104, University of Strasbourg, Illkirch, France
| | - S L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - R F Berman
- Department of Neurological Surgery, UC Davis, Davis 95618, CA, USA
| | - R Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
| | - R K Hukema
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
305
|
Gerhardt J. Epigenetic modifications in human fragile X pluripotent stem cells; Implications in fragile X syndrome modeling. Brain Res 2015; 1656:55-62. [PMID: 26475977 DOI: 10.1016/j.brainres.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Patients with fragile X syndrome (FXS) exhibit moderate to severe intellectual disabilities. In addition, one-third of FXS patients show characteristics of autism spectrum disorder. FXS is caused by a trinucleotide repeat expansion, which leads to silencing of the fragile X mental retardation (FMR1) gene. The absence of the FMR1 gene product, FMRP, is the reason for the disease symptoms. It has been suggested that repeat instability and transcription of the FMR1 gene occur during early embryonic development, while after cell differentiation repeats become stable and the FMR1 gene is silent. Epigenetic marks, such as DNA methylation, are associated with gene silencing and repeat stability at the FMR1 locus. However, the mechanisms leading to gene silencing and repeat expansion are still ambiguous, because studies at the human genomic locus were limited until now. The FXS pluripotent stem cells, recently derived from FXS adult cells and FXS blastocysts, are new useful tools to examine these mechanisms at the human endogenous FMR1 locus. This review summarizes the epigenetic features and experimental studies of FXS human embryonic and FXS induced pluripotent stem cells, generated so far. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx 10461, USA.
| |
Collapse
|
306
|
Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, Streichenberger N, Vighetto A, Desestret V, Tesson C, Wichmann HE, Illig T, Huttenlocher J, Kita Y, Izumi Y, Mizusawa H, Schöls L, Klopstock T, Brice A, Ishikawa K, Dürr A. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry 2015; 86:986-95. [PMID: 25476002 DOI: 10.1136/jnnp-2014-309153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Spinocerebellar ataxia 36 (SCA36) is an autosomal-dominant neurodegenerative disorder caused by a large (>650) hexanucleotide GGCCTG repeat expansion in the first intron of the NOP56 gene. The aim of this study is to clarify the prevalence, clinical and genetic features of SCA36. METHODS The expansion was tested in 676 unrelated SCA index cases and 727 controls from France, Germany and Japan. Clinical and neuropathological features were investigated in available family members. RESULTS Normal alleles ranged between 5 and 14 hexanucleotide repeats. Expansions were detected in 12 families in France (prevalence: 1.9% of all French SCAs) including one family each with Spanish, Portuguese or Chinese ancestry, in five families in Japan (1.5% of all Japanese SCAs), but were absent in German patients. All the 17 SCA36 families shared one common haplotype for a 7.5 kb pairs region flanking the expansion. While 27 individuals had typically long expansions, three affected individuals harboured small hexanucleotide expansions of 25, 30 and 31 hexanucleotide repeat-units, demonstrating that such a small expansion could cause the disease. All patients showed slowly progressive cerebellar ataxia frequently accompanied by hearing and cognitive impairments, tremor, ptosis and reduced vibration sense, with the age at onset ranging between 39 and 65 years, and clinical features were indistinguishable between individuals with short and typically long expansions. Neuropathology in a presymptomatic case disclosed that Purkinje cells and hypoglossal neurons are affected. CONCLUSIONS SCA36 is rare with a worldwide distribution. It can be caused by a short GGCCTG expansion and associates various extracerebellar symptoms.
Collapse
Affiliation(s)
- Masato Obayashi
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Giovanni Stevanin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France Ecole Pratique des Hautes Etudes, Groupe de Neurogénétique, Paris, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, Tübingen, Germany German Centre of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Marie-Lorraine Monin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France
| | - Charles Duyckaerts
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France Laboratoire de Neuropathologie R. Escourolle, Groupe Hospitalier Pitié-Salpêtrière, 47 Blvd de l'Hôpital, Paris, France
| | - Nozomu Sato
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nathalie Streichenberger
- Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France
| | - Alain Vighetto
- Neurology Department, Hôpital Pierre Wertheimer, Lyon, France
| | - Virginie Desestret
- Neurology D, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Christelle Tesson
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France Ecole Pratique des Hautes Etudes, Groupe de Neurogénétique, Paris, France
| | - H-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Illig
- Unit for Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Johanna Huttenlocher
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Yasushi Kita
- Neurology Service, Hyogo Brain and Heart Center at Himeji, Himeji, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, Tübingen, Germany German Centre of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany German Network for Mitochondrial Disorders (mitoNET) DZNE-German Center for Neurodegenerative Diseases, Munich, Germany German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France
| | - Kinya Ishikawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Alexandra Dürr
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France
| |
Collapse
|
307
|
Hukema RK, Buijsen RAM, Raske C, Severijnen LA, Nieuwenhuizen-Bakker I, Minneboo M, Maas A, de Crom R, Kros JM, Hagerman PJ, Berman RF, Willemsen R. Induced expression of expanded CGG RNA causes mitochondrial dysfunction in vivo. Cell Cycle 2015; 13:2600-8. [PMID: 25486200 DOI: 10.4161/15384101.2014.943112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of premutation forms of the FMR1 gene, resulting in a progressive development of tremor, ataxia and neuropsychological problems. The disease is caused by an expanded CGG repeat in the FMR1 gene, leading to an RNA gain-of-function toxicity mechanism. In order to study the pathogenesis of FXTAS, new inducible transgenic mouse models have been developed that expresses either 11CGGs or 90CGGs at the RNA level under control of a Tet-On promoter. When bred to an hnRNP-rtTA driver line, doxycycline (dox) induced expression of the transgene could be found in almost all tissues. Dox exposure resulted in loss of weight and death within 5 d for the 90CGG RNA expressing mice. Immunohistochemical examination of tissues of these mice revealed steatosis and apoptosis in the liver. Decreased expression of GPX1 and increased expression of cytochrome C is found. These effects were not seen in mice expressing a normal sized 11CGG repeat. In conclusion, we were able to show in vivo that expression of an expanded CGG-repeat rather than overexpression of a normal CGG-repeat causes pathology. In addition, we have shown that expanded CGG RNA expression can cause mitochondrial dysfunction by regulating expression levels of several markers. Although FTXAS patients do not display liver abnormalities, our findings contribute to understanding of the molecular mechanisms underlying toxicity of CGG repeat RNA expression in an animal model. In addition, the dox inducible mouse lines offer new opportunities to study therapeutic interventions for FXTAS.
Collapse
Affiliation(s)
- Renate K Hukema
- a Department of Clinical Genetics ; Erasmus MC ; Rotterdam , The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Oh SY, He F, Krans A, Frazer M, Taylor JP, Paulson HL, Todd PK. RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Hum Mol Genet 2015; 24:4317-26. [PMID: 25954027 PMCID: PMC4492395 DOI: 10.1093/hmg/ddv165] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 03/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide repeat expansion in the 5' UTR of the Fragile X gene, FMR1. FXTAS is thought to arise primarily from an RNA gain-of-function toxicity mechanism. However, recent studies demonstrate that the repeat also elicits production of a toxic polyglycine protein, FMRpolyG, via repeat-associated non-AUG (RAN)-initiated translation. Pathologically, FXTAS is characterized by ubiquitin-positive intranuclear neuronal inclusions, raising the possibility that failure of protein quality control pathways could contribute to disease pathogenesis. To test this hypothesis, we used Drosophila- and cell-based models of CGG-repeat-associated toxicity. In Drosophila, ubiquitin proteasome system (UPS) impairment led to enhancement of CGG-repeat-induced degeneration, whereas overexpression of the chaperone protein HSP70 suppressed this toxicity. In transfected mammalian cells, CGG repeat expression triggered accumulation of a UPS reporter in a length-dependent fashion. To delineate the contributions from CGG repeats as RNA from RAN translation-associated toxicity, we enhanced or impaired the production of FMRpolyG in these models. Driving expression of FMRpolyG enhanced induction of UPS impairment in cell models, while prevention of RAN translation attenuated UPS impairment in cells and suppressed the genetic interaction with UPS manipulation in Drosophila. Taken together, these findings suggest that CGG repeats induce UPS impairment at least in part through activation of RAN translation.
