301
|
Cai S, Vijayan K, Cheng D, Lima EM, Discher DE. Micelles of different morphologies--advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm Res 2007; 24:2099-109. [PMID: 17564817 DOI: 10.1007/s11095-007-9335-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Worm-like and spherical micelles are both prepared here from the same amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly (epsilon-caprolactone) (PEO [5 kDa]-PCL [6.5 kDa]) in order to compare loading and delivery of hydrophobic drugs. MATERIALS AND METHODS Worm-like micelles of this degradable copolymer are nanometers in cross-section and spontaneously assemble to stable lengths of microns, resembling filoviruses in some respects and thus suggesting the moniker 'filomicelles'. The highly flexible worm-like micelles can also be sonicated to generate kinetically stable spherical micelles composed of the same copolymer. RESULTS The fission process exploits the finding that the PCL cores are fluid, rather than glassy or crystalline, and core-loading of the hydrophobic anticancer drug delivery, paclitaxel (TAX) shows that the worm-like micelles load and solubilize twice as much drug as spherical micelles. In cytotoxicity tests that compare to the clinically prevalent solubilizer, Cremophor EL, both micellar carriers are far less toxic, and both types of TAX-loaded micelles also show fivefold greater anticancer activity on A549 human lung cancer cells. CONCLUSION PEO-PCL based worm-like filomicelles appear to be promising pharmaceutical nanocarriers with improved solubilization efficiency and comparable stability to spherical micelles, as well as better safety and efficacy in vitro compared to the prevalent Cremophor EL TAX formulation.
Collapse
Affiliation(s)
- Shenshen Cai
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
302
|
Heredia KL, Tolstyka ZP, Maynard HD. Aminooxy End-Functionalized Polymers Synthesized by ATRP for Chemoselective Conjugation to Proteins. Macromolecules 2007. [DOI: 10.1021/ma070432v] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karina L. Heredia
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Zachary P. Tolstyka
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry & California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569
| |
Collapse
|
303
|
Bidwell GL, Davis AN, Fokt I, Priebe W, Raucher D. A thermally targeted elastin-like polypeptide-doxorubicin conjugate overcomes drug resistance. Invest New Drugs 2007; 25:313-26. [PMID: 17483874 DOI: 10.1007/s10637-007-9053-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
The ability of cancer cells to become simultaneously resistant to different drugs, a trait known as multidrug resistance, remains a major obstacle for successful anticancer therapy. One major mechanism of resistance involves cellular drug efflux by expression of P-glycoprotein (P-gp), a membrane transporter with a wide variety of substrates. Anthracyclines are especially prone to induction of resistance by the P-gp mechanism. P-gp mediated resistance is often confronted by use of P-gp inhibitors, synthesis of novel analogs, or conjugating drugs to macromolecular carriers in order to circumvent the efflux mechanism. In this report, the effect of free and Elastin-like polypeptide (ELP) bound doxorubicin (Dox) on the viability of sensitive (MES-SA and MCF-7) and multidrug resistant (MES-SA/Dx5 and NCI/ADR-RES) human carcinoma cells was studied in vitro. The resistant MES-SA/Dx5 cells demonstrated about 70 times higher resistance to free Dox than the sensitive MES-SA cells, and the NCI/ADR-RES cells were about 30 fold more resistant than the MCF-7 cells. However, the ELP-bound Dox was equally cytotoxic in both sensitive and resistant cell lines. The ELP-bound Dox was shown to accumulate in MES-SA/Dx5 cells, as opposed to free Dox, which was rapidly pumped out by the P-gp transporter. Since ELP is a thermally responsive carrier, the effect of hyperthermia on the cytotoxicity of the ELP-Dox conjugate was investigated. Both cytotoxicity and apoptosis were enhanced by hyperthermia in the Dox resistant cells. The results suggest that ELP-Dox conjugates may provide a means to thermally target solid tumors and to overcome drug resistance in cancer cells.
