301
|
Gober IN, Waters ML. Supramolecular Affinity Labeling of Histone Peptides Containing Trimethyllysine and Its Application to Histone Deacetylase Assays. J Am Chem Soc 2016; 138:9452-9. [DOI: 10.1021/jacs.6b02836] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Isaiah N. Gober
- Department
of Chemistry,
CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department
of Chemistry,
CB 3290, UNC Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
302
|
Ferreira de Freitas R, Eram MS, Smil D, Szewczyk MM, Kennedy S, Brown PJ, Santhakumar V, Barsyte-Lovejoy D, Arrowsmith CH, Vedadi M, Schapira M. Discovery of a Potent and Selective Coactivator Associated Arginine Methyltransferase 1 (CARM1) Inhibitor by Virtual Screening. J Med Chem 2016; 59:6838-47. [PMID: 27390919 DOI: 10.1021/acs.jmedchem.6b00668] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein arginine methyltransferases (PRMTs) represent an emerging target class in oncology and other disease areas. So far, the most successful strategy to identify PRMT inhibitors has been to screen large to medium-size chemical libraries. Attempts to develop PRMT inhibitors using receptor-based computational methods have met limited success. Here, using virtual screening approaches, we identify 11 CARM1 (PRMT4) inhibitors with ligand efficiencies ranging from 0.28 to 0.84. CARM1 selective hits were further validated by orthogonal methods. Two structure-based rounds of optimization produced 27 (SGC2085), a CARM1 inhibitor with an IC50 of 50 nM and more than hundred-fold selectivity over other PRMTs. These results indicate that virtual screening strategies can be successfully applied to Rossmann-fold protein methyltransferases.
Collapse
Affiliation(s)
| | - Mohammad S Eram
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - David Smil
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Steven Kennedy
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada
| | | | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto , Toronto, ON M5G 1L7, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto , Toronto, ON M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto , Toronto, ON M5S 1A8, Canada
| |
Collapse
|
303
|
Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs. Sci Rep 2016; 6:28718. [PMID: 27338245 PMCID: PMC4919620 DOI: 10.1038/srep28718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022] Open
Abstract
Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes - PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies.
Collapse
|
304
|
Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A, Schofield CJ. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 2016; 7:11974. [PMID: 27337104 PMCID: PMC4931022 DOI: 10.1038/ncomms11974] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
While the oxygen-dependent reversal of lysine N(ɛ)-methylation is well established, the existence of bona fide N(ω)-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity.
Collapse
Affiliation(s)
- Louise J. Walport
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Richard J. Hopkinson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Rachel Schiller
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Wei Ge
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Akane Kawamura
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher J. Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
305
|
Abou-Abbass H, Abou-El-Hassan H, Bahmad H, Zibara K, Zebian A, Youssef R, Ismail J, Zhu R, Zhou S, Dong X, Nasser M, Bahmad M, Darwish H, Mechref Y, Kobeissy F. Glycosylation and other PTMs alterations in neurodegenerative diseases: Current status and future role in neurotrauma. Electrophoresis 2016; 37:1549-61. [PMID: 26957254 PMCID: PMC4962686 DOI: 10.1002/elps.201500585] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBIs) present a chief public health threat affecting nations worldwide. As numbers of patients afflicted by TBI are expected to rise, the necessity to increase our understanding of the pathophysiological mechanism(s) as a result of TBI mounts. TBI is known to augment the risk of developing a number of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). Hence, it is rational to assume that a common mechanistic ground links the pathophysiology of NDs to that of TBIs. Through this review, we aim to identify the protein-protein interactions, differential proteins expression, and PTMs, mainly glycosylation, that are involved in the pathogenesis of both ND and TBI. OVID and PubMed have been rigorously searched to identify studies that utilized advanced proteomic platforms (MS based) and systems biology tools to unfold the mechanism(s) behind ND in an attempt to unveil the mysterious biological processes that occur postinjury. Various PTMs have been found to be common between TBI and AD, whereas no similarities have been found between TBI and PD. Phosphorylated tau protein, glycosylated amyloid precursor protein, and many other modifications appear to be common in both TBI and AD. PTMs, differential protein profiles, and altered biological pathways appear to have critical roles in ND processes by interfering with their pathological condition in a manner similar to TBI. Advancement in glycoproteomic studies pertaining to ND and TBI is urgently needed in order to develop better diagnostic tools, therapies, and more favorable prognoses.
Collapse
Affiliation(s)
- Hussein Abou-Abbass
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | | | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045 - Laboratory of Stem Cells, DSST, Lebanese University, Beirut, Lebanon
- Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abir Zebian
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rabab Youssef
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joy Ismail
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Mayse Nasser
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Marwan Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine-School of Nursing, American University of Beirut, New York, NY, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
306
|
Guzman NA, Guzman DE. An emerging micro-scale immuno-analytical diagnostic tool to see the unseen. Holding promise for precision medicine and P4 medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:14-29. [DOI: 10.1016/j.jchromb.2015.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
|
307
|
Bigaud E, Corrales FJ. Methylthioadenosine (MTA) Regulates Liver Cells Proteome and Methylproteome: Implications in Liver Biology and Disease. Mol Cell Proteomics 2016; 15:1498-1510. [PMID: 26819315 PMCID: PMC4858935 DOI: 10.1074/mcp.m115.055772] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
Methylthioadenosine phosphorylase (MTAP), a key enzyme in the adenine and methionine salvage pathways, catalyzes the hydrolysis of methylthioadenosine (MTA), a compound suggested to affect pivotal cellular processes in part through the regulation of protein methylation. MTAP is expressed in a wide range of cell types and tissues, and its deletion is common to cancer cells and in liver injury. The aim of this study was to investigate the proteome and methyl proteome alterations triggered by MTAP deficiency in liver cells to define novel regulatory mechanisms that may explain the pathogenic processes of liver diseases. iTRAQ analysis resulted in the identification of 216 differential proteins (p < 0.05) that suggest deregulation of cellular pathways as those mediated by ERK or NFκB. R-methyl proteome analysis led to the identification of 74 differentially methylated proteins between SK-Hep1 and SK-Hep1+ cells, including 116 new methylation sites. Restoring normal MTA levels in SK-Hep1+ cells parallels the specific methylation of 56 proteins, including KRT8, TGF, and CTF8A, which provides a novel regulatory mechanism of their activity with potential implications in carcinogenesis. Inhibition of RNA-binding proteins methylation is especially relevant upon accumulation of MTA. As an example, methylation of quaking protein in Arg(242) and Arg(256) in SK-Hep1+ cells may play a pivotal role in the regulation of its activity as indicated by the up-regulation of its target protein p27(kip1) The phenotype associated with a MTAP deficiency was further verified in the liver of MTAP± mice. Our data support that MTAP deficiency leads to MTA accumulation and deregulation of central cellular pathways, increasing proliferation and decreasing the susceptibility to chemotherapeutic drugs, which involves differential protein methylation. Data are available via ProteomeXchange with identifier PXD002957 (http://www.ebi.ac.uk/pride/archive/projects/PXD002957).
