301
|
Shrivastava AN, Aperia A, Melki R, Triller A. Physico-Pathologic Mechanisms Involved in Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions. Neuron 2017; 95:33-50. [DOI: 10.1016/j.neuron.2017.05.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
|
302
|
Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, Maria Doglia S, Relini A, Penco A, Giorgetti S, Gerace E, Mannaioni G, Bellotti V, Rigacci S, Cerbai E, Stefani M. Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes. Biophys J 2017; 111:2024-2038. [PMID: 27806283 DOI: 10.1016/j.bpj.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.
| | - Valentina Spinelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Elisabetta Gerace
- Department of Health Science, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Stefania Rigacci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| |
Collapse
|
303
|
Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 2017. [PMID: 28650319 PMCID: PMC5505701 DOI: 10.7554/elife.28401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD. DOI:http://dx.doi.org/10.7554/eLife.28401.001 Treating Alzheimer’s disease and related dementias is one of the major challenges currently facing healthcare providers worldwide. A hallmark of the disease is the formation of large deposits of a specific molecule, known as amyloid beta (Aβ), in the brain. However, more and more research suggests that smaller and particularly toxic amyloid beta clumps – often referred to as oligomeric Aβ – appear as an early sign of Alzheimer’s disease. To understand how the formation of these smaller amyloid beta clumps triggers other aspects of the disease, it is important to identify molecules in the human brain that oligomeric Aβ binds to. To this end, Wang et al. attached amyloid beta or oligomeric Aβ molecules to microscopically small beads. The beads were then exposed to human brain extracts in a test tube, which allowed molecules in the extracts to bind to the amyloid beta or oligomeric Aβ. The samples were then spun at high speed, meaning that the beads and any other molecules bound to them sunk and formed pellets at the bottom of the tubes. Each pellet was then analyzed to see which molecules it contained. The experiments identified more than a hundred human brain proteins that can bind to amyloid beta. One of them, known as somatostatin, selectively binds to oligomeric Aβ. Wang et al. were able to determine the structural features of somatostatin that control this binding. Finally, in further experiments performed in test tubes, Wang et al. noticed that smaller oligomeric Aβ clumps were more likely to form than larger amyloid beta deposits when somatostatin was present. This could signify a previously unrecognized role of somatostatin in the development of Alzheimer’s disease. Further studies are now needed to confirm whether the presence of somatostatin in the brain favors the formation of smaller, toxic oligomeric Aβ clumps over large innocuous amyloid beta deposits. If so, new treatments could be developed that aim to reduce oligomeric Aβ levels in the brain by preventing somatostatin from interacting with amyloid beta molecules. Wang et al. also suggest that somatostatin could be used in diagnostic tests to detect abnormal levels of oligomeric Aβ in the brain or body fluids of people who have Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.28401.002
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Punam Ghosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Alejandro Ruiz-Riquelme
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
304
|
Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy WY, Duennwald ML, Prado VF, Prado MAM. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front Neurosci 2017; 11:254. [PMID: 28559789 PMCID: PMC5433227 DOI: 10.3389/fnins.2017.00254] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimer's disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the Hsp70/Hsp90 chaperone network in mechanisms underlying protein misfolding in neurodegenerative diseases, with particular focus on AD.
Collapse
Affiliation(s)
- Rachel E Lackie
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada
| | - Andrzej Maciejewski
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Valeriy G Ostapchenko
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Jose Marques-Lopes
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, University of Western OntarioLondon, ON, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, University of Western OntarioLondon, ON, Canada
| | - Vania F Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| | - Marco A M Prado
- Molecular Medicine, Robarts Research Institute, University of Western OntarioLondon, ON, Canada.,Program in Neuroscience, University of Western OntarioLondon, ON, Canada.,Department of Physiology and Pharmacology, University of Western OntarioLondon, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
305
|
Amar F, Sherman MA, Rush T, Larson M, Boyle G, Chang L, Götz J, Buisson A, Lesné SE. The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci Signal 2017; 10:10/478/eaal2021. [PMID: 28487416 DOI: 10.1126/scisignal.aal2021] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oligomeric forms of amyloid-forming proteins are believed to be the principal initiating bioactive species in many neurodegenerative disorders, including Alzheimer's disease (AD). Amyloid-β (Aβ) oligomers are implicated in AD-associated phosphorylation and aggregation of the microtubule-associated protein tau. To investigate the specific molecular pathways activated by different assemblies, we isolated various forms of Aβ from Tg2576 mice, which are a model for AD. We found that Aβ*56, a 56-kDa oligomer that is detected before patients develop overt signs of AD, induced specific changes in neuronal signaling. In primary cortical neurons, Aβ*56 interacted with N-methyl-d-aspartate receptors (NMDARs), increased NMDAR-dependent Ca2+ influx, and consequently increased intracellular calcium concentrations and the activation of Ca2+-dependent calmodulin kinase IIα (CaMKIIα). In cultured neurons and in the brains of Tg2576 mice, activated CaMKIIα was associated with increased site-specific phosphorylation and missorting of tau, both of which are associated with AD pathology. In contrast, exposure of cultured primary cortical neurons to other oligomeric Aβ forms (dimers and trimers) did not trigger these effects. Our results indicate that distinct Aβ assemblies activate neuronal signaling pathways in a selective manner and that dissecting the molecular events caused by each oligomer may inform more effective therapeutic strategies.
Collapse
Affiliation(s)
- Fatou Amar
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55414, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| | - Mathew A Sherman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55414, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| | - Travis Rush
- INSERM, U1216, Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France
| | - Megan Larson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55414, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| | - Gabriel Boyle
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA.,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55414, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| | - Liu Chang
- Sydney Medical School, Brain and Mind Research Institute, University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alain Buisson
- INSERM, U1216, Université Grenoble Alpes, Grenoble Institut des Neurosciences, BP 170, Grenoble Cedex 9, F-38042, France
| | - Sylvain E Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA. .,N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55414, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| |
Collapse
|
306
|
Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony. Trends Neurosci 2017; 40:347-357. [PMID: 28494972 DOI: 10.1016/j.tins.2017.04.002] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by memory loss, cognitive decline, and devastating neurodegeneration, not only as a result of the extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau, but also as a consequence of the dysfunction and loss of synapses. Although significant advances have been made in our understanding of the relationship of the pathological role of Aβ and tau in synapse dysfunction, several questions remain as to how Aβ and tau interdependently cause impairments in synaptic function in AD. Overall, more insight into these questions should enable researchers in this field to develop novel therapeutic targets to mitigate or delay the cognitive deficits associated with this devastating disease.
Collapse
Affiliation(s)
- Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
307
|
Abstract
The misfolding of the cellular prion protein (PrPC) causes fatal neurodegenerative diseases. Yet PrPC is highly conserved in mammals, suggesting that it exerts beneficial functions preventing its evolutionary elimination. Ablation of PrPC in mice results in well-defined structural and functional alterations in the peripheral nervous system. Many additional phenotypes were ascribed to the lack of PrPC, but some of these were found to arise from genetic artifacts of the underlying mouse models. Here, we revisit the proposed physiological roles of PrPC in the central and peripheral nervous systems and highlight the need for their critical reassessment using new, rigorously controlled animal models.
Collapse
Affiliation(s)
- Marie-Angela Wulf
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
308
|
Smith LM, Strittmatter SM. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024075. [PMID: 27940601 DOI: 10.1101/cshperspect.a024075] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Alzheimer's disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis.
