301
|
Sciorra VA, Morris AJ. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell 1999; 10:3863-76. [PMID: 10564277 PMCID: PMC25685 DOI: 10.1091/mbc.10.11.3863] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1-enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.
Collapse
Affiliation(s)
- V A Sciorra
- Department of Pharmacological Sciences and Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
302
|
McCabe JB, Berthiaume LG. Functional roles for fatty acylated amino-terminal domains in subcellular localization. Mol Biol Cell 1999; 10:3771-86. [PMID: 10564270 PMCID: PMC25678 DOI: 10.1091/mbc.10.11.3771] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Several membrane-associating signals, including covalently linked fatty acids, are found in various combinations at the N termini of signaling proteins. The function of these combinations was investigated by appending fatty acylated N-terminal sequences to green fluorescent protein (GFP). Myristoylated plus mono/dipalmitoylated GFP chimeras and a GFP chimera containing a myristoylated plus a polybasic domain were localized similarly to the plasma membrane and endosomal vesicles, but not to the nucleus. Myristoylated, nonpalmitoylated mutant chimeric GFPs were localized to intracellular membranes, including endosomes and the endoplasmic reticulum, and were absent from the plasma membrane, the Golgi, and the nucleus. Dually palmitoylated GFP was localized to the plasma membrane and the Golgi region, but it was not detected in endosomes. Nonacylated GFP chimeras, as well as GFP, showed cytosolic and nuclear distribution. Our results demonstrate that myristoylation is sufficient to exclude GFP from the nucleus and associate with intracellular membranes, but plasma membrane localization requires a second signal, namely palmitoylation or a polybasic domain. The similarity in localization conferred by the various myristoylated and palmitoylated/polybasic sequences suggests that biophysical properties of acylated sequences and biological membranes are key determinants in proper membrane selection. However, dual palmitoylation in the absence of myristoylation conferred significant differences in localization, suggesting that multiple palmitoylation sites and/or enzymes may exist.
Collapse
Affiliation(s)
- J B McCabe
- Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
303
|
Abrami L, van der Goot FG. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol 1999; 147:175-84. [PMID: 10508864 PMCID: PMC2164982 DOI: 10.1083/jcb.147.1.175] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It has been proposed that the plasma membrane of many cell types contains cholesterol-sphingolipid-rich microdomains. Here, we analyze the role of these microdomains in promoting oligomerization of the bacterial pore-forming toxin aerolysin. Aerolysin binds to cells, via glycosyl phosphatidylinositol-anchored receptors, as a hydrophilic soluble protein that must polymerize into an amphipathic ring-like complex to form a pore. We first show that oligomerization can occur at >10(5)-fold lower toxin concentration at the surface of living cells than in solution. Our observations indicate that it is not merely the number of receptors on the target cell that is important for toxin sensitivity, but their ability to associate transiently with detergent resistant microdomains. Oligomerization appears to be promoted by the fact that the toxin bound to its glycosyl phosphatidylinositol-anchored receptors, can be recruited into these microdomains, which act as concentration devices.
Collapse
Affiliation(s)
- Laurence Abrami
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
304
|
Simons M, Friedrichson T, Schulz JB, Pitto M, Masserini M, Kurzchalia TV. Exogenous administration of gangliosides displaces GPI-anchored proteins from lipid microdomains in living cells. Mol Biol Cell 1999; 10:3187-96. [PMID: 10512859 PMCID: PMC25577 DOI: 10.1091/mbc.10.10.3187] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid-cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4 degrees C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid-cholesterol microdomains in living cells.
Collapse
Affiliation(s)
- M Simons
- Department of Neurology, University of Tübingen, D-77076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
305
|
Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112 ( Pt 17):2799-809. [PMID: 10444375 DOI: 10.1242/jcs.112.17.2799] [Citation(s) in RCA: 420] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The discovery of glycosylphosphatidylinositol (GPI) membrane anchors has had a significant impact on several areas of eukaryote cell biology. Studies of the African trypanosome, which expresses a dense surface coat of GPI-anchored variant surface glycoprotein, have played important roles in establishing the general structure of GPI membrane anchors and in delineating the pathway of GPI biosynthesis. The major cell-surface molecules of related parasites are also rich in GPI-anchored glycoproteins and/or GPI-related glycophospholipids, and differences in substrate specificity between enzymes of trypanosomal and mammalian GPI biosynthesis may have potential for the development of anti-parasite therapies. Apart from providing stable membrane anchorage, GPI anchors have been implicated in the sequestration of GPI-anchored proteins into specialised membrane microdomains, known as lipid rafts, and in signal transduction events.
Collapse
Affiliation(s)
- M A Ferguson
- Division of Molecular Parasitology and Biological Chemistry, Department of Biochemistry, The Wellcome Trust Building, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
306
|
Aarts LH, Verkade P, van Dalen JJ, van Rozen AJ, Gispen WH, Schrama LH, Schotman P. B-50/GAP-43 potentiates cytoskeletal reorganization in raft domains. Mol Cell Neurosci 1999; 14:85-97. [PMID: 10532807 DOI: 10.1006/mcne.1999.0775] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B-50 (GAP-43) is a neural, membrane-associated protein that has been implicated in neurite outgrowth and guidance. Following stable transfection of Rat1 fibroblasts with B-50 cDNA we observed a dispersed distribution of B-50 immunoreactivity in flattened resting cells. In contrast, motile cells exhibited high concentrations of B-50 at the leading edge of ruffling membranes, coinciding with actin polymerization. Time-lapse studies on Rat1 fibroblasts transiently transfected with B-50/EGFP revealed that large vesicles originated from the ruffling membranes. These large vesicles (pinocytes) were found positive for Thy-1, a GPI-anchored protein, but negative for rab-5, an early endosome marker. In primary hippocampal neurons B-50 also colocalized completely with the raft marker Thy-1. Antibody-mediated cross-linking of Thy-1 in hippocampal neurons resulted in a redistribution of the intracellular protein B-50 to Thy-1-immunopositive membrane patches, whereas syntaxin was mainly excluded from the patches, showing that B-50 is associated with rafts. Academic Press.
