301
|
Gungor H, Kara H. Effects of selenium, zinc, insulin and metallothionein on cadmium-induced oxidative stress and metallothionein gene expression levels in diabetic rats. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0198/jbcpp-2019-0198.xml. [PMID: 32114524 DOI: 10.1515/jbcpp-2019-0198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
Background The aim of this study was to investigate the effects of selenium, zinc, insulin, and metallothionein on oxidative damage and metallothionein (MT) gene expression levels in streptozotocin (STZ)-induced type 1 diabetic rats exposed to Cd. Methods Rats were categorized under eight groups (control, STZ, Cd, STZ + Cd, Group 5, Group 6, Group 7, and STZ + Cd + MT [n:8/group]) were used. After diabetes was induced by STZ (55 mg/kg, i.p.), Cd was administered (1 mg/kg CdCl, orally) for 4 weeks. In cadmium-treated groups selenium (Na2SeO3 1.5 mg/kg, i.p.), zinc (ZnSO4 10 mg/kg via oral gavage), insulin (insulin glargine, 2U/day, s.c.), and MT (1mg/kg, every other 10 days, s.c.) were administered. MT gene expression levels, MDA levels, GPx, SOD, and CAT activity levels were determined in liver and kidney tissues. Results MT gene expression and MDA levels increased (p < 0.05) while GPx and SOD activity levels decreased (p < 0.05) in STZ, Cd, and STZ + Cd groups. In Group 5, Group 6, Group 7, and Group 8 groups MT gene expression and MDA levels were decreased while GPx and SOD activity levels were increased (p < 0.05). CAT activity significantly increased (p < 0.05) in STZ + Cd group while there were no significance in other groups (p > 0.05). Compared to the control, Group 5, Group 6, Group 7, and Group 8 groups provided no difference for alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine levels (p > 0.05). Conclusions Our results suggest that Se, insulin, Zn and MT may have protective effects against hepatotoxicity and nephrotoxicity caused by Cd exposure in diabetic rats by reducing oxidative stress and MT gene expression levels.
Collapse
Affiliation(s)
- Huseyin Gungor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Haki Kara
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
302
|
Louati I, Elloumi-Mseddi J, Cheikhrouhou W, Hadrich B, Nasri M, Aifa S, Woodward S, Mechichi T. Simultaneous cleanup of Reactive Black 5 and cadmium by a desert soil bacterium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110103. [PMID: 31887707 DOI: 10.1016/j.ecoenv.2019.110103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Multi-contaminated industrial wastewaters pose serious environmental risks due to high toxicity and non-biodegradability. The work reported here evaluated the ability of Pseudomonas aeruginosa strain Gb30 isolated from desert soil to simultaneously remove cadmium (Cd) and Reactive Black 5 (RB5), both common contaminants in various industrial effluents. The strain was able to grow normally and decolorize 50 mg L-1 RB5 within 24 h of incubation in the presence of 0.629 m mol L-1 of Cd2+. In order to evaluate strain performance in RB5 detoxification, a cytotoxicity test using Human Embryonic Kidney cells (HEK293) was used. Cadmium removal from culture media was determined using atomic adsorption. Even in presence of (0.115 + 0.157 + 0.401 + 0.381) m mol L-1, respectively, of Cr6+, Cd2+, Cu2+ and Zn2+ in the growth medium, strain Gb30 successfully removed 35% of RB5 and 44%, 36%, 59% and 97%, respectively, of introduced Zn2+, Cu2+, Cr6+ and Cd2+, simultaneously. In order to understand the mechanism of Cd removal used by P. aeruginosa strain Gb30, biosorption and bioaccumulation abilities were examined. The strain was preferentially biosorbing Cd on the cell surface, as opposed to intracellular bioaccumulation. Microscopic investigations using AFM, SEM and FTIR analysis of the bacterial biomass confirmed the presence of various structural features, which enabled the strain to interact with metal ions. The study suggests that Pseudomonas aeruginosa Gb30 is a potential candidate for bioremediation of textile effluents in the presence of complex dye-metal contamination.
