301
|
Otomo T, Hishii M, Arai H, Sato K, Sasai K. Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. JOURNAL OF RADIATION RESEARCH 2004; 45:53-60. [PMID: 15133290 DOI: 10.1269/jrr.45.53] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To determine the patterns of gene expression responsible for the radiosensitivity of glioblastoma cells, we analyzed transcriptional changes after ionizing radiation in different cell lines. After completing clonogenic survival assays, we selected two glioblastoma cell lines with different radiosensitivities. Subsequently, they were investigated by using the technique of DNA microarray, and we then categorized the upregulated genes into 10 groups. Between the two cell lines, the difference in the percentage of DNA repair/replication category was the largest, and this category was present at a greater percentage with radioresistant cell line U87MG. Moreover, among the commonly upregulated genes, the DNA repair/replication category was present in the largest percentage. These genes included G22P1 (Ku70) and XRCC5 (Ku80) genes known as important members of the nonhomologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Furthermore, cell line that specifically upregulated genes included the members of major pathways of DNA DSB or single strand damage repair. These pathways were not only NHEJ, but also homologous recombination (HR) and postreplication repair (PRR). In conclusion, the distribution of genes involved in the DNA repair/replication category was most different between two human glioblastoma cell lines of different radiosensitivities. Among commonly upregulated genes, the DNA repair/replication category was present in the largest percentage.
Collapse
Affiliation(s)
- Takashi Otomo
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
302
|
Unsal-Kaçmaz K, Sancar A. Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol Cell Biol 2004; 24:1292-300. [PMID: 14729973 PMCID: PMC321456 DOI: 10.1128/mcb.24.3.1292-1300.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ATR is an essential protein that functions as a damage sensor and a proximal kinase in the DNA damage checkpoint response in mammalian cells. It is a member of the phosphoinositide 3-kinase-like kinase (PIKK) family, which includes ATM, ATR, and DNA-dependent protein kinase. Recently, it was found that ATM is an oligomeric protein that is converted to an active monomeric form by phosphorylation in trans upon DNA damage, and this raised the possibility that other members of the PIKK family may be regulated in a similar manner. Here we show that ATR is a monomeric protein associated with a smaller protein called ATRIP with moderate affinity. The ATR protein by itself or in the form of the ATR-ATRIP heterodimer binds to naked or replication protein A (RPA)-covered DNAs with comparable affinities. However, the phosphorylation of RPA by ATR is dependent on single-stranded DNA and is stimulated by ATRIP. These findings suggest that the regulation and mechanism of action of ATR are fundamentally different from those of the other PIKK proteins.
Collapse
Affiliation(s)
- Keziban Unsal-Kaçmaz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
303
|
Block WD, Yu Y, Lees-Miller SP. Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res 2004; 32:997-1005. [PMID: 14872059 PMCID: PMC373400 DOI: 10.1093/nar/gkh265] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.
Collapse
Affiliation(s)
- Wesley D Block
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
304
|
Kahlem P, Dörken B, Schmitt CA. Cellular senescence in cancer treatment: friend or foe? J Clin Invest 2004; 113:169-74. [PMID: 14722606 PMCID: PMC311442 DOI: 10.1172/jci20784] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Damage to DNA, the prime target of anticancer therapy, triggers programmed cellular responses. In addition to apoptosis, therapy-mediated premature senescence has been identified as another drug-responsive program that impacts the outcome of cancer therapy. Here, we discuss whether induction of senescence is a beneficial or, rather, a detrimental consequence of the therapeutic intervention.
Collapse
Affiliation(s)
- Pascal Kahlem
- Department of Hematology, Oncology, and Tumor Immunology, Humboldt University, Charité, Berlin, Germany
| | | | | |
Collapse
|
305
|
Arlt MF, Casper AM, Glover TW. Common fragile sites. Cytogenet Genome Res 2004; 100:92-100. [PMID: 14526169 DOI: 10.1159/000072843] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 01/17/2003] [Indexed: 11/19/2022] Open
Abstract
Aphidicolin-induced common fragile sites are site-specific gaps or breaks seen on metaphase chromosomes after partial inhibition of DNA synthesis. These fragile sites were first recognized during the early studies of the fragile X syndrome and are induced by the same conditions of folate or thymidylate stress used to induce the fragile X site. Common fragile sites are normally stable in cultured human cells. However, following induction with replication inhibitors, they display a number of characteristics of unstable and highly recombinogenic DNA. From the many studies that have cloned and characterized fragile sites, it is now known that these sites extend over large regions, are associated with genes, exhibit late or delayed replication, and contain regions of high flexibility but are otherwise unremarkable in sequence. Studies showing that fragile sites and their associated genes are frequently deleted or rearranged in cancer cells have clearly demonstrated their importance in genome instability in tumorigenesis. Yet until recently, very little was known about the molecular mechanisms involved in their stability. Recent findings showing that the key checkpoint genes ATR and BRCA1 are critical for genome stability at fragile sites have shed new light on these mechanisms and on the biological significance of common fragile sites.
Collapse
Affiliation(s)
- M F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0618, USA
| | | | | |
Collapse
|
306
|
Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neill S, Povirk LF, Valerie K. Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells. J Biol Chem 2004; 279:15402-10. [PMID: 14744854 DOI: 10.1074/jbc.m314191200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate double strand break (DSB) repair and signaling in human glioma cells, we stably transfected human U87 (ATM(+), p53(+)) glioma cells with a plasmid having a single I-SceI site within an inactive green fluorescent protein (GFP) expression cassette, allowing for the detection of homologous recombination repair (HRR) by GFP expression. HRR and nonhomologous end joining (NHEJ) were also determined by PCR. DSB repair was first detected at 12 h postinfection with an adenovirus expressing I-SceI with repair reaching plateau levels between 24 and 48 h. Within this time frame, NHEJ predominated over HRR in the range of 3-50-fold. To assess the involvement of ATM in DSB repair, we first examined whether ATM was associated with the DSB. Chromatin immunoprecipitation showed that ATM was present at the site of the DSB as early as 18 h postinfection. In cells treated with caffeine, an inhibitor of ATM, HRR was reduced, whereas NHEJ was not. In support of this finding, GFP flow cytometry demonstrated that caffeine reduced HRR by 90% under conditions when ATM kinase activity was inhibited. Dominant-negative ATM expressed from adenovirus inhibited HRR by 45%, also having little to no effect on NHEJ. Furthermore, HRR was inhibited by caffeine in serum-starved cells arrested in G(0)/G(1), suggesting that ATM is also important for HRR outside of the S and G(2) cell cycle phases. Altogether, these results demonstrate that HRR contributes substantially to DSB repair in human glioma cells, and, importantly, ATM plays a critical role in regulating HRR but not NHEJ throughout the cell cycle.