Collapse
Affiliation(s)
- L H Aarts
- Rudolf Magnus Institute for Neurosciences, Department of Physiological Chemistry, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
307
|
Lee JY, Kim MR, Sok DE. Release of GPI-anchored Zn2+-glycerophosphocholine cholinephosphodiesterase as an amphiphilic form from bovine brain membranes by bee venom phospholipase A2. Neurochem Res 1999; 24:1043-50. [PMID: 10478944 DOI: 10.1023/a:1021060927738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Enzymatic release of Zn(2+)-glycerophosphocholine (GPC)cholinephosphodiesterase, as an amphiphilic form, from bovine brain membranes was examined. Of various membrane hydrolases, bee PLA2 was the most effective in the release of the GPC cholinephosphodiesterase (amphiphilic form, 63-70%) from membrane. Compared to pancreatic PLA2, bee PLA2 was more efficient in the release of GPC cholinephosphodiesterase. In pH-dependent release of GP1-anchored phosphodiesterase, there was a similar pH-release profile between PLA2-mediated release and spontaneous one, implying the involvement of membrane disruption in the PLA2 action. The PLA2-mediated release showed a limited time-dependence (until 45 min) and a limited dose dependence (up to 3 units/ml), characteristic of a receptor-type binding. An ionic binding of PLA2 to membrane may be alluded from the interfering effect of anionic phospholipids on the PLA2 action. In support of an interaction between PLA2 and membrane glycoproteins, the PLA2 action was found to be blocked by lectins, wheat germ agglutinin or concanavalin A. In combination with detergent, the PLA2-mediated release was found to be enhanced synergistically by saponin, a cholesterol-complexing agent. Meanwhile, an additive interaction between PLA2 and lysolecithin suggests that PLA2 action is independent of lysolecithin. It is suggested that the binding of PLA2 to specific sites of membranes, probably rich in GPI-anchored glycoproteins, may be related to the facilitated release of GPI-anchored proteins as amphiphilic form.
Collapse
Affiliation(s)
- J Y Lee
- College of Pharmacy, Department of Food and Nutrition, Taejeon, Korea
| | | | | |
Collapse
|
308
|
Ge M, Field KA, Aneja R, Holowka D, Baird B, Freed JH. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys J 1999; 77:925-33. [PMID: 10423437 PMCID: PMC1300383 DOI: 10.1016/s0006-3495(99)76943-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.
Collapse
Affiliation(s)
- M Ge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
309
|
Horejsí V, Drbal K, Cebecauer M, Cerný J, Brdicka T, Angelisová P, Stockinger H. GPI-microdomains: a role in signalling via immunoreceptors. IMMUNOLOGY TODAY 1999; 20:356-61. [PMID: 10431155 DOI: 10.1016/s0167-5699(99)01489-9] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins and glycosphingolipids are assembled on the leukocyte surface within membrane microdomains, which also accommodate a set of cytoplasmic signalling molecules (Src family kinases, G-proteins, linker proteins). Recent results suggest that these membrane specializations mediate not only signal transduction via GPI-proteins and glycolipids but also play important roles in initiation of signalling via immunoreceptors.
Collapse
Affiliation(s)
- V Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, V denská 1083, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
310
|
Nosjean O, Roux B. Ectoplasmic insertion of a glycosylphosphatidylinositol-anchored protein in glycosphingolipid- and cholesterol-containing phosphatidylcholine vesicles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:865-70. [PMID: 10469152 DOI: 10.1046/j.1432-1327.1999.00573.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycosylphosphatidylinositol (glycosyl-PtdIns)-anchored proteins are proposed to be clustered in membrane microdomains enriched in cholesterol and glycosphingolipids (GlySphs). We have prepared biomimetic membranes in order to study the possible phenomena of surface aggregation of these membrane components. Phosphatidylcholine liposomes were treated by octylglucoside to insert a glycosyl-PtdIns-protein, alkaline phosphatase (ALP), some cholesterol, and a GlySph, the lactocerebroside. The association of these compounds was shown by centrifugation on a density gradient. The presence of ALP on the surface of the vesicles was shown by the action of a phospholipase, and the presence of the lactocerebroside was shown by the use of a galactose-specific tetravalent lectin. Our data show that total alkaline phosphatase and half to total lactocerebroside were ectoplasmically inserted in the vesicles membrane. In addition, we observed that the presence of small amounts of ALP in the liposomes led to significant changes in membrane stability with regard to detergent, as shown by the changes in the solubilization process monitored by turbidimetry. Furthermore, we have built an original method to study the cohesion of the vesicles membrane, in which some magnesium ions were trapped in the luminal space of the liposomes during several days. The ALP is magnesium-dependent for its catalytic activity and was inhibited after incubation of ALP-containing liposomes in a magnesium-free buffer. The ALP activity was restored by the addition of detergent to the liposomes, due to the release of the luminal magnesium ions. Surface aggregation phenomena will now be investigated by atomic force microscopy.