Collapse
Affiliation(s)
- Ibtihel Louati
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia; Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038, Sfax, Tunisia
| | - Jihene Elloumi-Mseddi
- Laboratory of Molecular and Cell Screening Processes, Center of Biotechnology of Sfax, Sidi Mansour Road Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Wissem Cheikhrouhou
- LT2S Laboratory, Digital Research Center of Sfax, Technopark of Sfax, BP 275, 3021, Sfax, Tunisia
| | - Bilel Hadrich
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Sami Aifa
- Laboratory of Molecular and Cell Screening Processes, Center of Biotechnology of Sfax, Sidi Mansour Road Km 6, BP 1177, 3018, Sfax, Tunisia
| | - Stephen Woodward
- University of Aberdeen School of Biological Sciences, Department of Plant and Soil Science, Cruickshank Building, Aberdeen, AB24 3UU, Scotland, UK
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
303
|
Vanlaeys A, Fouquet G, Kischel P, Hague F, Pasco-Brassart S, Lefebvre T, Rybarczyk P, Dhennin-Duthille I, Brassart B, Ouadid-Ahidouch H, Gautier M. Cadmium exposure enhances cell migration and invasion through modulated TRPM7 channel expression. Arch Toxicol 2020; 94:735-747. [PMID: 32080757 DOI: 10.1007/s00204-020-02674-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Cadmium is a xenobiotic involved in neoplastic transformation. Cadmium enters the cells through divalent cation transporters including the Transient Receptor Potential Melastatin-related 7 (TRPM7) which is known to be involved in cancer cell fate. This work aimed to study the role of TRPM7 in neoplastic transformation induced by cadmium exposure in non-cancer epithelial cells. Non-cancer epithelial cells were chronically exposed to low-dose of cadmium. TRPM7 expression and function were studied by Western-Blot, Patch-Clamp and calcium and magnesium imaging. Finally, cell migration and invasion were studied by Boyden chamber assays. Chronic cadmium exposure induced TRPM7 overexpression and increased the membrane currents (P < 0.001). Cells exposed to cadmium had higher intracellular calcium and magnesium levels (P < 0.05). TRPM7 silencing restored calcium levels but strongly decreased intracellular magnesium concentration (P < 0.001). Moreover, cadmium exposure enhanced both cell migration and invasion, but TRPM7 silencing strongly decreased these features (P < 0.001). Furthermore, mammary epithelial cells exposed to cadmium became rounded and had less cell-to-cell junctions. Cadmium exposure decreased epithelial markers while the mesenchymal ones were increased. Importantly, TRPM7 silencing was able to reverse these phenotypic modifications (P < 0.05). To summarize, our data show that chronic cadmium exposure enhanced TRPM7 expression and activity in non-cancer epithelial cells. TRPM7 overexpression induced intracellular magnesium increase and stimulated cell migration and invasion. These neoplastic properties could be linked to a TRPM7-dependent epithelial-to-mesenchymal transition reprogramming in cell exposed to cadmium. These findings provide new insights into the regulation of cell fates by cadmium exposure.
Collapse
Affiliation(s)
- Alison Vanlaeys
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Grégory Fouquet
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Philippe Kischel
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Frédéric Hague
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Sylvie Pasco-Brassart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51095, Amiens, France
| | - Thibaut Lefebvre
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Pierre Rybarczyk
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
- Anatomie et Cytologie Pathologiques, CHU Amiens-Picardie, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Bertrand Brassart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), 51095, Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire - UR UPJV 4667, UFR Sciences, Université de Picardie Jules Verne (UPJV), 80039, Amiens, France.