Collapse
Affiliation(s)
- Emilie Bigaud
- From the §Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; CIBERehd; IDISNA, Pamplona, 31008 Spain
| | - Fernando J Corrales
- From the §Department of Hepatology, Proteomics Laboratory, CIMA, University of Navarra; CIBERehd; IDISNA, Pamplona, 31008 Spain
| |
Collapse
|
308
|
Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol 2016; 131:587-604. [PMID: 26895297 DOI: 10.1007/s00401-016-1544-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.
Collapse
|
309
|
Garnett GA, Starke MJ, Shaurya A, Li J, Hof F. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics. Anal Chem 2016; 88:3697-703. [DOI: 10.1021/acs.analchem.5b04508] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Graham A.E. Garnett
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Melissa J. Starke
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Alok Shaurya
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Janessa Li
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W3 V6, Canada
| |
Collapse
|
310
|
Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis. PARKINSONS DISEASE 2016; 2016:4686185. [PMID: 27034888 PMCID: PMC4791501 DOI: 10.1155/2016/4686185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability.
Collapse
|
311
|
Low JKK, Im H, Erce MA, Hart-Smith G, Snyder MP, Wilkins MR. Protein substrates of the arginine methyltransferase Hmt1 identified by proteome arrays. Proteomics 2016; 16:465-76. [DOI: 10.1002/pmic.201400564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 09/27/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Jason K. K. Low
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Hogune Im
- Department of Genetics; Stanford University School of Medicine; Palo Alto CA USA
| | - Melissa A. Erce
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| | - Michael P. Snyder
- Department of Genetics; Stanford University School of Medicine; Palo Alto CA USA
| | - Marc R. Wilkins
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; The University of New South Wales; Sydney Australia
| |
Collapse
|
312
|
Vershinin Z, Feldman M, Chen A, Levy D. PAK4 Methylation by SETD6 Promotes the Activation of the Wnt/β-Catenin Pathway. J Biol Chem 2016; 291:6786-95. [PMID: 26841865 DOI: 10.1074/jbc.m115.697292] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/06/2022] Open
Abstract
Lysine methylation of non-histone proteins has emerged as a key regulator of many cellular functions. Although less studied than other post-translational modifications such as phosphorylation and acetylation, the number of known methylated non-histone proteins is rapidly expanding. We have identified the p21-activated kinase 4 (PAK4) as a new substrate for methylation by the protein lysine methyltransferase SETD6. Our data demonstrate that SETD6 methylates PAK4 bothin vitroand at chromatin in cells. Interestingly, depletion of SETD6 in various cellular systems significantly hinders the activation of the Wnt/β-catenin target genes. PAK4 was recently shown to regulate β-catenin signaling, and we show that SETD6 is a key mediator of this pathway. In the presence of SETD6, the physical interaction between PAK4 and β-catenin is dramatically increased, leading to a significant increase in the transcription of β-catenin target genes. Taken together, our results uncover a new regulatory layer of the Wnt/β-catenin signaling cascade and provide new insight into SETD6 biology.
Collapse
Affiliation(s)
- Zlata Vershinin
- From the Shraga Segal Department of Microbiology, Immunology, and Genetics and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Michal Feldman
- From the Shraga Segal Department of Microbiology, Immunology, and Genetics and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Ayelet Chen
- From the Shraga Segal Department of Microbiology, Immunology, and Genetics and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| | - Dan Levy
- From the Shraga Segal Department of Microbiology, Immunology, and Genetics and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er-Sheva 84105, Israel
| |
Collapse
|
313
|
Abstract
Over the past decade, rapid advances in genomics, proteomics and functional genomics technologies that enable in-depth interrogation of cancer genomes and proteomes and high-throughput analysis of gene function have enabled characterization of the kinome 'at large' in human cancers, providing crucial insights into how members of the protein kinase superfamily are dysregulated in malignancy, the context-dependent functional role of specific kinases in cancer and how kinome remodelling modulates sensitivity to anticancer drugs. The power of these complementary approaches, and the insights gained from them, form the basis of this Analysis article.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianmin Wu
- Cancer Division, Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
314
|
The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep 2016; 6:19874. [PMID: 26813495 PMCID: PMC4728496 DOI: 10.1038/srep19874] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Although the involvement of protein arginine methyltransferase 1 (PRMT1) in tumorigenesis has been reported, its roles in breast cancer progression and metastasis has not been elucidated. Here we identified PRMT1 as a key regulator of the epithelial-mesenchymal transition (EMT) in breast cancer. We showed that the EMT program induced by PRMT1 endowed the human mammary epithelial cells with cancer stem cell properties. Moreover, PRMT1 promoted the migratory and invasive behaviors in breast cancer cells. We also demonstrated that abrogation of PRMT1 expression in breast cancer cells abated metastasis in vivo in mouse model. In addition, knockdown of PRMT1 arrested cell growth in G1 tetraploidy and induced cellular senescence. Mechanistically, PRMT1 impacted EMT process and cellular senescence by mediating the asymmetric dimethylation of arginine 3 of histone H4 (H4R3me2as) at the ZEB1 promoter to activate its transcription, indicating the essential roles of this epigenetic control both in EMT and in senescence. Thus, we unraveled a dual function of PRMT1 in modulation of both EMT and senescence via regulating ZEB1. This finding points to the potent value of PRMT1 as a dual therapeutic target for preventing metastasis and for inhibiting cancer cell growth in malignant breast cancer patients.
Collapse
|
315
|
Wu C, Duan J, Liu T, Smith RD, Qian WJ. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:57-68. [PMID: 26868616 DOI: 10.1016/j.jchromb.2016.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed.
Collapse
Affiliation(s)
- Chaochao Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
316
|
Olsen JB, Cao XJ, Han B, Chen LH, Horvath A, Richardson TI, Campbell RM, Garcia BA, Nguyen H. Quantitative Profiling of the Activity of Protein Lysine Methyltransferase SMYD2 Using SILAC-Based Proteomics. Mol Cell Proteomics 2016; 15:892-905. [PMID: 26750096 DOI: 10.1074/mcp.m115.053280] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
The significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell. Here, using stable isotopic labeling with amino acids in cell culture (SILAC) coupled with immunoaffinity enrichment of mono-methyl-lysine (Kme1) peptides and mass spectrometry, we report a comprehensive, large-scale proteomic study of lysine mono-methylation, comprising a total of 1032 Kme1 sites in esophageal squamous cell carcinoma (ESCC) cells and 1861 Kme1 sites in ESCC cells overexpressing SMYD2. Among these Kme1 sites is a subset of 35 found to be potently down-regulated by both shRNA-mediated knockdown of SMYD2 and LLY-507, a selective small molecule inhibitor of SMYD2. In addition, we report specific protein sequence motifs enriched in Kme1 sites that are directly regulated by endogenous SMYD2 activity, revealing that SMYD2 substrate specificity is more diverse than expected. We further show direct activity of SMYD2 toward BTF3-K2, PDAP1-K126 as well as numerous sites within the repetitive units of two unique and exceptionally large proteins, AHNAK and AHNAK2. Collectively, our findings provide quantitative insights into the cellular activity and substrate recognition of SMYD2 as well as the global landscape and regulation of protein mono-methylation.