Collapse
Affiliation(s)
- Gene L Bidwell
- Department of Biochemistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
304
|
Lee GY, Park K, Nam JH, Kim SY, Byun Y. Anti-tumor and anti-metastatic effects of gelatin-doxorubicin and PEGylated gelatin-doxorubicin nanoparticles in SCC7 bearing mice. J Drug Target 2007; 14:707-16. [PMID: 17162740 DOI: 10.1080/10611860600935701] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The goal of this study was to develop a systemically non-toxic and stable circulation based passive targeting system for efficient anticancer treatment. Gelatin-doxorubicin (GD) and PEGylated gelatin-doxorubicin (PGD) nanoparticles were designed and their feasibilities as an anti-cancer drug were evaluated. The sizes of GD and PGD nanoparticles were about 135 and 250 nm, respectively, and they retained their structures for 2 days in PBS. Both GD and PGD had much lower cytotoxicity in vitro and in vivo than doxorubicin (DOX) at equivalent concentrations. However, PGD significantly inhibited tumor growth compared to the control and DOX treated group, and GD moderately suppressed tumor growth compared with the control but the suppressing effect of GD did not exceed that of DOX. And GD and PGD both remarkably suppressed pulmonary metastasis. We conclude that PGD is a potential cancer therapeutic, due to its excellent anti-tumor and anti-metastatic effects and low systemic toxicity.
Collapse
Affiliation(s)
- Gee Young Lee
- Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | | | | | | | | |
Collapse
|
305
|
Choi AO, Cho SJ, Desbarats J, Lovrić J, Maysinger D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnology 2007; 5:1. [PMID: 17295922 PMCID: PMC1802956 DOI: 10.1186/1477-3155-5-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 02/12/2007] [Indexed: 01/11/2023] Open
Abstract
Background Neuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs) are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable. Results We show here that QD surface modifications with N-acetylcysteine (NAC) alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y) cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye. Conclusion QD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.
Collapse
Affiliation(s)
- Angela O Choi
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Sung Ju Cho
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
- Faculty of Pharmacy and Department of Chemistry, University of Montreal, Pavillon J. A. Bombardier, C.P. 6128 Succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada
| | - Julie Desbarats
- Department of Physiology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jasmina Lovrić
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William-Osler, McIntyre Medical Sciences Building, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
306
|
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2007; 11:812-8. [PMID: 16935749 DOI: 10.1016/j.drudis.2006.07.005] [Citation(s) in RCA: 1296] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/31/2006] [Accepted: 07/10/2006] [Indexed: 12/14/2022]
Abstract
Of the tumor targeting strategies, the enhanced permeability and retention (EPR) effect of macromolecules is a key mechanism for solid tumor targeting, and considered a gold standard for novel drug design. In this review, we discuss various endogenous factors that can positively impact the EPR effect in tumor tissues. Further, we discuss ways to augment the EPR effect by use of exogenous agents, as well as practical methods available in the clinical setting. Some innovative examples developed by researchers to combat cancer by the EPR mechanism are also discussed.
Collapse
Affiliation(s)
- Arun K Iyer
- Laboratory of Microbiology and Oncology, Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 862-0082, Japan
| | | | | | | |
Collapse
|
307
|
|
308
|
Abstract
Engineered nanoparticles are emerging as useful tools for different purposes in life sciences, medicine and agriculture. Nanomedicine, an emerging discipline, involves the application of nanotechnology (usually regarded within the size range of 1-1000 nm) in the design of systems and devices that can facilitate our understanding of disease pathophysiology, nano-imaging, nanomedicines and nano-diagnostics. Among the different nanomaterials used to construct nanoparticles, are organic polymers, co-polymers and metals. Some of these materials can self assemble, and depending on the conditions under which the self-assembly process occurs, a vast array of shapes can be formed. Frequently, the nanoparticle morphology is spherical or tubular, mimicking the shape, but thus far, not the functions of subcellular organelles. We discuss here several representative nanoparticles, made of block copolymers and metals, highlighting some of their current uses, advantages and limitations in medicine. Nano-oncology and nano-neurosciences will also be discussed in more detail in the context of the intracellular fate of nanoparticles and possible long-term consequences on cell functions.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada
| |
Collapse
|
309
|
Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, Duncan R. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer–Dox–AGM in breast cancer cells. J Control Release 2007; 117:28-39. [PMID: 17129632 DOI: 10.1016/j.jconrel.2006.10.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/03/2006] [Accepted: 10/05/2006] [Indexed: 11/23/2022]
Abstract
Recently we have described an HPMA copolymer conjugate carrying both the aromatase inhibitor aminoglutethimide (AGM) and doxorubicin (Dox) as combination therapy. This showed markedly enhanced in vitro cytotoxicity compared to the HPMA copolymer-Dox (FCE28068), a conjugate that demonstrated activity in chemotherapy refractory breast cancer patients during early clinical trials. To better understand the superior activity of HPMA copolymer-Dox-AGM, here experiments were undertaken using MCF-7 and MCF-7ca (aromatase-transfected) breast cancer cell lines to: further probe the synergistic cytotoxic effects of AGM and Dox in free and conjugated form; to compare the endocytic properties of HPMA copolymer-Dox-AGM and HPMA copolymer-Dox (binding, rate and mechanism of cellular uptake); the rate of drug liberation by lysosomal thiol-dependant proteases (i.e. conjugate activation), and also, using immunocytochemistry, to compare their molecular mechanism of action. It was clearly shown that attachment of both drugs to the same polymer backbone was a requirement for enhanced cytotoxicity. FACS studies indicated both conjugates have a similar pattern of cell binding and endocytic uptake (at least partially via a cholesterol-dependent pathway), however, the pattern of enzyme-mediated drug liberation was distinctly different. Dox release from PK1 was linear with time, whereas the release of both Dox and AGM from HPMA copolymer-Dox-AGM was not, and the initial rate of AGM release was much faster than that seen for the anthracycline. Immunocytochemistry showed that both conjugates decreased the expression of ki67. However, this effect was more marked for HPMA copolymer-Dox-AGM and, moreover, only this conjugate decreased the expression of the anti-apoptotic protein bcl-2. In conclusion, the superior in vitro activity of HPMA copolymer-Dox-AGM cannot be attributed to differences in endocytic uptake, and it seems likely that the synergistic effect of Dox and AGM is due to the kinetics of intracellular drug liberation which leads to enhanced activity.
Collapse
Affiliation(s)
- Francesca Greco
- Centre for Polymer Therapeutics, Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Ave., Cardiff CF10 3XF, UK
| | | | | | | | | | | | | |
Collapse
|
310
|
Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, Minko T. Dendrimer Versus Linear Conjugate: Influence of Polymeric Architecture on the Delivery and Anticancer Effect of Paclitaxel. Bioconjug Chem 2006; 17:1464-72. [PMID: 17105225 DOI: 10.1021/bc060240p] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relative difference in polymeric architectures of dendrimer and linear bis(poly(ethylene glycol)) (PEG) polymer in conjugation with paclitaxel has been described. Paclitaxel, a poorly soluble anticancer drug, was covalently conjugated with PAMAM G4 hydroxyl-terminated dendrimer and bis(PEG) polymer for the potential enhancement of drug solubility and cytotoxicity. Both conjugates were characterized by 1NMR, HPLC, and MALDI/TOF. In addition, molecular conformations of dendrimer, bis(PEG), paclitaxel, and its polymeric conjugates were studied by molecular modeling. Hydrolysis of the ester bond in the conjugate was analyzed by HPLC using esterase hydrolyzing enzyme. In vitro cytotoxicity of dendrimer, bis(PEG), paclitaxel, and polymeric conjugates containing paclitaxel was evaluated using A2780 human ovarian carcinoma cells. Cytotoxicity increased by 10-fold with PAMAM dendrimer-succinic acid-paclitaxel conjugate when compared with free nonconjugated drug. Data obtained indicate that the nanosized dendritic polymer conjugates can be used with good success as anticancer drug carriers.
Collapse
Affiliation(s)
- Jayant J Khandare
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
311
|
Kainthan RK, Gnanamani M, Ganguli M, Ghosh T, Brooks DE, Maiti S, Kizhakkedathu JN. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA. Biomaterials 2006; 27:5377-90. [PMID: 16854460 DOI: 10.1016/j.biomaterials.2006.06.021] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG) are synthesized by multibranching anionic ring opening polymerization. Multivalent cationic sites are added to these polymers by a post-amination and quarternization reactions. Blood compatibility studies using these polymers at different concentrations showed insignificant effects on complement activation, platelet activation, coagulation, erythrocyte aggregation and hemolysis compared to branched cationic polyethyleneimine (PEI). The degree of quarternization does not have large influence on the blood compatibility of the new polymers. Cytotoxicity of these polymers is significantly lower than that of PEI and is a function of quarternized nitrogen present in the polymer. Also, these polymers bind DNA in the nanomolar range and are able to condense DNA to highly compact, stable, water soluble nanoparticles in the range of 60-80 nm. Gel electrophoresis studies showed that they form electroneutral complexes with DNA around N/P ratio 1 irrespective of the percentage of quarternization under the conditions studied.