Collapse
Affiliation(s)
- Levi M Smith
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| |
Collapse
|
309
|
Grochowska KM, Yuanxiang P, Bär J, Raman R, Brugal G, Sahu G, Schweizer M, Bikbaev A, Schilling S, Demuth HU, Kreutz MR. Posttranslational modification impact on the mechanism by which amyloid-β induces synaptic dysfunction. EMBO Rep 2017; 18:962-981. [PMID: 28420656 DOI: 10.15252/embr.201643519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Oligomeric amyloid-β (Aβ) 1-42 disrupts synaptic function at an early stage of Alzheimer's disease (AD). Multiple posttranslational modifications of Aβ have been identified, among which N-terminally truncated forms are the most abundant. It is not clear, however, whether modified species can induce synaptic dysfunction on their own and how altered biochemical properties can contribute to the synaptotoxic mechanisms. Here, we show that a prominent isoform, pyroglutamated Aβ3(pE)-42, induces synaptic dysfunction to a similar extent like Aβ1-42 but by clearly different mechanisms. In contrast to Aβ1-42, Aβ3(pE)-42 does not directly associate with synaptic membranes or the prion protein but is instead taken up by astrocytes and potently induces glial release of the proinflammatory cytokine TNFα. Moreover, Aβ3(pE)-42-induced synaptic dysfunction is not related to NMDAR signalling and Aβ3(pE)-42-induced impairment of synaptic plasticity cannot be rescued by D1-agonists. Collectively, the data point to a scenario where neuroinflammatory processes together with direct synaptotoxic effects are caused by posttranslational modification of soluble oligomeric Aβ and contribute synergistically to the onset of synaptic dysfunction in AD.
Collapse
Affiliation(s)
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Julia Bär
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Emmy-Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rajeev Raman
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gemma Brugal
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Giriraj Sahu
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michaela Schweizer
- Morphology Unit, Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arthur Bikbaev
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Stephan Schilling
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Halle, Germany
| | - Hans-Ulrich Demuth
- Department of Drug Design and Target Validation MWT, Fraunhofer Institute of Cell Therapy and Immunology IZI Leipzig, Halle, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany .,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| |
Collapse
|
310
|
Rubenstein R, Chang B, Grinkina N, Drummond E, Davies P, Ruditzky M, Sharma D, Wang K, Wisniewski T. Tau phosphorylation induced by severe closed head traumatic brain injury is linked to the cellular prion protein. Acta Neuropathol Commun 2017; 5:30. [PMID: 28420443 PMCID: PMC5395835 DOI: 10.1186/s40478-017-0435-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/08/2017] [Indexed: 12/30/2022] Open
Abstract
Studies in vivo and in vitro have suggested that the mechanism underlying Alzheimer's disease (AD) neuropathogenesis is initiated by an interaction between the cellular prion protein (PrPC) and amyloid-β oligomers (Aβo). This PrPC-Aβo complex activates Fyn kinase which, in turn, hyperphosphorylates tau (P-Tau) resulting in synaptic dysfunction, neuronal loss and cognitive deficits. AD transgenic mice lacking PrPC accumulate Aβ, but show normal survival and no loss of spatial learning and memory suggesting that PrPC functions downstream of Aβo production but upstream of intracellular toxicity within neurons. Since AD and traumatic brain injury (TBI)-linked chronic traumatic encephalopathy are tauopathies, we examined whether similar mechanistic pathways are responsible for both AD and TBI pathophysiologies. Using transgenic mice expressing different levels of PrPC, our studies investigated the influence and necessity of PrPC on biomarker (total-tau [T-Tau], P-Tau, GFAP) levels in brain and blood as measured biochemically following severe TBI in the form of severe closed head injury (sCHI). We found that following sCHI, increasing levels of T-Tau and P-Tau in the brain were associated with the PrPC expression levels. A similar relationship between PrPC expression and P-Tau levels following sCHI were found in blood in the absence of significant T-Tau changes. This effect was not seen with GFAP which increased within 24 h following sCHI and progressively decreased by the 7 day time point regardless of the PrPC expression levels. Changes in the levels of all biomarkers were independent of gender. We further enhanced and expanded the quantitation of brain biomarkers with correlative studies using immunohisochemistry. We also demonstrate that a TBI-induced calpain hyperactivation is not required for the generation of P-Tau. A relationship was demonstrated between the presence/absence of PrPC, the levels of P-Tau and cognitive dysfunction. Our studies suggest that PrPC is important in mediating TBI related pathology.
Collapse
Affiliation(s)
- Richard Rubenstein
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA.
| | - Binggong Chang
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Natalia Grinkina
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, 10016, NY, USA
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
| | - Meir Ruditzky
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Deep Sharma
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, 32611, FL, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, 10016, NY, USA
| |
Collapse
|
311
|
Zhang D, Qi Y, Klyubin I, Ondrejcak T, Sarell CJ, Cuello AC, Collinge J, Rowan MJ. Targeting glutamatergic and cellular prion protein mechanisms of amyloid β-mediated persistent synaptic plasticity disruption: Longitudinal studies. Neuropharmacology 2017; 121:231-246. [PMID: 28390893 DOI: 10.1016/j.neuropharm.2017.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease amyloid-β (Aβ) oligomers are synaptotoxic, inappropriately increasing extracellular glutamate concentration and glutamate receptor activation to thereby rapidly disrupt synaptic plasticity. Thus, acutely promoting brain glutamate homeostasis with a blood-based scavenging system, glutamate-oxaloacetate transaminase (GOT), and blocking metabotropic glutamate 5 (mGlu5) receptor or its co-receptor cellular prion protein (PrP), prevent the acute inhibition of long-term potentiation (LTP) by exogenous Aβ. Here, we evaluated the time course of the effects of such interventions in the persistent disruptive effects of Aβ oligomers, either exogenously injected in wild type rats or endogenously generated in transgenic rats that model Alzheimer's disease amyloidosis. We report that repeated, but not acute, systemic administration of recombinant GOT type 1, with or without the glutamate co-substrate oxaloacetate, reversed the persistent deleterious effect of exogenous Aβ on synaptic plasticity. Moreover, similar repetitive treatment reversibly abrogated the inhibition of LTP monitored longitudinally in freely behaving transgenic rats. Remarkably, brief repeated treatment with an mGlu5 receptor antagonist, basimglurant, or an antibody that prevents Aβ oligomer binding to PrP, ICSM35, also had similar reversible ameliorative effects in the transgenic rat model. Overall, the present findings support the ongoing development of therapeutics for early Alzheimer's disease based on these complementary approaches.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yingjie Qi
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Claire J Sarell
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, Department of Neurology and Neurosurgery, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
312
|
Tyebji S, Hannan AJ. Synaptopathic mechanisms of neurodegeneration and dementia: Insights from Huntington's disease. Prog Neurobiol 2017; 153:18-45. [PMID: 28377290 DOI: 10.1016/j.pneurobio.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/19/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022]
Abstract
Dementia encapsulates a set of symptoms that include loss of mental abilities such as memory, problem solving or language, and reduces a person's ability to perform daily activities. Alzheimer's disease is the most common form of dementia, however dementia can also occur in other neurological disorders such as Huntington's disease (HD). Many studies have demonstrated that loss of neuronal cell function manifests pre-symptomatically and thus is a relevant therapeutic target to alleviate symptoms. Synaptopathy, the physiological dysfunction of synapses, is now being approached as the target for many neurological and psychiatric disorders, including HD. HD is an autosomal dominant and progressive degenerative disorder, with clinical manifestations that encompass movement, cognition, mood and behaviour. HD is one of the most common tandem repeat disorders and is caused by a trinucleotide (CAG) repeat expansion, encoding an extended polyglutamine tract in the huntingtin protein. Animal models as well as human studies have provided detailed, although not exhaustive, evidence of synaptic dysfunction in HD. In this review, we discuss the neuropathology of HD and how the changes in synaptic signalling in the diseased brain lead to its symptoms, which include dementia. Here, we review and discuss the mechanisms by which the 'molecular orchestras' and their 'synaptic symphonies' are disrupted in neurodegeneration and dementia, focusing on HD as a model disease. We also explore the therapeutic strategies currently in pre-clinical and clinical testing that are targeted towards improving synaptic function in HD.
Collapse
Affiliation(s)
- Shiraz Tyebji
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
313
|
Melki R. How the shapes of seeds can influence pathology. Neurobiol Dis 2017; 109:201-208. [PMID: 28363800 DOI: 10.1016/j.nbd.2017.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/16/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022] Open
Abstract
It is widely accepted that the loss of function of different cellular proteins following their aggregation into highly stable aggregates or the gain of pathologic function of the resulting macromolecular assemblies or both processes are tightly associated to distinct debilitating neurodegenerative diseases such as Alzheimer's, Parkinson's, Creutzfeldt-Jacob, Amyotrophic Lateral Sclerosis and Huntington's diseases. How the aggregation of one given protein leads to distinct diseases is unclear. Here, a structural-molecular explanation based on the ability of proteins such as α-synuclein or tau to form assemblies that differ by their intrinsic architecture, stability, seeding capacity, and surfaces is proposed to account for distinct synucleinopathies and tauopathies. The shape and surfaces of the seeds is proposed to define at the same time their seeding capacity, interactome and tropism for defined neuronal cells within the central nervous system.