Collapse
Affiliation(s)
- Sarah E Golding
- Department of Radiation Oncology, Pharmacology & Toxicology, Medical College of Virginia, Virginia 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
307
|
Ward IM, Minn K, Chen J. UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem 2004; 279:9677-80. [PMID: 14742437 DOI: 10.1074/jbc.c300554200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ataxia-telangiectasia-mutated and Rad3-related (ATR) plays an essential role in the maintenance of genome integrity and cell viability. The kinase is activated in response to DNA damage and initiates a checkpoint signaling cascade by phosphorylating a number of downstream substrates including Chk1. Unlike ataxia-telangiectasia-mutated (ATM), which appears to be mainly activated by DNA double-strand breaks, ATR can be activated by a variety of DNA damaging agents. However, it is still unclear what triggers ATR activation in response to such diverse DNA lesions. One model proposes that ATR can directly recognize DNA lesions, while other recent data suggest that ATR is activated by a common single-stranded DNA (ssDNA) intermediate generated during DNA repair. In this study, we show that UV lesions do not directly activate ATR in vivo. In addition, ssDNA lesions created during the repair of UV damage are also not sufficient to activate the ATR-dependent pathway. ATR activation is only observed in replicating cells indicating that replication stress is required to trigger the ATR-mediated checkpoint cascade in response to UV irradiation. Interestingly, H2AX appears to be required for the accumulation of ATR at stalled replication forks. Together our data suggest that ssDNA at arrested replication forks recruits ATR and initiates ATR-mediated phosphorylation of H2AX and Chk1. Phosphorylated H2AX might further facilitate ATR activation by stabilizing ATR at the sites of arrested replication forks.
Collapse
Affiliation(s)
- Irene M Ward
- Guggenheim 1306, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
308
|
Abstract
Cellular response to genotoxic stress is a very complex process, and it usually starts with the “sensing” or “detection” of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood, human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, 353 Yanan Road, Hangzhou, 310031, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
309
|
Kühne C, Tjörnhammar ML, Pongor S, Banks L, Simoncsits A. Repair of a minimal DNA double-strand break by NHEJ requires DNA-PKcs and is controlled by the ATM/ATR checkpoint. Nucleic Acids Res 2004; 31:7227-37. [PMID: 14654698 PMCID: PMC291875 DOI: 10.1093/nar/gkg937] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mammalian cells primarily rejoin DNA double-strand breaks (DSBs) by the non-homologous end-joining (NHEJ) pathway. The joining of the broken DNA ends appears directly without template and accuracy is ensured by the NHEJ factors that are under ATM/ATR regulated checkpoint control. In the current study we report the engineering of a mono-specific DNA damaging agent. This was used to study the molecular requirements for the repair of the least complex DSB in vivo. Single-chain PvuII restriction enzymes fused to protein delivery sequences transduce cells efficiently and induce blunt end DSBs in vivo. We demonstrate that beside XRCC4/LigaseIV and KU, the DNA-PK catalytic subunit (DNA-PKcs) is also essential for the joining of this low complex DSB in vivo. The appearance of blunt end 3'-hydroxyl and 5'-phosphate DNA DSBs induces a significantly higher frequency of anaphase bridges in cells that do not contain functional DNA-PKcs, suggesting an absolute requirement for DNA-PKcs in the control of chromosomal stability during end joining. Moreover, these minimal blunt end DSBs are sufficient to induce a p53 and ATM/ATR checkpoint function.
Collapse
Affiliation(s)
- Christian Kühne
- International Center for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, I-34000 Trieste, Italy.
| | | | | | | | | |
Collapse
|
310
|
Affiliation(s)
- Jiangyu Zhu
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
311
|
Affiliation(s)
- Jenny O'Nions
- Faculty of Medicine, Department of Virology and Ludwig Institute for Cancer Research, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
312
|
Eskiw CH, Dellaire G, Bazett-Jones DP. Chromatin contributes to structural integrity of promyelocytic leukemia bodies through a SUMO-1-independent mechanism. J Biol Chem 2003; 279:9577-85. [PMID: 14672938 DOI: 10.1074/jbc.m312580200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Promyelocytic leukemia (PML) protein is implicated in transcriptional regulation, apoptosis, DNA repair, and tumor suppression. It is not known, however, whether PML and other components of PML bodies function within the vicinity of the bodies or elsewhere in the nucleoplasm. In this study, we demonstrate that chromatin organization around PML bodies influences their morphology, dynamics, and structural integrity by a SUMO-1-independent mechanism. Following transcriptional inhibition and during early apoptosis, chromatin retracts from the periphery of PML bodies, coinciding with the formation of new PML-containing structures through fission of supramolecular PML-containing microbodies. Both fission and fusion of microbodies with parental PML bodies indicate a loss of structural integrity of the bodies, dependent on the state of the surrounding chromatin. This is supported by the observation that treatment of live cells with DNase I could reproduce the structural instability of PML bodies. In addition, PML bodies, which are normally surrounded by chromatin and are positionally stable, become more dynamic following these treatments, presumably due to the loss of chromatin contacts. Overexpression of SUMO-1, a modification required for PML body formation, did not prevent PML body fission, indicating that chromatin-based integrity of PML body structure occurs through a SUMO-1-independent mechanism.
Collapse
Affiliation(s)
- Christopher H Eskiw
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
313
|
Abstract
Nucleoside analogs are structurally, metabolically, and pharmacodynamically related agents that nevertheless have diverse biological actions and therapeutic consequences. This class of agents affects the structural integrity of DNA, generally after incorporation during replication or DNA excision repair synthesis, leading to stalled replication forks and chain termination. The DNA damage sensors ATM, ATR and DNA-PK recognize these events. These and other protein kinases activate checkpoint pathways that arrest cell cycle progression, and also signal for DNA repair. In addition, if these survival mechanisms are overwhelmed by the damage caused, a third function of these sensors is to activate signaling pathways that initiate apoptotic processes. A review of the spectrum of responses that are activated by clinically relevant nucleoside analogs begins to provide a mechanistic basis for diverse outcomes in cell viability. Such information, when coupled with an understanding of the intrinsic apoptotic potential of a tumor cell type may provide a rational basis for the design of therapeutic strategies.
Collapse
Affiliation(s)
- Deepa Sampath
- The Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
314
|
Delia D, Fontanella E, Ferrario C, Chessa L, Mizutani S. DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells. Oncogene 2003; 22:7866-9. [PMID: 14586414 DOI: 10.1038/sj.onc.1207086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ATM-dependent accumulation of p53 and induction of p21waf1 are key events for G1 cell-cycle checkpoint arrest following DNA damage. In ATM-null AT cells, even though the p53 and p21waf1 responses are kinetically delayed and quantitatively reduced, the G1 checkpoint is virtually disrupted, suggesting that these proteins arrive too late in G1 to enforce the arrest. As the precise mechanism remains unclear, we examined the response to DNA double-strand breaks generated by gamma-radiation (IR), to determine if ATM deficiency affects the cell-cycle phase regulation of these molecules. We find that, after irradiation, whereas normal LCL-N cells markedly increase their levels of p53 in all phases of the cell cycle, AT cells fail to show any p53 increase in the G1 phase. In addition, whereas in LCL-N p21waf1 is induced in G1 and G2-M, in AT cells this induction is partly seen in G2-M, but not in G1, indicating a different cell-cycle phase regulation of p53 and p21waf1 as a result of ATM deficiency. The levels and catalytic activity of the p53-targeting kinases ATR and DNA-PK in LCL-N and AT cells are very similar throughout the cell cycle, both before and after IR, thus excluding a phase-specific activity for these kinases. Collectively, our findings demonstrate that, in ATM-deficient cells, the p53-dependent p21waf1 response to DNA damage is not only quantitatively reduced, but also specifically suppressed in the G1 phase, thus providing a mechanistic explanation for the severe disruption of the G1 checkpoint in AT cells.
