301
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
302
|
Kim SA, Lee AS, Lee HB, Hur HJ, Lee SH, Sung MJ. Soluble epoxide hydrolase inhibitor, TPPU, attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching. Vascul Pharmacol 2022; 145:107086. [PMID: 35752378 DOI: 10.1016/j.vph.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis manifests as a chronic inflammation resulting from multiple interactions between circulating factors and various cell types in blood vessel walls. Growing evidence shows that phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the progression of atherosclerosis. Soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids are mediated by vascular inflammation. N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea (TPPU) is an sEH inhibitor. This study investigated the therapeutic effect of TPPU on atherosclerosis in vivo and homocysteine-induced vascular inflammation in vitro and explored their molecular mechanisms. We found that TPPU decreased WD-induced atherosclerotic plaque lesions, inflammation, expression of sEH, and nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4), and increased the expression of contractile phenotype marker of aortas in ApoE (-/-) mice. TPPU also inhibited homocysteine-stimulated VSMC proliferation, migration, and phenotypic switching, and reduced Nox4 in human-aorta-VSMC regulation. We conclude that TPPU has anti-atherosclerotic effects, potentially because of the suppression of VSMC phenotype switching. Thus, TPPU could be a potential therapeutic target for phenotypic switching attenuation in atherosclerosis.
Collapse
Affiliation(s)
- So Ah Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea; Department of Food Biotechnology, Chonbuk National University, Jeollabuk-Do, Republic of Korea
| | - Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Han Bit Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Sang Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
303
|
Garrido AM, Kaistha A, Uryga AK, Oc S, Foote K, Shah A, Finigan A, Figg N, Dobnikar L, Jørgensen H, Bennett M. Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc Res 2022; 118:1713-1727. [PMID: 34142149 PMCID: PMC9215197 DOI: 10.1093/cvr/cvab208] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 01/28/2023] Open
Abstract
AIMS Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAβG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis. METHODS AND RESULTS We examined traditional senescence markers in human and mouse VSMCs in vitro, and in mouse atherosclerosis. p16 and SAβG increased and Lamin B1 decreased in replicative senescence and stress-induced premature senescence (SIPS) of cultured human VSMCs. In contrast, mouse VSMCs undergoing SIPS showed only modest p16 up-regulation, and proliferating mouse monocyte/macrophages also expressed p16 and SAβG. Single cell RNA-sequencing (scRNA-seq) of lineage-traced mice showed increased p16 expression in VSMC-derived cells in plaques vs. normal arteries, but p16 localized to Stem cell antigen-1 (Sca1)+ or macrophage-like populations. Activation of a p16-driven suicide gene to remove p16+ vessel wall- and/or bone marrow-derived cells increased apoptotic cells, but also induced inflammation and did not change plaque size or composition. In contrast, the senolytic ABT-263 selectively reduced senescent VSMCs in culture, and markedly reduced atherogenesis. However, ABT-263 did not reduce senescence markers in vivo, and significantly reduced monocyte and platelet counts and interleukin 6 as a marker of systemic inflammation. CONCLUSIONS We show that genetic and pharmacological senolysis have variable effects on atherosclerosis, and may promote inflammation and non-specific effects respectively. In addition, traditional markers of cell senescence such as p16 have significant limitations to identify and remove senescent cells in atherosclerosis, suggesting that senescence studies in atherosclerosis and new senolytic drugs require more specific and lineage-restricted markers before ascribing their effects entirely to senolysis.
Collapse
Affiliation(s)
- Abel Martin Garrido
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Anuradha Kaistha
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Anna K Uryga
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Sebnem Oc
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Kirsty Foote
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Aarti Shah
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Alison Finigan
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Nichola Figg
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Lina Dobnikar
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Helle Jørgensen
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Martin Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
304
|
Xiang P, Blanchard V, Francis GA. Smooth Muscle Cell—Macrophage Interactions Leading to Foam Cell Formation in Atherosclerosis: Location, Location, Location. Front Physiol 2022; 13:921597. [PMID: 35795646 PMCID: PMC9251363 DOI: 10.3389/fphys.2022.921597] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cholesterol-overloaded cells or “foam cells” in the artery wall are the biochemical hallmark of atherosclerosis, and are responsible for much of the growth, inflammation and susceptibility to rupture of atherosclerotic lesions. While it has previously been thought that macrophages are the main contributor to the foam cell population, recent evidence indicates arterial smooth muscle cells (SMCs) are the source of the majority of foam cells in both human and murine atherosclerosis. This review outlines the timeline, site of appearance and proximity of SMCs and macrophages with lipids in human and mouse atherosclerosis, and likely interactions between SMCs and macrophages that promote foam cell formation and removal by both cell types. An understanding of these SMC-macrophage interactions in foam cell formation and regression is expected to provide new therapeutic targets to reduce the burden of atherosclerosis for the prevention of coronary heart disease, stroke and peripheral vascular disease.
Collapse
|
305
|
Patel N, Chin DD, Magee GA, Chung EJ. Therapeutic Response of miR-145 Micelles on Patient-Derived Vascular Smooth Muscle Cells. Front Digit Health 2022; 4:836579. [PMID: 35783597 PMCID: PMC9240309 DOI: 10.3389/fdgth.2022.836579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
During atherosclerosis, vascular smooth muscle cells (VSMCs) undergo a phenotypic transition from a healthy contractile state into pathological phenotypes including a proliferative and migratory, synthetic phenotype and osteochondrogenic-like phenotype that exacerbate plaques. Thus, inhibiting the transition of healthy, quiescent VSMCs to atherogenic cell types has the potential to mitigate atherosclerosis. To that end, previously, we reported that delivery of microRNA-145 (miR-145, a potent gatekeeper of the contractile VSMC phenotype) using nanoparticle micelles limited atherosclerotic plaque growth in murine models of atherosclerosis. Building on this preclinical data and toward clinical application, in this study, we tested the therapeutic viability of miR-145 micelles on patient-derived VSMCs and evaluated their effects based on disease severity. We collected vascular tissues from 11 patients with healthy, moderate, or severe stages of atherosclerosis that were discarded following vascular surgery or organ transplant, and isolated VSMCs from these tissues. We found that with increasing disease severity, patient-derived VSMCs had decreasing levels of contractile markers (miR-145, ACTA2, MYH11) and increasing levels of synthetic markers (KLF4, KLF5, and ELK1). Treatment with miR-145 micelles showed that an increase in disease severity correlated with a more robust response to therapy in VSMCs. Notably, miR-145 micelle therapy rescued contractile marker expression to baseline contractile levels in VSMCs derived from the most severely diseased tissues. As such, we demonstrate the use of miR-145 micelles across different stages of atherosclerosis disease and present further evidence of the translatability of miR-145 micelle treatment for atherosclerosis.