Collapse
Affiliation(s)
- Ronald Melki
- Paris Saclay Institute of Neurosciences, CNRS, Bâtiment 32-33, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
314
|
DiChiara T, DiNunno N, Clark J, Bu RL, Cline EN, Rollins MG, Gong Y, Brody DL, Sligar SG, Velasco PT, Viola KL, Klein WL. Alzheimer's Toxic Amyloid Beta Oligomers: Unwelcome Visitors to the Na/K ATPase alpha3 Docking Station. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:45-61. [PMID: 28356893 PMCID: PMC5369044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxic amyloid beta oligomers (AβOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AβOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AβO antibodies, while Aducanumab, an antibody that targets AβOs as well as fibrillar Aβ, has provided cognitive benefit to humans in early clinical trials. AβOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aβ. Although much has been learned about the downstream mechanisms of AβO action, a major gap concerns the earliest steps: How do AβOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AβOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AβOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia.
Collapse
Affiliation(s)
- Thomas DiChiara
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Nadia DiNunno
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Jeffrey Clark
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Riana Lo Bu
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Erika N. Cline
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Madeline G. Rollins
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | | | - David L. Brody
- Department of Neurology, Washington University Medical School
| | - Stephen G. Sligar
- School of Molecular and Cell Biology, University of Illinois, Urbana-Champagne
| | - Pauline T. Velasco
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - Kirsten L. Viola
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University
| | - William L. Klein
- Department of Neurobiology, Weinberg College of Arts & Sciences, Northwestern University,Department of Neurology, Feinberg School of Medicine, Northwestern University,To whom all correspondence should be addressed: William L. Klein, Northwestern University, Dept. Neurobiology, 2205 Tech Drive, Evanston, IL 60208, ph: 847-491-5510, fax: 847-491-5211,
| |
Collapse
|
315
|
Kazim SF, Chuang SC, Zhao W, Wong RKS, Bianchi R, Iqbal K. Early-Onset Network Hyperexcitability in Presymptomatic Alzheimer's Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade. Front Aging Neurosci 2017; 9:71. [PMID: 28392767 PMCID: PMC5364175 DOI: 10.3389/fnagi.2017.00071] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/08/2017] [Indexed: 11/26/2022] Open
Abstract
Cortical and hippocampal network hyperexcitability appears to be an early event in Alzheimer’s disease (AD) pathogenesis, and may contribute to memory impairment. It remains unclear if network hyperexcitability precedes memory impairment in mouse models of AD and what are the underlying cellular mechanisms. We thus evaluated seizure susceptibility and hippocampal network hyperexcitability at ~3 weeks of age [prior to amyloid beta (Aβ) plaque deposition, neurofibrillary pathology, and cognitive impairment] in a triple transgenic mouse model of familial AD (3xTg-AD mouse) that harbors mutated human Aβ precursor protein (APP), tau and presenilin 1 (PS1) genes. Audiogenic seizures were elicited in a higher proportion of 3xTg-AD mice compared with wild type (WT) controls. Seizure susceptibility in 3xTg-AD mice was attenuated either by passive immunization with anti-human APP/Aβ antibody (6E10) or by blockade of metabotropic glutamate receptor 5 (mGluR5) with the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). In in vitro hippocampal slices, suppression of synaptic inhibition with the GABAA receptor antagonist, bicuculline, induced prolonged epileptiform (>1.5 s in duration) ictal-like discharges in the CA3 neuronal network in the majority of the slices from 3xTg-AD mice. In contrast, only short epileptiform (<1.5 s in duration) interictal-like discharges were observed following bicuculline application in the CA3 region of WT slices. The ictal-like activity in CA3 region of the hippocampus was significantly reduced in the 6E10-immunized compared to the saline-treated 3xTg-AD mice. MPEP acutely suppressed the ictal-like discharges in 3xTg-AD slices. Remarkably, epileptiform discharge duration positively correlated with intraneuronal human (transgenic) APP/Aβ expression in the CA3 region of the hippocampus. Our data suggest that in a mouse model of familial AD, hypersynchronous network activity underlying seizure susceptibility precedes Aβ plaque pathology and memory impairment. This early-onset network hyperexcitability can be suppressed by passive immunization with an anti-human APP/Aβ antibody and by mGluR5 blockade in 3xTg-AD mice.
Collapse
Affiliation(s)
- Syed F Kazim
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical CenterBrooklyn, NY, USA; Department of Neurochemistry and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR)Staten Island, NY, USA; Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical CenterBrooklyn, NY, USA
| | - Shih-Chieh Chuang
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Wangfa Zhao
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Robert K S Wong
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Riccardo Bianchi
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR) Staten Island, NY, USA
| |
Collapse
|
316
|
Xiao MF, Xu D, Craig MT, Pelkey KA, Chien CC, Shi Y, Zhang J, Resnick S, Pletnikova O, Salmon D, Brewer J, Edland S, Wegiel J, Tycko B, Savonenko A, Reeves RH, Troncoso JC, McBain CJ, Galasko D, Worley PF. NPTX2 and cognitive dysfunction in Alzheimer's Disease. eLife 2017; 6. [PMID: 28440221 PMCID: PMC5404919 DOI: 10.7554/elife.23798] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Memory loss in Alzheimer’s disease (AD) is attributed to pervasive weakening and loss of synapses. Here, we present findings supporting a special role for excitatory synapses connecting pyramidal neurons of the hippocampus and cortex with fast-spiking parvalbumin (PV) interneurons that control network excitability and rhythmicity. Excitatory synapses on PV interneurons are dependent on the AMPA receptor subunit GluA4, which is regulated by presynaptic expression of the synaptogenic immediate early gene NPTX2 by pyramidal neurons. In a mouse model of AD amyloidosis, Nptx2-/- results in reduced GluA4 expression, disrupted rhythmicity, and increased pyramidal neuron excitability. Postmortem human AD cortex shows profound reductions of NPTX2 and coordinate reductions of GluA4. NPTX2 in human CSF is reduced in subjects with AD and shows robust correlations with cognitive performance and hippocampal volume. These findings implicate failure of adaptive control of pyramidal neuron-PV circuits as a pathophysiological mechanism contributing to cognitive failure in AD. DOI:http://dx.doi.org/10.7554/eLife.23798.001
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Craig
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Kenneth A Pelkey
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yang Shi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juhong Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - David Salmon
- Department of Neurosciences, University of California San Diego Medical Center, San Diego, United States.,Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States
| | - James Brewer
- Department of Neurosciences, University of California San Diego Medical Center, San Diego, United States.,Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States
| | - Steven Edland
- Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States.,Division of Biostatistics and Bioinformatics, University of California San Diego, San Diego, United States
| | - Jerzy Wegiel
- Institute for Basic Research, New York City, United States
| | - Benjamin Tycko
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University, New York City, United States
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego Medical Center, San Diego, United States.,Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
317
|
Carter AY, Letronne F, Fitz NF, Mounier A, Wolfe CM, Nam KN, Reeves VL, Kamboh H, Lefterov I, Koldamova R. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice. PLoS One 2017; 12:e0172161. [PMID: 28241068 PMCID: PMC5328633 DOI: 10.1371/journal.pone.0172161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipid efflux to lipid-poor apolipoprotein E (APOE) and is transcriptionally controlled by Liver X receptors (LXRs) and Retinoic X Receptors (RXRs). In APP transgenic mice, lack of Abca1 increased Aβ deposition and cognitive deficits. Abca1 haplo-deficiency in mice expressing human APOE isoforms, increased level of Aβ oligomers and worsened memory deficits, preferentially in APOE4 mice. In contrast upregulation of Abca1 by LXR/RXR agonists significantly ameliorated pathological phenotype of those mice. The goal of this study was to examine the effect of LXR agonist T0901317 (T0) on the phenotype and brain transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient (APP/E3/Abca1+/- and APP/E4/Abca1+/-) mice. Our data demonstrate that activated LXRs/RXR ameliorated APOE4-driven pathological phenotype and significantly affected brain transcriptome. We show that in mice expressing either APOE isoform, T0 treatment increased mRNA level of genes known to affect brain APOE lipidation such as Abca1 and Abcg1. In both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, the application of LXR agonist significantly increased ABCA1 protein level accompanied by an increased APOE lipidation, and was associated with restoration of APOE4 cognitive deficits, reduced levels of Aβ oligomers, but unchanged amyloid load. Finally, using Gene set enrichment analysis we show a significant APOE isoform specific response to LXR agonist treatment: Gene Ontology categories “Microtubule Based Process” and “Synapse Organization” were differentially affected in T0-treated APP/E4/Abca1+/- mice. Altogether, the results are suggesting that treatment of APP/E4/Abca1+/- mice with LXR agonist T0 ameliorates APOE4-induced AD-like pathology and therefore targeting the LXR-ABCA1-APOE regulatory axis could be effective as a potential therapeutic approach in AD patients, carriers of APOEε4.