| |
Collapse
|
304
|
Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv Pharm Bull 2020; 10:184-202. [PMID: 32373487 PMCID: PMC7191230 DOI: 10.34172/apb.2020.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a significant ecotoxic heavy metal that adversely affects all biological processes of humans, animals and plants. Exposure to acute and chronic Cd damages many organs in humans and animals (e.g. lung, liver, brain, kidney, and testes). In humans, the Cd concentration at birth is zero, but because the biological half-life is long (about 30 years in humans), the concentration increases with age. The industrial developments of the last century have significantly increased the use of this metal. Especially in developing countries, this consumption is higher. Oxidative stress is the imbalance between antioxidants and oxidants. Cd increases reactive oxygen species (ROS) production and causes oxidative stress. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles. This damage has been associated with various diseases. These include cancer, hypertension, ischemia/perfusion, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, insulin resistance, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, asthma, skin diseases, chronic kidney disease, eye diseases, neurodegenerative diseases (amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington disease). Natural antioxidants are popular drugs that are used by the majority of people and have few side effects. Natural antioxidants play an important role in reducing free radicals caused by Cd toxicity. Our goal in this review is to establish the relationship between Cd and oxidative stress and to discuss the role of natural antioxidants in reducing Cd toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| | - Tahir Dalkıran
- Department of Pediatric Intensive Care, Necip Fazıl City Hospital, 46030, Kahramanmaras, Turkey
| | - Mustafa Çiçek
- Department of Anatomy, Faculty of Medicine, Kahramanmaraş Sütçü imam University, Kahramanmaras, Turkey
| | - Engin Kölükçü
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University,Tokat, Turkey
| |
Collapse
|
305
|
Hu Z, Zhang Y, He Y, Cao Q, Zhang T, Lou L, Cai Q. Full-Length Transcriptome Assembly of Italian Ryegrass Root Integrated with RNA-Seq to Identify Genes in Response to Plant Cadmium Stress. Int J Mol Sci 2020; 21:ijms21031067. [PMID: 32041113 PMCID: PMC7037684 DOI: 10.3390/ijms21031067] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal element. It is relatively easily absorbed by plants and enters the food chain, resulting in human exposure to Cd. Italian ryegrass (Lolium multiflorum Lam.), an important forage cultivated widely in temperate regions worldwide, has the potential to be used in phytoremediation. However, genes regulating Cd translocation and accumulation in this species are not fully understood. Here, we optimized PacBio ISO-seq and integrated it with RNA-seq to construct a de novo full-length transcriptomic database for an un-sequenced autotetraploid species. With the database, we identified 2367 differentially expressed genes (DEGs) and profiled the molecular regulatory pathways of Italian ryegrass with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in response to Cd stress. Overexpression of a DEG LmAUX1 in Arabidopsis thaliana significantly enhanced plant Cd concentration. We also unveiled the complexity of alternative splicing (AS) with a genome-free strategy. We reconstructed full-length UniTransModels using the reference transcriptome, and 29.76% of full-length models had more than one isoform. Taken together, the results enhanced our understanding of the genetic diversity and complexity of Italian ryegrass under Cd stress and provided valuable genetic resources for its gene identification and molecular breeding.
Collapse
|
306
|
Wang C, Nie G, Yang F, Chen J, Zhuang Y, Dai X, Liao Z, Yang Z, Cao H, Xing C, Hu G, Zhang C. Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121157. [PMID: 31518807 DOI: 10.1016/j.jhazmat.2019.121157] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 05/16/2023]
Abstract
High doses of molybdenum (Mo) and cadmium (Cd) cause adverse reactions on animals, but the joint toxic effects of Mo and Cd on duck renal tubular epithelial cells are not fully illustrated. To investigate the combined effects of Mo and Cd on oxidative stress and mitochondrial apoptosis in primary duck renal tubular epithelial cells, the cells were either treated with (NH4)6Mo7O24·4H2O (480, 960 μM Mo), 3CdSO4·8H2O (2.5, 5.0 μM Cd) or combination of Mo and Cd for 12 h, and then the joint cytotoxicity was evaluated. The results demonstrated that Mo or/and Cd exposure could induce release of intracellular lactate dehydrogenase, reactive oxygen species generation, acidification, increase levels of malondialdehyde and [Ca2+]i, decrease levels of glutathione, glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity, Na+/K+-ATPase, Ca2+-ATPase, and mitochondrial membrane potential; upregulate mRNA levels of Caspase-3, Bak-1, Bax, and cytochrome C, inhibit Bcl-2 mRNA level, and induce cell apoptosis in a dose-dependent manner. Furthermore, the changes of these indicators in co-treated groups were more remarkable. The results indicated that exposure to Mo or/and Cd could induce oxidative stress and apoptosis via the mitochondrial pathway in duck renal tubular epithelial cells and the two metals may have a synergistic effect.