Collapse
Affiliation(s)
- Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Gregory A. Magee
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Eun Ji Chung
| |
Collapse
|
306
|
Li J, Shen H, Owens GK, Guo LW. SREBP1 regulates Lgals3 activation in response to cholesterol loading. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:892-909. [PMID: 35694209 PMCID: PMC9168384 DOI: 10.1016/j.omtn.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/12/2022] [Indexed: 12/02/2022]
Abstract
Aberrant smooth muscle cell (SMC) plasticity is etiological to vascular diseases. Cholesterol induces SMC phenotypic transition featuring high LGALS3 (galectin-3) expression. This proatherogenic process is poorly understood for its molecular underpinnings, in particular, the mechanistic role of sterol regulatory-element binding protein-1 (SREBP1), a master regulator of lipid metabolism. Herein we show that cholesterol loading stimulated SREBP1 expression in mouse, rat, and human SMCs. SREBP1 positively regulated LGALS3 expression (and vice versa), whereas Krüppel-like factor-15 (KLF15) acted as a negative regulator. Both bound to the Lgals3 promoter, yet at discrete sites, as revealed by chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. SREBP1 and LGALS3 each abated KLF15 protein, and blocking the bromo/extraterminal domain-containing proteins (BETs) family of acetyl-histone readers abolished cholesterol-stimulated SREBP1/LGALS3 protein production. Furthermore, silencing bromodomain protein 2 (BRD2; but not other BETs) reduced SREBP1; endogenous BRD2 co-immunoprecipitated with SREBP1's transcription-active domain, its own promoter DNA, and that of L gals 3. Thus, results identify a previously uncharacterized cholesterol-responsive dyad-SREBP1 and LGALS3, constituting a feedforward circuit that can be blocked by BETs inhibition. This study provides new insights into SMC phenotypic transition and potential interventional targets.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gary K. Owens
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
307
|
Jarr KU, Kojima Y, Weissman IL, Leeper NJ. 2021 Jeffrey M. Hoeg Award Lecture: Defining the Role of Efferocytosis in Cardiovascular Disease: A Focus on the CD47 (Cluster of Differentiation 47) Axis. Arterioscler Thromb Vasc Biol 2022; 42:e145-e154. [PMID: 35387480 PMCID: PMC9183217 DOI: 10.1161/atvbaha.122.317049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
Abstract
A key feature of atherogenesis is the accumulation of diseased and dying cells within the lesional necrotic core. While the burden of intraplaque apoptotic cells may be driven in part by an increase in programmed cell death, mounting evidence suggests that their presence may primarily be dictated by a defect in programmed cell removal, or efferocytosis. In this brief review, we will summarize the evidence suggesting that inflammation-dependent changes within the plaque render target cells inedible and reduce the appetite of lesional phagocytes. We will present the genetic causation studies, which indicate these phenomena promote lesion expansion and plaque vulnerability, and the interventional data which suggest that these processes can be reversed. Particular emphasis is provided related to the antiphagocytic CD47 (cluster of differentiation 47) do not eat me axis, which has emerged as a novel antiatherosclerotic translational target that is predicted to provide benefit independent of traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Kai-Uwe Jarr
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving L. Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
308
|
Katra P, Björkbacka H. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2022; 33:208-210. [PMID: 35695617 DOI: 10.1097/mol.0000000000000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Pernilla Katra
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | | |
Collapse
|
309
|
Zhou W, Bai Y, Chen J, Li H, Zhang B, Liu H. Revealing the Critical Regulators of Modulated Smooth Muscle Cells in Atherosclerosis in Mice. Front Genet 2022; 13:900358. [PMID: 35677564 PMCID: PMC9168464 DOI: 10.3389/fgene.2022.900358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023] Open
Abstract
Background: There are still residual risks for atherosclerosis (AS)-associated cardiovascular diseases to be resolved. Considering the vital role of phenotypic switching of smooth muscle cells (SMCs) in AS, especially in calcification, targeting SMC phenotypic modulation holds great promise for clinical implications. Methods: To perform an unbiased and systematic analysis of the molecular regulatory mechanism of phenotypic switching of SMCs during AS in mice, we searched and included several publicly available single-cell datasets from the GEO database, resulting in an inclusion of more than 80,000 cells. Algorithms implemented in the Seurat package were used for cell clustering and cell atlas depiction. The pySCENIC and SCENIC packages were used to identify master regulators of interested cell groups. Monocle2 was used to perform pseudotime analysis. clusterProfiler was used for Gene Ontology enrichment analysis. Results: After dimensionality reduction and clustering, reliable annotation was performed. Comparative analysis between cells from normal artery and AS lesions revealed that three clusters emerged as AS progression, designated as mSMC1, mSMC2, and mSMC3. Transcriptional and functional enrichment analysis established a continuous transitional mode of SMCs’ transdifferentiation to mSMCs, which is further supported by pseudotime analysis. A total of 237 regulons were identified with varying activity scores across cell types. A potential core regulatory network was constructed for SMC and mSMC subtypes. In addition, module analysis revealed a coordinate regulatory mode of regulons for a specific cell type. Intriguingly, consistent with gain of ossification-related transcriptional and functional characteristics, a corresponding small set of regulators contributing to osteochondral reprogramming was identified in mSMC3, including Dlx5, Sox9, and Runx2. Conclusion: Gene regulatory network inference indicates a hierarchical organization of regulatory modules that work together in fine-tuning cellular states. The analysis here provides a valuable resource that can provide guidance for subsequent biological experiments.
Collapse
Affiliation(s)
- Wenli Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianqiao Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huiying Li
- Medical School of Chinese PLA, Beijing, China
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baohua Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Health Care, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Hongbin Liu,
| |
Collapse
|
310
|
Du M, Espinosa-Diez C, Liu M, Ahmed IA, Mahan S, Wei J, Handen AL, Chan SY, Gomez D. miRNA/mRNA co-profiling identifies the miR-200 family as a central regulator of SMC quiescence. iScience 2022; 25:104169. [PMID: 35465051 PMCID: PMC9018390 DOI: 10.1016/j.isci.2022.104169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
miRNAs are versatile regulators of smooth muscle cell (SMC) fate and behavior in vascular development and disease. Targeted loss-of-function studies have established the relevance of specific miRNAs in controlling SMC differentiation or mediating phenotypic modulation. Our goal was to characterize SMC miRNAome and its contribution to transcriptome changes during phenotypic modulation. Small RNA sequencing revealed that dedifferentiation led to the differential expression of over 50 miRNAs in cultured SMC. miRNA/mRNA comparison predicted that over a third of SMC transcript expression was regulated by differentially expressed miRNAs. Our screen identified the miR-200 cluster as highly downregulated during dedifferentiation. miR-200 maintains SMC quiescence and represses proliferation, migration, and neointima formation, in part by targeting Quaking, a central SMC phenotypic switching mediator. Our study unraveled the substantial contribution of miRNAs in regulating the SMC transcriptome and identified the miR-200 cluster as a pro-quiescence mechanism and a potential inhibitor of vascular restenosis.
Collapse
Affiliation(s)
- Mingyuan Du
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ibrahim Adeola Ahmed
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jianxin Wei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adam L Handen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen Y Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
311
|
Bosmans LA, van Tiel CM, Aarts SABM, Willemsen L, Baardman J, van Os BW, den Toom M, Beckers L, Ahern DJ, Levels JHM, Jongejan A, Moerland PD, Verberk SGS, van den Bossche J, de Winther MMPJ, Weber C, Atzler D, Monaco C, Gerdes N, Shami A, Lutgens E. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovasc Res 2022; 119:1146-1160. [PMID: 35587037 DOI: 10.1093/cvr/cvac084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signaling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-TNF Receptor Associated Factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, were reduced in CD40mac-/- compared to CD40wt mice and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses.Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206 + CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages (BMDMs) of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1 and Tns1). CONCLUSIONS We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Baardman
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - David J Ahern
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Johannes H M Levels
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan van den Bossche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Walter-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Germany
| | - Annelie Shami
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Experimental Cardiovascular Immunology Laboratory, Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
312
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
313
|
Shao X, Yu W, Yang Y, Wang F, Yu X, Wu H, Ma Y, Cao B, Wang YL. The mystery of the life tree: the placenta. Biol Reprod 2022; 107:301-316. [PMID: 35552600 DOI: 10.1093/biolre/ioac095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
The placenta is the interface between the fetal and maternal environments during mammalian gestation, critically safeguarding the health of the developing fetus and the mother. Placental trophoblasts origin from embryonic trophectoderm that differentiates into various trophoblastic subtypes through villous and extravillous pathways. The trophoblasts actively interact with multiple decidual cells and immune cells at the maternal-fetal interface and thus construct fundamental functional units, which are responsible for blood perfusion, maternal-fetal material exchange, placental endocrine, immune tolerance, and adequate defense barrier against pathogen infection. Various pregnant complications are tightly associated with the defects in placental development and function maintenance. In this review, we summarize the current views and our recent progress on the mechanisms underlying the formation of placental functional units, the interactions among trophoblasts and various uterine cells, as well as the placental barrier against pathogen infections during pregnancy. The involvement of placental dysregulation in adverse pregnancy outcomes is discussed.
Collapse
Affiliation(s)
- Xuan Shao
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yun Yang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Feiyang Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yeling Ma
- Medical College, Shaoxing University, Shaoxing, China
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
314
|
Rykaczewska U, Zhao Q, Saliba-Gustafsson P, Lengquist M, Kronqvist M, Bergman O, Huang Z, Lund K, Waden K, Pons Vila Z, Caidahl K, Skogsberg J, Vukojevic V, Lindeman JHN, Roy J, Hansson GK, Treuter E, Leeper NJ, Eriksson P, Ehrenborg E, Razuvaev A, Hedin U, Matic L. Plaque Evaluation by Ultrasound and Transcriptomics Reveals BCLAF1 as a Regulator of Smooth Muscle Cell Lipid Transdifferentiation in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:659-676. [PMID: 35321563 DOI: 10.1161/atvbaha.121.317018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.
Collapse
Affiliation(s)
- Urszula Rykaczewska
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Quanyi Zhao
- Division of Cardiovascular Medicine, Cardiovascular Institute (Q.Z., P.S.-G.), Stanford University School of Medicine, CA
| | - Peter Saliba-Gustafsson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine (P.S.-G., O.B., G.K.H., P.E., E.E.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Division of Cardiovascular Medicine, Cardiovascular Institute (Q.Z., P.S.-G.), Stanford University School of Medicine, CA
| | - Mariette Lengquist
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kronqvist
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Otto Bergman
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine (P.S.-G., O.B., G.K.H., P.E., E.E.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition (Z.H., E.T.), Karolinska Institutet, Stockholm, Sweden
| | - Kent Lund
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Waden
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Zara Pons Vila
- Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery (Z.P.V.), Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Caidahl
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital and Molecular and Clinical Medicine, University of Gothenburg, Sweden (K.C.)