Collapse
Affiliation(s)
- Alexis Y. Carter
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Florent Letronne
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas F. Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anais Mounier
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cody M. Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kyong Nyon Nam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie L. Reeves
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hafsa Kamboh
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- * E-mail: (RK); (IL)
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- * E-mail: (RK); (IL)
| |
Collapse
|
318
|
Salazar SV, Strittmatter SM. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease. Biochem Biophys Res Commun 2017; 483:1143-1147. [PMID: 27639648 PMCID: PMC5303667 DOI: 10.1016/j.bbrc.2016.09.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Abstract
Soluble oligomers of amyloid-beta (Aβo) are implicated by biochemical and genetic evidence as a trigger for Alzheimer's disease (AD) pathophysiology. A key step is Aβo interaction with the neuronal surface to initiate a cascade of altered signal transduction leading to synaptic dysfunction and damage. This review discusses neuronal cell surface molecules with high affinity selectively for oligomeric disease-associated states of Aβ, with a particular focus on the role of cellular prion protein (PrPC) in this process. Additional receptors may contribute to mediation of Aβo action, but PrPC appears to play a primary role in a number of systems. The specificity of binding, the genetic necessity in mouse models of disease and downstream signaling pathways are considered. Signal transduction downstream of Aβo complexes with PrPC involves metabotropic glutamate receptor 5 (mGluR5), Fyn kinase and Pyk2 kinase, with deleterious effects on synaptic transmission and maintenance. Current data support the hypothesis that a substantial portion of Aβo toxicity in AD is mediated after initial interaction with PrPC on the neuronal surface. As such, the interaction of Aβo with PrPC is a potential therapeutic intervention site for AD.
Collapse
Affiliation(s)
- Santiago V Salazar
- Cellular Neuroscience, Neurodegeneration & Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration & Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
319
|
Amyloid-β Oligomers Interact with Neurexin and Diminish Neurexin-mediated Excitatory Presynaptic Organization. Sci Rep 2017; 7:42548. [PMID: 28211900 PMCID: PMC5304201 DOI: 10.1038/srep42548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/12/2017] [Indexed: 01/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by excessive production and deposition of amyloid-beta (Aβ) proteins as well as synapse dysfunction and loss. While soluble Aβ oligomers (AβOs) have deleterious effects on synapse function and reduce synapse number, the underlying molecular mechanisms are not well understood. Here we screened synaptic organizer proteins for cell-surface interaction with AβOs and identified a novel interaction between neurexins (NRXs) and AβOs. AβOs bind to NRXs via the N-terminal histidine-rich domain (HRD) of β-NRX1/2/3 and alternatively-spliced inserts at splicing site 4 of NRX1/2. In artificial synapse-formation assays, AβOs diminish excitatory presynaptic differentiation induced by NRX-interacting proteins including neuroligin1/2 (NLG1/2) and the leucine-rich repeat transmembrane protein LRRTM2. Although AβOs do not interfere with the binding of NRX1β to NLG1 or LRRTM2, time-lapse imaging revealed that AβO treatment reduces surface expression of NRX1β on axons and that this reduction depends on the NRX1β HRD. In transgenic mice expressing mutated human amyloid precursor protein, synaptic expression of β-NRXs, but not α-NRXs, decreases. Thus our data indicate that AβOs interact with NRXs and that this interaction inhibits NRX-mediated presynaptic differentiation by reducing surface expression of axonal β-NRXs, providing molecular and mechanistic insights into how AβOs lead to synaptic pathology in AD.
Collapse
|
320
|
Huang Y, Todd N, Thathiah A. The role of GPCRs in neurodegenerative diseases: avenues for therapeutic intervention. Curr Opin Pharmacol 2017; 32:96-110. [DOI: 10.1016/j.coph.2017.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
|
321
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
322
|
Emmitte KA. mGlu5negative allosteric modulators: a patent review (2013 - 2016). Expert Opin Ther Pat 2017; 27:691-706. [DOI: 10.1080/13543776.2017.1280466] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
323
|
Kalinowska M, Francesconi A. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease. Curr Neuropharmacol 2017; 14:494-503. [PMID: 27296642 PMCID: PMC4983749 DOI: 10.2174/1570159x13666150515234434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022] Open
Abstract
Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions.
Collapse
Affiliation(s)
| | - Anna Francesconi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Room 706, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
324
|
Cissé M, Duplan E, Checler F. The transcription factor XBP1 in memory and cognition: Implications in Alzheimer disease. Mol Med 2017; 22:905-917. [PMID: 28079229 DOI: 10.2119/molmed.2016.00229] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- Moustapha Cissé
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
325
|
Abstract
Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.
Collapse
Affiliation(s)
- José A del Río
- a Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC) , Parc Científic de Barcelona, Barcelona , Spain.,b Department of Cell Biology, Physiology and Inmunology , Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Barcelona , Spain
| | - Rosalina Gavín
- a Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC) , Parc Científic de Barcelona, Barcelona , Spain.,b Department of Cell Biology, Physiology and Inmunology , Facultat de Biologia, Universitat de Barcelona , Barcelona , Spain.,c Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Barcelona , Spain
| |
Collapse
|
326
|
Burns LH, Wang HY. Altered filamin A enables amyloid beta-induced tau hyperphosphorylation and neuroinflammation in Alzheimer's disease. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2017; 4:263-271. [PMID: 34295950 PMCID: PMC8294116 DOI: 10.20517/2347-8659.2017.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with proteopathy characterized by abnormalities in amyloid beta (Aβ) and tau proteins. Defective amyloid and tau propagate and aggregate, leading to eventual amyloid plaques and neurofibrillary tangles. New data show that a third proteopathy, an altered conformation of the scaffolding protein filamin A (FLNA), is critically linked to the amyloid and tau pathologies in AD. Altered FLNA is pervasive in AD brain and without apparent aggregation. In a striking interdependence, altered FLNA is both induced by Aβ and required for two prominent pathogenic signaling pathways of Aβ. Aβ monomers or small oligomers signal via the α7 nicotinic acetylcholine receptor (α7nAChR) to activate kinases that hyperphosphorylate tau to cause neurofibrillary lesions and formation of neurofibrillary tangles. Altered FLNA also enables a persistent activation of toll-like-receptor 4 (TLR4) by Aβ, leading to excessive inflammatory cytokine release and neuroinflammation. The novel AD therapeutic candidate PTI-125 binds and reverses the altered FLNA conformation to prevent Aβ’s signaling via α7nAChR and aberrant activation of TLR4, thus reducing multiple AD-related neuropathologies. As a regulator of Aβ’s signaling via α7nAChR and TLR4, altered FLNA represents a novel AD therapeutic target.