Collapse
Affiliation(s)
- O Nosjean
- Laboratoire de Physico-chimie Biologique, UPRESA CNRS 5013, Université C. Bernad Lyon 1, France.
| | | |
Collapse
|
311
|
Lavie Y, Fiucci G, Czarny M, Liscovitch M. Changes in membrane microdomains and caveolae constituents in multidrug-resistant cancer cells. Lipids 1999; 34 Suppl:S57-63. [PMID: 10419089 DOI: 10.1007/bf02562229] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer chemotherapy often fails because of the development of tumors which are resistant to most commonly used cytotoxic drugs. This phenomenon, multidrug resistance (MDR), is usually mediated by overexpression of P-glycoprotein (P-gp), an ATPase that pumps out the drugs used in chemotherapy, thereby preventing their accumulation in cancer cells and greatly reducing their cytotoxic efficacy. A large body of work indicates that MDR is associated also with marked changes in membrane lipid composition. Most notably, elevated levels of cholesterol, glycosphingolipids (e.g., glucosylceramide), and sphingomyelin have been reported. These lipids are enriched in caveolae and in membrane microdomains termed detergent-insoluble glycosphingolipid-enriched complexes (DIGs). Recently we demonstrated that in multidrug-resistant tumor cells there is a dramatic increase in the number of caveolae and in the level of caveolin-1, an essential structural constituent of caveolae. Another constituent of membrane microdomains, phospholipase D, is also elevated in MDR cells. These findings may be related to the fact that a significant fraction of cellular P-gp is associated with caveolin-rich membrane domains. The possible role of DIGs and caveolae in the acquisition and/or maintenance of the multidrug resistant phenotype is discussed.
Collapse
Affiliation(s)
- Y Lavie
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
312
|
Maekawa S, Sato C, Kitajima K, Funatsu N, Kumanogoh H, Sokawa Y. Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J Biol Chem 1999; 274:21369-74. [PMID: 10409698 DOI: 10.1074/jbc.274.30.21369] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A membrane microdomain called raft has been under extensive study since the assembly of various signal-transducing molecules into this region has been envisaged. This domain is isolated as a low buoyant membrane fraction after the extraction with a nonionic detergent such as Triton X-100. The characteristic low density of this fraction is ascribed to the enrichment of several lipids including cholesterol. To clear the molecular mechanism of raft formation, several extraction methods were applied to solubilize raft components. Cholesterol extraction using methyl-beta-cyclodextrin was found to be effective to solubilize NAP-22, a neuron-enriched Ca(2+)-dependent calmodulin-binding protein as well as one of the main protein components of brain raft. Purified NAP-22 bound to the liposomes that were made from phosphatidylcholine and cholesterol. This binding was dependent on the amount of cholesterol in liposomes. Calmodulin inhibited this binding in a dose-dependent manner. These results suggest that the presence of a calcium-dependent regulatory mechanism works on the assembly of raft within the neuron.
Collapse
Affiliation(s)
- S Maekawa
- Department of Biotechnology, Faculty of Textile Science, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
313
|
Naslavsky N, Shmeeda H, Friedlander G, Yanai A, Futerman AH, Barenholz Y, Taraboulos A. Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J Biol Chem 1999; 274:20763-71. [PMID: 10409615 DOI: 10.1074/jbc.274.30.20763] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sphingolipid-rich rafts play an essential role in the posttranslational (Borchelt, D. R., Scott, M., Taraboulos, A., Stahl, N., and Prusiner, S. B. (1990) J. Cell Biol. 110, 743-752)) formation of the scrapie prion protein PrP(Sc) from its normal conformer PrP(C) (Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S. B., and Avraham, D. (1995) J. Cell Biol. 129, 121-132). We investigated the importance of sphingolipids in the metabolism of the PrP isoforms in scrapie-infected ScN2a cells. The ceramide synthase inhibitor fumonisin B(1) (FB(1)) reduced both sphingomyelin (SM) and ganglioside GM1 in cells by up to 50%, whereas PrP(Sc) increased by 3-4-fold. Whereas FB(1) profoundly altered the cell lipid composition, the raft residents PrP(C), PrP(Sc), caveolin 1, and GM1 remained insoluble in Triton X-100. Metabolic radiolabeling demonstrated that PrP(C) production was either unchanged or slightly reduced in FB(1)-treated cells, whereas PrP(Sc) formation was augmented by 3-4-fold. To identify the sphingolipid species the decrease of which correlates with increased PrP(Sc), we used two other reagents. When cells were incubated with sphingomyelinase for 3 days, SM levels decreased, GM1 was unaltered, and PrP(Sc) increased by 3-4-fold. In contrast, the glycosphingolipid inhibitor PDMP reduced PrP(Sc) while increasing SM. Thus, PrP(Sc) seems to correlate inversely with SM levels. The effects of SM depletion contrasted with those previously obtained with the cholesterol inhibitor lovastatin, which reduced PrP(Sc) and removed it from detergent-insoluble complexes.