Collapse
Affiliation(s)
- Seok Yoon Oh
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Fang He
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Frazer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA and
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA, Neurology, U.S. Department of Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
309
|
Abstract
RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
310
|
Yanovsky-Dagan S, Mor-Shaked H, Eiges R. Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World J Stem Cells 2015; 7:823-838. [PMID: 26131313 PMCID: PMC4478629 DOI: 10.4252/wjsc.v7.i5.823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/22/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.
Collapse
|
311
|
Scoles DR, Ho MHT, Dansithong W, Pflieger LT, Petersen LW, Thai KK, Pulst SM. Repeat Associated Non-AUG Translation (RAN Translation) Dependent on Sequence Downstream of the ATXN2 CAG Repeat. PLoS One 2015; 10:e0128769. [PMID: 26086378 PMCID: PMC4472729 DOI: 10.1371/journal.pone.0128769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a progressive autosomal dominant disorder caused by the expansion of a CAG tract in the ATXN2 gene. The SCA2 disease phenotype is characterized by cerebellar atrophy, gait ataxia, and slow saccades. ATXN2 mutation causes gains of toxic and normal functions of the ATXN2 gene product, ataxin-2, and abnormally slow Purkinje cell firing frequency. Previously we investigated features of ATXN2 controlling expression and noted expression differences for ATXN2 constructs with varying CAG lengths, suggestive of repeat associated non-AUG translation (RAN translation). To determine whether RAN translation occurs for ATXN2 we assembled various ATXN2 constructs with ATXN2 tagged by luciferase, HA or FLAG tags, driven by the CMV promoter or the ATXN2 promoter. Luciferase expression from ATXN2-luciferase constructs lacking the ATXN2 start codon was weak vs AUG translation, regardless of promoter type, and did not increase with longer CAG repeat lengths. RAN translation was detected on western blots by the anti-polyglutamine antibody 1C2 for constructs driven by the CMV promoter but not the ATXN2 promoter, and was weaker than AUG translation. Strong RAN translation was also observed when driving the ATXN2 sequence with the CMV promoter with ATXN2 sequence downstream of the CAG repeat truncated to 18 bp in the polyglutamine frame but not in the polyserine or polyalanine frames. Our data demonstrate that ATXN2 RAN translation is weak compared to AUG translation and is dependent on ATXN2 sequences flanking the CAG repeat.
Collapse
Affiliation(s)
- Daniel R. Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
- * E-mail:
| | - Mi H. T. Ho
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Warunee Dansithong
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Lance T. Pflieger
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Lance W. Petersen
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Khanh K. Thai
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
312
|
Hukema RK, Buijsen RAM, Schonewille M, Raske C, Severijnen LAWFM, Nieuwenhuizen-Bakker I, Verhagen RFM, van Dessel L, Maas A, Charlet-Berguerand N, De Zeeuw CI, Hagerman PJ, Berman RF, Willemsen R. Reversibility of neuropathology and motor deficits in an inducible mouse model for FXTAS. Hum Mol Genet 2015; 24:4948-57. [PMID: 26060190 DOI: 10.1093/hmg/ddv216] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/04/2015] [Indexed: 01/18/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder affecting carriers of the fragile X-premutation, who have an expanded CGG repeat in the 5'-UTR of the FMR1 gene. FXTAS is characterized by progressive development of intention tremor, ataxia, parkinsonism and neuropsychological problems. The disease is thought to be caused by a toxic RNA gain-of-function mechanism, and the major hallmark of the disease is ubiquitin-positive intranuclear inclusions in neurons and astrocytes. We have developed a new transgenic mouse model in which we can induce expression of an expanded repeat in the brain upon doxycycline (dox) exposure (i.e. Tet-On mice). This Tet-On model makes use of the PrP-rtTA driver and allows us to study disease progression and possibilities of reversibility. In these mice, 8 weeks of dox exposure was sufficient to induce the formation of ubiquitin-positive intranuclear inclusions, which also stain positive for the RAN translation product FMRpolyG. Formation of these inclusions is reversible after stopping expression of the expanded CGG RNA at an early developmental stage. Furthermore, we observed a deficit in the compensatory eye movements of mice with inclusions, a functional phenotype that could be reduced by stopping expression of the expanded CGG RNA early in the disease development. Taken together, this study shows, for the first time, the potential of disease reversibility and suggests that early intervention might be beneficial for FXTAS patients.
Collapse
Affiliation(s)
| | | | | | - Chris Raske
- Department of Biochemistry and Molecular Medicine and
| | | | | | | | | | - Alex Maas
- Department of Cell Biology, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience The Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| | | | - Robert F Berman
- Department of Neurological Surgery, School of Medicine, University of California Davis, CA 95618, USA
| | | |
Collapse
|
313
|
Abstract
There has recently been a huge increase in interest in the formation of stable G-quadruplex structures in mRNAs and their functional significance. In neurons, local translation of mRNA is essential for normal neuronal behaviour. It has been discovered that local translation of specific mRNAs encoding some of the best known synaptic proteins is dependent on the presence of a G-quadruplex. The recognition of G-quadruplexes in mRNAs, their transport as repressed complexes and the control of their translation at their subcellular destinations involves a diversity of proteins, including those associated with disease pathologies. This is an exciting field, with rapid improvements to our knowledge and understanding. Here, we discuss some of the recent work on how G-quadruplexes mediate local translation in neurons.
Collapse
|
314
|
Kumari D, Swaroop M, Southall N, Huang W, Zheng W, Usdin K. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:800-8. [PMID: 25999519 DOI: 10.5966/sctm.2014-0278] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. SIGNIFICANCE In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Manju Swaroop
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Noel Southall
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wenwei Huang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wei Zheng
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
315
|
Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM. G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 2015; 589:1653-68. [PMID: 25979174 DOI: 10.1016/j.febslet.2015.05.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
Abstract
G-rich sequences in DNA and RNA have a propensity to fold into stable secondary structures termed G-quadruplexes. G-quadruplex forming sequences are widespread throughout the human genome, within both, protein coding and non-coding genes, and regulatory regions. G-quadruplexes have been implicated in multiple cellular functions including chromatin epigenetic regulation, DNA recombination, transcriptional regulation of gene promoters and enhancers, and translation. Here we will review the evidence for the occurrence of G-quadruplexes both in vitro and in vivo; their role in neurological diseases including G-quadruplex-forming repeat expansions in the C9orf72 gene in frontotemporal dementia and amyotrophic lateral sclerosis and loss of the G-quadruplex binding protein FMRP in the intellectual disability fragile X syndrome. We also review mounting evidence that supports a role for G-quadruplexes in regulating the processing or function of a range of non-coding RNAs. Finally we will highlight current perspectives for therapeutic interventions that target G-quadruplexes.
Collapse
Affiliation(s)
- Roberto Simone
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Sobell Department of Motor Neuroscience and Movement, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
316
|
Yang WY, Wilson HD, Velagapudi SP, Disney MD. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA. J Am Chem Soc 2015; 137:5336-45. [PMID: 25825793 PMCID: PMC4856029 DOI: 10.1021/ja507448y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides.
Collapse
Affiliation(s)
- Wang-Yong Yang
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Henry D. Wilson
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
317
|
Abstract
The degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) inevitably causes paralysis and death within a matter of years. Mounting genetic and functional evidence suggest that abnormalities in RNA processing and metabolism underlie motor neuron loss in sporadic and familial ALS. Abnormal localization and aggregation of essential RNA-binding proteins are fundamental pathological features of sporadic ALS, and mutations in genes encoding RNA processing enzymes cause familial disease. Also, expansion mutations occurring in the noncoding region of C9orf72-the most common cause of inherited ALS-result in nuclear RNA foci, underscoring the link between abnormal RNA metabolism and neurodegeneration in ALS. This review summarizes the current understanding of RNA dysfunction in ALS, and builds upon this knowledge base to identify converging mechanisms of neurodegeneration in ALS. Potential targets for therapy development are highlighted, with particular emphasis on early and conserved pathways that lead to motor neuron loss in ALS.