Collapse
Affiliation(s)
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY 10031, USA.,Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
327
|
Jan A, Jansonius B, Delaidelli A, Somasekharan SP, Bhanshali F, Vandal M, Negri GL, Moerman D, MacKenzie I, Calon F, Hayden MR, Taubert S, Sorensen PH. eEF2K inhibition blocks Aβ42 neurotoxicity by promoting an NRF2 antioxidant response. Acta Neuropathol 2017; 133:101-119. [PMID: 27752775 DOI: 10.1007/s00401-016-1634-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023]
Abstract
Soluble oligomers of amyloid-β (Aβ) impair synaptic plasticity, perturb neuronal energy homeostasis, and are implicated in Alzheimer's disease (AD) pathogenesis. Therefore, significant efforts in AD drug discovery research aim to prevent the formation of Aβ oligomers or block their neurotoxicity. The eukaryotic elongation factor-2 kinase (eEF2K) plays a critical role in synaptic plasticity, and couples neurotransmission to local dendritic mRNA translation. Recent evidence indicates that Aβ oligomers activate neuronal eEF2K, suggesting a potential link to Aβ induced synaptic dysfunction. However, a detailed understanding of the role of eEF2K in AD pathogenesis, and therapeutic potential of eEF2K inhibition in AD, remain to be determined. Here, we show that eEF2K activity is increased in postmortem AD patient cortex and hippocampus, and in the hippocampus of aged transgenic AD mice. Furthermore, eEF2K inhibition using pharmacological or genetic approaches prevented the toxic effects of Aβ42 oligomers on neuronal viability and dendrite formation in vitro. We also report that eEF2K inhibition promotes the nuclear factor erythroid 2-related factor (NRF2) antioxidant response in neuronal cells, which was crucial for the beneficial effects of eEF2K inhibition in neurons exposed to Aβ42 oligomers. Accordingly, NRF2 knockdown or overexpression of the NRF2 inhibitor, Kelch-Like ECH-Associated Protein-1 (Keap1), significantly attenuated the neuroprotection associated with eEF2K inhibition. Finally, genetic deletion of the eEF2K ortholog efk-1 reduced oxidative stress, and improved chemotaxis and serotonin sensitivity in C. elegans expressing human Aβ42 in neurons. Taken together, these findings highlight the potential utility of eEF2K inhibition to reduce Aβ-mediated oxidative stress in AD.
Collapse
Affiliation(s)
- Asad Jan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Brandon Jansonius
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | - Forum Bhanshali
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Milène Vandal
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Gian Luca Negri
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ian MacKenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Pavillon Ferdinand-Vandry 1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Stefan Taubert
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
328
|
Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115:179-191. [DOI: 10.1016/j.phrs.2016.11.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
|
329
|
Peters C, Bascuñán D, Opazo C, Aguayo LG. Differential Membrane Toxicity of Amyloid-β Fragments by Pore Forming Mechanisms. J Alzheimers Dis 2016; 51:689-99. [PMID: 26890761 DOI: 10.3233/jad-150896] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A major characteristic of Alzheimer's disease (AD) is the presence of amyloid-β peptide (Aβ) oligomers and aggregates in the brain. It is known that Aβ oligomers interact with the neuronal membrane and induce perforations that cause an influx of calcium ions and enhance the release of synaptic vesicles leading to a delayed synaptic failure by vesicle depletion. To better understand the mechanism by which Aβ exerts its effect on the plasma membrane, we evaluated three Aβ fragments derived from different regions of Aβ(1-42); Aβ(1-28) from the N-terminal region, Aβ(25-35) from the central region, and Aβ(17-42) from the C-terminal region. The neuronal activities of these fragments were examined with patch clamp, immunofluorescence, transmission electron microscopy, aggregation assays, calcium imaging, and MTT reduction assays. The present results indicate that the fragment Aβ(1-28) contributes to aggregation, an increase in intracellular calcium and synaptotoxicity, but is not involved in membrane perforation; Aβ(25-35) is important for membrane perforation, calcium increase, and synaptotoxicity; and Aβ(17-42) induced mitochondrial toxicity similar to the full length Aβ(1-42), but was unable to induce membrane perforation and calcium increase, supporting the idea that it is less toxic in the non-amyloidogenic pathway.
Collapse
|
330
|
Westmark CJ, Chuang SC, Hays SA, Filon MJ, Ray BC, Westmark PR, Gibson JR, Huber KM, Wong RKS. APP Causes Hyperexcitability in Fragile X Mice. Front Mol Neurosci 2016; 9:147. [PMID: 28018172 PMCID: PMC5156834 DOI: 10.3389/fnmol.2016.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO /APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO /APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Shih-Chieh Chuang
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| | - Seth A. Hays
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mikolaj J. Filon
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Brian C. Ray
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Pamela R. Westmark
- Department of Medicine, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Robert K. S. Wong
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| |
Collapse
|
331
|
Abstract
Alzheimer’s disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
332
|
Zahratka JA, Shao Y, Shaw M, Todd K, Formica SV, Khrestian M, Montine T, Leverenz JB, Bekris LM. Regulatory region genetic variation is associated with FYN expression in Alzheimer's disease. Neurobiol Aging 2016; 51:43-53. [PMID: 28033507 DOI: 10.1016/j.neurobiolaging.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022]
Abstract
Neurofibrillary tangles (NFTs), composed of hyperphosphorylated tau, are a key pathologic feature of Alzheimer's disease (AD). Tau phosphorylation is under the control of multiple kinases and phosphatases, including Fyn. Previously, our group found an association between 2 regulatory single nucleotide polymorphisms in the FYN gene with increased tau levels in the cerebrospinal fluid. In this study, we hypothesized that Fyn expression in the brain is influenced by AD status and genetic content. We found that Fyn protein, but not messenger RNA, levels were increased in AD patients compared to cognitively normal controls and are associated with regulatory region single nucleotide polymorphisms. In addition, the expression of the FYN 3'UTR can decrease expression in multiple cell lines, suggesting this regulatory region plays an important role in FYN expression. Taken together, these data suggest that FYN expression is regulated according to AD status and regulatory region haplotype, and genetic variants may be instrumental in the development of neurofibrillary tangles in AD and other tauopathies.
Collapse
Affiliation(s)
- Jeffrey A Zahratka
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Yvonne Shao
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - McKenzie Shaw
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kaitlin Todd
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shane V Formica
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Maria Khrestian
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas Montine
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
333
|
Pinnock EC, Jovanovic K, Pinto MG, Ferreira E, Dias BDC, Penny C, Knackmuss S, Reusch U, Little M, Schatzl HM, Weiss SFT. LRP/LR Antibody Mediated Rescuing of Amyloid-β-Induced Cytotoxicity is Dependent on PrPc in Alzheimer's Disease. J Alzheimers Dis 2016; 49:645-57. [PMID: 26484914 DOI: 10.3233/jad-150482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neuronal perturbations in Alzheimer's disease are attributed to the formation of extracellular amyloid-β (Aβ) neuritic plaques, composed predominantly of the neurotoxic Aβ42 isoform. Although the plaques have demonstrated a role in synaptic dysfunction, neuronal cytotoxicity has been attributed to soluble Aβ42 oligomers. The 37kDa/67kDa laminin receptor has been implicated in Aβ42 shedding and Aβ42-induced neuronal cytotoxicity, as well as internalization of this neurotoxic peptide. As the cellular prion protein binds to both LRP/LR and Aβ42, the mechanism underlying this cytotoxicity may be indirectly due to the PrPc-Aβ42 interaction with LRP/LR. The effects of this interaction were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assays. PrPc overexpression significantly enhanced Aβ42 cytotoxicity in vitro, while PrP-/- cells were more resistant to the cytotoxic effects of Aβ42 and exhibited significantly less cell death than PrPc expressing N2a cells. Although anti-LRP/LR specific antibody IgG1-iS18 significantly enhanced cell viability in both pSFV1-huPrP1-253 transfected and non-transfected cells treated with exogenous Aβ42, it failed to have any cell rescuing effect in PrP-/- HpL3-4 cells. These results suggest that LRP/LR plays a significant role in Aβ42-PrPc mediated cytotoxicity and that anti-LRP/LR specific antibodies may serve as potential therapeutic tools for Alzheimer's disease.