Collapse
Affiliation(s)
- N Naslavsky
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
314
|
Emmerson PJ, Clark MJ, Medzihradsky F, Remmers AE. Membrane microviscosity modulates mu-opioid receptor conformational transitions and agonist efficacy. J Neurochem 1999; 73:289-300. [PMID: 10386982 DOI: 10.1046/j.1471-4159.1999.0730289.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of membrane microviscosity on mu-opioid agonist and antagonist binding, as well as agonist efficacy, was examined in membranes prepared from SH-SY5Y cells and from a C6 glioma cell line stably expressing the rat mu-opioid receptor (C6mu). Addition of cholesteryl hemisuccinate (CHS) to cell membranes increased membrane microviscosity and reduced the inhibitory effect of sodium and guanine nucleotides on the affinity of the full agonists sufentanil and [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAMGO) for the mu-opioid receptor. Binding of the antagonists [3H]naltrexone and [3H]diprenorphine and the partial agonist nalbuphine was unaffected by CHS. The effect of CHS on agonist binding was reversed by subsequent addition of cis-vaccenic acid, suggesting that the effect of CHS is the result of increased membrane microviscosity and not a specific sterol-receptor interaction. CHS addition increased the potency of DAMGO to stimulate guanosine-5'-O-(3-[35S]thio)triphosphate binding by fourfold, whereas the potency of nalbuphine was unaffected. However, nalbuphine efficacy relative to that of the full agonist DAMGO was strongly increased in CHS-treated membranes compared with that in control membranes. Membrane rigidification also resulted in an increased efficacy for the partial agonists meperidine, profadol, and butorphanol relative to that of DAMGO as measured by agonist-stimulated GTPase activity in control and CHS-modified membranes. These findings support a regulatory role for membrane microviscosity in receptor-mediated G protein activation.
Collapse
Affiliation(s)
- P J Emmerson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | | | | | | |
Collapse
|
315
|
Sheets ED, Holowka D, Baird B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcepsilonRI and their association with detergent-resistant membranes. J Biophys Biochem Cytol 1999; 145:877-87. [PMID: 10330413 PMCID: PMC2133197 DOI: 10.1083/jcb.145.4.877] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tyrosine phosphorylation of the high affinity immunoglobulin (Ig)E receptor (FcepsilonRI) by the Src family kinase Lyn is the first known biochemical step that occurs during activation of mast cells and basophils after cross-linking of FcepsilonRI by antigen. The hypothesis that specialized regions in the plasma membrane, enriched in sphingolipids and cholesterol, facilitate the coupling of Lyn and FcepsilonRI was tested by investigating functional and structural effects of cholesterol depletion on Lyn/FcepsilonRI interactions. We find that cholesterol depletion with methyl-beta-cyclodextrin substantially reduces stimulated tyrosine phosphorylation of FcepsilonRI and other proteins while enhancing more downstream events that lead to stimulated exocytosis. In parallel to its inhibition of tyrosine phosphorylation, cholesterol depletion disrupts the interactions of aggregated FcepsilonRI and Lyn on intact cells and also disrupts those interactions with detergent-resistant membranes that are isolated by sucrose gradient ultracentrifugation of lysed cells. Importantly, cholesterol repletion restores receptor phosphorylation together with the structural interactions. These results provide strong evidence that membrane structure, maintained by cholesterol, plays a critical role in the initiation of FcepsilonRI signaling.
Collapse
Affiliation(s)
- E D Sheets
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | |
Collapse
|
316
|
Little EB, Edelman GM, Cunningham BA. Palmitoylation of the cytoplasmic domain of the neural cell adhesion molecule N-CAM serves as an anchor to cellular membranes. CELL ADHESION AND COMMUNICATION 1999; 6:415-30. [PMID: 10223357 DOI: 10.3109/15419069809109150] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neural cell adhesion molecule N-CAM is expressed at key sites during embryonic development and mediates homophilic adhesion between cells both in the embryo and in the adult. N-CAM is expressed in multiple forms and two of the major isoforms differ in their cytoplasmic domains, one (ld form) having an insert of 261 amino acids that is missing in the other (sd form). N-CAM has been previously shown to be palmitoylated, but the sites of acylation have not been localized. We show here that the cytoplasmic domain of the N-CAM became palmitoylated after transfection of a cDNA encoding N-CAM into COS-7 cells, and that this acylation occurs on the four closely spaced cysteines in the cytoplasmic domain of N-CAM. Moreover, when a cDNA encoding only the cytoplasmic domain was transfected into cells, the protein was palmitoylated and associated with membranes even though it lacked a membrane spanning segment. Site directed mutagenesis of the four cysteine residues to serines at positions 5, 11, 16, and 22 in the cytoplasmic domain (723, 729, 734, and 740 in the native protein) eliminated both the palmitoylation and association with the membrane fraction. Mutagenesis of the cysteines individually, in pairs, and in groups of three indicated that C5 is not acylated with either palmitate or oleate, but the other three cysteines are acylated to different extents. Cytoplasmic domains with single cysteine mutations localized primarily in the membrane fraction, while those with three mutations were found primarily in the cytoplasm. Proteins containing two mutated cysteines were found in both the cytoplasm and the membrane fraction with C11 and C16 having the most influence on the distribution in accord with their higher level of acylation. Mutation of the cysteines did not affect the ability of full-length N-CAM to promote aggregation when transfected into COS-7 cells. Based on these results we suggest that the primary role of palmitoylation is to provide a second anchor in the plasma membrane to direct the protein to discrete membrane microdomains or to organize the cytoplasmic region for interaction with factors that affect signaling events resulting from N-CAM mediated adhesion.