Collapse
Affiliation(s)
- Jonathan B Olsen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Xing-Jun Cao
- §Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104
| | - Bomie Han
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Lisa Hong Chen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | | | | | - Robert M Campbell
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Benjamin A Garcia
- §Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, Pennsylvania 19104;
| | - Hannah Nguyen
- From the ‡Lilly USA, Lilly Research Laboratories, Indianapolis, Indiana 46285;
| |
Collapse
|
317
|
Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:345-382. [PMID: 27975226 DOI: 10.1007/978-3-319-41448-5_17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Posttranslational modifications (PTMs) are important biochemical processes for regulating various signaling pathways and determining specific cell fate. Mass spectrometry (MS)-based proteomics has been developed extensively in the past decade and is becoming the standard approach for systematic characterization of different PTMs on a global scale. In this chapter, we will explain the biological importance of various PTMs, summarize key innovations in PTMs enrichment strategies, high-performance liquid chromatography (HPLC)-based fractionation approaches, mass spectrometry detection methods, and lastly bioinformatic tools for PTMs related data analysis. With great effort in recent years by the proteomics community, highly efficient enriching methods and comprehensive resources have been developed. This chapter will specifically focus on five major types of PTMs; phosphorylation, glycosylation, ubiquitination/sumosylation, acetylation, and methylation.
Collapse
|
318
|
Barsyte-Lovejoy D, Szewczyk M, Prinos P, Lima-Fernandes E, Ackloo S, Arrowsmith C. Chemical Biology Approaches for Characterization of Epigenetic Regulators. Methods Enzymol 2016; 574:79-103. [DOI: 10.1016/bs.mie.2016.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
319
|
Hart-Smith G, Yagoub D, Tay AP, Pickford R, Wilkins MR. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates. Mol Cell Proteomics 2015; 15:989-1006. [PMID: 26699799 DOI: 10.1074/mcp.m115.055384] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 01/22/2023] Open
Abstract
All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through (13)CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining high confidence methyl-PSMs in large scale LC-MS/MS methylation site discovery experiments and make recommendations on how to reduce methyl-PSM FDRs in samples not amenable to heavy isotope labeling. Data are available via ProteomeXchange with the data identifier PXD002857.
Collapse
Affiliation(s)
- Gene Hart-Smith
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Daniel Yagoub
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Aidan P Tay
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| | - Russell Pickford
- ‖Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R Wilkins
- From the ‡New South Wales Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, and
| |
Collapse
|
320
|
Gu H, Ren JM, Jia X, Levy T, Rikova K, Yang V, Lee KA, Stokes MP, Silva JC. Quantitative Profiling of Post-translational Modifications by Immunoaffinity Enrichment and LC-MS/MS in Cancer Serum without Immunodepletion. Mol Cell Proteomics 2015; 15:692-702. [PMID: 26635363 DOI: 10.1074/mcp.o115.052266] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/24/2022] Open
Abstract
A robust method was developed and optimized for enrichment and quantitative analysis of posttranslational modifications (PTMs) in serum/plasma samples by combining immunoaffinity purification and LC-MS/MS without depletion of abundant proteins. The method was used to survey serum samples of patients with acute myeloid leukemia (AML), breast cancer (BC), and nonsmall cell lung cancer (NSCLC). Peptides were identified from serum samples containing phosphorylation, acetylation, lysine methylation, and arginine methylation. Of the PTMs identified, lysine acetylation (AcK) and arginine mono-methylation (Rme) were more prevalent than other PTMs. Label-free quantitative analysis of AcK and Rme peptides was performed for sera from AML, BC, and NSCLC patients. Several AcK and Rme sites showed distinct abundance distribution patterns across the three cancer types. The identification and quantification of posttranslationally modified peptides in serum samples reported here can be used for patient profiling and biomarker discovery research.
Collapse
Affiliation(s)
- Hongbo Gu
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Jian Min Ren
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Xiaoying Jia
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Tyler Levy
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Klarisa Rikova
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Vicky Yang
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Kimberly A Lee
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Matthew P Stokes
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Jeffrey C Silva
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| |
Collapse
|
321
|
Morales Y, Cáceres T, May K, Hevel JM. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 2015; 590:138-152. [PMID: 26612103 DOI: 10.1016/j.abb.2015.11.030] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022]
Abstract
Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated. An overview of what we understand about substrate recognition and binding is provided. Control of product specificity and enzyme processivity are introduced as necessary but flexible features of the PRMTs. Precise control of PRMT activity is a critical component to eukaryotic cell health, especially given that an arginine demethylase has not been identified. We therefore conclude the review with a comprehensive discussion of how protein arginine methylation is regulated.
Collapse
Affiliation(s)
- Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Tamar Cáceres
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Kyle May
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States
| | - Joan M Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322, United States.
| |
Collapse
|
322
|
Baldwin RM, Haghandish N, Daneshmand M, Amin S, Paris G, Falls TJ, Bell JC, Islam S, Côté J. Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget 2015; 6:3013-32. [PMID: 25605249 PMCID: PMC4413634 DOI: 10.18632/oncotarget.3072] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/18/2014] [Indexed: 12/05/2022] Open
Abstract
Recent evidence points to the protein arginine methyltransferase (PRMT) family of enzymes playing critical roles in cancer. PRMT7 has been identified in several gene expression studies to be associated with increased metastasis and decreased survival in breast cancer patients. However, this has not been extensively studied. Here we report that PRMT7 expression is significantly upregulated in both primary breast tumour tissues and in breast cancer lymph node metastases. We have demonstrated that reducing PRMT7 levels in invasive breast cancer cells using RNA interference significantly decreased cell invasion in vitro and metastasis in vivo. Conversely, overexpression of PRMT7 in non-aggressive MCF7 cells enhanced their invasiveness. Furthermore, we show that PRMT7 induces the expression of matrix metalloproteinase 9 (MMP9), a well-known mediator of breast cancer metastasis. Importantly, we significantly rescued invasion of aggressive breast cancer cells depleted of PRMT7 by the exogenous expression of MMP9. Our results demonstrate that upregulation of PRMT7 in breast cancer may have a significant role in promoting cell invasion through the regulation of MMP9. This identifies PRMT7 as a novel and potentially significant biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- R Mitchell Baldwin
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nasim Haghandish
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Manijeh Daneshmand
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Shahrier Amin
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Geneviève Paris
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Theresa J Falls
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Shahidul Islam
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology, Ottawa Hospital, Ottawa, Ontario, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
323
|
Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D. Bottom-Up Proteomics (2013-2015): Keeping up in the Era of Systems Biology. Anal Chem 2015; 88:95-121. [PMID: 26558748 DOI: 10.1021/acs.analchem.5b04230] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Shelley Deeke
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Bo Xu
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Ming Wen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Kai Cheng
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Alexandra Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| |
Collapse
|
324
|
Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:303-13. [PMID: 26592459 DOI: 10.1016/j.bbamcr.2015.11.020] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.