Collapse
Affiliation(s)
- Domenico Delia
- Department of Experimental Oncology, Istituto Nazionale Tumori, Via G. Venezian 1, Milano 20133, Italy.
| | | | | | | | | |
Collapse
|
315
|
Lorimore SA, Coates PJ, Wright EG. Radiation-induced genomic instability and bystander effects: inter-related nontargeted effects of exposure to ionizing radiation. Oncogene 2003; 22:7058-69. [PMID: 14557811 DOI: 10.1038/sj.onc.1207044] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The paradigm of genetic alterations being restricted to direct DNA damage after exposure to ionizing radiation has been challenged by observations in which cells that are not exposed to ionizing radiation exhibit responses typically associated with direct radiation exposure. These effects are demonstrated in cells that are the descendants of irradiated cells (radiation-induced genomic instability) or in cells that are in contact with irradiated cells or receive certain signals from irradiated cells (radiation-induced bystander effects). There is accumulating evidence that radiation-induced genomic instability may be a consequence of, and in some cell systems may also produce, bystander interactions involving intercellular signalling, production of cytokines and free-radical generation. These processes are also features of inflammatory responses that are known to have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. Thus, radiation-induced genomic instability and untargeted bystander effects may reflect inter-related aspects of inflammatory-type responses to radiation-induced stress and injury and contribute to the variety of pathological consequences of radiation exposures.
Collapse
Affiliation(s)
- Sally A Lorimore
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | |
Collapse
|
316
|
Meyers M, Hwang A, Wagner MW, Bruening AJ, Veigl ML, Sedwick WD, Boothman DA. A role for DNA mismatch repair in sensing and responding to fluoropyrimidine damage. Oncogene 2003; 22:7376-88. [PMID: 14576845 DOI: 10.1038/sj.onc.1206941] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phenomenon of damage tolerance, whereby cells incur DNA lesions that are nonlethal, largely ignored, but highly mutagenic, appears to play a key role in carcinogenesis. Typically, these lesions are generated by alkylation of DNA or incorporation of base analogues. This tolerance is usually a result of the loss of specific DNA repair processes, most often DNA mismatch repair (MMR). The availability of genetically matched MMR-deficient and -corrected cell systems allows dissection of the consequences of this unrepaired damage in carcinogenesis as well as the elucidation of cell cycle checkpoint responses and cell death consequences. Recent data indicate that MMR plays an important role in detecting damage caused by fluorinated pyrimidines (FPs) and represents a repair system that is probably not the primary system for detecting damage caused by these agents, but may be an important system for correcting key mutagenic lesions that could initiate carcinogenesis. In fact, clinical studies have shown that there is no benefit of FP-based adjuvant chemotherapy in colon cancer patients exhibiting microsatellite instability, a hallmark of MMR deficiency. MMR-mediated damage tolerance and futile cycle repair processes are discussed, as well as possible strategies using FPs to exploit these systems for improved anticancer therapy.
Collapse
Affiliation(s)
- Mark Meyers
- Laboratory of Molecular Stress Responses, Department of Radiation Oncology, Case Western Reserve University, Biomedical Research Building 326-East, 2109 Adelbert Road, Cleveland, OH 44106-4942, USA
| | | | | | | | | | | | | |
Collapse
|
317
|
Boldogh I, Roy G, Lee MS, Bacsi A, Hazra TK, Bhakat KK, Das GC, Mitra S. Reduced DNA double strand breaks in chlorambucil resistant cells are related to high DNA-PKcs activity and low oxidative stress. Toxicology 2003; 193:137-52. [PMID: 14599773 DOI: 10.1016/j.tox.2003.08.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modulation of DNA repair represents a strategy to overcome acquired drug resistance of cells to genotoxic chemotherapeutic agents, including nitrogen mustards (NM). These agents induce DNA inter-strand cross-links, which in turn produce double strand breaks (dsbs). These breaks are primarily repaired via the nonhomologous end-joining (NHEJ) pathway. A DNA-dependent protein kinase (DNA-PK) complex plays an important role in NHEJ, and its increased level/activity is associated with acquired drug resistance of human tumors. We show in this report that the DNA-PK complex has comparable levels and kinase activity of DNA-PK catalytic subunit (DNA-PKcs) in a nearly isogenic pair of drug-sensitive (A2780) and resistant (A2780/100) cells; however, treatment with chlorambucil (Cbl), a NM-type of drug, induced differential effects in these cells. The kinase activity of DNA-PKcs was increased up to 2h after Cbl treatment in both cell types; however, it subsequently decreased only in sensitive cells, which is consistent with increased levels of DNA dsbs. The decreased kinase activity of DNA-PKcs was not due to a change in its amount or the levels of Ku70 and Ku86, their subcellular distribution, cell cycle progression or caspase-mediated degradation of DNA-PK. In addition to DNA cross-links, Cbl treatment of cells causes a 2.2-fold increase in the level of reactive oxygen species (ROS) in both cell types. However, the ROS in A2780/100 cells were reduced to the basal level after 3-4h, while sensitive cells continued to produce ROS and undergo apoptosis. Pre-treatment of A2780 cells with the glutathione (GSH) precursor, N-acetyl-L-cysteine prevented Cbl-induced increase in ROS, augmented the kinase activity of DNA-PKcs, decreased the levels of DNA dsbs and increased cell survival. Depletion in GSH from A2780/100 cells by L-buthionine sulfoximine (BSO) resulted in sustained production of ROS, lowered DNA-PKcs kinase activity, enhanced levels of DNA dsbs, and increased cell killing by Cbl. We propose that oxidative stress decreases repair of DNA dsbs via lowering kinase activity of DNA-PKcs and that induction of ROS could be the basis for adjuvant therapies for sensitizing tumor cells to nitrogen mustards and other DNA cross-linking drugs.
Collapse
Affiliation(s)
- Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Abstract
Mammalian cells utilize multiple mechanisms to repair DNA damage that occurs during normal cellular respiration and in response to genotoxic stress. This study sought to determine if chronic oxidative stress proposed to occur during Alzheimer's disease alters the expression or activity of DNA double-strand break repair or base excision repair proteins. Double-strand break repair requires DNA-dependent protein kinase, composed of a catalytic subunit, DNA-PKcs, and a regulatory component, Ku. Ku DNA binding activity was reduced in extracts of postmortem AD midfrontal cortex, but was not significantly different from the age-matched controls. Decreased Ku DNA binding correlated with reduced protein levels of Ku subunits, DNA-PKcs, and poly(ADP-ribose) polymerase-1. Expression of the base excision repair enzyme Ref-1, however, was significantly increased in AD extracts compared to controls. Ku DNA binding and DNA-PK protein levels in the AD cases correlated significantly with synaptophysin immunoreactivity, which is a measure of synaptic loss, a major correlate of cognitive deficits in AD. Immunohistochemical analysis suggested that DNA-PK protein levels reflected both number of neurons and regulation of cellular expression.