Collapse
Affiliation(s)
- E B Little
- Department of Neurobiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
317
|
Ilangumaran S, Arni S, van Echten-Deckert G, Borisch B, Hoessli DC. Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol Biol Cell 1999; 10:891-905. [PMID: 10198045 PMCID: PMC25210 DOI: 10.1091/mbc.10.4.891] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Src family protein-tyrosine kinases are implicated in signaling via glycosylphosphatidylinositol (GPI)-anchored receptors. Both kinds of molecules reside in opposite leaflets of the same sphingolipid-enriched microdomains in the lymphocyte plasma membrane without making direct contact. Under detergent-free conditions, we isolated a GPI-enriched plasma membrane fraction, also containing transmembrane proteins, selectively associated with sphingolipid microdomains. Nonionic detergents released the transmembrane proteins, yielding core sphingolipid microdomains, limited amounts of which could also be obtained by detergent-free subcellular fractionation. Protein-tyrosine kinase activity in membranes containing both GPI-anchored and transmembrane proteins was much lower than in core sphingolipid microdomains but was strongly reactivated by nonionic detergents. The inhibitory mechanism acting on Lck and Fyn kinases in these membranes was independent of the protein-tyrosine phosphatase CD45 and was characterized as a mixed, noncompetitive one. We propose that in lymphocyte plasma membranes, Lck and Fyn kinases exhibit optimal activity when juxtaposed to the GPI- and sphingolipid-enriched core microdomains but encounter inhibitory conditions in surrounding membrane areas that are rich in glycerophospholipids and contain additional transmembrane proteins.
Collapse
Affiliation(s)
- S Ilangumaran
- Department of Pathology, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
318
|
Hooper NM. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 1999; 16:145-56. [PMID: 10417979 DOI: 10.1080/096876899294607] [Citation(s) in RCA: 317] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Within the cell membrane glycosphingolipids and cholesterol cluster together in distinct domains or lipid rafts, along with glycosyl-phosphatidylinositol (GPI)-anchored proteins in the outer leaflet and acylated proteins in the inner leaflet of the bilayer. These lipid rafts are characterized by insolubility in detergents such as Triton X-100 at 4 degrees C. Studies on model membrane systems have shown that the clustering of glycosphingolipids and GPI-anchored proteins in lipid rafts is an intrinsic property of the acyl chains of these membrane components, and that detergent extraction does not artefactually induce clustering. Cholesterol is not required for clustering in model membranes but does enhance this process. Single particle tracking, chemical cross-linking, fluorescence resonance energy transfer and immunofluorescence microscopy have been used to directly visualize lipid rafts in membranes. The sizes of the rafts observed in these studies range from 70-370 nm, and depletion of cellular cholesterol levels disrupts the rafts. Caveolae, flask-shaped invaginations of the plasma membrane, that contain the coat protein caveolin, are also enriched in cholesterol and glycosphingolipids. Although caveolae are also insoluble in Triton X-100, more selective isolation procedures indicate that caveolae do not equate with detergent-insoluble lipid rafts. Numerous proteins involved in cell signalling have been identified in caveolae, suggesting that these structures may function as signal transduction centres. Depletion of membrane cholesterol with cholesterol binding drugs or by blocking cellular cholesterol biosynthesis disrupts the formation and function of both lipid rafts and caveolae, indicating that these membrane domains are involved in a range of biological processes.
Collapse
Affiliation(s)
- N M Hooper
- School of Biochemistry and Molecular Biology, University of Leeds, UK.
| |
Collapse
|
319
|
Funatsu N, Miyata S, Kumanogoh H, Shigeta M, Hamada K, Endo Y, Sokawa Y, Maekawa S. Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem 1999; 274:8224-30. [PMID: 10075727 DOI: 10.1074/jbc.274.12.8224] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the central nervous system, many cell adhesion molecules are known to participate in the establishment and remodeling of the neural circuit. Some of the cell adhesion molecules are known to be anchored to the membrane by the glycosylphosphatidylinositol (GPI) inserted to their C termini, and many GPI-anchored proteins are known to be localized in a Triton-insoluble membrane fraction of low density or so-called "raft." In this study, we surveyed the GPI-anchored proteins in the Triton-insoluble low density fraction from 2-week-old rat brain by solubilization with phosphatidylinositol-specific phospholipase C. By Western blotting and partial peptide sequencing after the deglycosylation with peptide N-glycosidase F, the presence of Thy-1, F3/contactin, and T-cadherin was shown. In addition, one of the major proteins, having an apparent molecular mass of 36 kDa after the peptide N-glycosidase F digestion, was found to be a novel protein. The result of cDNA cloning showed that the protein is an immunoglobulin superfamily member with three C2 domains and has six putative glycosylation sites. Since this protein shows high sequence similarity to IgLON family members including LAMP, OBCAM, neurotrimin, CEPU-1, AvGP50, and GP55, we termed this protein Kilon (a kindred of IgLON). Kilon-specific monoclonal antibodies were produced, and Western blotting analysis showed that expression of Kilon is restricted to brain, and Kilon has an apparent molecular mass of 46 kDa in SDS-polyacrylamide gel electrophoresis in its expressed form. In brain, the expression of Kilon is already detected in E16 stage, and its level gradually increases during development. Kilon immunostaining was observed in the cerebral cortex and hippocampus, in which the strongly stained puncta were observed on dendrites and soma of pyramidal neurons.