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics (J.S.), Karolinska Institutet, Stockholm, Sweden
| | - Vladana Vukojevic
- Department of Clinical Neuroscience, Center for Molecular Medicine (V.V.), Karolinska Institutet, Stockholm, Sweden
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, the Netherlands (J.H.N.L.)
| | - Joy Roy
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Göran K Hansson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine (P.S.-G., O.B., G.K.H., P.E., E.E.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eckardt Treuter
- Department of Biosciences and Nutrition (Z.H., E.T.), Karolinska Institutet, Stockholm, Sweden
| | - Nicholas J Leeper
- Department of Surgery (N.J.L.), Stanford University School of Medicine, CA.,Department of Medicine (N.J.L.), Stanford University School of Medicine, CA
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine (P.S.-G., O.B., G.K.H., P.E., E.E.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine (P.S.-G., O.B., G.K.H., P.E., E.E.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anton Razuvaev
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ljubica Matic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery (U.R., M.L., M.K., K.L., K.W., K.C., J.R., A.R., U.H., L.M.), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
315
|
von Ehr A, Bode C, Hilgendorf I. Macrophages in Atheromatous Plaque Developmental Stages. Front Cardiovasc Med 2022; 9:865367. [PMID: 35548412 PMCID: PMC9081876 DOI: 10.3389/fcvm.2022.865367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the main pathomechanism leading to cardiovascular diseases such as myocardial infarction or stroke. There is consensus that atherosclerosis is not only a metabolic disorder but rather a chronic inflammatory disease influenced by various immune cells of the innate and adaptive immune system. Macrophages constitute the largest population of inflammatory cells in atherosclerotic lesions. They play a critical role in all stages of atherogenesis. The heterogenous macrophage population can be subdivided on the basis of their origins into resident, yolk sac and fetal liver monocyte-derived macrophages and postnatal monocyte-derived, recruited macrophages. Recent transcriptomic analyses revealed that the major macrophage populations in atherosclerosis include resident, inflammatory and foamy macrophages, representing a more functional classification. The aim of this review is to provide an overview of the trafficking, fate, and functional aspects of the different macrophage populations in the "life cycle" of an atheromatous plaque. Understanding the chronic inflammatory state in atherosclerotic lesions is an important basis for developing new therapeutic approaches to abolish lesion growth and promote plaque regression in addition to general cholesterol lowering.
Collapse
Affiliation(s)
- Alexander von Ehr
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
316
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 464] [Impact Index Per Article: 154.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
317
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
318
|
Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, Xia M, Ling W, Xiao Y. Epigenetic Upregulation of H19 and AMPK Inhibition Concurrently Contribute to S-Adenosylhomocysteine Hydrolase Deficiency-Promoted Atherosclerotic Calcification. Circ Res 2022; 130:1565-1582. [PMID: 35410483 DOI: 10.1161/circresaha.121.320251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND S-adenosylhomocysteine (SAH) is a risk factor of cardiovascular disease; inhibition of SAH hydrolase (SAHH) results in SAH accumulation and induces endothelial dysfunction and atherosclerosis. However, the effect and mechanism of SAHH in atherosclerotic calcification is still unclear. We aimed to explore the role and mechanism of SAHH in atherosclerotic calcification. METHODS The relationship between SAHH and atherosclerotic calcification was investigated in patients with coronary atherosclerotic calcification. Different in vivo genetic models were used to examine the effect of SAHH deficiency on atherosclerotic calcification. Human aortic and murine vascular smooth muscle cells (VSMCs) were cultured to explore the underlying mechanism of SAHH on osteoblastic differentiation of VSMCs. RESULTS The expression and activity of SAHH were decreased in calcified human coronary arteries and inversely associated with coronary atherosclerotic calcification severity, whereas plasma SAH and total homocysteine levels were positively associated with coronary atherosclerotic calcification severity. Heterozygote knockout of SAHH promoted atherosclerotic calcification. Specifically, VSMC-deficient but not endothelial cell-deficient or macrophage-deficient SAHH promoted atherosclerotic calcification. Mechanistically, SAHH deficiency accumulated SAH levels and induced H19-mediated Runx2 (runt-related transcription factor 2)-dependent osteoblastic differentiation of VSMCs by inhibiting DNMT3b (DNA methyltransferase 3 beta) and leading to hypomethylation of the H19 promoter. On the other hand, SAHH deficiency resulted in lower intracellular levels of adenosine and reduced AMPK (AMP-activated protein kinase) activation. Adenosine supplementation activated AMPK and abolished SAHH deficiency-induced expression of H19 and Runx2 and osteoblastic differentiation of VSMCs. Finally, AMPK activation by adenosine inhibited H19 expression by inducing Sirt1-mediated histone H3 hypoacetylation and DNMT3b-mediated hypermethylation of the H19 promoter in SAHH deficiency VSMCs. CONCLUSIONS We have confirmed a novel correlation between SAHH deficiency and atherosclerotic calcification and clarified a new mechanism that epigenetic upregulation of H19 and AMPK inhibition concurrently contribute to SAHH deficiency-promoted Runx2-dependent atherosclerotic calcification.
Collapse
Affiliation(s)
- Xin Dai
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Si Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Lokyu Cheng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Ting Huang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan, China (H.G.)
| | - Dongliang Wang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Min Xia
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Wenhua Ling
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China (D.W., M.X., W.L.)
| | - Yunjun Xiao
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China (X.D., S.L., L.C., T.H., Y.X.)
| |
Collapse
|
319
|
Mussbacher M, Schossleitner K, Kral-Pointner JB, Salzmann M, Schrammel A, Schmid JA. More than Just a Monolayer: the Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr Atheroscler Rep 2022; 24:483-492. [PMID: 35404040 PMCID: PMC9162978 DOI: 10.1007/s11883-022-01023-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Purpose of the Review In this review, we summarize current insights into the versatile roles of endothelial cells in atherogenesis. Recent Findings The vascular endothelium represents the first barrier that prevents the entry of lipoproteins and leukocytes into the vessel wall, thereby controlling two key events in the pathogenesis of atherosclerosis. Disturbance of endothelial homeostasis increases vascular permeability, inflammation, and cellular trans-differentiation, which not only promotes the build-up of atherosclerotic plaques but is also involved in life-threatening thromboembolic complications such as plaque rupture and erosion. In this review, we focus on recent findings on endothelial lipoprotein transport, inflammation, cellular transitions, and barrier function. Summary By using cutting-edge technologies such as single-cell sequencing, epigenetics, and cell fate mapping, novel regulatory mechanisms and endothelial cell phenotypes have been discovered, which have not only challenged established concepts of endothelial activation, but have also led to a different view of the disease.
Collapse
Affiliation(s)
- Marion Mussbacher
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria.
| | - Klaudia Schossleitner
- Department of Dermatology, Skin and Endothelium Research Division, Medical University of Vienna, Vienna, Austria
| | - Julia B Kral-Pointner
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.,Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
320
|
Wang B, Tang X, Yao L, Wang Y, Chen Z, Li M, Wu N, Wu D, Dai X, Jiang H, Ai D. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest 2022; 132:154217. [PMID: 35389885 PMCID: PMC9106359 DOI: 10.1172/jci154217] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Subendothelial macrophage internalization of modified lipids and foam cell formation are hallmarks of atherosclerosis. Deubiquitinating enzymes (DUBs) are involved in various cellular activities; however, their role in foam cell formation is not fully understood. Here, using a loss-of-function lipid accumulation screening, we identified ubiquitin-specific peptidase 9 X-linked (USP9X) as a factor that suppressed lipid uptake in macrophages. We found that USP9X expression in lesional macrophages was reduced during atherosclerosis development in both humans and rodents. Atherosclerotic lesions from macrophage USP9X-deficient mice showed increased macrophage infiltration, lipid deposition, and necrotic core content than control apolipoprotein E–KO (Apoe–/–) mice. Additionally, loss-of-function USP9X exacerbated lipid uptake, foam cell formation, and inflammatory responses in macrophages. Mechanistically, the class A1 scavenger receptor (SR-A1) was identified as a USP9X substrate that removed the K63 polyubiquitin chain at the K27 site. Genetic or pharmacological inhibition of USP9X increased SR-A1 cell surface internalization after binding of oxidized LDL (ox-LDL). The K27R mutation of SR-A1 dramatically attenuated basal and USP9X knockdown–induced ox-LDL uptake. Moreover, blocking binding of USP9X to SR-A1 with a cell-penetrating peptide exacerbated foam cell formation and atherosclerosis. In this study, we identified macrophage USP9X as a beneficial regulator of atherosclerosis and revealed the specific mechanisms for the development of potential therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Biqing Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuening Tang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Liu Yao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yuxin Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Chen
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Mengqi Li
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Naishi Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dawei Wu
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangchen Dai
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
321
|
Van Hoose PM, Yang L, Kraemer M, Ubele M, Morris AJ, Smyth SS. Lipid phosphate phosphatase 3 in smooth muscle cells regulates angiotensin II-induced abdominal aortic aneurysm formation. Sci Rep 2022; 12:5664. [PMID: 35383201 PMCID: PMC8983654 DOI: 10.1038/s41598-022-08422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Genetic variants that regulate lipid phosphate phosphatase 3 (LPP3) expression are risk factors for the development of atherosclerotic cardiovascular disease. LPP3 is dynamically upregulated in the context of vascular inflammation with particularly heightened expression in smooth muscle cells (SMC), however, the impact of LPP3 on vascular pathology is not fully understood. We investigated the role of LPP3 and lysophospholipid signaling in a well-defined model of pathologic aortic injury and observed Angiotensin II (Ang II) increases expression of PLPP3 in SMCs through nuclear factor kappa B (NF-κB) signaling Plpp3 global reduction (Plpp3+/-) or SMC-specific deletion (SM22-Δ) protects hyperlipidemic mice from AngII-mediated aneurysm formation. LPP3 expression regulates SMC differentiation state and lowering LPP3 levels promotes a fibroblast-like phenotype. Decreased inactivation of bioactive lysophosphatidic acid (LPA) in settings of LPP3 deficiency may underlie these phenotypes because deletion of LPA receptor 4 in mice promotes early aortic dilation and rupture in response to AngII. LPP3 expression and LPA signaling influence SMC and vessel wall responses that are important for aortic dissection and aneurysm formation. These findings could have important implications for therapeutics targeting LPA metabolism and signaling in ongoing clinical trials.