Collapse
Affiliation(s)
- Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhiyue Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhi Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
307
|
Yu D, Zhang L, Yu G, Nong C, Lei M, Tang J, Chen Q, Cai J, Chen S, Wei Y, Xu X, Tang X, Zou Y, Qin J. Association of liver and kidney functions with Klotho gene methylation in a population environment exposed to cadmium in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:38-48. [PMID: 30714826 DOI: 10.1080/09603123.2019.1572106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Exposure to the heavy metal cadmium has adverse effects on human health, including DNA methylation. This study aimed to investigate the effects of cadmium on liver and kidney functions and Klotho gene methylation and to explore the relationship of methylation level with indicators of liver and kidney functions. Graphite furnace atomic absorption spectrometry was conducted to determine urinary cadmium, and an automatic biochemical analyzer was used to detect indices of liver and kidney functions. PCR pyrosequencing was performed to detect the methylation rate of Klotho. One-way ANOVA was adopted to compare the differences between groups, and the linear correlation to variables was analyzed. Cadmium exposure was negatively correlated with albumin level (r=-0.143, p=0.021) and positively correlated with urinary β2-microglobulin level (r=0.229, p<0.001). However, the methylation levels of Klotho gene was decreased and increased by low and high doses of cadmium exposure, respectively. And Klothomethylation levels were negatively correlated with albumin levels and positively correlated with β2-microglobulin levels.In this study, cadmium exposure affects liver and kidney functions as well as Klotho methylation levels, but the effect on Klotho methylation levels is not linear. Klotho methylation levels also influence liver and kidney functions.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guoqi Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mingzhi Lei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiexia Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiangsheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | | | - Yi Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
308
|
Đukić-Ćosić D, Baralić K, Javorac D, Djordjevic AB, Bulat Z. An overview of molecular mechanisms in cadmium toxicity. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
309
|
Lemaire J, Van der Hauwaert C, Savary G, Dewaeles E, Perrais M, Lo Guidice JM, Pottier N, Glowacki F, Cauffiez C. Cadmium-Induced Renal Cell Toxicity Is Associated With MicroRNA Deregulation. Int J Toxicol 2020; 39:103-114. [DOI: 10.1177/1091581819899039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cadmium is an environmental pollutant well known for its nephrotoxic effects. Nevertheless, mechanisms underlying nephrotoxicity continue to be elucidated. MicroRNAs (miRNAs) have emerged in recent years as modulators of xenobiotic-induced toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in renal proximal tubular toxicity induced by cadmium exposure. We showed that cadmium exposure, in 2 distinct renal proximal tubular cell models (renal proximal tubular epithelial cell [RPTEC]/human telomerase reverse transcriptase [hTERT] and human kidney-2), resulted in cytotoxicity associated with morphological changes, overexpression of renal injury markers, and induction of apoptosis and inflammation processes. Cadmium exposure also resulted in miRNA modulation, including the significant upregulation of 38 miRNAs in RPTEC/hTERT cells. Most of these miRNAs are known to target genes whose coding proteins are involved in oxidative stress, inflammation, and apoptosis, leading to tissue remodeling. In conclusion, this study provides a list of dysregulated miRNAs which may play a role in the pathophysiology of cadmium-induced kidney damages and highlights promising cadmium molecular biomarkers that warrants to be further evaluated.