Collapse
Affiliation(s)
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Franz Oswald
- University Medical Center Ulm, Department of Internal Medicine I, Ulm, Germany
| | | |
Collapse
|
325
|
Zhang L, Tran NT, Su H, Wang R, Lu Y, Tang H, Aoyagi S, Guo A, Khodadadi-Jamayran A, Zhou D, Qian K, Hricik T, Côté J, Han X, Zhou W, Laha S, Abdel-Wahab O, Levine RL, Raffel G, Liu Y, Chen D, Li H, Townes T, Wang H, Deng H, Zheng YG, Leslie C, Luo M, Zhao X. Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing. eLife 2015; 4:07938. [PMID: 26575292 PMCID: PMC4775220 DOI: 10.7554/elife.07938] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia. DOI:http://dx.doi.org/10.7554/eLife.07938.001 The many different cell types in an adult animal all develop from a single fertilized egg. The development of cells into more specialized cell types is called ‘differentiation’. Proteins and other molecules from both inside and outside of the cells regulate the differentiation process. RNA is a molecule that is similar to DNA, and performs several important roles inside cells. Perhaps most importantly, RNA molecules act as messengers and carry genetic instructions during gene expression. RBM15 is an RNA-binding protein that is found throughout nature, and is involved in a number of developmental processes. Previous research has linked the incorrect control of RBM15 with an increased risk of certain cancers, including megakaryocytic leukemia. However, it is not clear what role RNA-binding proteins such as RBM15 play during differentiation. Now, Zhang, Tran, Su et al. have investigated the role of RBM15 during the development of large cells found in human bone marrow (called megakaryocytes). First, the experiments demonstrated that an enzyme called PRMT1 modifies RBM15. This enzyme adds a chemical mark called a methyl group at a specific site (an arginine amino acid) on the RNA-binding protein. Next, Zhang, Tran, Su et al. showed that the addition of this methyl group earmarks RBM15 for destruction. This means that an increase in PRMT1 levels reduces the amount of RBM15 in cells, while decreases in PRMT1 have the opposite effect. Further experiments showed that RBM15 normally processes the RNA messengers that carry the genetic instructions needed for the differentiation of bone marrow cells. An excess of PRMT1 enzyme leads to a lack of this RNA-binding protein. This in turn interferes with the differentiation process, and can contribute to the development of cancers such as megakaryocytic leukemia. Future work will therefore explore whether targeting PRMT1 with drugs could represent an effective treatment for these kinds of cancers. DOI:http://dx.doi.org/10.7554/eLife.07938.002
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Rui Wang
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yuheng Lu
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Haiping Tang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sayura Aoyagi
- Cell Signaling Technology, Inc., Danvers, United States
| | - Ailan Guo
- Cell Signaling Technology, Inc., Danvers, United States
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Dewang Zhou
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Kun Qian
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Todd Hricik
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xiaosi Han
- Department of Neurology, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, United States
| | - Wenping Zhou
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Suparna Laha
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Glen Raffel
- Division of Hematology and Oncology, University of Massachusetts Medical School, Worcester, United States
| | - Yanyan Liu
- Department of Internal Medicine, Zhengzhou - Henan Cancer Hospital, Zhengzhou, China
| | - Dongquan Chen
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, United States
| | - Haitao Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tim Townes
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, United States
| | - Christina Leslie
- Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Minkui Luo
- Program of Molecular Pharmacology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, The University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
326
|
Hamey JJ, Winter DL, Yagoub D, Overall CM, Hart-Smith G, Wilkins MR. Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human. Mol Cell Proteomics 2015; 15:164-76. [PMID: 26545399 DOI: 10.1074/mcp.m115.052449] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) is an essential, highly methylated protein that facilitates translational elongation by delivering aminoacyl-tRNAs to ribosomes. Here, we report a new eukaryotic protein N-terminal methyltransferase, Saccharomyces cerevisiae YLR285W, which methylates eEF1A at a previously undescribed high-stoichiometry N-terminal site and the adjacent lysine. Deletion of YLR285W resulted in the loss of N-terminal and lysine methylation in vivo, whereas overexpression of YLR285W resulted in an increase of methylation at these sites. This was confirmed by in vitro methylation of eEF1A by recombinant YLR285W. Accordingly, we name YLR285W as elongation factor methyltransferase 7 (Efm7). This enzyme is a new type of eukaryotic N-terminal methyltransferase as, unlike the three other known eukaryotic N-terminal methyltransferases, its substrate does not have an N-terminal [A/P/S]-P-K motif. We show that the N-terminal methylation of eEF1A is also present in human; this conservation over a large evolutionary distance suggests it to be of functional importance. This study also reports that the trimethylation of Lys(79) in eEF1A is conserved from yeast to human. The methyltransferase responsible for Lys(79) methylation of human eEF1A is shown to be N6AMT2, previously documented as a putative N(6)-adenine-specific DNA methyltransferase. It is the direct ortholog of the recently described yeast Efm5, and we show that Efm5 and N6AMT2 can methylate eEF1A from either species in vitro. We therefore rename N6AMT2 as eEF1A-KMT1. Including the present work, yeast eEF1A is now documented to be methylated by five different methyltransferases, making it one of the few eukaryotic proteins to be extensively methylated by independent enzymes. This implies more extensive regulation of eEF1A by this posttranslational modification than previously appreciated.
Collapse
Affiliation(s)
- Joshua J Hamey
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Daniel L Winter
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Daniel Yagoub
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Christopher M Overall
- §Centre for Blood Research, Departments of Oral Biological and Medical Sciences/Biochemistry and Molecular Biology, University of British Columbia, British Columbia, V6T 1Z4, Canada
| | - Gene Hart-Smith
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia
| | - Marc R Wilkins
- From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia;
| |
Collapse
|
327
|
Sylvestersen KB, Nielsen ML. Large‐Scale Identification of the Arginine Methylome by Mass Spectrometry. ACTA ACUST UNITED AC 2015; 82:24.7.1-24.7.17. [DOI: 10.1002/0471140864.ps2407s82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kathrine B. Sylvestersen
- Department of Proteomics The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences Copenhagen Denmark
| | - Michael L. Nielsen
- Department of Proteomics The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health Sciences Copenhagen Denmark
| |
Collapse
|
328
|
Horiuchi KY. Challenges in profiling and lead optimization of drug discovery for methyltransferases. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 18:62-68. [PMID: 26723894 DOI: 10.1016/j.ddtec.2015.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The importance of epigenetics in the initiation and progression of disease has attracted many investigators to incorporate this novel and exciting field in drug development. Protein methyltransferases are one of the target classes which have gained attention as potential therapeutic targets after promising results of inhibitors for EZH2 and DOT1L in clinical trials. There are many technologies developed in order to find small molecule inhibitors for protein methyltransferases. However, in contrast to high throughput screening, profiling against different methyltransferases is challenging since each enzyme has a different substrate preference so that it is hard to profile in one assay format. Here, different technologies for methyltransferase assays will be overviewed, and the advantages and disadvantages of each will be discussed.