Collapse
Affiliation(s)
- Patrick M Van Hoose
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Liping Yang
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Maria Kraemer
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Margo Ubele
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
| | - Andrew J Morris
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA
- Lexington Veterans Affair Medical Center, Lexington, KY, USA
| | - Susan S Smyth
- Gill Heart and Vascular Institute, University of Kentucky, 741 South Limestone BBSRB, Rm: B347, Lexington, KY, 40536-0509, USA.
- Lexington Veterans Affair Medical Center, Lexington, KY, USA.
| |
Collapse
|
322
|
Cheng P, Wirka RC, Kim JB, Kim HJ, Nguyen T, Kundu R, Zhao Q, Sharma D, Pedroza A, Nagao M, Iyer D, Fischbein MP, Quertermous T. Smad3 regulates smooth muscle cell fate and mediates adverse remodeling and calcification of the atherosclerotic plaque. NATURE CARDIOVASCULAR RESEARCH 2022; 1:322-333. [PMID: 36246779 PMCID: PMC9560061 DOI: 10.1038/s44161-022-00042-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/01/2022] [Indexed: 04/20/2023]
Abstract
Atherosclerotic plaques consist mostly of smooth muscle cells (SMC), and genes that influence SMC phenotype can modulate coronary artery disease (CAD) risk. Allelic variation at 15q22.33 has been identified by genome-wide association studies to modify the risk of CAD and is associated with the expression of SMAD3 in SMC. However, the mechanism by which this gene modifies CAD risk remains poorly understood. Here we show that SMC-specific deletion of Smad3 in a murine atherosclerosis model resulted in greater plaque burden, more outward remodelling and increased vascular calcification. Single-cell transcriptomic analyses revealed that loss of Smad3 altered SMC transition cell state toward two fates: a SMC phenotype that governs both vascular remodelling and recruitment of inflammatory cells, as well as a chondromyocyte fate. Together, the findings reveal that Smad3 expression in SMC inhibits the emergence of specific SMC phenotypic transition cells that mediate adverse plaque features, including outward remodelling, monocyte recruitment, and vascular calcification.
Collapse
Affiliation(s)
- Paul Cheng
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Robert C. Wirka
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Hyun-Jung Kim
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Trieu Nguyen
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Ramendra Kundu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Quanyi Zhao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Disha Sharma
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Albert Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Manabu Nagao
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Dharini Iyer
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
323
|
Liu Y, Jiang G, Lv C, Yang C. miR-222-5p promotes dysfunction of human vascular smooth muscle cells by targeting RB1. ENVIRONMENTAL TOXICOLOGY 2022; 37:683-694. [PMID: 34862716 DOI: 10.1002/tox.23434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/04/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Coronary atherosclerosis (AS) is characterized by the formation of plaque in the vessel wall. The structural and functional changes of vascular smooth muscle cells (VSMCs) can promote plaque formation and induce plaque instability. OBJECTIVE To investigate the functions and mechanism of miR-222-5p in VSMCs under the treatment of oxidized low-density lipoprotein (ox-LDL). METHODS miR-222-5p expression in ox-LDL-treated VSMCs and the serum of Apolipoprotein E (ApoE) knockout mice was detected by reverse transcription quantitative polymerase chain reaction. The viability and migration of VSMCs were detected by Cell Counting Kit-8 and Transwell assays. Protein levels of proliferation and migration-related factors were evaluated by western blotting. Luciferase reporter assays were performed to explore the binding between miR-222-5p and retinoblastoma susceptibility protein (RB1) gene in VSMCs. ApoE-knockout mice were infected with the lentivirus inhibiting miR-222-5p expression to explore the effect of miR-222-5p on pathological changes. Hematoxylin and eosin (H&E) staining, trichrome staining, and Oil Red O staining were conducted to determine the necrotic core area and atherosclerotic lesion size in the ascending aorta of ApoE-knockout mice. RESULTS With the accumulation of ox-LDL concentration and treatment time, miR-222-5p expression was gradually upregulated in VSMCs. Similarly, miR-222-5p expression was increased in the serum of ApoE-knockout mice. miR-222-5p knockdown inhibited the proliferative and migratory abilities of ox-LDL-treated VSMCs, and the inhibitory effect on cellular behaviors was then significantly reversed by co-knockdown of RB1. RB1 is a downstream target gene of miR-222-5p, and miR-222-5p bound with 3'-untranslated region of RB1 in VSMCs. We further confirmed that miR-222-5p knockdown alleviated pathological changes and inhibited lipid deposition in the serum of ApoE-knockout mice in vivo. CONCLUSION miR-222-5p accelerates the dysfunction of VSMCs and promotes pathological changes and lipid deposition in ApoE-knockout mice by targeting RB1. The study may provide novel therapeutic targets for AS.
Collapse
Affiliation(s)
- Yihang Liu
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Jilin, China
| | - Guopan Jiang
- Department of Cardiovascular Medicine, Jilin Provincial People's Hospital, Jilin, China
| | - Changzhi Lv
- Department of Second Cardiology, Dandong First Hospital, Dandong, China
| | - Chuang Yang
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
324
|
Zou F, Li Y, Zhang S, Zhang J. DP1 (Prostaglandin D 2 Receptor 1) Activation Protects Against Vascular Remodeling and Vascular Smooth Muscle Cell Transition to Myofibroblasts in Angiotensin II-Induced Hypertension in Mice. Hypertension 2022; 79:1203-1215. [PMID: 35354317 DOI: 10.1161/hypertensionaha.121.17584] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotype transition plays an essential role in vascular remodeling. PGD2 (Prostaglandin D2) is involved in cardiovascular inflammation. In this study, we aimed to investigates the role of DP1 (PGD2 receptor 1) on VSMC phenotype transition in vascular remodeling after Ang II (angiotensin II) infusion in mice. METHODS VSMC-specific DP1 knockout mice and DP1flox/flox mice were infused with Ang II for 28 days and systolic blood pressure was measured by noninvasive tail-cuff system. The arterial samples were applied to an unbiased proteome analysis. DP1f/f Myh11 (myosin heavy chain 11) CREERT2 R26mTmG/+ mice were generated for VSMC lineage tracing. Multiple genetic and pharmacological approaches were used to investigate DP1-mediated signaling in phenotypic transition of VSMCs in response to Ang II administration. RESULTS DP1 knockout promoted vascular media thickness and increased systolic blood pressure after Ang II infusion by impairing Epac (exchange protein directly activated by cAMP)-1-mediated Rap-1 (Ras-related protein 1) activation. The DP1 agonist facilitated the interaction of myocardin-related transcription factor A and G-actin, which subsequently inhibited the VSMC transition to myofibroblasts through the suppression of RhoA (Ras homolog family member A)/ROCK-1 (Rho associated coiled-coil containing protein kinase 1) activity. Moreover, Epac-1 overexpression by lentivirus blocked the progression of vascular fibrosis in DP1 deficient mice in response to Ang II infusion. CONCLUSIONS Our finding revealed a protective role of DP1 in VSMC switch to myofibroblasts by impairing the phosphorylation of MRTF (myocardin-related transcription factor)-A by ROCK-1 through Epac-1/Rap-1/RhoA pathway and thus inhibited the expression of collagen I, fibronectin, ED-A (extra domain A) fibronectin, and vinculin. Thus, DP1 activation has therapeutic potential for vascular fibrosis in hypertension.
Collapse
Affiliation(s)
- Fangdi Zou
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China.,School of Pharmacy (F.Z.), Tianjin Medical University, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China
| | - Shijie Zhang
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China
| | - Jian Zhang
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China.,School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.Z.)
| |
Collapse
|
325
|
Meng LB, Xu HX, Shan MJ, Hu GF, Liu LT, Chen YH, Liu YQ, Wang L, Chen Z, Li YJ, Gong T, Liu DP. A Potential Target for Clinical Atherosclerosis: A Novel Insight Derived from TPM2. Aging Dis 2022; 13:373-378. [PMID: 35371599 PMCID: PMC8947840 DOI: 10.14336/ad.2021.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 11/02/2022] Open
Abstract
Atherosclerosis (AS) is a potential inducer of numerous cardio-cerebrovascular diseases. However, little research has investigated the expression of TPM2 in human atherosclerosis samples. A total of 34 clinical samples were obtained, including 17 atherosclerosis and 17 normal artery samples, between January 2018 and April 2021. Bioinformatics analysis was applied to explore the potential role of TPM2 in atherosclerosis. Immunohistochemistry, immunofluorescence, and western blotting assays were used to detect the expression of TPM2 and α-SMA proteins. The mRNA expression levels of TPM2 and α-SMA were detected using RT-qPCR. A neural network and intima-media thickness model were constructed. A strong relationship existed between the intima-media thickness and relative protein expression of TPM2 (P<0.001, R=-0.579). The expression of TPM2 was lower in atherosclerosis than normal artery (P<0.05). Univariate logistic regression showed that TPM2 (OR=0.150, 95% CI: 0.026-0.868, P=0.034) had clear correlations with atherosclerosis. A neural network model was successfully constructed with a relativity of 0.94434. TPM2 might be an independent protective factor for arteries, and one novel biomarker of atherosclerosis.