Collapse
Affiliation(s)
- Emma C Pinnock
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Katarina Jovanovic
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Maxine G Pinto
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Bianca Da Costa Dias
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Clement Penny
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, Parktown, Republic of South Africa (RSA)
| | | | - Uwe Reusch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| |
Collapse
|
334
|
Brain mGluR5 in mice with amyloid beta pathology studied with in vivo [ 11C]ABP688 PET imaging and ex vivo immunoblotting. Neuropharmacology 2016; 113:293-300. [PMID: 27743932 DOI: 10.1016/j.neuropharm.2016.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aβ) into insoluble plaques. Intermediates, Aβ oligomers (Aβo), appear to be the mechanistic cause of disease. The de facto PET AD ligand, [11C]PIB, binds and visualizes Aβ plaque load, which does not correlate well with disease severity. Therefore, finding a dynamic target that changes with pathology progression in AD is of great interest. Aβo alter synaptic plasticity, inhibit long-term potentiation, and facilitate long-term depression; key mechanisms involved in memory and learning. In order to convey these neurotoxic effects, Aβo requires interaction with the metabotropic glutamate 5 receptor (mGluR5). The aim was to investigate in vivo mGluR5 changes in an Aβ pathology model using PET. Wild type C57/BL6 (wt) and AβPP transgenic mice (tg-ArcSwe), 4, 8, and 16 months old, were PET scanned with [11C]ABP688, which is highly specific to mGluR5, to investigate changes in mGluR5. Mouse brains were extracted postscan and mGluR5 and Aβ protofibril levels were assessed with immunoblotting and ELISA respectively. Receptor-dense brain regions (hippocampus, thalamus, and striatum) displayed higher [11C]ABP688 concentrations corresponding to mGluR5 expression pattern. Mice had similar uptake levels of [11C]ABP688 regardless of genotype or age. Immunoblotting revealed general decline in mGluR5 expression and elevated levels of mGluR5 in 16 months old tg-ArcSwe compared with wt mice. [11C]ABP688 could visualize mGluR5 in the mouse brain. In conclusion, mGluR5 levels were found to decrease with age and tended to be higher in tg-ArcSwe compared with wt mice, however these changes could not be quantified with PET.
Collapse
|
335
|
Berridge MJ. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 2016; 96:1261-96. [DOI: 10.1152/physrev.00006.2016] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many cellular functions are regulated by calcium (Ca2+) signals that are generated by different signaling pathways. One of these is the inositol 1,4,5-trisphosphate/calcium (InsP3/Ca2+) signaling pathway that operates through either primary or modulatory mechanisms. In its primary role, it generates the Ca2+ that acts directly to control processes such as metabolism, secretion, fertilization, proliferation, and smooth muscle contraction. Its modulatory role occurs in excitable cells where it modulates the primary Ca2+ signal generated by the entry of Ca2+ through voltage-operated channels that releases Ca2+ from ryanodine receptors (RYRs) on the internal stores. In carrying out this modulatory role, the InsP3/Ca2+ signaling pathway induces subtle changes in the generation and function of the voltage-dependent primary Ca2+ signal. Changes in the nature of both the primary and modulatory roles of InsP3/Ca2+ signaling are a contributory factor responsible for the onset of a large number human diseases.
Collapse
Affiliation(s)
- Michael J. Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
336
|
Dias MVS, Teixeira BL, Rodrigues BR, Sinigaglia-Coimbra R, Porto-Carreiro I, Roffé M, Hajj GNM, Martins VR. PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 2016; 12:2113-2128. [PMID: 27629560 DOI: 10.1080/15548627.2016.1226735] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prion protein modulates many cellular functions including the secretion of trophic factors by astrocytes. Some of these factors are found in exosomes, which are formed within multivesicular bodies (MVBs) and secreted into the extracellular space to modulate cell-cell communication. The mechanisms underlying exosome biogenesis were not completely deciphered. Here, we demonstrate that primary cultures of astrocytes and fibroblasts from prnp-null mice secreted lower levels of exosomes than wild-type cells. Furthermore, prnp-null astrocytes exhibited reduced MVB formation and increased autophagosome formation. The reconstitution of PRNP expression at the cell membrane restored exosome secretion in PRNP-deficient astrocytes, whereas macroautophagy/autophagy inhibition via BECN1 depletion reestablished exosome release in these cells. Moreover, the PRNP octapeptide repeat domain was necessary to promote exosome secretion and to impair the formation of the CAV1-dependent ATG12-ATG5 cytoplasmic complex that drives autophagosome formation. Accordingly, higher levels of CAV1 were found in lipid raft domains instead of in the cytoplasm in prnp-null cells. Collectively, these findings demonstrate that PRNP supports CAV1-suppressed autophagy to protect MVBs from sequestration into phagophores, thus facilitating exosome secretion.
Collapse
Affiliation(s)
- Marcos V S Dias
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bianca L Teixeira
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Bruna R Rodrigues
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | | | | | - Martín Roffé
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Glaucia N M Hajj
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| | - Vilma R Martins
- a International Research Center , A.C. Camargo Cancer Center , São Paulo , Brazil , National Institute for Oncogenomics, INCITO
| |
Collapse
|
337
|
Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density. PLoS One 2016; 11:e0162755. [PMID: 27618534 PMCID: PMC5019418 DOI: 10.1371/journal.pone.0162755] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/26/2016] [Indexed: 11/19/2022] Open
Abstract
The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density.
Collapse
|
338
|
Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de La Fuente Revenga M, Guillem AM, Haidar M, Ijomone OM, Nadorp B, Qi L, Perera ND, Refsgaard LK, Reid KM, Sabbar M, Sahoo A, Schaefer N, Sheean RK, Suska A, Verma R, Vicidomini C, Wright D, Zhang XD, Seidenbecher C. Synaptopathies: synaptic dysfunction in neurological disorders - A review from students to students. J Neurochem 2016; 138:785-805. [PMID: 27333343 PMCID: PMC5095804 DOI: 10.1111/jnc.13713] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page 783.
Collapse
Affiliation(s)
- Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara C Schweitzer
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany
| | - Pamela V Martino Adami
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires, Argentina
| | - Priyanjalee Banerjee
- Department of Biochemistry, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Silvina Catuara-Solarz
- Systems Biology Program, Cellular and Systems Neurobiology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mario de La Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Alain Marc Guillem
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F. 07000, Mexico
| | - Mouna Haidar
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Omamuyovwi M Ijomone
- Department of Human Anatomy, Cross River University of Technology, Okuku Campus, Cross River, Nigeria
| | - Bettina Nadorp
- The Department of Biological Chemistry, The Edmond and Lily Safra Center for Brain Sciences, The Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Israel
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States of America
| | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Louise K Refsgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kimberley M Reid
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Mariam Sabbar
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Arghyadip Sahoo
- Department of Biochemistry, Midnapore Medical College, West Bengal University of Health Sciences, West Bengal, India
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - Rebecca K Sheean
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anna Suska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rajkumar Verma
- Department of Neurosciences Uconn Health Center, Farmington, CT, United States of America
| | | | - Dean Wright
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Xing-Ding Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Constanze Seidenbecher
- Department for Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany.