Collapse
Affiliation(s)
- N Funatsu
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 1999; 274:3910-7. [PMID: 9920947 DOI: 10.1074/jbc.274.6.3910] [Citation(s) in RCA: 501] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipid and cholesterol-rich Triton X-100-insoluble membrane fragments (detergent-resistant membranes, DRMs) containing lipids in a state similar to the liquid-ordered phase can be isolated from mammalian cells, and probably exist as discrete domains or rafts in intact membranes. We postulated that proteins with a high affinity for such an ordered lipid environment might be targeted to rafts. Saturated acyl chains should prefer an extended conformation that would fit well in rafts. In contrast, prenyl groups, which are as hydrophobic as acyl chains but have a branched and bulky structure, should be excluded from rafts. Here, we showed that at least half of the proteins in Madin-Darby canine kidney cell DRMs (other than cytoskeletal contaminants) could be labeled with [3H]palmitate. Association of influenza hemagglutinin with DRMs required all three of its palmitoylated Cys residues. Prenylated proteins, detected by [3H]mevalonate labeling or by blotting for Rap1, Rab5, Gbeta, or Ras, were excluded from DRMs. Rab5 and H-Ras each contain more than one lipid group, showing that hydrophobicity alone does not target multiply lipid-modified proteins to DRMs. Partitioning of covalently linked saturated acyl chains into liquid-ordered phase domains is likely to be an important mechanism for targeting proteins to DRMs.
Collapse
Affiliation(s)
- K A Melkonian
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | | | | | | | |
Collapse
|
321
|
Abstract
The structure and dynamics of the plasma membrane are proposed to be critical for the initial steps of signal transduction by the high-affinity immunoglobulin E receptor. Recent experimental advances indicate that interactions between the high-affinity immunoglobulin E receptor and the tyrosine kinase Lyn with cholesterol- and sphingolipid-rich regions within the plasma membrane are important for receptor function. This accumulating evidence points to spatio-temporal control of immunoglobulin E receptor signaling by the organization of the plasma membrane; an attractive hypothesis is that ligand-dependent receptor aggregation causes the segregation of Lyn-containing ordered regions of the plasma membrane from disordered regions.
Collapse
Affiliation(s)
- E D Sheets
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
| | | | | |
Collapse
|
322
|
Scheiffele P, Rietveld A, Wilk T, Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 1999; 274:2038-44. [PMID: 9890962 DOI: 10.1074/jbc.274.4.2038] [Citation(s) in RCA: 349] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the budding of enveloped viruses from the plasma membrane, the lipids are not randomly incorporated into the envelope, but virions seem to have a lipid composition different from the host membrane. Here, we have analyzed lipid assemblies in three different viruses: fowl plague virus (FPV) from the influenza virus family, vesicular stomatitis virus (VSV), and Semliki Forest virus (SFV). Analysis of detergent extractability of proteins, cholesterol, phosphoglycerolipids, and sphingomyelin in virions showed that FPV contains high amounts of detergent-insoluble complexes, whereas such complexes are largely absent from VSV or SFV. Cholesterol depletion from the viral envelope by methyl-beta-cyclodextrin results in increased solubility of sphingomyelin and of the glycoproteins in the FPV envelope. This biochemical behavior suggests that so-called raft-lipid domains are selectively incorporated into the influenza virus envelope. The "fluidity" of the FPV envelope, as measured by the fluorescence polarization of diphenylhexatriene, was significantly lower than compared with VSV or SFV. Furthermore, influenza virus hemagglutinin incorporated into the envelope of recombinant VSV was largely detergent-soluble, indicating the depletion of raft-lipid assemblies from this membrane. The results provide a model for lipid selectivity during virus budding and support the view of lipid rafts as cholesterol-dependent, ordered domains in biological membranes.
Collapse
Affiliation(s)
- P Scheiffele
- Cell Biology Programme, European Molecular Biology Laboratory, Postfach 10 2209, D-69012 Heidelberg, Germany
| | | | | | | |
Collapse
|
323
|
Abstract
Recent studies showing that detergent-resistant membrane fragments can be isolated from cells suggest that biological membranes are not always in a liquid-crystalline phase. Instead, sphingolipid and cholesterol-rich membranes such as plasma membranes appear to exist, at least partially, in the liquid-ordered phase or a phase with similar properties. Sphingolipid and cholesterol-rich domains may exist as phase-separated "rafts" in the membrane. We discuss the relationship between detergent-resistant membranes, rafts, caveolae, and low-density plasma membrane fragments. We also discuss possible functions of lipid rafts in membranes. Signal transduction through the high-affinity receptor for IgE on basophils, and possibly through related receptors on other hematopoietic cells, appears to be enhanced by association with rafts. Raft association may also aid in signaling through proteins anchored by glycosylphosphatidylinositol, particularly in hematopoietic cells and neurons. Rafts may also function in sorting and trafficking through the secretory and endocytic pathways.