Collapse
Affiliation(s)
- Kurumi Y Horiuchi
- Reaction Biology Corporation, One Great Valley Parkway, Suite 2, Malvern, PA 19355, USA.
| |
Collapse
|
329
|
Boström T, Takanen JO, Hober S. Antibodies as means for selective mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:3-13. [PMID: 26565067 DOI: 10.1016/j.jchromb.2015.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023]
Abstract
For protein analysis of biological samples, two major strategies are used today; mass spectrometry (MS) and antibody-based methods. Each strategy offers advantages and drawbacks. However, combining the two using an immunoenrichment step with MS analysis brings together the benefits of each method resulting in increased sensitivity, faster analysis and possibility of higher degrees of multiplexing. The immunoenrichment can be performed either on protein or peptide level and quantification standards can be added in order to enable determination of the absolute protein concentration in the sample. The combination of immunoenrichment and MS holds great promise for the future in both proteomics and clinical diagnostics. This review describes different setups of immunoenrichment coupled to mass spectrometry and how these can be utilized in various applications.
Collapse
Affiliation(s)
- Tove Boström
- School of Biotechnology, Division of Protein Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Jenny Ottosson Takanen
- School of Biotechnology, Division of Proteomics and Nanobiotechnology, KTH-Royal Institute ofTechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- School of Biotechnology, Division of Protein Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
330
|
Christie M, Chang CW, Róna G, Smith KM, Stewart AG, Takeda AAS, Fontes MRM, Stewart M, Vértessy BG, Forwood JK, Kobe B. Structural Biology and Regulation of Protein Import into the Nucleus. J Mol Biol 2015; 428:2060-90. [PMID: 26523678 DOI: 10.1016/j.jmb.2015.10.023] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 11/28/2022]
Abstract
Proteins are translated in the cytoplasm, but many need to access the nucleus to perform their functions. Understanding how these nuclear proteins are transported through the nuclear envelope and how the import processes are regulated is therefore an important aspect of understanding cell function. Structural biology has played a key role in understanding the molecular events during the transport processes and their regulation, including the recognition of nuclear targeting signals by the corresponding receptors. Here, we review the structural basis of the principal nuclear import pathways and the molecular basis of their regulation. The pathways involve transport factors that are members of the β-karyopherin family, which can bind cargo directly (e.g., importin-β, transportin-1, transportin-3, importin-13) or through adaptor proteins (e.g., importin-α, snurportin-1, symportin-1), as well as unrelated transport factors such as Hikeshi, involved in the transport of heat-shock proteins, and NTF2, involved in the transport of RanGDP. Solenoid proteins feature prominently in these pathways. Nuclear transport factors recognize nuclear targeting signals on the cargo proteins, including the classical nuclear localization signals, recognized by the adaptor importin-α, and the PY nuclear localization signals, recognized by transportin-1. Post-translational modifications, particularly phosphorylation, constitute key regulatory mechanisms operating in these pathways.
Collapse
Affiliation(s)
- Mary Christie
- The Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales Faculty of Medicine, Darlinghurst, NSW 2010, Australia
| | - Chiung-Wen Chang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gergely Róna
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Kate M Smith
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Alastair G Stewart
- School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006, Australia
| | - Agnes A S Takeda
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Marcos R M Fontes
- Department of Physics and Biophysics, Institute of Biosciences, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brazil
| | - Murray Stewart
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Beáta G Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest H-1117, Hungary; Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
331
|
Onwuli DO, Beltran-Alvarez P. An update on transcriptional and post-translational regulation of brain voltage-gated sodium channels. Amino Acids 2015; 48:641-651. [PMID: 26503606 PMCID: PMC4752963 DOI: 10.1007/s00726-015-2122-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/29/2022]
Abstract
Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.
Collapse
Affiliation(s)
- Donatus O Onwuli
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK
| | - Pedro Beltran-Alvarez
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hardy Building Cottingham Road, Hull, HU6 7RX, UK.
| |
Collapse
|
332
|
A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling. Proc Natl Acad Sci U S A 2015; 112:E5679-88. [PMID: 26438848 DOI: 10.1073/pnas.1517932112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.
Collapse
|
333
|
Shi SP, Xu HD, Wen PP, Qiu JD. Progress and challenges in predicting protein methylation sites. MOLECULAR BIOSYSTEMS 2015; 11:2610-2619. [PMID: 26080040 DOI: 10.1039/c5mb00259a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Protein methylation catalyzed by methyltransferases carries many important biological functions. Methylation and their regulatory enzymes are involved in a variety of human disease states, raising the possibility that abnormally methylated proteins can be disease markers and methyltransferases are potential therapeutic targets. Identification of methylation sites is a prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles that have been implicated in the pathological processes. Due to various limitations of experimental methods, in silico approaches for identifying novel methylation sites have become increasingly popular. In this review, we summarize the progress in the prediction of protein methylation sites from the dataset, feature representation, prediction algorithm and online resources in the past ten years. We also discuss the challenges that are faced while developing novel predictors in the future. The development and application of methylation site prediction is a promising field of systematic biology, provided that protein methyltransferases, species and functional information will be taken into account.
Collapse
Affiliation(s)
- Shao-Ping Shi
- Department of Chemistry, Nanchang University, Nanchang, 330031, China.
| | | | | | | |
Collapse
|
334
|
LIN L, LUO SS, WANG LJ, YANG J, SHEN HN, TIAN RJ. Progress and Application of LC-MS Technologies for Characterizing Protein Post Translational Modifications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60866-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
335
|
Ryder DJ, Judge SM, Beharry AW, Farnsworth CL, Silva JC, Judge AR. Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy. PLoS One 2015; 10:e0136247. [PMID: 26302492 PMCID: PMC4547751 DOI: 10.1371/journal.pone.0136247] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is a consequence of several physiological and pathophysiological conditions including muscle disuse, aging and diseases such as cancer and heart failure. In each of these conditions, the predominant mechanism contributing to the loss of skeletal muscle mass is increased protein turnover. Two important mechanisms which regulate protein stability and degradation are lysine acetylation and ubiquitination, respectively. However our understanding of the skeletal muscle proteins regulated through acetylation and ubiquitination during muscle atrophy is limited. Therefore, the purpose of the current study was to conduct an unbiased assessment of the acetylation and ubiquitin-modified proteome in skeletal muscle during a physiological condition of muscle atrophy. To induce progressive, physiologically relevant, muscle atrophy, rats were cast immobilized for 0, 2, 4 or 6 days and muscles harvested. Acetylated and ubiquitinated peptides were identified via a peptide IP proteomic approach using an anti-acetyl lysine antibody or a ubiquitin remnant motif antibody followed by mass spectrometry. In control skeletal muscle we identified and mapped the acetylation of 1,326 lysine residues to 425 different proteins and the ubiquitination of 4,948 lysine residues to 1,131 different proteins. Of these proteins 43, 47 and 50 proteins were differentially acetylated and 183, 227 and 172 were differentially ubiquitinated following 2, 4 and 6 days of disuse, respectively. Bioinformatics analysis identified contractile proteins as being enriched among proteins decreased in acetylation and increased in ubiquitination, whereas histone proteins were enriched among proteins increased in acetylation and decreased in ubiquitination. These findings provide the first proteome-wide identification of skeletal muscle proteins exhibiting changes in lysine acetylation and ubiquitination during any atrophy condition, and provide a basis for future mechanistic studies into how the acetylation and ubiquitination status of these identified proteins regulates the muscle atrophy phenotype.