Collapse
Affiliation(s)
- Rajesh Kumar Kainthan
- Centre for Blood Research and Department of Pathology and Lab Medicine, 2350 Health Sciences Mall, Life Science Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
312
|
Wojtyk JT, Goyan R, Gudgin-Dickson E, Pottier R. Exploiting tumour biology to develop novel drug delivery strategies for PDT. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.mla.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
313
|
Berg K, Høgset A, Prasmickaite L, Weyergang A, Bonsted A, Dietze A, Lou PJ, Bown S, Norum OJ, Møllergård HMT, Selbo PK. Photochemical internalization (PCI): A novel technology for activation of endocytosed therapeutic agents. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.mla.2006.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
314
|
|
315
|
Abstract
Cysteine cathepsins are highly upregulated in a wide variety of cancers by mechanisms ranging from gene amplification to post-transcriptional modification. Their localization within intracellular lysosomes often changes during neoplastic progression, resulting in secretion of both inactive and active forms and association with binding partners on the tumour cell surface. Secreted, cell-surface and intracellular cysteine cathepsins function in proteolytic pathways that increase neoplastic progression. Direct proof for causal roles in tumour growth, migration, invasion, angiogenesis and metastasis has been shown by downregulating or ablating the expression of individual cysteine cathepsins in tumour cells and in transgenic mouse models of human cancer.
Collapse
Affiliation(s)
- Mona Mostafa Mohamed
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
316
|
Abstract
Cyclodextrins, cyclic oligomers of glucose, have been used in pharmaceutical formulations for decades as a result to their biocompatibilities, low toxicities and their abilities to solubilise organic small molecules via inclusion complex formation. The incorporation of cyclodextrins within polymers of numerous types, for use as drug delivery agents, has been explored. Illustrative of the flexibility in polymer chemistry and delivery application that is possible with these materials, two linear cyclodextrin-containing polymers are in preclinical and clinical development for the non-covalent delivery of nucleic acid therapeutics and covalent delivery of a small-molecule drug, respectively. This document provides an overview of the background and progress that has been made with these materials thus far, as well as suggestions for their future development and characterisation.
Collapse
|
317
|
Euliss LE, DuPont JA, Gratton S, DeSimone J. Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 2006; 35:1095-104. [PMID: 17057838 DOI: 10.1039/b600913c] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This tutorial review presents an overview of strategies for the synthesis and fabrication of organic nanomaterials, specifically those with potential for use in medical applications. Examples include liposomes, micelles, polymer-drug conjugates and dendrimers. Methods of driving shape via"bottom-up" synthetic approaches and thermodynamics and kinetics are discussed. Furthermore, methods of driving shape via"top-down" physical and engineering techniques are also explored. Finally, a novel method (referred to as PRINT) used to produce nanoparticles that are shape-specific, can contain any cargo, and can be easily modified is examined along with its potential future role in nanomedicine.
Collapse
Affiliation(s)
- Larken E Euliss
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
318
|
Abstract
The intricate problems associated with the delivery and various unnecessary in vivo transitions of proteins and drugs needs to be tackled soon to be able to exploit the myriad of putative therapeutics created by the biotechnology boom. Nanomedicine is one of the most promising applications of nanotechnology in the field of medicine. It has been defined as the monitoring, repair, construction and control of human biological systems at the molecular level using engineered nanodevices and nanostructures. These nanostructured medicines will eventually turn the world of drug delivery upside down. PEGylation (i.e. the attachment of polyethylene glycol to proteins and drugs) is an upcoming methodology for drug development and it has the potential to revolutionise medicine by drastically improving the pharmacokinetic and pharmacodynamic properties of the administered drug. This article provides a total strategy for improving the therapeutic efficacy of various biotechnological products in drug delivery. This article also presents an extensive analysis of most of the PEGylated proteins, peptides and drugs, together with extensive clinical data. Nanomedicines and PEGylation, the latest offshoots of nanotechnology will definitely pave a way in the field of drug delivery where targeted delivery, formulation, in vivo stability and retention are the major challenges.
Collapse
Affiliation(s)
- Suphiya Parveen
- Laboratory of Nanomedicine, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Orissa, India
| | | |
Collapse
|