Collapse
Affiliation(s)
- Sami J Barmada
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 Biomedical Sciences Research Building, SSPC 2200, Ann Arbor, MI, 48109, USA,
| |
Collapse
|
318
|
Fragile X premutation carriers: A systematic review of neuroimaging findings. J Neurol Sci 2015; 352:19-28. [PMID: 25847019 DOI: 10.1016/j.jns.2015.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Expansion of the CGG repeat region of the FMR1 gene from less than 45 repeats to between 55 and 200 repeats is known as the fragile X premutation. Carriers of the fragile X premutation may develop a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS). Recent evidence suggests that premutation carriers experience other psychiatric difficulties throughout their lifespan. METHODS Medline, EMBASE and PsychINFO were searched for all appropriate English language studies published between January 1990 and December 2013. 419 potentially relevant articles were identified and screened. 19 articles were included in the analysis. RESULTS We discuss key structural magnetic resonance imaging (MRI) findings such as the MCP sign and white matter atrophy. Additionally, we discuss how functional MRI results have progressed our knowledge of how FXTAS may manifest, including reduced brain activation during social and memory tasks in multiple regions. LIMITATIONS This systematic review may have been limited by the search for articles on just 3 scientific databases. Differing techniques and methods of analyses between research groups and primary research articles may have caused differences in results between studies. CONCLUSION Current MRI studies into the fragile X premutation have been important in the diagnosis of FXTAS and identifying potential pathophysiological mechanisms. Associations with blood based measures have also demonstrated that neurodevelopmental and neurodegenerative aspects of the fragile X premutation could be functionally and pathologically separate. Larger longitudinal studies will be required to investigate these conclusions.
Collapse
|
319
|
Birch RC, Hocking DR, Cornish KM, Menant JC, Georgiou-Karistianis N, Godler DE, Wen W, Hackett A, Rogers C, Trollor JN. Preliminary evidence of an effect of cerebellar volume on postural sway in FMR1 premutation males. GENES BRAIN AND BEHAVIOR 2015; 14:251-9. [PMID: 25689687 DOI: 10.1111/gbb.12204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/29/2022]
Abstract
Recent evidence suggests that early changes in postural control may be discernible among females with premutation expansions (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene at risk of developing fragile X-associated tremor ataxia syndrome (FXTAS). Cerebellar dysfunction is well described in males and females with FXTAS, yet the interrelationships between cerebellar volume, CGG repeat length, FMR1 messenger RNA (mRNA) levels and changes in postural control remain unknown. This study examined postural sway during standing in a cohort of 22 males with the FMR1 premutation (ages 26-80) and 24 matched controls (ages 26-77). The influence of cerebellar volume, CGG repeat length and FMR1 mRNA levels on postural sway was explored using multiple linear regression. The results provide preliminary evidence that increasing CGG repeat length and decreasing cerebellar volume were associated with greater postural sway among premutation males. The relationship between CGG repeat length and postural sway was mediated by a negative association between CGG repeat size and cerebellar volume. While FMR1 mRNA levels were significantly elevated in the premutation group and correlated with CGG repeat length, FMR1 mRNA levels were not significantly associated with postural sway scores. These findings show for the first time that greater postural sway among males with the FMR1 premutation may reflect CGG repeat-mediated disruption in vulnerable cerebellar circuits implicated in postural control. However, longitudinal studies in larger samples are required to confirm whether the relationships between cerebellar volume, CGG repeat length and postural sway indicate greater risk for neurological decline.
Collapse
Affiliation(s)
- R C Birch
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney
| | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Cornish KM, Kraan CM, Bui QM, Bellgrove MA, Metcalfe SA, Trollor JN, Hocking DR, Slater HR, Inaba Y, Li X, Archibald AD, Turbitt E, Cohen J, Godler DE. Novel methylation markers of the dysexecutive-psychiatric phenotype in FMR1 premutation women. Neurology 2015; 84:1631-8. [PMID: 25809302 DOI: 10.1212/wnl.0000000000001496] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To examine the epigenetic basis of psychiatric symptoms and dysexecutive impairments in FMR1 premutation (PM: 55 to 199 CGG repeats) women. METHODS A total of 35 FMR1 PM women aged between 22 and 55 years and 35 age- and IQ-matched women controls (CGG <45) participated in this study. All participants completed a range of executive function tests and self-reported symptoms of psychiatric disorders. The molecular measures included DNA methylation of the FMR1 CpG island in blood, presented as FMR1 activation ratio (AR), and 9 CpG sites located at the FMR1 exon1/intron 1 boundary, CGG size, and FMR1 mRNA levels. RESULTS We show that FMR1 intron 1 methylation levels could be used to dichotomize PM women into greater and lower risk categories (p = 0.006 to 0.037; odds ratio = 14-24.8), with only FMR1 intron 1 methylation, and to a lesser extent AR, being significantly correlated with the likelihood of probable dysexecutive or psychiatric symptoms (p < 0.05). Furthermore, the significant relationships between methylation and social anxiety were found to be mediated by executive function performance, but only in PM women. FMR1 exon 1 methylation, CGG size, and FMR1 mRNA could not predict probable dysexecutive/psychiatric disorders in PM women. CONCLUSIONS This is the first study supporting presence of specific epigenetic etiology associated with increased risk of developing comorbid dysexecutive and social anxiety symptoms in PM women. These findings could have implications for early intervention and risk estimate recommendations aimed at improving the outcomes for PM women and their families.
Collapse
Affiliation(s)
- Kim M Cornish
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia.
| | - Claudine M Kraan
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Quang Minh Bui
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Mark A Bellgrove
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Sylvia A Metcalfe
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Julian N Trollor
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Darren R Hocking
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Howard R Slater
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Yoshimi Inaba
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Xin Li
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Alison D Archibald
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Erin Turbitt
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - Jonathan Cohen
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| | - David E Godler
- From the School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences (K.M.C., C.M.K., M.A.B.), and the Centre for Developmental Disability Health Victoria (J.C.), Monash University, Clayton; the Centre for Epidemiology and Biostatistics (Q.M.B.), Melbourne School of Population and Global Health, University of Melbourne; Genetics Education and Health Research (S.A.M., A.D.A., E.T.), the Cytomolecular Diagnostic Research Laboratory (H.R.S., Y.I., X.L., D.E.G.) and Victorian Clinical Genetics Services (A.D.A.), Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Melbourne; the Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences (S.A.M., A.D.A., E.T.), The University of Melbourne, Parkville; the Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing (J.N.T.), UNSW Australia, Sydney; Olga Tennison Autism Research Centre (D.R.H.), School of Psychological Science, La Trobe, Bundoora; and Fragile X Alliance Inc. (Clinic) (J.C.), North Caufield, Australia
| |
Collapse
|
321
|
Szafranski K, Abraham KJ, Mekhail K. Non-coding RNA in neural function, disease, and aging. Front Genet 2015; 6:87. [PMID: 25806046 PMCID: PMC4353379 DOI: 10.3389/fgene.2015.00087] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/18/2015] [Indexed: 12/03/2022] Open
Abstract
Declining brain and neurobiological function is arguably one of the most common features of human aging. The study of conserved aging processes as well as the characterization of various neurodegenerative diseases using different genetic models such as yeast, fly, mouse, and human systems is uncovering links to non-coding RNAs. These links implicate a variety of RNA-regulatory processes, including microRNA function, paraspeckle formation, RNA–DNA hybrid regulation, nucleolar RNAs and toxic RNA clearance, amongst others. Here we highlight these connections and reveal over-arching themes or questions related to recently appreciated roles of non-coding RNA in neural function and dysfunction across lifespan.