Collapse
Affiliation(s)
- Daniel J. Ryder
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Adam W. Beharry
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | | | - Jeffrey C. Silva
- Cell Signaling Technology, Danvers, MA, United States of America
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
336
|
Yagoub D, Hart-Smith G, Moecking J, Erce MA, Wilkins MR. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p. Proteomics 2015; 15:3209-18. [DOI: 10.1002/pmic.201500075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/08/2015] [Accepted: 06/15/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Daniel Yagoub
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Gene Hart-Smith
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Jonas Moecking
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Melissa A. Erce
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| | - Marc R. Wilkins
- Systems Biology Laboratory; School of Biotechnology and Biomolecular Sciences, University of New South Wales; Sydney Australia
| |
Collapse
|
337
|
Butryn A, Schuller JM, Stoehr G, Runge-Wollmann P, Förster F, Auble DT, Hopfner KP. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1. eLife 2015; 4. [PMID: 26258880 PMCID: PMC4565979 DOI: 10.7554/elife.07432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/08/2015] [Indexed: 12/28/2022] Open
Abstract
Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI:http://dx.doi.org/10.7554/eLife.07432.001 An organism’s DNA contains thousands of genes, not all of which are active at the same time. Cells use a number of methods to carefully control when particular genes are switched on or off. For example, proteins called transcription factors can activate a gene by binding to particular regions of DNA called promoters. One such transcription factor is called the TATA-binding protein (TBP for short). Mot1 is a remodeling enzyme that can form a “complex” with TBP by binding to it, and in doing so remove TBP from DNA. This silences the genes at those sites. The freed TBP can then bind to other promoters that lack Mot1 and activate the genes found there. In 2011, researchers revealed the structure of the complex formed between TBP and Mot1 after TBP has been detached from DNA. However, the structure of the complex that forms while TBP is still bound to the DNA molecule was not known. Butryn et al. – including several of the researchers involved in the 2011 work – have now described the structure of this complex using X-ray crystallography and electron microscopy. Another protein called negative cofactor 2 is also part of the complex, and helps to stabilize it. Butryn et al. found that Mot1 reduces the strength of the interactions between DNA and both TBP and negative cofactor 2. Binding to TBP and negative cofactor 2 causes the DNA molecule to bend; however, if Mot1 is also in the complex, the DNA becomes less bent. By making these changes, Mot1 is likely to prime TBP to detach from the DNA. Since the current structures do not yet reveal the atomic structure of Mot1’s ATP dependent DNA motor domain, the next challenge is to visualize the entire complex at atomic resolution. DOI:http://dx.doi.org/10.7554/eLife.07432.002
Collapse
Affiliation(s)
- Agata Butryn
- Gene Center, Department of Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Jan M Schuller
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, , Germany
| | - Gabriele Stoehr
- Gene Center, Department of Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Petra Runge-Wollmann
- Gene Center, Department of Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, , Germany
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, United States
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
338
|
Complementary PTM Profiling of Drug Response in Human Gastric Carcinoma by Immunoaffinity and IMAC Methods with Total Proteome Analysis. Proteomes 2015; 3:160-183. [PMID: 28248267 PMCID: PMC5217380 DOI: 10.3390/proteomes3030160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023] Open
Abstract
Gaining insight into normal cellular signaling and disease biology is a critical goal of proteomic analyses. The ability to perform these studies successfully to extract the maximum value and discovery of biologically relevant candidate biomarkers is therefore of primary importance. Many successful studies in the past have focused on total proteome analysis (changes at the protein level) combined with phosphorylation analysis by metal affinity enrichment (changes at the PTM level). Here, we use the gastric carcinoma cell line MKN-45 treated with the c-Met inhibitor SU11274 and PKC inhibitor staurosporine to investigate the most efficient and most comprehensive strategies for both total protein and PTM analysis. Under the conditions used, total protein analysis yielded few changes in response to either compound, while analysis of phosphorylation identified thousands of sites that changed differentially between the two treatments. Both metal affinity and antibody-based enrichments were used to assess phosphopeptide changes, and the data generated by the two methods was largely complementary (non-overlapping). Label-free quantitation of peptide peak abundances was used to accurately determine fold-changes between control and treated samples. Protein interaction network analysis allowed the data to be placed in a biologically relevant context, and follow-up validation of selected findings confirmed the accuracy of the proteomic data. Together, this study provides a framework for start-to-finish proteomic analysis of any experimental system under investigation to maximize the value of the proteomic study and yield the best chance for uncovering actionable target candidates.
Collapse
|
339
|
Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins. J Proteomics 2015. [PMID: 26216596 DOI: 10.1016/j.jprot.2015.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The investigation of post-translational modifications (PTMs) represents one of the main research focuses for the study of protein function and cell signaling. Mass spectrometry instrumentation with increasing sensitivity improved protocols for PTM enrichment and recently established pipelines for high-throughput experiments allow large-scale identification and quantification of several PTM types. This review addresses the concurrently emerging challenges for the computational analysis of the resulting data and presents PTM-centered approaches for spectra identification, statistical analysis, multivariate analysis and data interpretation. We furthermore discuss the potential of future developments that will help to gain deep insight into the PTM-ome and its biological role in cells. This article is part of a Special Issue entitled: Computational Proteomics.
Collapse
|
340
|
Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 2015; 18:1183-9. [PMID: 26192747 PMCID: PMC8049446 DOI: 10.1038/nn.4067] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/19/2015] [Indexed: 12/13/2022]
Abstract
The microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Reducing tau levels ameliorates AD-related synaptic, network, and behavioral abnormalities in human amyloid precursor protein (hAPP) transgenic mice. We used mass spectrometry to characterize the post-translational modification of endogenous tau isolated from wildtype and hAPP mice. We identified seven types of tau modifications at 63 sites in wildtype mice. Wildtype and hAPP mice had similar modifications, supporting the hypothesis that neuronal dysfunction in hAPP mice is enabled by physiological forms of tau. Our findings provide clear evidence for acetylation and ubiquitination of the same lysine residues; some sites were also targeted by lysine methylation. Our findings refute the hypothesis of extensive O-GlcNAc modification of endogenous tau. The complex post-translational modification of physiological tau suggests that tau is regulated by diverse mechanisms.