Collapse
Affiliation(s)
- J. Lemaire
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - C. Van der Hauwaert
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Département de la Recherche en Santé, CHU Lille, Lille, France
| | - G. Savary
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - E. Dewaeles
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - M. Perrais
- UMR-S 1172-JPArc-Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, Université de Lille, Lille, France
| | - J. M. Lo Guidice
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| | - N. Pottier
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Toxicologie et Génopathies, CHU Lille, Lille, France
| | - F. Glowacki
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
- Service de Néphrologie, CHU Lille, Lille, France
| | - C. Cauffiez
- EA 4483-IMPECS-IMPact of Environmental ChemicalS on Human Health, Université de Lille, Lille Cedex, France
| |
Collapse
|
310
|
El-Boshy M, Refaat B, Almaimani RA, Abdelghany AH, Ahmad J, Idris S, Almasmoum H, Mahbub AA, Ghaith MM, BaSalamah MA. Vitamin D 3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol 2020; 34:e22440. [PMID: 31926057 DOI: 10.1002/jbt.22440] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Although vitamin D (VD) and calcium (Ca) attenuate cadmium (Cd) metabolism, their combined antioxidant and anti-inflammatory actions against Cd toxicity have not been previously explored. Hence, this study measured the protective effects of VD ± Ca supplements against Cd hepatotoxicity. Forty adult male rats were distributed to: negative controls (NCs), positive controls (PCs), VD, Ca, and VD3 and Ca (VDC) groups. All groups, except NC, received CdCl2 in drinking water (44 mg/L) for 4 weeks individually or concurrently with intramuscular VD3 (600 IU/kg; three times per week) and/or oral Ca (100 mg/kg; five times per week). The PC group showed abnormal hepatic biochemical parameters and increase in cellular cytochrome C, caspase-9, and caspase-3 alongside the apoptotic/necrotic cell numbers by terminal deoxynucleotidyl transferase dUTP nick end labeling technique. The PC hepatic tissue also had substantially elevated pro-oxidants (malondialdehyde [MDA]/H2 O2 /protein carbonyls) and inflammatory cytokines (interleukin 1β [IL-1β]/IL-6/IL17A/tumor necrosis factor-α), whereas the anti-inflammatory (IL-10/IL-22) and antioxidants (glutathione [GSH]/GPx/catalase enzyme [CAT]) markers declined. Hypovitaminosis D, low hepatic tissue Ca, aberrant hepatic expression of VD-metabolizing enzymes (Cyp2R1/Cyp27a1/cyp24a1), receptor and binding protein alongside Ca-membrane (CaV 1.1/CaV 3.1), and store-operated (RyR1/ITPR1) channels, and Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B) were observed in the PC group. Both monotherapies decreased serum, but not tissue Cd levels, restored the targeted hepatic VD/Ca molecules' expression. However, these effects were more prominent in the VD group than the Ca group. The VDC group, contrariwise, disclosed the greatest alleviations on serum and tissue Cd, inflammatory and oxidative markers, the VD/Ca molecules and tissue integrity. In conclusion, this report is the first to reveal boosted protection for cosupplementing VD and Ca against Cd hepatotoxicity that could be due to enhanced antioxidative, anti-inflammatory, and modulation of the Ca pathways.