Collapse
Affiliation(s)
- Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hong-xuan Xu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Meng-jie Shan
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of plastic surgery, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Gai-feng Hu
- Department of Cardiology, The First A?liated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Long-teng Liu
- Department of pathology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yu-hui Chen
- Department of neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yun-qing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Li Wang
- Department of neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-jun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Gong
- Department of neurology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - De-ping Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Correspondence should be addressed to: Dr. De-ping Liu (E-mail: ), Dr. Tao Gong, (), Dr. Yongjun Li (E-mail: ), and Dr. Zuoguan Chen (E-mail: ), Departments of Cardiology, Beijing Hospital, National Center of Gerontology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
326
|
Sauter M, Langer HF. Targeting Cell-Specific Molecular Mechanisms of Innate Immunity in Atherosclerosis. Front Physiol 2022; 13:802990. [PMID: 35432000 PMCID: PMC9010538 DOI: 10.3389/fphys.2022.802990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of innate immunity contribute to inflammation, one of the major underlying causes of atherogenesis and progression of atherosclerotic vessel disease. How immune cells exactly contribute to atherosclerosis and interact with molecules of cholesterol homeostasis is still a matter of intense research. Recent evidence has proposed a potential role of previously underappreciated cell types in this chronic disease including platelets and dendritic cells (DCs). The pathophysiology of atherosclerosis is studied in models with dysfunctional lipid homeostasis and several druggable molecular targets are derived from these models. Specific therapeutic approaches focussing on these immune mechanisms, however, have not been successfully introduced into everyday clinical practice, yet. This review highlights molecular insights into immune processes related to atherosclerosis and potential future translational approaches targeting these molecular mechanisms.
Collapse
Affiliation(s)
- M. Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - H. F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- Department of Cardiology, University Heart Center Luebeck, University Hospital, Luebeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: H. F. Langer,
| |
Collapse
|
327
|
Pasterkamp G, den Ruijter HM, Giannarelli C. False Utopia of One Unifying Description of the Vulnerable Atherosclerotic Plaque: A Call for Recalibration That Appreciates the Diversity of Mechanisms Leading to Atherosclerotic Disease. Arterioscler Thromb Vasc Biol 2022; 42:e86-e95. [PMID: 35139657 DOI: 10.1161/atvbaha.121.316693] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis is a complex disease characterized by the formation of arterial plaques with a broad diversity of morphological phenotypic presentations. Researchers often apply one description of the vulnerable plaque as a gold standard in preclinical and clinical research that could be applied as a surrogate measure of a successful therapeutic intervention, despite the variability in lesion characteristics that may underly a thrombotic occlusion. The complex mechanistic interplay underlying progression of atherosclerotic disease is a consequence of the broad range of determinants such as sex, risk factors, hemodynamics, medications, and the genetic landscape. Currently, we are facing an overwhelming amount of data based on genetic, transcriptomic, proteomic, and metabolomic studies that all point to heterogeneous molecular profiles of atherosclerotic lesions that lead to a myocardial infarction or stroke. The observed molecular diversity implies that one unifying model cannot fully recapitulate the natural history of atherosclerosis. Despite emerging data obtained from -omics studies, a description of a natural history of atherosclerotic disease in which cell-specific expression of proteins or genes are included is still lacking. This also applies to the insights provided by genome-wide association studies. This review will critically discuss the dogma that the progression of atherosclerotic disease can be captured in one unifying natural history model of atherosclerosis.
Collapse
Affiliation(s)
- Gerard Pasterkamp
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Central Diagnostics Laboratories (G.P.), University Medical Center Utrecht, the Netherlands
| | - Hester M den Ruijter
- Circulatory Health Laboratories (G.P., H.M.d.R.), University Medical Center Utrecht, the Netherlands.,Laboratory of Experimental Cardiology (H.M.d.R.), University Medical Center Utrecht, the Netherlands
| | - Chiara Giannarelli
- NYU Cardiovascular Research Center (C.G.), New York University Grossman School of Medicine.,Department of Pathology (C.G.), New York University Grossman School of Medicine
| |
Collapse
|
328
|
Yurdagul A. Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arterioscler Thromb Vasc Biol 2022; 42:372-380. [PMID: 35172605 PMCID: PMC8957544 DOI: 10.1161/atvbaha.121.316233] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most acute cardiovascular events are due to plaque rupture, with atheromas containing large necrotic cores and thin fibrous caps being more susceptible to rupture and lesions with small necrotic cores and thick fibrous caps being more protected from rupture. Atherosclerotic plaques are comprised various extracellular matrix proteins, modified lipoprotein particles, and cells of different origins, that is, vascular cells and leukocytes. Although much has been revealed about the mechanisms that lead to plaque instability, several key areas remain incompletely understood. This In-Focus Review highlights processes related to cellular crosstalk and the role of the tissue microenvironment in determining cell function and plaque stability. Recent advances highlight critical underpinnings of atherosclerotic plaque vulnerability, particularly impairments in the ability of macrophages to clear dead cells and phenotypic switching of vascular smooth muscle cells. However, these processes do not occur in isolation, as crosstalk between macrophages and vascular smooth muscle cells and interactions with their surrounding microenvironment play a significant role in determining plaque stability. Understanding these aspects of cellular crosstalk within an atherosclerotic plaque may shed light on how to modify cell behavior and identify novel approaches to transform rupture-prone atheromas into stable lesions.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences, Shreveport
| |
Collapse
|
329
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
330
|
Shin J, Tkachenko S, Chaklader M, Pletz C, Singh K, Bulut GB, Han YM, Mitchell K, Baylis RA, Kuzmin AA, Hu B, Lathia JD, Stenina-Adognravi O, Podrez E, Byzova TV, Owens GK, Cherepanova OA. Endothelial OCT4 is atheroprotective by preventing metabolic and phenotypic dysfunction. Cardiovasc Res 2022; 118:2458-2477. [PMID: 35325071 PMCID: PMC9890633 DOI: 10.1093/cvr/cvac036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
AIMS Until recently, the pluripotency factor Octamer (ATGCAAAT)-binding transcriptional factor 4 (OCT4) was believed to be dispensable in adult somatic cells. However, our recent studies provided clear evidence that OCT4 has a critical atheroprotective role in smooth muscle cells. Here, we asked if OCT4 might play a functional role in regulating endothelial cell (EC) phenotypic modulations in atherosclerosis. METHODS AND RESULTS Specifically, we show that EC-specific Oct4 knockout resulted in increased lipid, LGALS3+ cell accumulation, and altered plaque characteristics consistent with decreased plaque stability. A combination of single-cell RNA sequencing and EC-lineage-tracing studies revealed increased EC activation, endothelial-to-mesenchymal transitions, plaque neovascularization, and mitochondrial dysfunction in the absence of OCT4. Furthermore, we show that the adenosine triphosphate (ATP) transporter, ATP-binding cassette (ABC) transporter G2 (ABCG2), is a direct target of OCT4 in EC and establish for the first time that the OCT4/ABCG2 axis maintains EC metabolic homeostasis by regulating intracellular heme accumulation and related reactive oxygen species production, which, in turn, contributes to atherogenesis. CONCLUSIONS These results provide the first direct evidence that OCT4 has a protective metabolic function in EC and identifies vascular OCT4 and its signalling axis as a potential target for novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Connor Pletz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kanwardeep Singh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gamze B Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Young min Han
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Andrey A Kuzmin
- Russian Academy of Sciences, Institute of Cytology, St Petersburg, Russian Federation
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga Stenina-Adognravi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eugene Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana V Byzova
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
331
|
A regulator of G protein signaling 5 marked subpopulation of vascular smooth muscle cells is lost during vascular disease. PLoS One 2022; 17:e0265132. [PMID: 35320283 PMCID: PMC8942229 DOI: 10.1371/journal.pone.0265132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) subpopulations relevant to vascular disease and injury repair have been depicted in healthy vessels and atherosclerosis profiles. However, whether VSMC subpopulation associated with vascular homeostasis exists in the healthy artery and how are their nature and fate in vascular remodeling remains elusive. Here, using single-cell RNA-sequencing (scRNA-seq) to detect VSMC functional heterogeneity in an unbiased manner, we showed that VSMC subpopulations in healthy artery presented transcriptome diversity and that there was significant heterogeneity in differentiation state and development within each subpopulation. Notably, we detected an independent subpopulation of VSMCs that highly expressed regulator of G protein signaling 5 (RGS5), upregulated the genes associated with inhibition of cell proliferation and construction of cytoskeleton compared with the general subpopulation, and mainly enriched in descending aorta. Additionally, the proportion of RGS5high VSMCs was markedly decreased or almost disappeared in the vascular tissues of neointimal formation, abdominal aortic aneurysm and atherosclerosis. Specific spatiotemporal characterization of RGS5high VSMC subpopulation suggested that this subpopulation was implicated in vascular homeostasis. Together, our analyses identify homeostasis-relevant transcriptional signatures of VSMC subpopulations in healthy artery, which may explain the regional vascular resistance to atherosclerosis at some extent.