Collapse
Affiliation(s)
- Meaghan Morris
- 1] Gladstone Institute of Neurological Disease, San Francisco, California, USA. [2] Biochemistry, Cellular and Molecular Biology Graduate Program, Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Giselle M Knudsen
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Sumihiro Maeda
- 1] Gladstone Institute of Neurological Disease, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, California, USA
| | - Jonathan C Trinidad
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Alexandra Ioanoviciu
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Lennart Mucke
- 1] Gladstone Institute of Neurological Disease, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, California, USA
| |
Collapse
|
341
|
Plank M, Fischer R, Geoghegan V, Charles PD, Konietzny R, Acuto O, Pears C, Schofield CJ, Kessler BM. Expanding the yeast protein arginine methylome. Proteomics 2015; 15:3232-43. [DOI: 10.1002/pmic.201500032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Michael Plank
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
- Chemistry Research Laboratory; University of Oxford; Oxford UK
| | - Roman Fischer
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Vincent Geoghegan
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
| | - Philip D. Charles
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Rebecca Konietzny
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
| | - Oreste Acuto
- Sir William Dunn School of Pathology; University of Oxford; Oxford UK
| | | | | | - Benedikt M. Kessler
- Target Discovery Institute; Nuffield Department of Medicine; University of Oxford; Oxford UK
| |
Collapse
|
342
|
Cesaro L, Pinna LA, Salvi M. A Comparative Analysis and Review of lysyl Residues Affected by Posttranslational Modifications. Curr Genomics 2015; 16:128-38. [PMID: 26085811 PMCID: PMC4467303 DOI: 10.2174/1389202916666150216221038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 11/22/2022] Open
Abstract
Post-translational modification is the most common mechanism of regulating protein function. If
phosphorylation is considered a key event in many signal transduction pathways, other modifications must be
considered as well. In particular the side chain of lysine residues is a target of different modifications; notably
acetylation, methylation, ubiquitylation, sumoylation, neddylation, etc. Mass spectrometry approaches combining
highly sensitive instruments and specific enrichment strategies have enabled the identification of modified
sites on a large scale. Here we make a comparative analysis of the most representative lysine modifications
(ubiquitylation, acetylation, sumoylation and methylation) identified in the human proteome. This review focuses on
conserved amino acids, secondary structures preference, subcellular localization of modified proteins, and signaling pathways
where these modifications are implicated. We discuss specific differences and similarities between these modifications,
characteristics of the crosstalk among lysine post translational modifications, and single nucleotide polymorphisms
that could influence lysine post-translational modifications in humans.
Collapse
Affiliation(s)
- Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy ; Institute of Neurosciences, V.le G. Colombo 3, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| |
Collapse
|
343
|
Zhang X. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics. Mol Cell Proteomics 2015; 14:2441-53. [PMID: 26081834 DOI: 10.1074/mcp.r114.042572] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea-trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting-not destroying-structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics.
Collapse
Affiliation(s)
- Xi Zhang
- From the ‡Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; §Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
344
|
Hendriks IA, D'Souza RC, Chang JG, Mann M, Vertegaal ACO. System-wide identification of wild-type SUMO-2 conjugation sites. Nat Commun 2015; 6:7289. [PMID: 26073453 PMCID: PMC4490555 DOI: 10.1038/ncomms8289] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/26/2015] [Indexed: 12/18/2022] Open
Abstract
SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. Tryptic digestion of SUMOylated proteins generates large peptides, rendering proteomic characterisation of this post-translational modification particularly challenging unless mutant SUMO is used. Hendriks et al. present a method that allows the quantitative identification of wild-type SUMO sites.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Rochelle C D'Souza
- Department for Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jer-Gung Chang
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matthias Mann
- Department for Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
345
|
Huang J, Cardamone MD, Johnson HE, Neault M, Chan M, Floyd ZE, Mallette FA, Perissi V. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation. J Biol Chem 2015; 290:19044-54. [PMID: 26070566 DOI: 10.1074/jbc.m115.637660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/18/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment.
Collapse
Affiliation(s)
- Jiawen Huang
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - M Dafne Cardamone
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Holly E Johnson
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mathieu Neault
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada
| | - Michelle Chan
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Z Elizabeth Floyd
- the Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, and
| | - Frédérick A Mallette
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada, the Département de Médecine, Université de Montréal, Montréal, Quebec H1T 2M4, Canada
| | - Valentina Perissi
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
346
|
Prabhu L, Hartley AV, Martin M, Warsame F, Sun E, Lu T. Role of post-translational modification of the Y box binding protein 1 in human cancers. Genes Dis 2015; 2:240-246. [PMID: 30258867 PMCID: PMC6150071 DOI: 10.1016/j.gendis.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Y box binding protein-1 (YBX1) belongs to a DNA- and RNA-binding family of transcription factors, containing the highly conserved cold shock domain (CSD). YBX1 is involved in a number of cellular functions including transcription, translation, DNA damage repair etc., and it is upregulated during times of environmental stress. YBX1 is localized in both the cytoplasm and the nucleus. There, its nuclear translocation is observed in a number of cancers and is associated with poor prognosis and disease progression. Additionally, YBX1 expression is upregulated in a variety of cancers, pointing towards its role as a potential oncogene. Under certain circumstances, YBX1 also promotes the expression of multidrug resistance 1 (MDR1) gene, which is involved in the development of drug resistance. Thus, it is critical to understand the mechanism of YBX1 regulation and its downstream effects on promoting cancer development. A number of recent studies have highlighted the mechanisms of YBX1 regulation. Mass spectrometric analyses have reported several post-translational modifications that possibly play an important role in modulating YBX1 function. Phosphorylation is the most widely occurring post-translational modification in YBX1. In vivo analyses of sites like S102 and more recently, S165 illustrate the relationship of post-translational regulation of YBX1 in promoting cell proliferation and tumor growth. This review provides a comprehensive and up-to-date account of post-translational modifications identified in YBX1. This knowledge is a key in allowing us to better understand the mechanism of YBX1 regulation, which will aid in development of novel therapeutic strategies to target YBX1 in many types of cancer in the future.
Collapse
Affiliation(s)
- Lakshmi Prabhu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Antja-Voy Hartley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Fadumo Warsame
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Emily Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.,Department of Medical and Molecular Genetics, 975 West Walnut Street, Medical Research and Library Building, Indianapolis, IN 46202, USA
| |
Collapse
|
347
|
Rardin MJ, Schilling B, Cheng LY, MacLean BX, Sorensen DJ, Sahu AK, MacCoss MJ, Vitek O, Gibson BW. MS1 Peptide Ion Intensity Chromatograms in MS2 (SWATH) Data Independent Acquisitions. Improving Post Acquisition Analysis of Proteomic Experiments. Mol Cell Proteomics 2015; 14:2405-19. [PMID: 25987414 PMCID: PMC4563724 DOI: 10.1074/mcp.o115.048181] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 11/17/2022] Open
Abstract
Quantitative analysis of discovery-based proteomic workflows now relies on high-throughput large-scale methods for identification and quantitation of proteins and post-translational modifications. Advancements in label-free quantitative techniques, using either data-dependent or data-independent mass spectrometric acquisitions, have coincided with improved instrumentation featuring greater precision, increased mass accuracy, and faster scan speeds. We recently reported on a new quantitative method called MS1 Filtering (Schilling et al. (2012) Mol. Cell. Proteomics 11, 202–214) for processing data-independent MS1 ion intensity chromatograms from peptide analytes using the Skyline software platform. In contrast, data-independent acquisitions from MS2 scans, or SWATH, can quantify all fragment ion intensities when reference spectra are available. As each SWATH acquisition cycle typically contains an MS1 scan, these two independent label-free quantitative approaches can be acquired in a single experiment. Here, we have expanded the capability of Skyline to extract both MS1 and MS2 ion intensity chromatograms from a single SWATH data-independent acquisition in an Integrated Dual Scan Analysis approach. The performance of both MS1 and MS2 data was examined in simple and complex samples using standard concentration curves. Cases of interferences in MS1 and MS2 ion intensity data were assessed, as were the differentiation and quantitation of phosphopeptide isomers in MS2 scan data. In addition, we demonstrated an approach for optimization of SWATH m/z window sizes to reduce interferences using MS1 scans as a guide. Finally, a correlation analysis was performed on both MS1 and MS2 ion intensity data obtained from SWATH acquisitions on a complex mixture using a linear model that automatically removes signals containing interferences. This work demonstrates the practical advantages of properly acquiring and processing MS1 precursor data in addition to MS2 fragment ion intensity data in a data-independent acquisition (SWATH), and provides an approach to simultaneously obtain independent measurements of relative peptide abundance from a single experiment.