Collapse
Affiliation(s)
- Mohamed El-Boshy
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Veterinary Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, Egypt
| | - Bassem Refaat
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Faculty of Medicine, Department of Biochemistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Faculty of Medicine, Department of Anatomy, Alexandria University, Alexandria, Egypt
| | - Jawwad Ahmad
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amani A Mahbub
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Faculty of Applied Medical Sciences, Department of Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Faculty of Medicine, Department of Pathology, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
311
|
Üstündağ ÜV, Emekli-Alturfan E. Wnt pathway: A mechanism worth considering in endocrine disrupting chemical action. Toxicol Ind Health 2020; 36:41-53. [DOI: 10.1177/0748233719898989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous substances that can alter the development and functioning of the endocrine system. The Wnt signaling pathway is an evolutionarily conserved pathway consisting of proteins that transmit cell-to-cell receptors through cell surface receptors, regulating important aspects of cell migration, polarity, neural formation, and organogenesis, which determines the fate of the cell during embryonic development. Although the effects of EDCs have been studied in terms of many molecular mechanisms; because of its critical role in embryogenesis, the Wnt pathway is of special interest in EDC exposure. This review provides information about the effects of EDC exposure on the Wnt/β-catenin pathway focusing on studies on bisphenol A, di-(2-ethylhexyl) phthalate, diethylstilbestrol, cadmium, and 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Collapse
Affiliation(s)
- Ünsal Veli Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
312
|
Sahu RK, Saha N, Das L, Sahu PK, Sariki SK, Tomar RS. SWI/SNF chromatin remodelling complex contributes to clearance of cytoplasmic protein aggregates and regulates unfolded protein response in Saccharomyces cerevisiae. FEBS J 2020; 287:3024-3041. [PMID: 31846549 DOI: 10.1111/febs.15180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/09/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Chromatin remodelling complexes are multi-subunit assemblies, each containing a catalytic ATPase and translocase that is capable of mobilizing nucleosomes to alter the chromatin structure. SWI/SNF remodelling complexes with higher DNA translocation efficiency evict histones or slide the nucleosomes away from each other making DNA accessible for transcription and repair machinery. Chromatin remodelling at the promoter of stress-responsive genes by SWI/SNF becomes necessary during the heat and proteotoxic stress. While the involvement of SWI/SNF in transcription of stress-responsive genes has been studied extensively, the regulation of proteostasis by SWI/SNF is not well understood. This study demonstrates critical functions of SWI/SNF in response to cadmium-induced proteotoxic stress. Deletion of either ATPase-translocase subunit of SWI/SNF complex (Swi2/Snf2) or a regulatory subunit Swi3 abrogates the clearance of cadmium-induced protein aggregates. Our results suggest that Snf2 and Swi3 regulate the protein folding in endoplasmic reticulum (ER) that reduces the chances of forming unfolded protein aggregates under the proteotoxic stress of cadmium. The Ire1-mediated unfolded protein response (UPR) maintains ER homeostasis by upregulating the expression of chaperones and ER-associated degradation (ERAD) components. We found that Snf2 maintains normal oxidative environment essential for Ire1 activity. Deletion of SNF2 reduced the Ire1 activity and UPR, indicating involvement of Snf2 in Ire1-mediated ER proteostasis. Together, these findings suggest that SWI/SNF complex regulates ER homeostasis and protein folding crucial for tolerating proteotoxic stress.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Laxmidhar Das
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Santhosh Kumar Sariki
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
313
|
ALBASHER GADAH, ALBRAHIM TARFA, ALJARBA NADA, ALHARBI RAEDAHI, ALSULTAN NOUF, ALSAIARI JAWAHER, RIZWANA HUMAIRA. Involvement of redox status and the nuclear-related factor 2 in protecting against cadmium-induced renal injury with Sana Makki (Cassia senna L.) pre-treatment in male rats. AN ACAD BRAS CIENC 2020; 92:e20191237. [PMID: 32638872 DOI: 10.1590/0001-3765202020191237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - TARFA ALBRAHIM
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - NADA ALJARBA
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | | | | |
Collapse
|
314
|
Sun Y, Zhang J, Yin H, Yin J. MicroRNA-mediated suppression of P-glycoprotein by quantum dots in lung cancer cells. J Appl Toxicol 2019; 40:525-534. [PMID: 31883144 DOI: 10.1002/jat.3924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