Collapse
Affiliation(s)
- Kirk Szafranski
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Karan J Abraham
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada ; Canada Research Chairs Program, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
322
|
Hagerman PJ, Hagerman RJ. Fragile X-associated tremor/ataxia syndrome. Ann N Y Acad Sci 2015; 1338:58-70. [PMID: 25622649 PMCID: PMC4363162 DOI: 10.1111/nyas.12693] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/04/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some but not all carriers of small, noncoding CGG-repeat expansions (55-200 repeats; premutation) within the fragile X gene (FMR1). Principal features of FXTAS include intention tremor, cerebellar ataxia, Parkinsonism, memory and executive function deficits, autonomic dysfunction, brain atrophy with white matter disease, and cognitive decline. Although FXTAS was originally considered to be confined to the premutation range, rare individuals with a gray zone (45-54 repeats) or an unmethylated full mutation (>200 repeats) allele have now been described, the constant feature of the disorder remaining the requirement for FMR1 expression, in contradistinction to the gene silencing mechanism of fragile X syndrome. Although transcriptional activity is required for FXTAS pathogenesis, the specific trigger(s) for FXTAS pathogenesis remains elusive, highlighting the need for more research in this area. This need is underscored by recent neuroimaging findings of changes in the central nervous system that consistently appear well before the onset of clinical symptoms, thus creating an opportunity to delay or prevent the appearance of FXTAS.
Collapse
Affiliation(s)
- Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California , Davis , School of Medicine, Davis, California; The MIND Institute, University of California , Davis , Health System, Sacramento, California
| | | |
Collapse
|
323
|
Tao Z, Wang H, Xia Q, Li K, Li K, Jiang X, Xu G, Wang G, Ying Z. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 2015; 24:2426-41. [PMID: 25575510 DOI: 10.1093/hmg/ddv005] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are the two common neurodegenerative diseases that have been associated with the GGGGCC·GGCCCC repeat RNA expansion in a noncoding region of C9orf72. It has been previously reported that unconventional repeat-associated non-ATG (RAN) translation of GGGGCC·GGCCCC repeats produces five types of dipeptide-repeat proteins (referred to as RAN proteins): poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-proline-arginine (PR) and poly-proline-alanine (PA). Although protein aggregates of RAN proteins have been found in patients, it is unclear whether RAN protein aggregation induces neurotoxicity. In the present study, we aimed to understand the biological properties of all five types of RAN proteins. Surprisingly, our results showed that none of these RAN proteins was aggregate-prone in our cellular model and that the turnover of these RAN proteins was not affected by the ubiquitin-proteasome system or autophagy. Moreover, poly-GR and poly-PR, but not poly-GA, poly-GP or poly-PA, localized to the nucleolus and induced the translocation of the key nucleolar component nucleophosmin, leading to nucleolar stress and cell death. This poly-GR- and poly-PR-mediated defect in nucleolar function was associated with the suppression of ribosomal RNA synthesis and the impairment of stress granule formation. Taken together, the results of the present study suggest a simple model of the molecular mechanisms underlying RAN translation-mediated cytotoxicity in C9orf72-linked ALS/FTD in which nucleolar stress, but not protein aggregation, is the primary contributor to C9orf72-linked neurodegeneration.
Collapse
Affiliation(s)
- Zhouteng Tao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Ke Li
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Kai Li
- Department of Pharmacology, College of Pharmaceutical Sciences
| | - Xiaogang Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences
| | - Guoqiang Xu
- Laboratory of Chemical Biology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China and
| |
Collapse
|
324
|
Affiliation(s)
- Chantal Sellier
- a Institut de Génétique et de Biologie Moléculaire et Cellulaire; CNRS UMR7104; INSERM U964 ; University of Strasbourg ; Illkirch , France
| | | |
Collapse
|
325
|
FMRpolyG-positive inclusions in CNS and non-CNS organs of a fragile X premutation carrier with fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun 2014; 2:162. [PMID: 25471011 PMCID: PMC4254384 DOI: 10.1186/s40478-014-0162-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/08/2014] [Indexed: 02/05/2023] Open
|
326
|
Yamakawa M, Ito D, Honda T, Kubo KI, Noda M, Nakajima K, Suzuki N. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum Mol Genet 2014; 24:1630-45. [PMID: 25398948 DOI: 10.1093/hmg/ddu576] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (c9FTD/ALS). Recently, it was reported that an unconventional mechanism of repeat-associated non-ATG (RAN) translation arises from C9orf72 expansion. Sense and anti-sense transcripts of the expanded C9orf72 repeat, i.e. the dipeptide repeat protein (DRP) of glycine-alanine (poly-GA), glycine-proline (poly-GP), glycine-arginine (poly-GR), proline-arginine (poly-PR) and proline-alanine (poly-PA), are deposited in the brains of patients with c9FTD/ALS. However, the pathological significance of RAN-translated peptides remains unknown. We generated synthetic cDNAs encoding 100 repeats of DRP without a GGGGCC repeat and evaluated the effects of these proteins on cultured cells and cortical neurons in vivo. Our results revealed that the poly-GA protein formed highly aggregated ubiquitin/p62-positive inclusion bodies in neuronal cells. In contrast, the highly basic proteins poly-GR and PR also formed unique ubiquitin/p62-negative cytoplasmic inclusions, which co-localized with the components of RNA granules. The evaluation of cytotoxicity revealed that overexpressed poly-GA, poly-GP and poly-GR increased the substrates of the ubiquitin-proteasome system (UPS), including TDP-43, and enhanced the sensitivity to a proteasome inhibitor, indicating that these DRPs are cytotoxic, possibly via UPS dysfunction. The present data indicate that a gain-of-function mechanism of toxic DRPs possibly contributes to pathogenesis in c9FTD/ALS and that DRPs may serve as novel therapeutic targets in c9FTD/ALS.
Collapse
Affiliation(s)
- Mai Yamakawa
- Department of Neurology Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | - Takao Honda
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken-ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mariko Noda
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | |
Collapse
|
327
|
Lozano R, Rosero CA, Hagerman RJ. Fragile X spectrum disorders. Intractable Rare Dis Res 2014; 3:134-46. [PMID: 25606363 PMCID: PMC4298643 DOI: 10.5582/irdr.2014.01022] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022] Open
Abstract
The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in the general population with approximately 1 in 130-250 females and 1 in 250-810 males, whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most common monogenetic cause of inherited intellectual disability (ID) and autism (FXS), the most common genetic form of ovarian failure, the fragile X-associated primary ovarian insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome (FXTAS, premutation). The premutation can also cause developmental problems including ASD and ADHD especially in boys and psychopathology including anxiety and depression in children and adults. Some premutation carriers can have a deficit of FMRP and some unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should be used to include the wide range of overlapping phenotypes observed in affected individuals with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children with FXSD.
Collapse
Affiliation(s)
- Reymundo Lozano
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA. E-mail:
| | - Carolina Alba Rosero
- Instituto Colombiano del Sistema Nervioso, Clínica Montserrat, Bogotá D.C, Colombia
| | - Randi J Hagerman
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
328
|
Muzar Z, Lozano R. Current research, diagnosis, and treatment of fragile X-associated tremor/ataxia syndrome. Intractable Rare Dis Res 2014; 3:101-9. [PMID: 25606360 PMCID: PMC4298640 DOI: 10.5582/irdr.2014.01029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/30/2014] [Indexed: 12/13/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a premutation CGG-repeat expansion in the 5'UTR of the fragile X mental retardation 1 (FMR1) gene. The classical clinical manifestations include tremor, cerebellar ataxia, cognitive decline and psychiatric disorders. Other less frequent features are peripheral neuropathy and autonomic dysfunction. Cognitive decline, a form of frontal subcortical dementia, memory loss and executive function deficits are also characteristics of this disorder. In this review, we present an expansion of recommendations for genetic testing for adults with suspected premutation disorders and provide an update of the clinical, radiological and molecular research of FXTAS, as well as the current research in the treatment for this intractable complex neurodegenerative genetic disorder.