Collapse
Affiliation(s)
- Vladislav Davydov
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0624, USA
| | | | | |
Collapse
|
319
|
Abstract
AIM: To understand the effect of low concentration of N-methyl-N’-nitro-nitrosoguanidine (MNNG), which is a widely distributed environmental mutagen and carcinogen especially for human gastric cancer, on DNA damage and to study its possible pathway in regulating cell cycle arrest.
METHODS: The DNA damage effect was measured by Comet assay. A specific phospho-(Ser/Thr) ATM/ATR substrate antibody was used to detect the damage sensor by Western blot. p38 kinase activity was measured by direct kinase assay, and immunoprecipitation for the possible connection between ATM/ATR and p38 MAPK. Flow cytometry analysis and p38 MAPK specific inhibitor SB203580 were combined to detect the possible cell cycle arrest by p38 MAPK.
RESULTS: With the same low concentration MNNG exposure (0.2 μM 2.5 h), Comet assays indicated that strand breaks accumulated, Western blot and kinase assay showed ATM/ATR and p38 kinase activated, immunoprecipitation showed phospho-ATM/ATR substrate antibody combined with both p38 MAPK antibody and phospho-p38 MAPK antibody. p38 MAPK pathway was involved in the G1-S arrest.
CONCLUSION: Activation of ATM/ATR by MNNG induced DNA damage leads to activation of p38 MAPK, which involves in the G1 checkpoint in mammalian cells.
Collapse
Affiliation(s)
- Ke-Qing Zhu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310031, Zhejiang Province, China
| | | |
Collapse
|
320
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
321
|
Abstract
Damage induced in the DNA after exposure of cells to ionizing radiation activates checkpoint pathways that inhibit progression of cells through the G1 and G2 phases and induce a transient delay in the progression through S phase. Checkpoints together with repair and apoptosis are integrated in a circuitry that determines the ultimate response of a cell to DNA damage. Checkpoint activation typically requires sensors and mediators of DNA damage, signal transducers and effectors. Here, we review the current state of knowledge regarding mechanisms of checkpoint activation and proteins involved in the different steps of the process. Emphasis is placed on the role of ATM and ATR, as well on CHK1 and CHK2 kinases in checkpoint response. The roles of downstream effectors, such as P53 and the CDC25 family of proteins, are also described, and connections between repair and checkpoint activation are attempted. The role of checkpoints in genomic stability and the potential of improving the treatment of cancer by DNA damage inducing agents through checkpoint abrogation are also briefly outlined.
Collapse
Affiliation(s)
- George Iliakis
- Institute of Medical Radiation Biology, University of Essen Medical School, Hufelanstrasse 55, 45122 Essen, Germany.
| | | | | | | |
Collapse
|
322
|
Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003; 22:5734-54. [PMID: 12947383 DOI: 10.1038/sj.onc.1206663] [Citation(s) in RCA: 411] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic signaling pathways in cytoprotection and mutagenesis. For cytoplasmic signaling, radiation-stimulated reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential activators of these pathways. This review summarizes recent studies on the chemistry of radiation-induced ROS/RNS generation and emphasizes interactions between ROS and RNS and the relative roles of cellular ROS/RNS generators as amplifiers of the initial ionization events. Cellular mechanisms for regulating ROS/RNS levels are discussed. The mechanisms by which cells sense ROS/RNS are examined in terms of how ROS/RNS modify protein structure and function, for example, interactions with metal-thiol clusters, protein tyrosine nitration, protein cysteine oxidation, S-thiolation and S-nitrosylation. We propose that radiation-induced ROS are the initiators and that nitric oxide (NO*) or derivatives are the effectors activating these signal transduction pathways. In responding to cellular ionization events, the cell converts an oxidative signal to a nitrosative one because ROS are too reactive and unspecific in their reactions for regulatory purposes and the cell is equipped to precisely modulate NO* levels.
Collapse
Affiliation(s)
- Ross B Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA.
| | | |
Collapse
|
323
|
Zhou N, Xiao H, Li TK, Nur-E-Kamal A, Liu LF. DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 2003; 278:29532-7. [PMID: 12766154 DOI: 10.1074/jbc.m301877200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenium (Se) compounds, which are the most extensively studied cancer chemopreventive agents, induce apoptotic death of tumor cells. In the current study, we show that selenite-induced apoptosis involves DNA damage. We showed that selenite-induced apoptosis as evidenced by cleavage of poly(ADP-ribose) polymerase was reduced in NIH 3T3 cells treated with ATM small interfering RNA, suggesting the involvement of the DNA damage regulator ATM. Consistent with ATM/ATR involvement, selenite was also shown to stimulate Ser-139 phosphorylation of the ATM/ATR substrate H2AX. Selenite-induced apoptosis was shown to involve DNA topoisomerase II (Top II) as selenite-induced apoptosis was reduced in Top II-deficient HL-60/MX2 cells and in HL-60 cells co-treated with the Top II catalytic inhibitor ICRF-193. Using purified human recombinant Top II, selenite was shown to induce reversible Top II cleavage complexes in vitro. In the aggregate, these results suggest that selenite-induced apoptosis, which involves ATM/ATR and Top II, is likely to be because of DNA damage.
Collapse
Affiliation(s)
- Nai Zhou
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
324
|
Abstract
The BRCA1 gene was identified and cloned in 1994 based its linkage to early onset breast cancer and breast-ovarian cancer syndromes in women. While inherited mutations of BRCA1 are responsible for about 40-45% of hereditary breast cancers, these mutations account for only 2-3% of all breast cancers, since the BRCA1 gene is rarely mutated in sporadic breast cancers. However, BRCA1 expression is frequently reduced or absent in sporadic cancers, suggesting a much wider role in mammary carcinogenesis. Since BRCA1 was cloned in 1994, its molecular function has been the subject of intense investigation. These studies have revealed multiple functions of the BRCA1 that may contribute to its tumor suppressor activity, including roles in: cell cycle progression, several highly specialized DNA repair processes, DNA damage-responsive cell cycle check-points, regulation of a set of specific transcriptional pathways, and apoptosis. Many of these functions are linked to protein:protein interactions involving different portions of the 1,863 amino acid (aa) BRCA1 protein. BRCA1 functions in cell cycle progression and the DNA damage response appear to be regulated by distinct and specific phosphorylation events, but the molecular pathways activated by these phosphorylations are only beginning to be unraveled. In addition, the reason that BRCA1 mutation carriers develop specific tumor types (breast and ovarian cancers in women and possibly prostate cancers in men) is not clearly understood. Elucidation of the precise molecular functions of the BRCA1 gene product will greatly enhance our understanding of the pathogenesis of hereditary as well as sporadic mammary carcinogenesis.