| |
Collapse
|
339
|
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537:50-6. [DOI: 10.1038/nature19323] [Citation(s) in RCA: 2093] [Impact Index Per Article: 232.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
340
|
Peggion C, Bertoli A, Sorgato MC. Almost a century of prion protein(s): From pathology to physiology, and back to pathology. Biochem Biophys Res Commun 2016; 483:1148-1155. [PMID: 27581199 DOI: 10.1016/j.bbrc.2016.07.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022]
Abstract
Prions are one of the few pathogens whose name is renowned at all population levels, after the dramatic years pervaded by the fear of eating prion-infected food. If now this, somehow irrational, scare of bovine meat inexorably transmitting devastating brain disorders is largely subdued, several prion-related issues are still unsolved, precluding the design of therapeutic approaches that could slow, if not halt, prion diseases. One unsolved issue is, for example, the role of the prion protein (PrPC), whole conformational misfolding originates the prion but whose physiologic reason d'etre in neurons, and in cells at large, remains enigmatic. Preceded by a historical outline, the present review will discuss the functional pleiotropicity ascribed to PrPC, and whether this aspect could fall, at least in part, into a more concise framework. It will also be devoted to radically different perspectives for PrPC, which have been recently brought to the attention of the scientific world with unexpected force. Finally, it will discuss the possible reasons allowing an evolutionary conserved and benign protein, as PrPC is, to turn into a high affinity receptor for pathologic misfolded oligomers, and to transmit their toxic message into neurons.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - M Catia Sorgato
- Department of Biomedical Sciences, University of Padova, Via Bassi 58/B, 35131 Padova, Italy; C.N.R. Institute of Neuroscience, University of Padova, Via Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
341
|
Beraldo FH, Ostapchenko VG, Caetano FA, Guimaraes ALS, Ferretti GDS, Daude N, Bertram L, Nogueira KOPC, Silva JL, Westaway D, Cashman NR, Martins VR, Prado VF, Prado MAM. Regulation of Amyloid β Oligomer Binding to Neurons and Neurotoxicity by the Prion Protein-mGluR5 Complex. J Biol Chem 2016; 291:21945-21955. [PMID: 27563063 DOI: 10.1074/jbc.m116.738286] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) has been suggested to operate as a scaffold/receptor protein in neurons, participating in both physiological and pathological associated events. PrPC, laminin, and metabotropic glutamate receptor 5 (mGluR5) form a protein complex on the plasma membrane that can trigger signaling pathways involved in neuronal differentiation. PrPC and mGluR5 are co-receptors also for β-amyloid oligomers (AβOs) and have been shown to modulate toxicity and neuronal death in Alzheimer's disease. In the present work, we addressed the potential crosstalk between these two signaling pathways, laminin-PrPC-mGluR5 or AβO-PrPC-mGluR5, as well as their interplay. Herein, we demonstrated that an existing complex containing PrPC-mGluR5 has an important role in AβO binding and activity in neurons. A peptide mimicking the binding site of laminin onto PrPC (Ln-γ1) binds to PrPC and induces intracellular Ca2+ increase in neurons via the complex PrPC-mGluR5. Ln-γ1 promotes internalization of PrPC and mGluR5 and transiently decreases AβO biding to neurons; however, the peptide does not impact AβO toxicity. Given that mGluR5 is critical for toxic signaling by AβOs and in prion diseases, we tested whether mGlur5 knock-out mice would be susceptible to prion infection. Our results show mild, but significant, effects on disease progression, without affecting survival of mice after infection. These results suggest that PrPC-mGluR5 form a functional response unit by which multiple ligands can trigger signaling. We propose that trafficking of PrPC-mGluR5 may modulate signaling intensity by different PrPC ligands.
Collapse
Affiliation(s)
| | | | - Fabiana A Caetano
- From the Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7,Canada
| | - Andre L S Guimaraes
- From the Robarts Research Institute and the Universidade Estadual de Montes Claros, Montes Claros, MG 39401-089, Brazil
| | - Giulia D S Ferretti
- From the Robarts Research Institute and the Programa de Biologia Estrutural, Instituto de Bioquimica Medica Leopoldo de Meis, Instututo Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonacia Magnetica Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Nathalie Daude
- the Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Lisa Bertram
- the Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Katiane O P C Nogueira
- From the Robarts Research Institute and the Instituto de Ciências Exatas e Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro S/N, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Jerson L Silva
- the Programa de Biologia Estrutural, Instituto de Bioquimica Medica Leopoldo de Meis, Instututo Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonacia Magnetica Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - David Westaway
- the Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Neil R Cashman
- the Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vilma R Martins
- the International Center for Research and Education, A. C. Camargo Cancer Center, São Paulo, SP CEP 01509-010, Brazil, and
| | - Vania F Prado
- From the Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7,Canada, the Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Marco A M Prado
- From the Robarts Research Institute and the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5B7,Canada, the Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
342
|
Abstract
Although the prevalence of dementia continues to increase worldwide, incidence in the western world might have decreased as a result of better vascular care and improved brain health. Alzheimer's disease, the most prevalent cause of dementia, is still defined by the combined presence of amyloid and tau, but researchers are gradually moving away from the simple assumption of linear causality as proposed in the original amyloid hypothesis. Age-related, protective, and disease-promoting factors probably interact with the core mechanisms of the disease. Amyloid β42, and tau proteins are established core cerebrospinal biomarkers; novel candidate biomarkers include amyloid β oligomers and synaptic markers. MRI and fluorodeoxyglucose PET are established imaging techniques for diagnosis of Alzheimer's disease. Amyloid PET is gaining traction in the clinical arena, but validity and cost-effectiveness remain to be established. Tau PET might offer new insights and be of great help in differential diagnosis and selection of patients for trials. In the search for understanding the disease mechanism and keys to treatment, research is moving increasingly into the earliest phase of disease. Preclinical Alzheimer's disease is defined as biomarker evidence of Alzheimer's pathological changes in cognitively healthy individuals. Patients with subjective cognitive decline have been identified as a useful population in whom to look for preclinical Alzheimer's disease. Moderately positive results for interventions targeting several lifestyle factors in non-demented elderly patients and moderately positive interim results for lowering amyloid in pre-dementia Alzheimer's disease suggest that, ultimately, there will be a future in which specific anti-Alzheimer's therapy will be combined with lifestyle interventions targeting general brain health to jointly combat the disease. In this Seminar, we discuss the main developments in Alzheimer's research.
Collapse
Affiliation(s)
- Philip Scheltens
- Department of Neurology & Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands.
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monique M B Breteler
- German Center for Neurodegenerative diseases (DZNE), and Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Bart de Strooper
- VIB Center for the Biology of Disease, VIB-Leuven, Leuven, Belgium; KU Leuven Center for Human Genetics, LIND en Universitaire ziekenhuizen, Leuven, Belgium; Institute of Neurology, University College London, London, UK
| | - Giovanni B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland; IRCCS Fatebenefratelli, Brescia, Italy
| | - Stephen Salloway
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | |
Collapse
|
343
|
Thomas MH, Pelleieux S, Vitale N, Olivier JL. Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie 2016; 130:168-177. [PMID: 27473185 DOI: 10.1016/j.biochi.2016.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/24/2016] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease and associated diseases constitute a major public health concern worldwide. Nutrition-based, preventive strategies could possibly be effective in delaying the occurrence of these diseases and lower their prevalence. Arachidonic acid is the second major polyunsaturated fatty acid (PUFA) and several studies support its involvement in Alzheimer's disease. The objective of this review is to examine how dietary arachidonic acid contributes to Alzheimer's disease mechanisms and therefore to its prevention. First, we explore the sources of neuronal arachidonic acid that could potentially originate from either the conversion of linoleic acid, or from dietary sources and transfer across the blood-brain-barrier. In a second part, a brief overview of the role of the two main agents of Alzheimer's disease, tau protein and Aβ peptide is given, followed by the examination of the relationship between arachidonic acid and the disease. Third, the putative mechanisms by which arachidonic acid could influence Alzheimer's disease occurrence and evolution are presented. The conclusion is devoted to what remains to be determined before integrating arachidonic acid in the design of preventive strategies against Alzheimer's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mélanie H Thomas
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France
| | - Sandra Pelleieux
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR CNRS 3212, Université de Strasbourg, Strasbourg, France
| | - Jean Luc Olivier
- Unité de Recherche Aliment et Fonctionnalité des Produits Animaux (URAFPA), INRA USC 0340, Université de Lorraine, Nancy, France.