Collapse
Affiliation(s)
- Zukhrofi Muzar
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Reymundo Lozano
- UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
- Address correspondence to: Dr. Reymundo Lozano, UC Davis MIND Institute and Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA. E-mail:
| |
Collapse
|
329
|
Renoux AJ, Carducci NM, Ahmady AA, Todd PK. Fragile X mental retardation protein expression in Alzheimer's disease. Front Genet 2014; 5:360. [PMID: 25452762 PMCID: PMC4233940 DOI: 10.3389/fgene.2014.00360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/27/2014] [Indexed: 12/31/2022] Open
Abstract
The FMR1 protein product, FMRP, is an mRNA binding protein associated with translational inhibition of target transcripts. One FMRP target is the amyloid precursor protein (APP) mRNA, and APP levels are elevated in Fmr1 KO mice. Given that elevated APP protein expression can elicit Alzheimer's disease (AD) in patients and model systems, we evaluated whether FMRP expression might be altered in Alzheimer's autopsy brain samples and mouse models compared to controls. In a double transgenic mouse model of AD (APP/PS1), we found no difference in FMRP expression in aged AD model mice compared to littermate controls. FMRP expression was also similar in AD and control patient frontal cortex and cerebellum samples. Fragile X-associated tremor/ataxia syndrome (FXTAS) is an age-related neurodegenerative disorder caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene. Patients experience cognitive impairment and dementia in addition to motor symptoms. In parallel studies, we measured FMRP expression in cortex and cerebellum from three FXTAS patients and found reduced expression compared to both controls and Alzheimer's patient brains, consistent with animal models. We also find increased APP levels in cerebellar, but not cortical, samples of FXTAS patients compared to controls. Taken together, these data suggest that a decrease in FMRP expression is unlikely to be a primary contributor to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, MI, USA ; Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| | | | - Arya A Ahmady
- Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
330
|
Qin M, Huang T, Liu Z, Kader M, Burlin T, Xia Z, Zeidler Z, Hukema RK, Smith CB. Cerebral protein synthesis in a knockin mouse model of the fragile X premutation. ASN Neuro 2014; 6:6/5/1759091414551957. [PMID: 25290064 PMCID: PMC4187003 DOI: 10.1177/1759091414551957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Tianjian Huang
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zhonghua Liu
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kader
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Burlin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zengyan Xia
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Zachary Zeidler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
331
|
Kearse MG, Todd PK. Repeat-associated non-AUG translation and its impact in neurodegenerative disease. Neurotherapeutics 2014; 11:721-31. [PMID: 25005000 PMCID: PMC4391382 DOI: 10.1007/s13311-014-0292-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide repeat expansions underlie numerous human neurological disorders. Repeats can trigger toxicity through multiple pathogenic mechanisms, including RNA gain-of-function, protein gain-of-function, and protein loss-of-function pathways. Traditionally, inference of the underlying pathogenic mechanism derives from the repeat location, with dominantly inherited repeats within transcribed noncoding sequences eliciting toxicity predominantly as RNA via sequestration of specific RNA binding proteins. However, recent findings question this assumption and suggest that repeats outside of annotated open reading frames may also trigger toxicity through a novel form of protein translational initiation known as repeat-associated non-AUG (RAN) translation. To date, RAN translation has been implicated in 4 nucleotide repeat expansion disorders: spinocerebellar ataxia type 8; myotonic dystrophy type 1 with CTG•CAG repeats; C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia with GGGGCC•GGCCCC repeats; and fragile X-associated tremor/ataxia syndrome with CGG repeats. RAN translation contributes to hallmark pathological characteristics in these disorders by producing homopolymeric or dipeptide repeat proteins. Here, we review what is known about RAN translation, with an emphasis on how differences in both repeat sequence and context may confer different requirements for unconventional initiation. We then discuss how this new mechanism of translational initiation might function in normal physiology and lay out a roadmap for addressing the numerous questions that remain.
Collapse
Affiliation(s)
- Michael G. Kearse
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Peter K. Todd
- />Department of Neurology, University of Michigan Medical School, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
- />Veterans Affairs Medical Center, Ann Arbor, MI 48105 USA
| |
Collapse
|
332
|
C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 2014; 128:485-503. [PMID: 25120191 PMCID: PMC4159571 DOI: 10.1007/s00401-014-1329-4] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/09/2014] [Accepted: 07/27/2014] [Indexed: 12/11/2022]
Abstract
Hexanucleotide repeat expansion in C9orf72 is the most common pathogenic mutation in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the lack of an ATG start codon, the repeat expansion is translated in all reading frames into dipeptide repeat (DPR) proteins, which form insoluble, ubiquitinated, p62-positive aggregates that are most abundant in the cerebral cortex and cerebellum. To specifically analyze DPR toxicity and aggregation, we expressed DPR proteins from synthetic genes containing a start codon but lacking extensive GGGGCC repeats. Poly-Gly-Ala (GA) formed p62-positive cytoplasmic aggregates, inhibited dendritic arborization and induced apoptosis in primary neurons. Quantitative mass spectrometry analysis to identify poly-GA co-aggregating proteins revealed a significant enrichment of proteins of the ubiquitin-proteasome system. Among the other interacting proteins, we identified the transport factor Unc119, which has been previously linked to neuromuscular and axonal function, as a poly-GA co-aggregating protein. Strikingly, the levels of soluble Unc119 are strongly reduced upon poly-GA expression in neurons, suggesting a loss of function mechanism. Similar to poly-GA expression, Unc119 knockdown inhibits dendritic branching and causes neurotoxicity. Unc119 overexpression partially rescues poly-GA toxicity suggesting that poly-GA expression causes Unc119 loss of function. In C9orf72 patients, Unc119 is detectable in 9.5 % of GA inclusions in the frontal cortex, but only in 1.6 % of GA inclusions in the cerebellum, an area largely spared of neurodegeneration. A fraction of neurons with Unc119 inclusions shows loss of cytosolic staining. Poly-GA-induced Unc119 loss of function may thereby contribute to selective vulnerability of neurons with DPR protein inclusions in the pathogenesis of C9orf72 FTLD/ALS.
Collapse
|
333
|
Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL, Sasaguri H, Caulfield T, Hubbard J, Daughrity L, Chew J, Belzil VV, Prudencio M, Stankowski JN, Castanedes-Casey M, Whitelaw E, Ash PEA, DeTure M, Rademakers R, Boylan KB, Dickson DW, Petrucelli L. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 2014; 128:505-24. [PMID: 25173361 PMCID: PMC4159567 DOI: 10.1007/s00401-014-1336-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022]
Abstract
The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Ya-Fei Xu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin F. Bieniek
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Jaime Hubbard
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | | | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | | | | | - Ena Whitelaw
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Peter E. A. Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin B. Boylan
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| |
Collapse
|
334
|
Kino Y, Washizu C, Kurosawa M, Oma Y, Hattori N, Ishiura S, Nukina N. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins. Hum Mol Genet 2014; 24:740-56. [PMID: 25274774 DOI: 10.1093/hmg/ddu492] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In some neurological diseases caused by repeat expansions such as myotonic dystrophy, the RNA-binding protein muscleblind-like 1 (MBNL1) accumulates in intranuclear inclusions containing mutant repeat RNA. The interaction between MBNL1 and mutant RNA in the nucleus is a key event leading to loss of MBNL function, yet the details of this effect have been elusive. Here, we investigated the mechanism and significance of MBNL1 nuclear localization. We found that MBNL1 contains two classes of nuclear localization signal (NLS), a classical bipartite NLS and a novel conformational NLS. Alternative splicing of exon 7 acts as a switch between these NLS types and couples MBNL1 activity and intracellular localization. Depending on its nuclear localization, MBNL1 promoted nuclear accumulation of mutant RNA containing a CUG or CAG repeat, some of which produced proteins containing homopolymeric tracts such as polyglutamine. Furthermore, MBNL1 repressed the expression of these homopolymeric proteins including those presumably produced through repeat-associated non-ATG (RAN) translation. These results suggest that nuclear retention of expanded RNA reflects a novel role of MBNL proteins in repressing aberrant protein expression and may provide pathological and therapeutic implications for a wide range of repeat expansion diseases associated with nuclear RNA retention and/or RAN translation.