Collapse
Affiliation(s)
- Eliot M Rosen
- Department of Radiation Oncology, Long Island Jewish Medical Center, New York, New York, USA.
| | | | | | | |
Collapse
|
325
|
Llorca O, Rivera-Calzada A, Grantham J, Willison KR. Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA. Oncogene 2003; 22:3867-74. [PMID: 12813460 DOI: 10.1038/sj.onc.1206649] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human tumor suppressor gene ataxia telangiectasia mutated (ATM) encodes a 3056 amino-acid protein kinase that regulates cell cycle checkpoints. ATM is defective in the neurodegenerative and cancer predisposition syndrome ataxia-telangiectasia. ATM protein kinase is activated by DNA damage and responds by phosphorylating downstream effectors involved in cell cycle arrest and DNA repair, such as p53, MDM2, CHEK2, BRCA1 and H2AX. ATM is probably a component of, or in close proximity to, the double-stranded DNA break-sensing machinery. We have observed purified human ATM protein, ATM-DNA and ATM-DNA-avidin bound complexes by single-particle electron microscopy and obtained three-dimensional reconstructions which show that ATM is composed of two main domains comprising a head and an arm. DNA binding to ATM induces a large conformational movement of the arm-like domain. Taken together, these three structures suggest that ATM is capable of interacting with DNA, using its arm to clamp around the double helix.
Collapse
Affiliation(s)
- O Llorca
- The Institute of Cancer Research, Cancer Research UK, Center for Cell and Molecular Biology, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
326
|
Ding H, Duan W, Zhu WG, Ju R, Srinivasan K, Otterson GA, Villalona-Calero MA. P21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem Biophys Res Commun 2003; 305:950-6. [PMID: 12767922 DOI: 10.1016/s0006-291x(03)00873-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The p21(WAF1/Cip1) gene plays a central role in cell cycle regulation. Here we show that topoisomerase II inhibitors, genistein and etoposide, induce p21(WAF1/Cip1) expression mainly in a p53-dependent manner in human lung cancer cell line A549. However, although p53 accumulated, p21(WAF1/Cip1) expression did not depend on the level of Ser15 phosphorylation of p53. Caffeine, an ataxia telangiectasia-mutated (ATM), and ATM- and Rad3-related kinase (ATR) inhibitor, abrogated genistein-induced p21(WAF1/Cip1) and largely blocked etoposide-induced p21(WAF1/Cip1) expression. Wortmannin, an ATM- and DNA-dependent protein kinase inhibitor, partially inhibited p21(WAF1/Cip1) expression induced by genistein and etoposide, whereas UCN-01, a Chk1 inhibitor, partially blocked etoposide, but not genistein-induced p21(WAF1/Cip1) expression. These data suggest that both genistein and etoposide induce p21(WAF1/Cip1) expression in a p53-dependent manner. Genistein appears to stimulate p21(WAF1/Cip1) expression through p53 via ATM, whereas etoposide may activate both ATM and ATR pathways. Our results suggest different mechanisms participate in genistein and etoposide induced p21(WAF1/Cip1) expression.
Collapse
Affiliation(s)
- Haiming Ding
- Arthur James Cancer Hospital and Richard Solove Research Institute, Comprehensive Cancer Center, and Department of Internal Medicine, The Ohio State University, Columbus, OH 43210-1240, USA
| | | | | | | | | | | | | |
Collapse
|
327
|
Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003; 36:131-49. [PMID: 12814430 PMCID: PMC6496723 DOI: 10.1046/j.1365-2184.2003.00266.x] [Citation(s) in RCA: 1193] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 06/02/2003] [Indexed: 12/15/2022] Open
Abstract
The cell cycle is controlled by numerous mechanisms ensuring correct cell division. This review will focus on these mechanisms, i.e. regulation of cyclin-dependent kinases (CDK) by cyclins, CDK inhibitors and phosphorylating events. The quality checkpoints activated after DNA damage are also discussed. The complexity of the regulation of the cell cycle is also reflected in the different alterations leading to aberrant cell proliferation and development of cancer. Consequently, targeting the cell cycle in general and CDK in particular presents unique opportunities for drug discovery. This review provides an overview of deregulation of the cell cycle in cancer. Different families of known CDK inhibitors acting by ATP competition are also discussed. Currently, at least three compounds with CDK inhibitory activity (flavopiridol, UCN-01, roscovitine) have entered clinical trials.
Collapse
Affiliation(s)
- Katrien Vermeulen
- Faculty of Medicine, Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Dirk R. Van Bockstaele
- Faculty of Medicine, Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Zwi N. Berneman
- Faculty of Medicine, Laboratory of Experimental Hematology, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
328
|
Kovar H, Pospisilova S, Jug G, Printz D, Gadner H. Response of Ewing tumor cells to forced and activated p53 expression. Oncogene 2003; 22:3193-204. [PMID: 12761489 DOI: 10.1038/sj.onc.1206391] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The EWS-FLI1 transcription factor is consistently expressed in 85% of Ewing tumors (EFT). In heterologous cells, EWS-FLI1 induces p53-dependent cell cycle arrest or apoptosis. It has been speculated that the p53 tumor suppressor pathway may be generally compromised in EFT despite only rare p53 mutations. In order to test for functional integrity of this pathway, we have investigated a series of EFT cell lines that differ from each other with respect to their endogenous p53 and INK4A gene status for their response to ectopic p53 expression and to stimulation of endogenous p53 activity by X-ray treatment. Significant interindividual and intratumoral variations in the apoptotic propensity of EFT cell lines to transient expression of ectopic p53 were observed, which was independent of the level of p53 expression. In cell lines with a low apoptotic incidence, apoptosis was delayed and the surviving fraction showed a prolonged growth arrest. Complete resistance to p53-induced apoptosis in two cell lines established from the same patient was associated with a high BCL2/BAX ratio and low levels of APAF1. Sensitivity to X-rays showed a trend towards a higher apoptotic rate in wild-type (wt) p53 expressing than in p53 mutant cells. However, one wt p53-expressing EFT cell line was completely refractory to irradiation-stimulated cell death despite high apoptotic responsiveness to ectopic p53. No difference in Ser15 phosphorylation and the transcriptional activation of p53 targets was observed in wt p53 EFT cell lines irrespective of the induction of cell death or growth arrest. All together, our results demonstrate that despite significant variability in the outcome, cell death or cell cycle arrest, the p53 downstream pathway and the DNA damage signaling pathway are functionally intact in EFT.
Collapse
Affiliation(s)
- Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, 1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
329
|
Kawata T, Ito H, George K, Wu H, Uno T, Isobe K, Cucinotta FA. Radiation-induced chromosome aberrations in ataxia telangiectasia cells: high frequency of deletions and misrejoining detected by fluorescence in situ hybridization. Radiat Res 2003; 159:597-603. [PMID: 12710870 DOI: 10.1667/0033-7587(2003)159[0597:rcaiat]2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.