| |
Collapse
|
344
|
Nguyen HL, Thi Minh Thu T, Truong PM, Lan PD, Man VH, Nguyen PH, Tu LA, Chen YC, Li MS. Aβ41 Aggregates More Like Aβ40 than Like Aβ42: In Silico and in Vitro Study. J Phys Chem B 2016; 120:7371-9. [DOI: 10.1021/acs.jpcb.6b06368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Tran Thi Minh Thu
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Phan Minh Truong
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Pham Dang Lan
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Phuong H. Nguyen
- Laboratoire
de
Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ly Anh Tu
- Department
of Applied Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology - VNU HCM, 268 Ly Thuong Kiet Street, District
10, Ho Chi Minh City, Vietnam
| | - Yi-Cheng Chen
- Department
of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
345
|
Agostini M, Fasolato C. When, where and how? Focus on neuronal calcium dysfunctions in Alzheimer's Disease. Cell Calcium 2016; 60:289-298. [PMID: 27451385 DOI: 10.1016/j.ceca.2016.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), since its characterization as a precise form of dementia with its own pathological hallmarks, has captured scientists' attention because of its complexity. The last 30 years have been filled with discoveries regarding the elusive aetiology of this disease and, thanks to advances in molecular biology and live imaging techniques, we now know that an important role is played by calcium (Ca2+). Ca2+, as ubiquitous second messenger, regulates a vast variety of cellular processes, from neuronal excitation and communication, to muscle fibre contraction and hormone secretion, with its action spanning a temporal scale that goes from microseconds to hours. It is therefore very challenging to conceive a single hypothesis that can integrate the numerous findings on this issue with those coming from the classical fields of AD research such as amyloid-beta (Aβ) and tau pathology. In this contribution, we will focus our attention on the Ca2+ hypothesis of AD, dissecting it, as much as possible, in its subcellular localization, where the Ca2+ signal meets its specificity. We will also follow the temporal evolution of the Ca2+ hypothesis, providing some of the most updated discoveries. Whenever possible, we will link the findings regarding Ca2+ dysfunction to the other players involved in AD pathogenesis, hoping to provide a crossover body of evidence, useful to amplify the knowledge that will lead towards the discovery of an effective therapy.
Collapse
Affiliation(s)
- Mario Agostini
- Department of Biomedical Sciences, University of Padua, Italy.
| | | |
Collapse
|
346
|
Banik A, Brown RE, Bamburg J, Lahiri DK, Khurana D, Friedland RP, Chen W, Ding Y, Mudher A, Padjen AL, Mukaetova-Ladinska E, Ihara M, Srivastava S, Padma Srivastava MV, Masters CL, Kalaria RN, Anand A. Translation of Pre-Clinical Studies into Successful Clinical Trials for Alzheimer's Disease: What are the Roadblocks and How Can They Be Overcome? J Alzheimers Dis 2016; 47:815-43. [PMID: 26401762 DOI: 10.3233/jad-150136] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical studies are essential for translation to disease treatments and effective use in clinical practice. An undue emphasis on single approaches to Alzheimer's disease (AD) appears to have retarded the pace of translation in the field, and there is much frustration in the public about the lack of an effective treatment. We critically reviewed past literature (1990-2014), analyzed numerous data, and discussed key issues at a consensus conference on Brain Ageing and Dementia to identify and overcome roadblocks in studies intended for translation. We highlight various factors that influence the translation of preclinical research and highlight specific preclinical strategies that have failed to demonstrate efficacy in clinical trials. The field has been hindered by the domination of the amyloid hypothesis in AD pathogenesis while the causative pathways in disease pathology are widely considered to be multifactorial. Understanding the causative events and mechanisms in the pathogenesis are equally important for translation. Greater efforts are necessary to fill in the gaps and overcome a variety of confounds in the generation, study design, testing, and evaluation of animal models and the application to future novel anti-dementia drug trials. A greater variety of potential disease mechanisms must be entertained to enhance progress.
Collapse
Affiliation(s)
- Avijit Banik
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Dheeraj Khurana
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, 318C Parran Hall, Pittsburgh, PA, USA
| | - Amritpal Mudher
- Southampton Neurosciences Group, University of Southampton, Southampton, UK
| | - Ante L Padjen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Elizabeta Mukaetova-Ladinska
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Sudhir Srivastava
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - M V Padma Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Royal Parade, The VIC, Australia
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, NIHR Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
347
|
Alzheimer disease: modeling an Aβ-centered biological network. Mol Psychiatry 2016; 21:861-71. [PMID: 27021818 DOI: 10.1038/mp.2016.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/15/2023]
Abstract
In genetically complex diseases, the search for missing heritability is focusing on rare variants with large effect. Thanks to next generation sequencing technologies, genome-wide characterization of these variants is now feasible in every individual. However, a lesson from current studies is that collapsing rare variants at the gene level is often insufficient to obtain a statistically significant signal in case-control studies, and that network-based analyses are an attractive complement to classical approaches. In Alzheimer disease (AD), according to the prevalent amyloid cascade hypothesis, the pathology is driven by the amyloid beta (Aβ) peptide. In past years, based on experimental studies, several hundreds of proteins have been shown to interfere with Aβ production, clearance, aggregation or toxicity. Thanks to a manual curation of the literature, we identified 335 genes/proteins involved in this biological network and classified them according to their cellular function. The complete list of genes, or its subcomponents, will be of interest in ongoing AD genetic studies.
Collapse
|
348
|
Ashford JW. Treatment of Alzheimer's Disease: The Legacy of the Cholinergic Hypothesis, Neuroplasticity, and Future Directions. J Alzheimers Dis 2016; 47:149-56. [PMID: 26402763 DOI: 10.3233/jad-150381] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this issue, an article by Waring et al. provides a meta-analysis of the effects of apo-lipo-protein E (APOE) genotype on the beneficial effect of acetyl-cholinesterase inhibitors (AChEIs) in patients with Alzheimer's disease (AD). There was no significant effect found. As of 2015, AChEI medications are the mainstay of AD treatment, and APOE genotype is the most significant factor associated with AD causation. This lack of a significant effect of APOE is analyzed with respect to the "Cholinergic Hypothesis" of AD, dating from 1976, through the recognition that cholinergic neurons are not the sole target of AD, but rather that AD attacks all levels of neuroplasticity in the brain, an idea originated by Ashford and Jarvik in 1985 and which still provides the clearest explanation for AD dementia. The "Amyloid Hypothesis" is dissected back to the alpha/beta pathway switching mechanism affecting the nexin-amyloid pre-protein (NAPP switch). The NAPP switch may be the critical neuroplasticity component of all learning involving synapse remodeling and subserve all learning mechanisms. The gamma-secretase cleavage is discussed, and its normal complementary products, beta-amyloid and the NAPP intracellular domain (NAICD), appear to be involved in natural synapse removal, but the link to AD dementia may involve the NAICD rather than beta-amyloid. Understanding neuroplasticity and the critical pathways to AD dementia are needed to determine therapies and preventive strategies for AD. In particular, the effect of APOE on AD predisposition needs to be established and a means found to adjust its effect to prevent AD.
Collapse
|
349
|
Haas LT, Strittmatter SM. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease. J Biol Chem 2016; 291:17112-21. [PMID: 27325698 DOI: 10.1074/jbc.m116.720664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/11/2022] Open
Abstract
The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling.
Collapse
Affiliation(s)
- Laura T Haas
- From the Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536 and the Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Stephen M Strittmatter
- From the Cellular Neuroscience, Neurodegeneration, and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06536 and
| |
Collapse
|
350
|
Viana da Silva S, Haberl MG, Zhang P, Bethge P, Lemos C, Gonçalves N, Gorlewicz A, Malezieux M, Gonçalves FQ, Grosjean N, Blanchet C, Frick A, Nägerl UV, Cunha RA, Mulle C. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. Nat Commun 2016; 7:11915. [PMID: 27312972 PMCID: PMC4915032 DOI: 10.1038/ncomms11915] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/12/2016] [Indexed: 01/24/2023] Open
Abstract
Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients.
Collapse
MESH Headings
- Adenosine A2 Receptor Antagonists/pharmacology
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/pathology
- Dendritic Spines/drug effects
- Dendritic Spines/metabolism
- Dendritic Spines/ultrastructure
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Long-Term Potentiation
- Memory, Episodic
- Mice
- Mice, Transgenic
- Neuroprotective Agents/pharmacology
- Presenilin-1/genetics
- Presenilin-1/metabolism
- Pyrimidines/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Triazines/pharmacology
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Silvia Viana da Silva
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
- BEB PhD program CNC Coimbra, 3004-517 Coimbra, Portugal
| | | | - Pei Zhang
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Philipp Bethge
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nélio Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Adam Gorlewicz
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Meryl Malezieux
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Francisco Q. Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Noëlle Grosjean
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Christophe Blanchet
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Andreas Frick
- University of Bordeaux, Neurocentre Magendie, INSERM U862, F-33000 Bordeaux, France
| | - U Valentin Nägerl
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, CNRS UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|