Collapse
Affiliation(s)
- Yoshihiro Kino
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan CREST (Core Research for Evolutionary Science and Technology), JST, Saitama 332-0012, Japan Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo 204-8588, Japan and
| | - Chika Washizu
- Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Masaru Kurosawa
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan CREST (Core Research for Evolutionary Science and Technology), JST, Saitama 332-0012, Japan Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Yoko Oma
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 153-8902, Japan
| | - Nobutaka Hattori
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Shoichi Ishiura
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo 153-8902, Japan
| | - Nobuyuki Nukina
- Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan CREST (Core Research for Evolutionary Science and Technology), JST, Saitama 332-0012, Japan Laboratory for Structural Neuropathology, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
335
|
Biancalana V, Glaeser D, McQuaid S, Steinbach P. EMQN best practice guidelines for the molecular genetic testing and reporting of fragile X syndrome and other fragile X-associated disorders. Eur J Hum Genet 2014; 23:417-25. [PMID: 25227148 PMCID: PMC4666582 DOI: 10.1038/ejhg.2014.185] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/25/2023] Open
Abstract
Different mutations occurring in the unstable CGG repeat in 5' untranslated region of FMR1 gene are responsible for three fragile X-associated disorders. An expansion of over ∼200 CGG repeats when associated with abnormal methylation and inactivation of the promoter is the mutation termed ‘full mutation' and is responsible for fragile X syndrome (FXS), a neurodevelopmental disorder described as the most common cause of inherited intellectual impairment. The term ‘abnormal methylation' is used here to distinguish the DNA methylation induced by the expanded repeat from the ‘normal methylation' occurring on the inactive X chromosomes in females with normal, premutation, and full mutation alleles. All male and roughly half of the female full mutation carriers have FXS. Another anomaly termed ‘premutation' is characterized by the presence of 55 to ∼200 CGGs without abnormal methylation, and is the cause of two other diseases with incomplete penetrance. One is fragile X-associated primary ovarian insufficiency (FXPOI), which is characterized by a large spectrum of ovarian dysfunction phenotypes and possible early menopause as the end stage. The other is fragile X-associated tremor/ataxia syndrome (FXTAS), which is a late onset neurodegenerative disorder affecting males and females. Because of the particular pattern and transmission of the CGG repeat, appropriate molecular testing and reporting is very important for the optimal genetic counselling in the three fragile X-associated disorders. Here, we describe best practice guidelines for genetic analysis and reporting in FXS, FXPOI, and FXTAS, including carrier and prenatal testing.
Collapse
Affiliation(s)
- Valérie Biancalana
- Laboratoire Diagnostic Génétique, Faculté de Médecine-CHRU, Strasbourg, France
| | | | - Shirley McQuaid
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Peter Steinbach
- Institute of Human Genetics, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
336
|
Wojciechowska M, Olejniczak M, Galka-Marciniak P, Jazurek M, Krzyzosiak WJ. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Res 2014; 42:11849-64. [PMID: 25217582 PMCID: PMC4231732 DOI: 10.1093/nar/gku794] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts. RNA structures formed by the repeats have been suggested as possible triggers; however, the precise mechanism of the translation initiation remains elusive. Templates containing expansions of microsatellites have also been shown to challenge translation elongation, as frameshifting has been recognized across CAG repeats in spinocerebellar ataxia type 3 and Huntington's disease. Determining the critical requirements for RAN translation and frameshifting is essential to decipher the mechanisms that govern these processes. The contribution of unusual translation products to pathogenesis needs to be better understood. In this review, we present current knowledge regarding RAN translation and frameshifting and discuss the proposed mechanisms of translational challenges imposed by simple repeat expansions.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|
337
|
Duan R, Sharma S, Xia Q, Garber K, Jin P. Towards Understanding RNA-Mediated Neurological Disorders. J Genet Genomics 2014; 41:473-84. [DOI: 10.1016/j.jgg.2014.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
338
|
Peprah E. Understanding decreased fertility in women carriers of the FMR1 premutation: a possible mechanism for Fragile X-Associated Primary Ovarian Insufficiency (FXPOI). Reprod Health 2014; 11:67. [PMID: 25134882 PMCID: PMC4141264 DOI: 10.1186/1742-4755-11-67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/13/2014] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) and its associated disorders are caused by the expansion of the CGG repeat in the 5′ untranslated region of the fragile X mental retardation 1 gene (FMR1). The full mutation, defined as >200 cytosine-guanine-guanine (CGG) triplet repeats, causes FXS. Individuals with 55–199 CGG repeats, classified as premutation carriers, are affected by two distinct disorders depending on their premutation status. Disorders associated with premutation carriers include: Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and Fragile X-associated Primary Ovarian Insufficiency (FXPOI). The molecular similarities of FXTAS and FXPOI (e.g. overabundance of FMR1 transcript and intranuclear inclusions) suggest that similar molecular mechanisms underlie both FXTAS and FXPOI. The current hypothesis describes the underlying mechanism for FXTAS as an mRNA gain-of-function mutation, however the underlying mechanism for FXPOI remains unresolved. New data suggests that repeat associated non-AUG (RAN) translation could underlie FXPOI.
Collapse
Affiliation(s)
- Emmanuel Peprah
- National Institutes of Health, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Blvd RM 5Z00, Rockville, MD 20852, USA.
| |
Collapse
|
339
|
Sherman SL, Curnow EC, Easley CA, Jin P, Hukema RK, Tejada MI, Willemsen R, Usdin K. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord 2014; 6:26. [PMID: 25147583 PMCID: PMC4139715 DOI: 10.1186/1866-1955-6-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 08/13/2014] [Indexed: 01/04/2023] Open
Abstract
Fragile X-associated primary ovarian insufficiency (FXPOI) is among the family of disorders caused by the expansion of a CGG repeat sequence in the 5' untranslated region of the X-linked gene FMR1. About 20% of women who carry the premutation allele (55 to 200 unmethylated CGG repeats) develop hypergonadotropic hypogonadism and cease menstruating before age 40. Some proportion of those who are still cycling show hormonal profiles indicative of ovarian dysfunction. FXPOI leads to subfertility and an increased risk of medical conditions associated with early estrogen deficiency. Little progress has been made in understanding the etiology of this clinically significant disorder. Understanding the molecular mechanisms of FXPOI requires a detailed knowledge of ovarian FMR1 mRNA and FMRP’s function. In humans, non-invasive methods to discriminate the mechanisms of the premutation on ovarian function are not available, thus necessitating the development of model systems. Vertebrate (mouse and rat) and invertebrate (Drosophila melanogaster) animal studies for the FMR1 premutation and ovarian function exist and have been instrumental in advancing our understanding of the disease phenotype. For example, rodent models have shown that FMRP is highly expressed in oocytes where it is important for folliculogenesis. The two premutation mouse models studied to date show evidence of ovarian dysfunction and, together, suggest that the long repeat in the transcript itself may have some pathological effect quite apart from any effect of the toxic protein. Further, ovarian morphology in young animals appears normal and the primordial follicle pool size does not differ from that of wild-type animals. However, there is a progressive premature decline in the levels of most follicle classes. Observations also include granulosa cell abnormalities and altered gene expression patterns. Further comparisons of these models are now needed to gain insight into the etiology of the ovarian dysfunction. Premutation model systems in non-human primates and those based on induced pluripotent stem cells show particular promise and will complement current models. Here, we review the characterization of the current models and describe the development and potential of the new models. Finally, we will discuss some of the molecular mechanisms that might be responsible for FXPOI.