Collapse
Affiliation(s)
- Tetsuya Kawata
- Department of Radiology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
330
|
Stevens C, Smith L, La Thangue NB. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 2003; 5:401-9. [PMID: 12717439 DOI: 10.1038/ncb974] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2002] [Revised: 12/19/2002] [Accepted: 03/11/2003] [Indexed: 01/15/2023]
Abstract
The E2F-1 transcription factor is regulated during cell cycle progression and induced by cellular stress, such as DNA damage. We report that checkpoint kinase 2 (Chk2) regulates E2F-1 activity in response to the DNA-damaging agent etoposide. A Chk2 consensus phosphorylation site in E2F-1 is phosphorylated in response to DNA damage, resulting in protein stabilization, increased half-life, transcriptional activation and localization of phosphorylated E2F-1 to discrete nuclear structures. Expression of a dominant-negative Chk2 mutant blocks induction of E2F-1 and prevents E2F-1-dependent apoptosis. Moreover, E2F-1 is resistant to induction by etoposide in tumour cells expressing mutant chk2. Therefore, Chk2 phosphorylates and activates E2F-1 in response to DNA damage, resulting in apoptosis. These results suggest a role for E2F-1 in checkpoint control and provide a plausible explanation for the tumour suppressor activity of E2F-1.
Collapse
Affiliation(s)
- Craig Stevens
- Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | |
Collapse
|
331
|
Daniel R, Kao G, Taganov K, Greger JG, Favorova O, Merkel G, Yen TJ, Katz RA, Skalka AM. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc Natl Acad Sci U S A 2003; 100:4778-83. [PMID: 12679521 PMCID: PMC153632 DOI: 10.1073/pnas.0730887100] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caffeine is an efficient inhibitor of cellular DNA repair, likely through its effects on ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) kinases. Here, we show that caffeine treatment causes a dose-dependent reduction in the total amount of HIV-1 and avian sarcoma virus retroviral vector DNA that is joined to host DNA in the population of infected cells and also in the number of transduced cells. These changes were observed at caffeine concentrations that had little or no effect on overall cell growth, synthesis, and nuclear import of the viral DNA, or the activities of the viral integrase in vitro. Substantial reductions in the amount of host-viral-joined DNA in the infected population, and in the number of transductants, were also observed in the presence of a dominant-negative form of the ATR protein, ATRkd. After infection, a significant fraction of these cells undergoes cell death. In contrast, retroviral transduction is not impeded in ATM-deficient cells, and addition of caffeine leads to the same reduction that was observed in ATM-proficient cells. These results suggest that activity of the ATR kinase, but not the ATM kinase, is required for successful completion of the viral DNA integration process and/or survival of transduced cells. Components of the cellular DNA damage repair response may represent potential targets for antiretroviral drug development.
Collapse
Affiliation(s)
- René Daniel
- Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Nur-E-Kamal A, Li TK, Zhang A, Qi H, Hars ES, Liu LF. Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals. J Biol Chem 2003; 278:12475-81. [PMID: 12540848 DOI: 10.1074/jbc.m212915200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-stranded DNA has been speculated to be the initial signal in the DNA damage signaling pathway. We showed that introduction of single-stranded DNA with diverse sequences into mammalian cells induced DNA damage as well as apoptosis signals. Like DNA damaging agents, single-stranded DNA up-regulated p53 and activated the nuclear kinase ataxia telangiectasia mutant (ATM) as evidenced by phosphorylation of histone 2AX, an endogenous ATM substrate. Single-stranded DNA also triggered apoptosis as evidenced by the formation of caspase-dependent chromosomal DNA strand breaks, cytochrome c release, and increase in reactive oxygen species production. Moreover, single-stranded DNA-induced apoptosis was reduced significantly in p53 null cells and in cells treated with ATM small interfering RNA. These results suggest that single-stranded DNA may act upstream of ATM/p53 in DNA damage signaling.
Collapse
Affiliation(s)
- Alam Nur-E-Kamal
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | |
Collapse
|
333
|
Takada S, Kelkar A, Theurkauf WE. Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 2003; 113:87-99. [PMID: 12679037 DOI: 10.1016/s0092-8674(03)00202-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In syncytial Drosophila embryos, damaged or incompletely replicated DNA triggers centrosome disruption in mitosis, leading to defects in spindle assembly and anaphase chromosome segregation. The damaged nuclei drop from the cortex and are not incorporated into the cells that form the embryo proper. A null mutation in the Drosophila checkpoint kinase 2 tumor suppressor homolog (DmChk2) blocks this mitotic response to DNA lesions and also prevents loss of defective nuclei from the cortex. In addition, DNA damage leads to increased DmChk2 localization to the centrosome and spindle microtubules. DmChk2 is therefore essential for a "mitotic catastrophe" signal that disrupts centrosome function in response to genotoxic stress and ensures that mutant and aneuploid nuclei are eliminated from the embryonic precursor pool.
Collapse
Affiliation(s)
- Saeko Takada
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
334
|
O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 2003; 33:497-501. [PMID: 12640452 DOI: 10.1038/ng1129] [Citation(s) in RCA: 632] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 02/20/2003] [Indexed: 11/10/2022]
Abstract
Seckel syndrome (OMIM 210600) is an autosomal recessive disorder characterized by intrauterine growth retardation, dwarfism, microcephaly and mental retardation. Clinically, Seckel syndrome shares features in common with disorders involving impaired DNA-damage responses, such as Nijmegen breakage syndrome (OMIM 251260) and LIG4 syndrome (OMIM 606593). We previously mapped a locus associated with Seckel syndrome to chromosome 3q22.1-q24 in two consanguineous Pakistani families. Further marker analysis in the families, including a recently born unaffected child with a recombination in the critical region, narrowed the region to an interval of 5 Mbp between markers D3S1316 and D3S1557 (145.29 Mbp and 150.37 Mbp). The gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) maps to this region. A fibroblast cell line derived from an affected individual displays a defective DNA damage response caused by impaired ATR function. We identified a synonymous mutation in affected individuals that alters ATR splicing. The mutation confers a phenotype including marked microcephaly (head circumference 12 s.d. below the mean) and dwarfism (5 s.d. below the mean). Our analysis shows that UV-induced ATR activation can occur in non-replicating cells following processing by nucleotide excision repair.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, East Sussex, BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
335
|
Wang W, Takimoto R, Rastinejad F, El-Deiry WS. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol 2003; 23:2171-81. [PMID: 12612087 PMCID: PMC149465 DOI: 10.1128/mcb.23.6.2171-2181.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CP-31398, a styrylquinazoline, emerged from a high throughput screen for therapeutic agents that restore a wild-type-associated epitope (monoclonal antibody 1620) on the DNA-binding domain of the p53 protein. We found that CP-31398 can not only restore p53 function in mutant p53-expressing cells but also significantly increase the protein level and promote the activity of wild-type p53 in multiple human cell lines, including ATM-null cells. Cells treated with CP-31398 undergo either cell cycle arrest or apoptosis. Further investigation showed that CP-31398 blocks the ubiquitination and degradation of p53 but not in human papillomavirus E6-expressing cells. Of note, CP-31398 does not block the physical association between p53 and MDM2 in vivo. Moreover, unlike the DNA-damaging agent adriamycin, which induces strong phosphorylation of p53 on serines 15 and 20, CP-31398 exposure leads to no measurable phosphorylation on these sites. We found that CP-31398 could also stabilize exogenous p53 in p53 mutant, wild-type, and p53-null human cells, even in MDM2-null p53(-/-) mouse embryonic fibroblasts. Our results suggest a model wherein CP-31398-mediated stabilization of p53 may result from reduced ubiquitination, leading to high levels of transcriptionally active p53. Further understanding of this mechanism may lead to novel strategies for p53 stabilization and tumor suppression in cancers, even those with absent ARF or high MDM2 expression.