Collapse
Affiliation(s)
- D A Brown
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA.
| | | |
Collapse
|
324
|
Cailler F, Howell S, Crine P. Role of the glycosyl-phosphatidylinositol anchor in the intracellular transport of a transmembrane protein in Madin-Darby canine kidney cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1415:1-9. [PMID: 9858664 DOI: 10.1016/s0005-2736(98)00167-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to compare the trafficking of proteins with different membrane anchors, we have constructed and expressed three different recombinant forms of neutral endopeptidase (NEP) in MDCK cells. The wild type form of NEP (WT-NEP) is attached to the plasma membrane by a single N-terminal membrane spanning domain, whereas the glycosylphosphatidylinositol-anchored form of the protein (GPI-NEP) contains a C-terminal GPI anchor. A double anchored form of NEP (DA-NEP) was also constructed, that contains both the original N-terminal membrane spanning domain and a C-terminal GPI anchor. We show here that WT-NEP, GPI-NEP and DA-NEP, which are all apically targeted in MDCK cells, behave differently when subjected to Triton X-100 solubilisation: despite the presence of the transmembrane anchor DA-NEP behaves as a GPI-anchored protein. This suggests that the GPI anchor of DA-NEP is dominant over the transmembrane anchor of the native protein to determine its pattern of solubility in Triton X-100.
Collapse
Affiliation(s)
- F Cailler
- Université de Montréal, Faculté de Médecine, Département de Biochimie, P.O. Box 6128, succursale Centre ville, Montréal, Que. H3C 3J7, Canada
| | | | | |
Collapse
|
325
|
Rietveld A, Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:467-79. [PMID: 9805010 DOI: 10.1016/s0304-4157(98)00019-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The formation of sphingolipid-cholesterol microdomains in cellular membranes has been proposed to function in sorting and transport of lipids and proteins as well as in signal transduction. An increasing number of cell biological and biochemical studies now supports this concept. Here we discuss the structural properties of lipids in a cell biological context. The sphingolipid-cholesterol microdomains or rafts are described as dispersed liquid ordered phase domains. These domains are dynamic assemblies to which specific proteins are selectively sequestered while others are excluded. The proteins associated to rafts can act as organizers and can modulate raft size and function.
Collapse
Affiliation(s)
- A Rietveld
- European Molecular Biology Laboratory, Cell Biology Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
326
|
Stulnig TM, Berger M, Sigmund T, Raederstorff D, Stockinger H, Waldhäusl W. Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J Biophys Biochem Cytol 1998; 143:637-44. [PMID: 9813086 PMCID: PMC2148157 DOI: 10.1083/jcb.143.3.637] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) exert immunosuppressive effects, but the molecular alterations leading to T cell inhibition are not yet elucidated. Signal transduction seems to involve detergent-resistant membrane domains (DRMs) acting as functional rafts within the plasma membrane bilayer with Src family protein tyrosine kinases being attached to their cytoplasmic leaflet. Since DRMs include predominantly saturated fatty acyl moieties, we investigated whether PUFAs could affect T cell signaling by remodeling of DRMs. Jurkat T cells cultured in PUFA-supplemented medium showed a markedly diminished calcium response when stimulated via the transmembrane CD3 complex or glycosyl phosphatidylinositol (GPI)- anchored CD59. Immunofluorescence studies indicated that CD59 but not Src family protein tyrosine kinase Lck remained in a punctate pattern after PUFA enrichment. Analysis of DRMs revealed a marked displacement of Src family kinases (Lck, Fyn) from DRMs derived from PUFA-enriched T cells compared with controls, and the presence of Lck in DRMs strictly correlated with calcium signaling. In contrast, GPI-anchored proteins (CD59, CD48) and ganglioside GM1, both residing in the outer membrane leaflet, remained in the DRM fraction. In conclusion, PUFA enrichment selectively modifies the cytoplasmic layer of DRMs and this alteration could underlie the inhibition of T cell signal transduction by PUFAs.
Collapse
Affiliation(s)
- T M Stulnig
- Department of Internal Medicine III, University of Vienna, A-1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
327
|
Arni S, Keilbaugh SA, Ostermeyer AG, Brown DA. Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues. J Biol Chem 1998; 273:28478-85. [PMID: 9774477 DOI: 10.1074/jbc.273.43.28478] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GAP-43 is an abundant protein in axonal growth cones of developing and regenerating neurons. We found that GAP-43 was enriched in detergent-resistant membranes (DRMs) isolated by Triton X-100 extraction from PC12 pheochromocytoma cells and could be detected in detergent-insoluble plasma membrane remnants after extraction of cells in situ. GAP-43 is palmitoylated at Cys-3 and Cys-4. Mutation of either Cys residue prevented association with DRMs. A hybrid protein containing the first 20 amino acid residues of GAP-43 fused to beta-galactosidase was targeted to DRMs even more efficiently than GAP-43 itself. We conclude that tandem palmitoylated Cys residues can target GAP-43 to DRMs, defining a new signal for DRM targeting. We propose that tandem or closely spaced saturated fatty acyl chains partition into domains or "rafts" in the liquid-ordered phase, or a phase with similar properties, in cell membranes. These rafts are isolated as DRMs after detergent extraction. The brain-specific heterotrimeric G protein Go, which may be regulated by GAP-43 in vitro, was also enriched in DRMs from PC12 cells. Targeting of GAP-43 to rafts may function to facilitate signaling through Go. In addition, raft association may aid in sorting of GAP-43 into axonally directed vesicles in the trans-Golgi network.