Collapse
|
332
|
Roldán-Montero R, Pérez-Sáez JM, Cerro-Pardo I, Oller J, Martinez-Lopez D, Nuñez E, Maller SM, Gutierrez-Muñoz C, Mendez-Barbero N, Escola-Gil JC, Michel JB, Mittelbrunn M, Vázquez J, Blanco-Colio LM, Rabinovich GA, Martin-Ventura JL. Galectin-1 prevents pathological vascular remodeling in atherosclerosis and abdominal aortic aneurysm. SCIENCE ADVANCES 2022; 8:eabm7322. [PMID: 35294231 PMCID: PMC8926342 DOI: 10.1126/sciadv.abm7322] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pathological vascular remodeling is the underlying cause of atherosclerosis and abdominal aortic aneurysm (AAA). Here, we analyzed the role of galectin-1 (Gal-1), a β-galactoside-binding protein, as a therapeutic target for atherosclerosis and AAA. Mice lacking Gal-1 (Lgals1-/-) developed severe atherosclerosis induced by pAAV/D377Y-mPCSK9 adenovirus and displayed higher lipid levels and lower expression of contractile markers of vascular smooth muscle cells (VSMCs) in plaques than wild-type mice. Proteomic analysis of Lgals1-/- aortas showed changes in markers of VSMC phenotypic switch and altered composition of mitochondrial proteins. Mechanistically, Gal-1 silencing resulted in increased foam cell formation and mitochondrial dysfunction in VSMCs, while treatment with recombinant Gal-1 (rGal-1) prevented these effects. Furthermore, rGal-1 treatment attenuated atherosclerosis and elastase-induced AAA, leading to higher contractile VSMCs in aortic tissues. Gal-1 expression decreased in human atheroma and AAA compared to control tissue. Thus, Gal-1-driven circuits emerge as potential therapeutic strategies in atherosclerosis and AAA.
Collapse
Affiliation(s)
- Raquel Roldán-Montero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juan M. Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | - Isabel Cerro-Pardo
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
| | - Jorge Oller
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | | | - Estefania Nuñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Sebastian M. Maller
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
| | | | - Nerea Mendez-Barbero
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Maria Mittelbrunn
- Centro de Biología Molecular Severo Ochoa, Centro Superior de Investigaciones Científicas-UAM, Madrid, Spain
- Instituto de Investigación del Hospital 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Luis M. Blanco-Colio
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428ADN Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428AGE Buenos Aires, Argentina
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| | - Jose L. Martin-Ventura
- IIS-Fundación Jiménez-Díaz-Autonoma University of Madrid (UAM). Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Corresponding author. (J.L.M.-V.); (G.A.R.)
| |
Collapse
|
333
|
Affiliation(s)
- Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Research, St. Paul's Hospital, University of British Columbia, Vancouver, Canada (G.A.F.)
| | - Babak Razani
- Cardiovascular Division, Department of Medicine (B.R.), Washington University School of Medicine, St Louis, MO.,Department of Pathology and Immunology (B.R.), Washington University School of Medicine, St Louis, MO.,John Cochran VA Medical Center, St. Louis, MO (B.R.)
| |
Collapse
|
334
|
Liu Y, Luo X, Jia H, Yu B. The Effect of Blood Pressure Variability on Coronary Atherosclerosis Plaques. Front Cardiovasc Med 2022; 9:803810. [PMID: 35369353 PMCID: PMC8965230 DOI: 10.3389/fcvm.2022.803810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Hypertension is one of the most important risk factors for coronary heart disease (CHD). The regulation of blood pressure plays a significant role in the development and prognosis of CHD. Blood pressure variability (BPV) refers to the degree of fluctuation of blood pressure over a period of time and is an important indicator of blood pressure stability. Blood pressure fluctuations are complex physiological phenomena, being affected by physiological and pharmacological effects and regulated by behavioral, environmental, hydrodynamic, and neural factors. According to the different time periods for measuring BPV, it can be divided into very short-term, short-term, mid-term, and long-term. Multiple cardiovascular disease animal models and clinical experiments have consistently indicated that abnormal BPV is closely related to coronary events and is a risk factor for CHD independently of average blood pressure. Thrombosis secondary to plaque rupture (PR) or plaque erosion can cause varying blood flow impairment, which is the main pathological basis of CHD. Plaque morphology and composition can influence the clinical outcome, treatment, and prognosis of patients with CHD. Research has shown that PR is more easily induced by hypertension. After adjusting for the traditional factors associated with plaque development, in recent years, some new discoveries have been made on the influence of abnormal BPV on the morphology and composition of coronary plaques and related mechanisms, including inflammation and hemodynamics. This article reviews the impact of BPV on coronary plaques and their related mechanisms, with a view to prevent the occurrence and development of CHD by controlling BPV and to provide new prevention and treatment strategies for the clinical treatment of abnormal blood pressure.
Collapse
Affiliation(s)
- Yue Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- *Correspondence: Haibo Jia
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
335
|
Maiseyeu A, Di L, Ravodina A, Barajas-Espinosa A, Sakamoto A, Chaplin A, Zhong J, Gao H, Mignery M, Narula N, Finn AV, Rajagopalan S. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics 2022; 12:2741-2757. [PMID: 35401813 PMCID: PMC8965488 DOI: 10.7150/thno.66456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/18/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Glucagon-like peptide-1 receptor (GLP-1R) agonists are powerful glycemia-lowering agents, which have systematically been shown to lower cardiovascular events and mortality. These beneficial effects were difficult to pinpoint within atherosclerotic plaque due to lack of particular specificity of such agonists to the vascular cells and an inadequate understanding of the GLP-1R expression in atherosclerosis. Here, we hypothesized that the direct engagement of the GLP-1R in atherosclerosis by targeted agonists will alleviate vascular inflammation and plaque burden, even at a very low dose. Methods: The expression of GLP-1 receptor (GLP-1R, Glp1r mRNA) in human lesions with pathologic intimal thickening, Apoe-/- mouse atheroma and cultured immune/non-immune cells was investigated using genetic lineage tracing, Southern blotting and validated antisera against human GLP-1R. Protease-resistant and "activatable" nanoparticles (NPs) carrying GLP-1R agonist liraglutide (GlpNP) were engineered and synthesized. Inclusion of gadolinium chelates into GlpNP allowed for imaging by MRI. Atherosclerotic Apoe-/- mice were treated intravenously with a single dose (30 µg/kg of liraglutide) or chronically (1 µg/kg, 6 weeks, 2x/week) with GlpNP, liraglutide or control NPs, followed by assessment of metabolic parameters, atheroma burden, inflammation and vascular function. Results: Humal plaque specimens expressed high levels of GLP-1R within the locus of de-differentiated smooth muscle cells that also expressed myeloid marker CD68. However, innate immune cells under a variety of conditions expressed very low levels of Glp1r, as seen in lineage tracing and Southern blotting experiments examining full-length open reading frame mRNA transcripts. Importantly, de-differentiated vascular smooth muscle cells demonstrated significant Glp1r expression levels, suggesting that these could represent the cells with predominant Glp1r-positivity in atherosclerosis. GlpNP resisted proteolysis and demonstrated biological activity including in vivo glycemia lowering at 30 µg/kg and in vitro cholesterol efflux. Activatable properties of GlpNP were confirmed in vitro by imaging cytometry and in vivo using whole organ imaging. GlpNP targeted CD11b+/CD11c+ cells in circulation and smooth muscle cells in aortic plaque in Apoe-/- mice when assessed by MRI and fluorescence imaging. At a very low dose of 1 µg/kg, previously known to have little effect on glycemia and weight loss, GlpNP delivered i.v. for six weeks reduced triglyceride-rich lipoproteins in plasma, plaque burden and plaque cholesterol without significant effects on weight, glycemia and plasma cholesterol levels. Conclusions: GlpNP improves atherosclerosis at weight-neutral doses as low as 1 µg/kg with the effects independent from the pancreas or the central nervous system. Our study underlines the importance of direct actions of GLP-1 analogs on atherosclerosis, involving cholesterol efflux and inflammation. Our findings are the first to suggest the therapeutic modulation of vascular targets by GlpNP, especially in the context of smooth muscle cell inflammation.
Collapse
Affiliation(s)
- Andrei Maiseyeu
- Case Western Reserve University, Cleveland, OH
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- University of Maryland, Baltimore, MD
| | - Lin Di
- Case Western Reserve University, Cleveland, OH
| | | | - Alma Barajas-Espinosa
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | | | | | - Jixin Zhong
- Case Western Reserve University, Cleveland, OH
| | - Huiyun Gao
- Case Western Reserve University, Cleveland, OH
| | | | | | - Aloke V. Finn
- University of Maryland, Baltimore, MD
- CVPath Institute, Inc., Gaithersburg, MD
| | - Sanjay Rajagopalan
- Case Western Reserve University, Cleveland, OH
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
- University of Maryland, Baltimore, MD
| |
Collapse
|
336
|
Investigation of Atherosclerotic Plaque Vulnerability. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:521-535. [PMID: 35237986 DOI: 10.1007/978-1-0716-1924-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Histochemical and immunohistochemical approaches permit the detection and evaluation of proteins and cell types within murine brachiocephalic artery atherosclerotic plaques, that can be subsequently analyzed to provide inferences on atherosclerotic plaque vulnerability. Here we describe the specific histochemical techniques deployed to examine the expression of elastin, fibrillar collagens, and neutral lipids, alongside immunohistochemistry protocols for the identification of macrophages (CD68) and vascular smooth muscle cells (α-smooth muscle actin). We will also describe how analyses derived from these methods can be combined to determine evidence of previous plaque rupture and susceptibility to rupture.