Collapse
Affiliation(s)
- Stephanie L Sherman
- Department of Human Genetics, Emory University, 615 Michael St, Emory University, Atlanta, GA 30322, USA
| | - Eliza C Curnow
- Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, 615 Michael St, Emory University, Atlanta, GA 30322, USA
| | - Renate K Hukema
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Maria Isabel Tejada
- Molecular Genetics Laboratory, Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Biscay, Spain
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
340
|
Sellier C, Usdin K, Pastori C, Peschansky VJ, Tassone F, Charlet-Berguerand N. The multiple molecular facets of fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2014; 6:23. [PMID: 25161746 PMCID: PMC4144988 DOI: 10.1186/1866-1955-6-23] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/15/2013] [Indexed: 02/03/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset inherited neurodegenerative disorder characterized by intentional tremor, gait ataxia, autonomic dysfunction, and cognitive decline. FXTAS is caused by the presence of a long CGG repeat tract in the 5′ UTR of the FMR1 gene. In contrast to Fragile X syndrome, in which the FMR1 gene harbors over 200 CGG repeats but is transcriptionally silent, the clinical features of FXTAS arise from a toxic gain of function of the elevated levels of FMR1 transcript containing the long CGG tract. However, how this RNA leads to neuronal cell dysfunction is unknown. Here, we discuss the latest advances in the current understanding of the possible molecular basis of FXTAS.
Collapse
Affiliation(s)
- Chantal Sellier
- Department of Translational Medicine, IGBMC, INSERM U964 Illkirch, France
| | - Karen Usdin
- Section on Gene Structure and Disease, NIDDK, National Institutes of Health, Bethesda MD 20892, USA
| | - Chiara Pastori
- Department of Psychiatry and Behavioral Sciences and Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami FL 33136, USA
| | - Veronica J Peschansky
- Department of Psychiatry and Behavioral Sciences and Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami FL 33136, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento CA 95817, USA ; MIND Institute, University of California Davis Medical Center, Sacramento CA 95817, USA
| | - Nicolas Charlet-Berguerand
- Department of Translational Medicine, IGBMC, INSERM U964 Illkirch, France ; Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, University of Strasbourg, 1 rue Laurent Fries, Illkirch F-67404, France
| |
Collapse
|
341
|
Berman RF, Buijsen RA, Usdin K, Pintado E, Kooy F, Pretto D, Pessah IN, Nelson DL, Zalewski Z, Charlet-Bergeurand N, Willemsen R, Hukema RK. Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 2014; 6:25. [PMID: 25136376 PMCID: PMC4135345 DOI: 10.1186/1866-1955-6-25] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
Carriers of the fragile X premutation (FPM) have CGG trinucleotide repeat expansions of between 55 and 200 in the 5'-UTR of FMR1, compared to a CGG repeat length of between 5 and 54 for the general population. Carriers were once thought to be without symptoms, but it is now recognized that they can develop a variety of early neurological symptoms as well as being at risk for developing the late onset neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Several mouse models have contributed to our understanding of FPM and FXTAS, and findings from studies using these models are summarized here. This review also discusses how this information is improving our understanding of the molecular and cellular abnormalities that contribute to neurobehavioral features seen in some FPM carriers and in patients with FXTAS. Mouse models show much of the pathology seen in FPM carriers and in individuals with FXTAS, including the presence of elevated levels of Fmr1 mRNA, decreased levels of fragile X mental retardation protein, and ubiquitin-positive intranuclear inclusions. Abnormalities in dendritic spine morphology in several brain regions are associated with neurocognitive deficits in spatial and temporal memory processes, impaired motor performance, and altered anxiety. In vitro studies have identified altered dendritic and synaptic architecture associated with abnormal Ca(2+) dynamics and electrical network activity. FPM mice have been particularly useful in understanding the roles of Fmr1 mRNA, fragile X mental retardation protein, and translation of a potentially toxic polyglycine peptide in pathology. Finally, the potential for using these and emerging mouse models for preclinical development of therapies to improve neurological function in FXTAS is considered.
Collapse
Affiliation(s)
- Robert F Berman
- Department of Neurological Surgery, Room 502C, UC Davis, 1515 Newton Court, Davis, CA 95618, USA
| | | | - Karen Usdin
- NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | - Isaac N Pessah
- Department Molecular Biosciences, UC Davis, Davis, CA, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Zachary Zalewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Rob Willemsen
- Department Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Renate K Hukema
- Department Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
342
|
Lozano R, Hagerman RJ, Duyzend M, Budimirovic DB, Eichler EE, Tassone F. Genomic studies in fragile X premutation carriers. J Neurodev Disord 2014; 6:27. [PMID: 25170347 PMCID: PMC4147387 DOI: 10.1186/1866-1955-6-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/08/2014] [Indexed: 11/11/2022] Open
Abstract
Background The FMR1 premutation is defined as having 55 to 200 CGG repeats in the 5′ untranslated region of the fragile X mental retardation 1 gene (FMR1). The clinical involvement has been well characterized for fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). The behavior/psychiatric and other neurological manifestations remain to be specified as well as the molecular mechanisms that will explain the phenotypic variability observed in individuals with the FMR1 premutation. Methods Here we describe a small pilot study of copy number variants (CNVs) in 56 participants with a premutation ranging from 55 to 192 repeats. The participants were divided into four different clinical groups for the analysis: those with behavioral problems but no autism spectrum disorder (ASD); those with ASD but without neurological problems; those with ASD and neurological problems including seizures; and those with neurological problems without ASD. Results We found 12 rare CNVs (eight duplications and four deletions) in 11 cases (19.6%) that were not found in approximately 8,000 controls. Three of them were at 10q26 and two at Xp22.3, with small areas of overlap. The CNVs were more commonly identified in individuals with neurological involvement and ASD. Conclusions The frequencies were not statistically significant across the groups. There were no significant differences in the psychometric and behavior scores among all groups. Further studies are necessary to determine the frequency of second genetic hits in individuals with the FMR1 premutation; however, these preliminary results suggest that genomic studies can be useful in understanding the molecular etiology of clinical involvement in premutation carriers with ASD and neurological involvement.
Collapse
Affiliation(s)
- Reymundo Lozano
- MIND Institute, UC Davis Medical Center, Sacramento, 2825 50th Street, California, CA 95817, USA ; Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Randi J Hagerman
- MIND Institute, UC Davis Medical Center, Sacramento, 2825 50th Street, California, CA 95817, USA ; Department of Pediatrics, UC Davis Medical Center, Sacramento, CA, USA
| | - Michael Duyzend
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Dejan B Budimirovic
- Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA ; Howard Hughes Medical Institute, Seattle, WA, USA
| | - Flora Tassone
- MIND Institute, UC Davis Medical Center, Sacramento, 2825 50th Street, California, CA 95817, USA ; Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
343
|
Latham GJ, Coppinger J, Hadd AG, Nolin SL. The role of AGG interruptions in fragile X repeat expansions: a twenty-year perspective. Front Genet 2014; 5:244. [PMID: 25120560 PMCID: PMC4114290 DOI: 10.3389/fgene.2014.00244] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022] Open
Abstract
In 1994, it was suggested that AGG interruptions affect the stability of the fragile X triplet repeat. Until recently, however, this hypothesis was not explored on a large scale due primarily to the technical difficulty of determining AGG interruption patterns of the two alleles in females. The recent development of a PCR technology that overcomes this difficulty and accurately identifies the number and position of AGGs has led to several studies that examine their influence on repeat stability. Here, we present a historical perspective of relevant studies published during the last 20 years on AGG interruptions and examine those recent publications that have refined risk estimates for repeat instability and full-mutation expansions.
Collapse
Affiliation(s)
| | | | | | - Sarah L Nolin
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY, USA
| |
Collapse
|
344
|
Sandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes (Basel) 2014; 5:586-603. [PMID: 25055202 PMCID: PMC4198919 DOI: 10.3390/genes5030586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022] Open
Abstract
Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.
Collapse
Affiliation(s)
- Erin Sandford
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Margit Burmeister
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
345
|
Usdin K, Hayward BE, Kumari D, Lokanga RA, Sciascia N, Zhao XN. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders. Front Genet 2014; 5:226. [PMID: 25101111 PMCID: PMC4101883 DOI: 10.3389/fgene.2014.00226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/29/2014] [Indexed: 01/01/2023] Open
Abstract
The Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor/ataxia syndrome (FXTAS), the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI) and the intellectual disability, Fragile X syndrome (FXS). The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5′ UTR of the Fragile X mental retardation 1 (FMR1) gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, Fragile X mental retardation 1 protein (FMRP). Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by an FMRP deficiency, the clinical picture is turning out to be more complex than once appreciated. Added complications result from the fact that increasing repeat numbers make the alleles somatically unstable. Thus many individuals have a complex mixture of different sized alleles in different cells. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.