Collapse
MESH Headings
- Adenocarcinoma/pathology
- Animals
- Ataxia Telangiectasia Mutated Proteins
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle Proteins
- Colonic Neoplasms/pathology
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/biosynthesis
- Cyclins/genetics
- DNA Damage
- DNA-Binding Proteins
- Doxorubicin/pharmacology
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation/drug effects
- Genes, p53
- Humans
- Lung Neoplasms/pathology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Mice
- Mice, Knockout
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oncogene Proteins, Viral/antagonists & inhibitors
- Oncogene Proteins, Viral/metabolism
- Ovarian Neoplasms/pathology
- Phosphorylation
- Phosphoserine/metabolism
- Protein Binding/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2
- Pyrimidines/pharmacology
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Repressor Proteins
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/chemistry
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/drug effects
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Wenge Wang
- Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
336
|
Abstract
Maintenance of genome stability is essential for avoiding the passage to neoplasia. The DNA-damage response--a cornerstone of genome stability--occurs by a swift transduction of the DNA-damage signal to many cellular pathways. A prime example is the cellular response to DNA double-strand breaks, which activate the ATM protein kinase that, in turn, modulates numerous signalling pathways. ATM mutations lead to the cancer-predisposing genetic disorder ataxia-telangiectasia (A-T). Understanding ATM's mode of action provides new insights into the association between defective responses to DNA damage and cancer, and brings us closer to resolving the issue of cancer predisposition in some A-T carriers.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
337
|
Abstract
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.
Collapse
Affiliation(s)
- Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA.
| | | |
Collapse
|
338
|
Abstract
Leland H. Hartwell, Paul M. Nurse et R. Timothy Hunt just received the Nobel price for their discovery of the molecular components of the cell cycle and cell cycle checkpoints. This review is an update of the molecular networks driving the cell cycle and its regulation, and of the importance of this knowledge for understanding the mechanisms driving oncogenesis and therapeutic developments.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratoire de pharmacologie moléculaire, Center for Cancer Research, National Cancer Institute, Bldg 37, Room 5068, NIH, Bethesda, MD 20892-4255, USA.
| | | |
Collapse
|
339
|
Famulski KS, Al-Hijailan RS, Dobler K, Pienkowska M, Al-Mohanna F, Paterson MC. Aberrant sensing of extracellular Ca2+ by cultured ataxia telangiectasia fibroblasts. Oncogene 2003; 22:471-5. [PMID: 12545170 DOI: 10.1038/sj.onc.1206167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ataxia telangiectasia (AT) is a human hereditary syndrome whose underlying gene product, ataxia telangiectasia mutated (ATM) protein kinase, is involved in multiple intracellular signaling pathways. We demonstrated previously that AT fibroblasts are defective in intracellular Ca(2+) mobilization in response to both stress-inducing and mitogenic stimuli. To extend these findings, normal and AT cells were exposed to serum in the presence of different concentrations of extracellular Ca(2+) ([Ca(2+)](o)), and release of intracellular Ca(2+), activation of calmodulin-dependent protein kinase II and phosphorylation of kinases ERK1 and 2 were monitored. When maintained in high [Ca(2+)](o) (0.42 mM), normal fibroblasts responded to serum introduction more rapidly and efficiently than did AT cells. Unexpectedly, decreasing the [Ca(2+)](o) in the medium had a diametrically opposite effect. Under low [Ca(2+)](o) (0.0022 mM) conditions, normal cells were slow and inefficient in their responses, whereas AT cells showed a substantial improvement in all three end points. These findings demonstrate that loss of ATM kinase function deregulates the extracellular calcium-sensing receptor (CaR). This malfunction presumably arises from a post-transcriptional event, since CaR mRNA proved to be normal in AT cells. Together, our data suggest that ATM may mediate cell response to mitogenic factors by tightly regulating the set point of the CaR and thereby modulating the crosstalk between this metabotropic receptor and growth factor receptors. Alternatively, the faulty sensing of extracellular calcium in AT cells may be secondary to a state of chronic oxidative stress attributable to ATM deficiency.
Collapse
Affiliation(s)
- Konrad S Famulski
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
340
|
Brinkworth RI, Breinl RA, Kobe B. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc Natl Acad Sci U S A 2003; 100:74-9. [PMID: 12502784 PMCID: PMC140887 DOI: 10.1073/pnas.0134224100] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serinethreonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Collapse
Affiliation(s)
- Ross I Brinkworth
- Department of Biochemistry and Molecular Biology and Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
341
|
Yang J, Yu Y, Duerksen-Hughes PJ. Protein kinases and their involvement in the cellular responses to genotoxic stress. Mutat Res 2003; 543:31-58. [PMID: 12510016 DOI: 10.1016/s1383-5742(02)00069-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cells are constantly subjected to genotoxic stress, and much has been learned regarding their response to this type of stress during the past year. In general, the cellular genotoxic response can be thought to occur in three stages: (1) damage sensing; (2) activation of signal transduction pathways; (3) biological consequences and attenuation of the response. The biological consequences, in particular, include cell cycle arrest and cell death. Although our understanding of the molecular mechanisms underlying cellular genotoxic stress responses remains incomplete, many cellular components have been identified over the years, including a group of protein kinases that appears to play a major role. Various DNA-damaging agents can activate these protein kinases, triggering a protein phosphorylation cascade that leads to the activation of transcription factors, and altering gene expression. In this review, the involvement of protein kinases, particularly the mitogen-activated protein kinases (MAPKs), at different stages of the genotoxic response is discussed.
Collapse
Affiliation(s)
- Jun Yang
- Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310031, China
| | | | | |
Collapse
|
342
|
Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 2003; 11:203-13. [PMID: 12535533 DOI: 10.1016/s1097-2765(02)00799-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
343
|
Abstract
Checkpoint proteins were initially identified because their loss of function resulted in defects in cell cycle arrest in response to genotoxic treatments. Initially, the analysis of checkpoint pathways concentrated on their function as signal transducers and how the checkpoint signals were communicated to the core cell cycle machinery and transcriptional apparatus. Although some of the early genetic analysis indicated a complex relationship between DNA replication, DNA repair and the checkpoint pathways, it is only now becoming apparent that checkpoint proteins regulate multiple DNA repair and replication functions. Furthermore, recent data suggest that some checkpoint proteins may participate directly in DNA repair events. In this review I summarise the current models for DNA structure-dependent checkpoint activation and review the evidence linking checkpoint proteins both directly and indirectly to DNA repair.
Collapse
Affiliation(s)
- Antony M Carr
- Genome Damage and Stability Centre, University of Sussex, Falmer, Sussex BN1 9RQ, UK.
| |
Collapse
|
344
|
Abstract
Conditions that partially inhibit DNA replication induce expression of common fragile sites. These sites form gaps and breaks on metaphase chromosomes and are deleted and rearranged in many tumors. Yet, the mechanism of fragile site expression has been elusive. We demonstrate that the replication checkpoint kinase ATR, but not ATM, is critical for maintenance of fragile site stability. ATR deficiency results in fragile site expression with and without addition of replication inhibitors. Thus, we propose that fragile sites are unreplicated chromosomal regions resulting from stalled forks that escape the ATR replication checkpoint. These findings have important implications for understanding both the mechanism of fragile site instability and the consequences of stalled replication in mammalian cells.