Collapse
|
337
|
Winkler EA, Kim CN, Ross JM, Garcia JH, Gil E, Oh I, Chen LQ, Wu D, Catapano JS, Raygor K, Narsinh K, Kim H, Weinsheimer S, Cooke DL, Walcott BP, Lawton MT, Gupta N, Zlokovic BV, Chang EF, Abla AA, Lim DA, Nowakowski TJ. A single-cell atlas of the normal and malformed human brain vasculature. Science 2022; 375:eabi7377. [PMID: 35084939 PMCID: PMC8995178 DOI: 10.1126/science.abi7377] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebrovascular diseases are a leading cause of death and neurologic disability. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of cerebrovascular cells in humans. We profiled transcriptomes of 181,388 cells to define a cell atlas of the adult human cerebrovasculature, including endothelial cell molecular signatures with arteriovenous segmentation and expanded perivascular cell diversity. By leveraging this reference, we investigated cellular and molecular perturbations in brain arteriovenous malformations, which are a leading cause of stroke in young people, and identified pathologic endothelial transformations with abnormal vascular patterning and the ontology of vascularly derived inflammation. We illustrate the interplay between vascular and immune cells that contributes to brain hemorrhage and catalog opportunities for targeting angiogenic and inflammatory programs in vascular malformations.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Jayden M Ross
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Eugene Gil
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Irene Oh
- Rebus Biosystems, Santa Clara, CA, USA
| | | | - David Wu
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kunal Raygor
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Kazim Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Daniel L Cooke
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Brian P Walcott
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
338
|
Keeter WC, Ma S, Stahr N, Moriarty AK, Galkina EV. Atherosclerosis and multi-organ-associated pathologies. Semin Immunopathol 2022; 44:363-374. [PMID: 35238952 PMCID: PMC9069968 DOI: 10.1007/s00281-022-00914-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system that is characterized by the deposition of modified lipoproteins, accumulation of immune cells, and formation of fibrous tissue within the vessel wall. The disease occurs in vessels throughout the body and affects the functions of almost all organs including the lymphoid system, bone marrow, heart, brain, pancreas, adipose tissue, liver, kidneys, and gastrointestinal tract. Atherosclerosis and associated factors influence these tissues via the modulation of local vascular functions, induction of cholesterol-associated pathologies, and regulation of local immune responses. In this review, we discuss how atherosclerosis interferers with functions of different organs via several common pathways and how the disturbance of immunity in atherosclerosis can result in disease-provoking dysfunctions in multiple tissues. Our growing appreciation of the implication of atherosclerosis and associated microenvironmental conditions in the multi-organ pathology promises to influence our understanding of CVD-associated disease pathologies and to provide new therapeutic opportunities.
Collapse
Affiliation(s)
- W Coles Keeter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Shelby Ma
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Natalie Stahr
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Alina K Moriarty
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA.
| |
Collapse
|
339
|
Eberhardt N, Giannarelli C. How Single-Cell Technologies Have Provided New Insights Into Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:243-252. [PMID: 35109673 PMCID: PMC8966900 DOI: 10.1161/atvbaha.121.315849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of innovative single-cell technologies has allowed the high-dimensional transcriptomic and proteomic profiling of individual blood and tissue cells. Recent single-cell studies revealed a new cellular heterogeneity of atherosclerotic plaque tissue and allowed a better understanding of distinct immune functional states in the context of atherosclerosis. In this brief review, we describe how single-cell technologies have shed a new light on the cellular composition of atherosclerotic plaques, and their response to diet perturbations or genetic manipulation in mouse models of atherosclerosis. We discuss how single-cell RNA sequencing, cellular indexing of transcriptomes and epitopes by sequencing, transposase-accessible chromatin with high-throughput sequencing, and cytometry by time-of-flight platforms have empowered the identification of discrete immune, endothelial, and smooth muscle cell alterations in atherosclerosis progression and regression. Finally, we review how single-cell approaches have allowed mapping the cellular and molecular composition of human atherosclerotic plaques and the discovery of new immune alterations in plaques from patients with stroke.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,NYU Cardiovascular Research Center, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA
| | - Chiara Giannarelli
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,NYU Cardiovascular Research Center, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,Department of Pathology, New York University Grossman School of Medicine, NYU Langone Health, New York (NY), USA.,Correspondence to: Chiara Giannarelli, MD, PhD, 435 East 30th street, Science Building, New York, NY, 10016,
| |
Collapse
|
340
|
Alves LS, Marques ARA, Padrão N, Carvalho FA, Ramalho J, Lopes CS, Soares MIL, Futter CE, Pinho E Melo TMVD, Santos NC, Vieira OV. Cholesteryl hemiazelate causes lysosome dysfunction impacting vascular smooth muscle cell homeostasis. J Cell Sci 2022; 135:272202. [PMID: 34528688 DOI: 10.1242/jcs.254631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction.
Collapse
Affiliation(s)
- Liliana S Alves
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon, 1169-056 Lisboa, Portugal
| | - André R A Marques
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon, 1169-056 Lisboa, Portugal
| | - Nuno Padrão
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon, 1169-056 Lisboa, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa 1649-028, Lisboa, Portugal
| | - José Ramalho
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon, 1169-056 Lisboa, Portugal
| | - Catarina S Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa 1649-028, Lisboa, Portugal
| | - Maria I L Soares
- CQC and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Clare E Futter
- Department of Cell Biology, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | | | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa 1649-028, Lisboa, Portugal
| | - Otília V Vieira
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School, NOVA University Lisbon, 1169-056 Lisboa, Portugal
| |
Collapse
|
341
|
Misra A, Rehan R, Lin A, Patel S, Fisher EA. Emerging Concepts of Vascular Cell Clonal Expansion in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:e74-e84. [PMID: 35109671 PMCID: PMC8988894 DOI: 10.1161/atvbaha.121.316093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clonal expansion is a process that can drive pathogenesis in human diseases, with atherosclerosis being a prominent example. Despite advances in understanding the etiology of atherosclerosis, clonality studies of vascular cells remain in an early stage. Recently, several paradigm-shifting preclinical studies have identified clonal expansion of progenitor cells in the vasculature in response to atherosclerosis. This review provides an overview of cell clonality in atherosclerotic progression, focusing particularly on smooth muscle cells and macrophages. We discuss key findings from the latest research that give insight into the mechanisms by which clonal expansion of vascular cells contributes to disease pathology. The further probing of these mechanisms will provide innovative directions for future progress in the understanding and therapy of atherosclerosis and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rajan Rehan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward A Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA,Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
342
|
Dave JM, Chakraborty R, Ntokou A, Saito J, Saddouk FZ, Feng Z, Misra A, Tellides G, Riemer RK, Urban Z, Kinnear C, Ellis J, Mital S, Mecham R, Martin KA, Greif DM. JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency. J Clin Invest 2022; 132:142338. [PMID: 34990407 PMCID: PMC8884911 DOI: 10.1172/jci142338] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Obstructive arterial diseases, including supravalvular aortic stenosis (SVAS), atherosclerosis, and restenosis, share 2 important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However, the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function, hypomorphic, or deletion mutations in the elastin gene (ELN), and SVAS patients and elastin-mutant mice display increased arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking, as the underlying pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models, and aortic samples and SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency induced epigenetic changes, upregulating the NOTCH pathway in SMCs. Specifically, reduced elastin increased levels of γ-secretase, activated NOTCH3 intracellular domain, and downstream genes. Notch3 deletion or pharmacological inhibition of γ-secretase attenuated aortic hypermuscularization and stenosis in Eln-/- mutants. Eln-/- mice expressed higher levels of NOTCH ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag1 deletion in SMCs, but not ECs, mitigated the hypermuscular and stenotic phenotype in the aorta of Eln-/- mice. Our findings reveal that NOTCH3 pathway upregulation induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.
Collapse
Affiliation(s)
- Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Pharmacology, and
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| | - Junichi Saito
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| | - Fatima Z. Saddouk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| | - Zhonghui Feng
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| | - Ashish Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| | - George Tellides
- Department of Surgery, Yale University, New Haven, Connecticut, USA
| | - Robert K. Riemer
- Congenital Division, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - James Ellis
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Robert Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Pharmacology, and
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine,,Department of Genetics
| |
Collapse
|
343
|
Lee-Rueckert M, Lappalainen J, Kovanen PT, Escola-Gil JC. Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Front Cardiovasc Med 2022; 9:777822. [PMID: 35237673 PMCID: PMC8882850 DOI: 10.3389/fcvm.2022.777822] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.
Collapse
Affiliation(s)
| | | | - Petri T. Kovanen
- Wihuri Research Institute, Helsinki, Finland
- *Correspondence: Petri T. Kovanen
| | - Joan Carles Escola-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Joan Carles Escola-Gil
| |
Collapse
|
344
|
Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells 2022; 11:cells11040646. [PMID: 35203297 PMCID: PMC8870356 DOI: 10.3390/cells11040646] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cells (SMCs), present in the media layer of blood vessels, are crucial in maintaining vascular homeostasis. Upon vascular injury, SMCs show a high degree of plasticity, undergo a change from a “contractile” to a “synthetic” phenotype, and play an essential role in the pathophysiology of diseases including atherosclerosis and restenosis. Integrins are cell surface receptors, which are involved in cell-to-cell binding and cell-to-extracellular-matrix interactions. By binding to extracellular matrix components, integrins trigger intracellular signaling and regulate several of the SMC function, including proliferation, migration, and phenotypic switching. Although pharmacological approaches, including antibodies and synthetic peptides, have been effectively utilized to target integrins to limit atherosclerosis and restenosis, none has been commercialized yet. A clear understanding of how integrins modulate SMC biology is essential to facilitate the development of integrin-based interventions to combat atherosclerosis and restenosis. Herein, we highlight the importance of integrins in modulating functional properties of SMCs and their implications for vascular pathology.