Collapse
Affiliation(s)
- Matthew J Rardin
- From the ‡Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, California 94945
| | - Birgit Schilling
- From the ‡Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, California 94945
| | - Lin-Yang Cheng
- §Department of Statistics, Purdue University, West Lafayette, IN 47907
| | - Brendan X MacLean
- ‖Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Dylan J Sorensen
- From the ‡Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, California 94945
| | - Alexandria K Sahu
- From the ‡Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, California 94945
| | - Michael J MacCoss
- ‖Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Olga Vitek
- ¶College of Science, College of Computer and Information Science, Northeastern University, Boston, Massachusetts 02115
| | - Bradford W Gibson
- From the ‡Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, California 94945; **Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| |
Collapse
|
348
|
Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA. Deep, Quantitative Coverage of the Lysine Acetylome Using Novel Anti-acetyl-lysine Antibodies and an Optimized Proteomic Workflow. Mol Cell Proteomics 2015; 14:2429-40. [PMID: 25953088 DOI: 10.1074/mcp.o114.047555] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction of antibodies specific for acetylated lysine has significantly improved the detection of endogenous acetylation sites by mass spectrometry. Here, we describe a new, commercially available mixture of anti-lysine acetylation (Kac) antibodies and show its utility for in-depth profiling of the acetylome. Specifically, seven complementary monoclones with high specificity for Kac were combined into a final anti-Kac reagent which results in at least a twofold increase in identification of Kac peptides over a commonly used Kac antibody. We outline optimal antibody usage conditions, effective offline basic reversed phase separation, and use of state-of-the-art LC-MS technology for achieving unprecedented coverage of the acetylome. The methods were applied to quantify acetylation sites in suberoylanilide hydroxamic acid-treated Jurkat cells. Over 10,000 Kac peptides from over 3000 Kac proteins were quantified from a single stable isotope labeling by amino acids in cell culture labeled sample using 7.5 mg of peptide input per state. This constitutes the deepest coverage of acetylation sites in quantitative experiments obtained to-date. The approach was also applied to breast tumor xenograft samples using isobaric mass tag labeling of peptides (iTRAQ4, TMT6 and TMT10-plex reagents) for quantification. Greater than 6700 Kac peptides from over 2300 Kac proteins were quantified using 1 mg of tumor protein per iTRAQ 4-plex channel. The novel reagents and methods we describe here enable quantitative, global acetylome analyses with depth and sensitivity approaching that obtained for other well-studied post-translational modifications such as phosphorylation and ubiquitylation, and should have widespread application in biological and clinical studies employing mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Tanya Svinkina
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142
| | - Hongbo Gu
- §Cell Signaling Technology, Inc. Danvers Massachusetts 01923
| | - Jeffrey C Silva
- §Cell Signaling Technology, Inc. Danvers Massachusetts 01923
| | - Philipp Mertins
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142
| | - Jana Qiao
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142
| | - Shaunt Fereshetian
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142
| | - Jacob D Jaffe
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142
| | - Eric Kuhn
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142
| | - Namrata D Udeshi
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142;
| | - Steven A Carr
- From the ‡Broad Institute of MIT and Harvard, Cambridge Massachusetts 02142;
| |
Collapse
|
349
|
Lott K, Mukhopadhyay S, Li J, Wang J, Yao J, Sun Y, Qu J, Read LK. Arginine methylation of DRBD18 differentially impacts its opposing effects on the trypanosome transcriptome. Nucleic Acids Res 2015; 43:5501-23. [PMID: 25940618 PMCID: PMC4477658 DOI: 10.1093/nar/gkv428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a posttranslational modification that impacts wide-ranging cellular functions, including transcription, mRNA splicing and translation. RNA binding proteins (RBPs) represent one of the largest classes of arginine methylated proteins in both mammals and the early diverging parasitic protozoan, Trypanosoma brucei. Here, we report the effects of arginine methylation on the functions of the essential and previously uncharacterized T. brucei RBP, DRBD18. RNAseq analysis shows that DRBD18 depletion causes extensive rearrangement of the T. brucei transcriptome, with increases and decreases in hundreds of mRNAs. DRBD18 contains three methylated arginines, and we used complementation of DRBD18 knockdown cells with methylmimic or hypomethylated DRBD18 to assess the functions of these methylmarks. Methylmimic and hypomethylated DRBD18 associate with different ribonucleoprotein complexes. These altered macromolecular interactions translate into differential impacts on the T. brucei transcriptome. Methylmimic DRBD18 preferentially stabilizes target RNAs, while hypomethylated DRBD18 is more efficient at destabilizing RNA. The protein arginine methyltransferase, TbPRMT1, interacts with DRBD18 and knockdown of TbPRMT1 recapitulates the effects of hypomethylated DRBD18 on mRNA levels. Together, these data support a model in which arginine methylation acts as a switch that regulates T. brucei gene expression.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shreya Mukhopadhyay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Yao
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
350
|
Winter DL, Abeygunawardena D, Hart-Smith G, Erce MA, Wilkins MR. Lysine methylation modulates the protein-protein interactions of yeast cytochrome C Cyc1p. Proteomics 2015; 15:2166-76. [PMID: 25755154 DOI: 10.1002/pmic.201400521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/02/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022]
Abstract
In recent years, protein methylation has been established as a major intracellular PTM. It has also been proposed to modulate protein-protein interactions (PPIs) in the interactome. To investigate the effect of PTMs on PPIs, we recently developed the conditional two-hybrid (C2H) system. With this, we demonstrated that arginine methylation can modulate PPIs in the yeast interactome. Here, we used the C2H system to investigate the effect of lysine methylation. Specifically, we asked whether Ctm1p-mediated trimethylation of yeast cytochrome c Cyc1p, on lysine 78, modulates its interactions with Erv1p, Ccp1p, Cyc2p and Cyc3p. We show that the interactions between Cyc1p and Erv1p, and between Cyc1p and Cyc3p, are significantly increased upon trimethylation of lysine 78. This increase of interaction helps explain the reported facilitation of Cyc1p import into the mitochondrial intermembrane space upon methylation. This first application of the C2H system to the study of methyllysine-modulated interactions further confirms its robustness and flexibility.
Collapse
Affiliation(s)
- Daniel L Winter
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dhanushi Abeygunawardena
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Gene Hart-Smith
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Melissa A Erce
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|