Collapse
Affiliation(s)
- Anne M Casper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
345
|
Sapkota GP, Deak M, Kieloch A, Morrice N, Goodarzi AA, Smythe C, Shiloh Y, Lees-Miller SP, Alessi DR. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J 2002; 368:507-16. [PMID: 12234250 PMCID: PMC1223019 DOI: 10.1042/bj20021284] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 09/16/2002] [Indexed: 01/28/2023]
Abstract
The serine/threonine protein kinase LKB1 functions as a tumour suppressor, and mutations in this enzyme lead to the inherited Peutz-Jeghers cancer syndrome. We previously found that LKB1 was phosphorylated at Thr-366 in vivo, a residue conserved in mammalian, Xenopus and Drosophila LKB1, located on a C-terminal non-catalytic moiety of the enzyme. Mutation of Thr-366 to Ala or Asp partially inhibited the ability of LKB1 to suppress growth of G361 melanoma cells, but did not affect LKB1 activity in vitro or LKB1 localization in vivo. As a first step in exploring the role of this phosphorylation further, we have generated a phosphospecific antibody specifically recognizing LKB1 phosphorylated at Thr-366 and demonstrate that exposure of cells to ionizing radiation (IR) induced a marked phosphorylation of LKB1 at Thr-366 in the nucleus. Thr-366 lies in an optimal phosphorylation motif for the phosphoinositide 3-kinase-like kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated kinase (ATM) and ataxia telangiectasia-related kinase (ATR), which function as sensors for DNA damage in cells and mediate cellular responses to DNA damage. We demonstrate that both DNA-PK and ATM efficiently phosphorylate LKB1 at Thr-366 in vitro and provide evidence that ATM mediates this phosphorylation in vivo. This is based on the finding that LKB1 is not phosphorylated in a cell line lacking ATM in response to IR, and that agents which induce cellular responses via ATR in preference to ATM poorly induce phosphorylation of LKB1 at Thr-366. These observations provide the first link between ATM and LKB1 and suggest that ATM could regulate LKB1.
Collapse
Affiliation(s)
- Gopal P Sapkota
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K.
| | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Qin S, Parthun MR. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 2002; 22:8353-65. [PMID: 12417736 PMCID: PMC134061 DOI: 10.1128/mcb.22.23.8353-8365.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.
Collapse
Affiliation(s)
- Song Qin
- Molecular, Cellular and Developmental Biology Program. Department of Molecular and Cellular Biochemistry, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
347
|
Giannattasio M, Sommariva E, Vercillo R, Lippi-Boncambi F, Liberi G, Foiani M, Plevani P, Muzi-Falconi M. A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1. Proc Natl Acad Sci U S A 2002; 99:12997-3002. [PMID: 12271137 PMCID: PMC130575 DOI: 10.1073/pnas.202463999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Rad17-Mec3-Ddc1 complex is essential for the cellular response to genotoxic agents and is thought to be important for sensing DNA lesions. Deletion of any of the RAD17, MEC3 or DDC1 genes abolishes the G(1) and G(2) and impairs the intra-S DNA-damage checkpoints. We characterize a dominant-negative mec3-dn mutation that has an unexpected phenotype. It inactivates the G(1) checkpoint while it leaves the G(2) response functional, thus revealing a difference in the requirements of the DNA-damage response in different phases of the cell cycle. In an attempt to identify the molecular defect imparted by the mutation, we dissected step-by-step the signaling cascade, which is triggered by DNA lesions and requires the activity of Mec1 and Rad53 kinases. The analysis of the phosphorylation state of checkpoint factors and critical protein interactions showed that, in mec3-dn cells, the signal transduction cascade is triggered normally, and the central kinase Mec1 can be activated. In G(1) cells expressing the mutation, the signaling cannot proceed any further along the pathway, indicating that the Rad17 complex acts after the activation of Mec1, possibly recruiting targets for the kinase. We also show that the function of the G(2) checkpoint in mutant cells is maintained by an uncharacterized activity of Tel1, the yeast homologue of ATM. This work thus reports a previously undiscovered role for Tel1 in checkpoint control.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Genetica e Biologia dei Microrganismi, Universitá degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
348
|
Chan DW, Chen BPC, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 2002; 16:2333-8. [PMID: 12231622 PMCID: PMC187438 DOI: 10.1101/gad.1015202] [Citation(s) in RCA: 381] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nonhomologous end-joining (NHEJ) is the predominant pathway that repairs DNA double-strand breaks (DSBs) in mammalian cells. The DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PK catalytic subunit (DNA-PKcs), is activated by DNA in vitro and is required for NHEJ. We report that DNA-PKcs is autophosphorylated at Thr2609 in vivo in a Ku-dependent manner in response to ionizing radiation. Phosphorylated DNA-PKcs colocalizes with both gamma-H2AX and 53BP1 after DNA damage. Mutation of Thr2609 to Ala leads to radiation sensitivity and impaired DSB rejoining. These findings establish that Ku-dependent phosphorylation of DNA-PKcs at Thr2609 is required for the repair of DSBs by NHEJ.
Collapse
Affiliation(s)
- Doug W Chan
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
349
|
Beall EL, Mahoney MB, Rio DC. Identification and Analysis of a Hyperactive Mutant Form of Drosophila P-Element Transposase. Genetics 2002; 162:217-27. [PMID: 12242235 PMCID: PMC1462248 DOI: 10.1093/genetics/162.1.217] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Transposition in many organisms is regulated to control the frequency of DNA damage caused by the DNA breakage and joining reactions. However, genetic studies in prokaryotic systems have led to the isolation of mutant transposase proteins with higher or novel activities compared to those of the wild-type protein. In the course of our study of the effects of mutating potential ATM-family DNA damage checkpoint protein kinase sites in the Drosophila P-element transposase protein, we found one mutation, S129A, that resulted in an elevated level of transposase activity using in vivo recombination assays, including P-element-mediated germline transformation. In vitro assays for P-element transposase activity indicate that the S129A mutant exhibits elevated donor DNA cleavage activity when compared to the wild-type protein, whereas the strand-transfer activity is similar to that of wild type. This difference may reflect the nature of the in vitro assays and that normally in vivo the two reactions may proceed in concert. The P-element transposase protein contains 10 potential consensus phosphorylation sites for the ATM family of PI3-related protein kinases. Of these 10 sites, 8 affect transposase activity either positively or negatively when substituted individually with alanine and tested in vivo. A mutant transposase protein that contains all eight N-terminal serine and threonine residues substituted with alanine is inactive and can be restored to full activity by substitution of wild-type amino acids back at only 3 of the 8 positions. These data suggest that the activity of P-element transposase may be regulated by phosphorylation and demonstrate that one mutation, S129A, results in hyperactive transposition.
Collapse
Affiliation(s)
- Eileen L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | | | |
Collapse
|
350
|
|