Collapse
Affiliation(s)
- S Arni
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA
| | | | | | | |
Collapse
|
328
|
Ilangumaran S, Hoessli DC. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 1998; 335 ( Pt 2):433-40. [PMID: 9761744 PMCID: PMC1219799 DOI: 10.1042/bj3350433] [Citation(s) in RCA: 383] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sphingolipid microdomains are thought to result from the organization of plasma membrane sphingolipids and cholesterol into a liquid ordered phase, wherein the glycosylphosphatidylinositol (GPI)-anchored proteins are enriched. These domains, resistant to extraction by cold Triton X-100, can be isolated as buoyant membrane complexes (detergent-resistant membranes) in isopycnic density gradients. Here the effects of methyl-beta-cyclodextrin (MBCD), a specific cholesterol-binding agent that neither binds nor inserts into the plasma membrane, were investigated on the sphingolipid microdomains of lymphocytes. MBCD released substantial quantities of GPI-anchored Thy-1 and glycosphingolipid GM1, and also other surface proteins including CD45, and intracellular Lck and Fyn kinases. From endothelial cells, MBCD released GPI-anchored CD59, and CD44, but only a negligible amount of caveolin. Most MBCD-released Thy-1 and CD59 were not sedimentable and thus differed from Thy-1 released by membrane-active cholesterol-binding agents such as saponin and streptolysin O, or Triton X-100. Unlike that released by Triton X-100, only part of the Thy-1 molecules released by MBCD was buoyant in density gradients and co-isolated with GM1. Finally, treatment of Triton X-100-isolated detergent-resistant membranes with MBCD extracted most of the cholesterol without affecting the buoyant properties of Thy-1 or GM1. We suggest that (1) MBCD preferentially extracts cholesterol from outside, rather than within the sphingolipid microdomains and (2) this partly solubilizes GPI-anchored and transmembrane proteins from the glycerophospholipid-rich membrane and releases sphingolipid microdomains in both vesicular and non-vesicular form.
Collapse
Affiliation(s)
- S Ilangumaran
- Department of Pathology, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
329
|
Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel MA, Chauvin JP, Pierres M, He HT. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 1998; 17:5334-48. [PMID: 9736612 PMCID: PMC1170860 DOI: 10.1093/emboj/17.18.5334] [Citation(s) in RCA: 518] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T-cell receptors (TCRs) upon binding to peptide-MHC ligands transduce signals in T lymphocytes. Tyrosine phosphorylations in the cytoplasmic domains of the CD3 (gammadeltaepsilon) and zeta subunits of the TCR complex by Src family kinases initiate the signaling cascades via docking and activation of ZAP-70 kinase and other signaling components. We examined the role of the low-density detergent-insoluble membranes (DIMs) in TCR signaling. Using mouse thymocytes as a model, we characterized the structural organization of DIMs in detail. We then demonstrated that TCR engagement triggered an immediate increase in the amount of TCR/CD3 present in DIMs, which directly involves the engaged receptor complexes. TCR/CD3 recruitment is accompanied by the accumulation of a series of prominent tyrosine-phosphorylated substrates and by an increase of the Lck activity in DIMs. Upon TCR stimulation, the DIM-associated receptor complexes are highly enriched in the hyperphosphorylated p23 zeta chains, contain most of the TCR/CD3-associated, phosphorylation-activated ZAP-70 kinases and seem to integrate into higher order, multiple tyrosine-phosphorylated substrate-containing protein complexes. The TCR/CD3 recruitment was found to depend on the activity of Src family kinases. We thus provide the first demonstration of recuitment of TCR/CD3 to DIMs upon receptor stimulation and propose it as a mechanism whereby TCR engagement is coupled to downstream signaling cascades.
Collapse
Affiliation(s)
- C Montixi
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Case 906, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Affiliation(s)
- A K Menon
- Dept of Biochemistry, University of Wisconsin-Madison 53706, USA.
| |
Collapse
|
331
|
Horejsí V, Cebecauer M, Cerný J, Brdicka T, Angelisová P, Drbal K. Signal transduction in leucocytes via GPI-anchored proteins: an experimental artefact or an aspect of immunoreceptor function? Immunol Lett 1998; 63:63-73. [PMID: 9761367 DOI: 10.1016/s0165-2478(98)00054-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins anchored in the membrane via a glycolipid glycosylphosphatidylinositol (GPI) as well as some glycolipids are able to transduce signals and induce diverse functional responses in cells upon their cross-linking via antibodies or natural ligands. In some cases this signaling capacity seems to be due to associations of these molecules with specific transmembrane proteins. GPI-anchored proteins are components of membrane microdomains enriched in glycosphingolipids and cholesterol and devoid of most transmembrane proteins. These membrane specializations are relatively resistant to solubilization in solutions of some mild detergents at low temperatures. These 'GPI-microdomains' contain also cytoplasmic signaling molecules such as Src-family protein tyrosine kinases and trimeric G-proteins. Thus, at least some signaling elicited upon cross-linking of GPI-anchored proteins and glycolipids may be due to perturbation of the signaling molecules associated with these microdomains. It is suggested that these specialized areas of the membrane rich in signaling molecules interact with immunoreceptors (TCR, BCR, Fc receptors) cross-linked upon their interactions with ligands and importantly contribute to initiation of proximal phases of their signaling pathways.
Collapse
Affiliation(s)
- V Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | | | |
Collapse
|