Collapse
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Rachel A Lokanga
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Nicholas Sciascia
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
346
|
Fogel BL, Clark MC, Geschwind DH. The neurogenetics of atypical parkinsonian disorders. Semin Neurol 2014; 34:217-24. [PMID: 24963681 DOI: 10.1055/s-0034-1381738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although classic Parkinson disease is the disorder most commonly associated with the clinical feature of parkinsonism, there is in fact a broader spectrum of disease represented by a collection of phenotypically similar neurodegenerative conditions that mimic many of its core features. These atypical parkinsonian disorders most commonly include progressive supranuclear palsy and corticobasal degeneration, disorders both associated with frontotemporal dementia, as well as multiple system atrophy and dementia with Lewy bodies. Although the clinical distinction of these disorders still remains a challenge to physicians, recent advances in genetics are poised to tease apart the differences. Insights into the molecular etiologies underlying these conditions will improve diagnosis, yield a better understanding of the underlying disease pathology, and ultimately lend stimulation to the development of potential treatments. At the same time, the wide range of phenotypes observed from mutations in a single gene warrants broad testing facilitated by advances in DNA sequencing. These expanding genomic approaches, ranging from the use of next-generation sequencing to identify causative or risk-associated gene variations to the study of epigenetic modification linking human genetics to environmental factors, are poised to lead the field into a new age of discovery.
Collapse
Affiliation(s)
- Brent L Fogel
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Mary C Clark
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
347
|
Jung H, Gkogkas CG, Sonenberg N, Holt CE. Remote control of gene function by local translation. Cell 2014; 157:26-40. [PMID: 24679524 PMCID: PMC3988848 DOI: 10.1016/j.cell.2014.03.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The subcellular position of a protein is a key determinant of its function. Mounting evidence indicates that RNA localization, where specific mRNAs are transported subcellularly and subsequently translated in response to localized signals, is an evolutionarily conserved mechanism to control protein localization. On-site synthesis confers novel signaling properties to a protein and helps to maintain local proteome homeostasis. Local translation plays particularly important roles in distal neuronal compartments, and dysregulated RNA localization and translation cause defects in neuronal wiring and survival. Here, we discuss key findings in this area and possible implications of this adaptable and swift mechanism for spatial control of gene function.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Anatomy, Brain Research Institute, and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Christos G Gkogkas
- Patrick Wild Centre, Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| | - Christine E Holt
- Department of Physiology Development and Neuroscience, Anatomy Building, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
348
|
Cleary JD, Ranum LPW. Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders. Curr Opin Genet Dev 2014; 26:6-15. [PMID: 24852074 DOI: 10.1016/j.gde.2014.03.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 12/14/2022]
Abstract
Microsatellite-expansion diseases are a class of neurological and neuromuscular disorders caused by the expansion of short stretches of repetitive DNA (e.g. GGGGCC, CAG, CTG …) within the human genome. Since their discovery 20 years ago, research into how microsatellites expansions cause disease has been examined using the model that these genes are expressed in one direction and that expansion mutations only encode proteins when located in an ATG-initiated open reading frame. The fact that these mutations are often bidirectionally transcribed combined with the recent discovery of repeat associated non-ATG (RAN) translation provides new perspectives on how these expansion mutations are expressed and impact disease. Two expansion transcripts and a set of unexpected RAN proteins must now be considered for both coding and 'non-coding' expansion disorders. RAN proteins have been reported in a growing number of diseases, including spinocerebellar ataxia type 8 (SCA8), myotonic dystrophy type 1 (DM1), Fragile-X tremor ataxia syndrome (FXTAS), and C9ORF72 amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD).
Collapse
Affiliation(s)
- John Douglas Cleary
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
349
|
Juang BT, Ludwig AL, Benedetti KL, Gu C, Collins K, Morales C, Asundi A, Wittmann T, L'Etoile N, Hagerman PJ. Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Hum Mol Genet 2014; 23:4945-59. [PMID: 24821701 PMCID: PMC4140470 DOI: 10.1093/hmg/ddu210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a severe neurodegenerative disorder that affects carriers of premutation CGG-repeat expansion alleles of the fragile X mental retardation 1 (FMR1) gene; current evidence supports a causal role of the expanded CGG repeat within the FMR1 mRNA in the pathogenesis of FXTAS. Though the mRNA has been observed to induce cellular toxicity in FXTAS, the mechanisms are unclear. One common neurophysiological characteristic of FXTAS patients is their inability to properly attenuate their response to an auditory stimulus upon receipt of a small pre-stimulus. Therefore, to gain genetic and cell biological insight into FXTAS, we examined the effect of expanded CGG repeats on the plasticity of the olfactory response of the genetically tractable nematode, Caenorhabditis elegans (C. elegans). While C. elegans is innately attracted to odors, this response can be downregulated if the odor is paired with starvation. We found that expressing expanded CGG repeats in olfactory neurons interfered with this plasticity without affecting either the innate odor-seeking response or the olfactory neuronal morphology. Interrogation of three RNA regulatory pathways indicated that the expanded CGG repeats act via the C. elegans microRNA (miRNA)-specific Argonaute ALG-2 to diminish olfactory plasticity. This observation suggests that the miRNA-Argonaute pathway may play a pathogenic role in subverting neuronal function in FXTAS.
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chen Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly Collins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Morales
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noelle L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| |
Collapse
|
350
|
He F, Krans A, Freibaum BD, Taylor JP, Todd PK. TDP-43 suppresses CGG repeat-induced neurotoxicity through interactions with HnRNP A2/B1. Hum Mol Genet 2014; 23:5036-51. [PMID: 24920338 DOI: 10.1093/hmg/ddu216] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleotide repeat expansions can elicit neurodegeneration as RNA by sequestering specific RNA-binding proteins, preventing them from performing their normal functions. Conversely, mutations in RNA-binding proteins can trigger neurodegeneration at least partly by altering RNA metabolism. In Fragile X-associated tremor/ataxia syndrome (FXTAS), a CGG repeat expansion in the 5'UTR of the fragile X gene (FMR1) leads to progressive neurodegeneration in patients and CGG repeats in isolation elicit toxicity in Drosophila and other animal models. Here, we identify the amyotrophic lateral sclerosis (ALS)-associated RNA-binding protein TAR DNA-binding protein (TDP-43) as a suppressor of CGG repeat-induced toxicity in a Drosophila model of FXTAS. The rescue appears specific to TDP-43, as co-expression of another ALS-associated RNA-binding protein, FUS, exacerbates the toxic effects of CGG repeats. Suppression of CGG RNA toxicity was abrogated by disease-associated mutations in TDP-43. TDP-43 does not co-localize with CGG RNA foci and its ability to bind RNA is not required for rescue. TDP-43-dependent rescue does, however, require fly hnRNP A2/B1 homologues Hrb87F and Hrb98DE. Deletions in the C-terminal domain of TDP-43 that preclude interactions with hnRNP A2/B1 abolish TDP-43-dependent rescue of CGG repeat toxicity. In contrast, suppression of CGG repeat toxicity by hnRNP A2/B1 is not affected by RNAi-mediated knockdown of the fly TDP-43 orthologue, TBPH. Lastly, TDP-43 suppresses CGG repeat-triggered mis-splicing of an hnRNP A2/B1-targeted transcript. These data support a model in which TDP-43 suppresses CGG-mediated toxicity through interactions with hnRNP A2/B1 and suggest a convergence of pathogenic cascades between repeat expansion disorders and RNA-binding proteins implicated in neurodegenerative disease.
Collapse
Affiliation(s)
- Fang He
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA
| | - Brian D Freibaum
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA and
| | - J Paul Taylor
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA and
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI 48109, USA, VA Medical Center, Ann Arbor, MI 48105, USA
| |
Collapse
|