Collapse
|
345
|
Tao J, Cao X, Yu B, Qu A. Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Front Cardiovasc Med 2022; 9:845070. [PMID: 35224067 PMCID: PMC8866648 DOI: 10.3389/fcvm.2022.845070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular repair upon vessel injury is essential for the maintenance of arterial homeostasis and function. Stem/progenitor cells were demonstrated to play a crucial role in regeneration and replenishment of damaged vascular cells during vascular repair. Previous studies revealed that myeloid stem/progenitor cells were the main sources of tissue regeneration after vascular injury. However, accumulating evidences from developing lineage tracing studies indicate that various populations of vessel-resident stem/progenitor cells play specific roles in different process of vessel injury and repair. In response to shear stress, inflammation, or other risk factors-induced vascular injury, these vascular stem/progenitor cells can be activated and consequently differentiate into different types of vascular wall cells to participate in vascular repair. In this review, mechanisms that contribute to stem/progenitor cell differentiation and vascular repair are described. Targeting these mechanisms has potential to improve outcome of diseases that are characterized by vascular injury, such as atherosclerosis, hypertension, restenosis, and aortic aneurysm/dissection. Future studies on potential stem cell-based therapy are also highlighted.
Collapse
Affiliation(s)
- Jiaping Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- *Correspondence: Baoqi Yu
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- Aijuan Qu
| |
Collapse
|
346
|
Robichaud S, Rasheed A, Pietrangelo A, Doyoung Kim A, Boucher DM, Emerton C, Vijithakumar V, Gharibeh L, Fairman G, Mak E, Nguyen MA, Geoffrion M, Wirka R, Rayner KJ, Ouimet M. Autophagy Is Differentially Regulated in Leukocyte and Nonleukocyte Foam Cells During Atherosclerosis. Circ Res 2022; 130:831-847. [PMID: 35137605 DOI: 10.1161/circresaha.121.320047] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions. OBJECTIVE We performed a comparative analysis of autophagy flux in lipid-rich aortic intimal populations to determine whether VSMC-derived foam cells metabolize LDs similarly to their macrophage counterparts. METHODS AND RESULTS Atherosclerosis was induced in GFP-LC3 transgenic mice by PCSK9 (proprotein convertase subtilisin/kexin type 9)-adeno-associated viral injection and Western diet feeding. Using flow cytometry of aortic digests, we observed a significant increase in dysfunctional autophagy of VSMC-derived foam cells during atherogenesis relative to macrophage-derived foam cells. Using cell culture models of lipid-loaded VSMC and macrophage, we show that autophagy-mediated cholesterol efflux from VSMC foam cells was poor relative to macrophage foam cells, and largely occurs when HDL (high-density lipoprotein) is used as a cholesterol acceptor, as opposed to apoA-1 (apolipoproteinA-1). This was associated with the predominant expression of ABCG1 in VSMC foam cells. Using metformin, an autophagy activator, cholesterol efflux to HDL was significantly increased in VSMC, but not in macrophage, foam cells. CONCLUSIONS These data demonstrate that VSMC and macrophage foam cells perform cholesterol efflux by distinct mechanisms, and that autophagy flux is highly impaired in VSMC foam cells, but can be induced by pharmacological means. Further investigation is warranted into targeting autophagy specifically in VSMC foam cells, the predominant foam cell subtype of advanced atherosclerotic plaques, to promote reverse cholesterol transport and resolution of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Sabrina Robichaud
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Antonietta Pietrangelo
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Anne Doyoung Kim
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Dominique M Boucher
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Christina Emerton
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Lara Gharibeh
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Garrett Fairman
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Esther Mak
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Robert Wirka
- University of North Carolina School of Medicine, Chapel Hill (R.W.)
| | - Katey J Rayner
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Mireille Ouimet
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| |
Collapse
|
347
|
Zhang S, Liang Y, Li L, Chen Y, Wu P, Wei D. Succinate: A Novel Mediator to Promote Atherosclerotic Lesion Progression. DNA Cell Biol 2022; 41:285-291. [PMID: 35138943 DOI: 10.1089/dna.2021.0345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Succinate is an important intermediate product of mitochondrial energy metabolism. Recent studies revealed that beyond its known traditional metabolic functions, succinate plays important roles in signal transduction, immunity, inflammation, and posttranslational modification. Recent studies showed that patients and mouse models with cardiovascular disease have high levels of serum succinate and succinate accumulation. Atherosclerosis (As) is the pathological basis of cardiovascular and peripheral vascular diseases, such as coronary heart disease, cerebral infarction, and peripheral vascular disease, and is a major factor affecting human health. This article reviews the progression of succinate in As diseases and its underlying mechanisms.
Collapse
Affiliation(s)
- Shulei Zhang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Yamin Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Lu Li
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Yanmei Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Peng Wu
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| | - Dangheng Wei
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, China
| |
Collapse
|
348
|
Slenders L, Tessels DE, van der Laan SW, Pasterkamp G, Mokry M. The Applications of Single-Cell RNA Sequencing in Atherosclerotic Disease. Front Cardiovasc Med 2022; 9:826103. [PMID: 35211529 PMCID: PMC8860895 DOI: 10.3389/fcvm.2022.826103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/03/2022] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis still is the primary cause of death worldwide. Our characterization of the atherosclerotic lesion is mainly rooted in definitions based on pathological descriptions. We often speak in absolutes regarding plaque phenotypes: vulnerable vs. stable plaques or plaque rupture vs. plaque erosion. By focusing on these concepts, we may have oversimplified the atherosclerotic disease and its mechanisms. The widely used definitions of pathology-based plaque phenotypes can be fine-tuned with observations made with various -omics techniques. Recent advancements in single-cell transcriptomics provide the opportunity to characterize the cellular composition of the atherosclerotic plaque. This additional layer of information facilitates the in-depth characterization of the atherosclerotic plaque. In this review, we discuss the impact that single-cell transcriptomics may exert on our current understanding of atherosclerosis.
Collapse
Affiliation(s)
- Lotte Slenders
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Daniëlle E. Tessels
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Gerard Pasterkamp
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Michal Mokry
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| |
Collapse
|
349
|
Cheng P, Wirka RC, Clarke LS, Zhao Q, Kundu R, Nguyen T, Nair S, Sharma D, Kim HJ, Shi H, Assimes T, Kim JB, Kundaje A, Quertermous T. ZEB2 Shapes the Epigenetic Landscape of Atherosclerosis. Circulation 2022; 145:469-485. [PMID: 34990206 PMCID: PMC8896308 DOI: 10.1161/circulationaha.121.057789] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smooth muscle cells (SMCs) transition into a number of different phenotypes during atherosclerosis, including those that resemble fibroblasts and chondrocytes, and make up the majority of cells in the atherosclerotic plaque. To better understand the epigenetic and transcriptional mechanisms that mediate these cell state changes, and how they relate to risk for coronary artery disease (CAD), we have investigated the causality and function of transcription factors at genome-wide associated loci. METHODS We used CRISPR-Cas 9 genome and epigenome editing to identify the causal gene and cells for a complex CAD genome-wide association study signal at 2q22.3. Single-cell epigenetic and transcriptomic profiling in murine models and human coronary artery smooth muscle cells were used to understand the cellular and molecular mechanism by which this CAD risk gene exerts its function. RESULTS CRISPR-Cas 9 genome and epigenome editing showed that the complex CAD genetic signals within a genomic region at 2q22.3 lie within smooth muscle long-distance enhancers for ZEB2, a transcription factor extensively studied in the context of epithelial mesenchymal transition in development of cancer. Zeb2 regulates SMC phenotypic transition through chromatin remodeling that obviates accessibility and disrupts both Notch and transforming growth factor β signaling, thus altering the epigenetic trajectory of SMC transitions. SMC-specific loss of Zeb2 resulted in an inability of transitioning SMCs to turn off contractile programing and take on a fibroblast-like phenotype, but accelerated the formation of chondromyocytes, mirroring features of high-risk atherosclerotic plaques in human coronary arteries. CONCLUSIONS These studies identify ZEB2 as a new CAD genome-wide association study gene that affects features of plaque vulnerability through direct effects on the epigenome, providing a new therapeutic approach to target vascular disease.
Collapse
Affiliation(s)
- Paul Cheng
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Robert C. Wirka
- Division of Cardiology, Departments of Medicine and Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC
| | - Lee Shoa Clarke
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Ramendra Kundu
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Surag Nair
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Disha Sharma
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Hyun-jung Kim
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Huitong Shi
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Themistocles Assimes
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford, CA
| |
Collapse
|
350
|
Transcriptome analysis revealed a two-step transformation of vascular smooth muscle cells to macrophage-like cells. Atherosclerosis 2022; 346:26-35. [DOI: 10.1016/j.atherosclerosis.2022.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
|