The interactions between adenosine triphosphate-binding cassette (ABC) transporters and nano-sized materials are attracting increasing attention, due to their great potential in overcoming the multidrug resistance (MDR) phenomena in cancer treatment. However, the inner mechanisms involved in the interactions are largely unknown. In this study, two commercial quantum dots (QDs), CdSe/ZnS-MPA and CdSe/ZnS-GSH, were tested for their interactions with P-glycoprotein (P-gp), as well as the relating mechanisms in lung cancer (A549) cells. Both QDs significantly suppressed the gene and protein expressions of P-gp in A549 cells. To explain this, the gene expressions of nine relating microRNAs (miRNAs) were evaluated. The results indicated a shared up-regulation of miR-34b and miR-185 by both QDs. Furthermore, mimics and inhibitors of miR-34b and miR-185 significantly enhanced and suppressed the gene and protein expressions of P-gp, respectively, confirming the modulatory function of these two miRNAs on P-gp. Interestingly, expressions of both miRNAs were suppressed during treatment with Cd2+ and doxorubicin, which induced the expression of P-gp, indicating the universality of these miRNAs-related mechanisms. Thus, as miR-34b and miR-185 participated in the suppression of P-gp functions in A549 cells they could be interesting targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yimin Sun
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jie Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Huancai Yin
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jian Yin
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Shandong Guo Ke Medical Technology Development Co., Ltd, Jinan, China
| |
Collapse
|
315
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
316
|
Najafi M, Hooshangi Shayesteh MR, Mortezaee K, Farhood B, Haghi-Aminjan H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci 2019; 241:117173. [PMID: 31843530 DOI: 10.1016/j.lfs.2019.117173] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
317
|
Hossein-Khannazer N, Azizi G, Eslami S, Alhassan Mohammed H, Fayyaz F, Hosseinzadeh R, Usman AB, Kamali AN, Mohammadi H, Jadidi-Niaragh F, Dehghanifard E, Noorisepehr M. The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol 2019; 42:1-8. [PMID: 31793820 DOI: 10.1080/08923973.2019.1697284] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation is a physiological process essential for maintaining homeostatic mechanisms in human, but however, exaggerated inflammatory responses are closely related to many chronic diseases. Cadmium (Cd) is a heavy metal with high toxicity when present in food, water and air has the potential of eliciting inflammatory reactions, with a major health risk to human. This review aimed to elucidate on the major routes of Cd exposure, the main organs affected by the exposure, the degree of toxicity as well as the roles of the toxic effects on the immune system which results to inflammatory responses. Immune modulation by Cd may cause serious adverse health effects in humans. Various studies have highlighted the ability of Cd as an environmental pollutant involved in the modulation of the innate, adaptive and mucosal immune responses in relations to the release of chemokine, gene expression, and susceptibility to microbial infections.
Collapse
Affiliation(s)
- Nikoo Hossein-Khannazer
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehan, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hussaini Alhassan Mohammed
- Department of Immunology, Faculty of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Farimah Fayyaz
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Ramin Hosseinzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abubakar B Usman
- Department of Immunology, Faculty of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Ali N Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.,CinnaGen Research and Production Co., Alborz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Emad Dehghanifard
- Department of Environmental Health Engineering, School of Public Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Department of Environmental Health Engineering, School of Public Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
318
|
Apiamu A, Asagba SO, Tonukari NJ. Role of Anthocleista vogelii in serum antioxidant defence system in cadmium-induced oxidative stress in Wistar rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cadmium (Cd) toxicity, which runs across the food chain, is chiefly regulated by in vivo antioxidant defence system or through antioxidant supplementation of biological systems predisposed to this environmental stressor. The present study was designed to examine the role of Anthocleista vogelii leaves in Cd-induced oxidative stress in the serum of Wistar rats through the application of response surface methodology (RSM) and biomonitoring of selective responses: malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione-s-transferase (GST) and peroxidase (POD) activities, respectively. The cold macerated plant leaves were subjected to fractionation process using methanol-hexane-chloroform (3:2:1 v/v) solvent system such that n-hexane fraction with ample antioxidant levels in terms of total phenolic content (TPC) and total flavonoid content (TFC) among others at p < 0.05 was selected for the study. The study employed central composite design (CCD) with twenty experimental “runs” of male Wistar rats for twenty-eight days, following a week of acclimatization, where n-hexane fraction of A. vogelii (NFAV), cadmium chloride (CdCl2) and body weights of rats were considered input factors in the study.
Results
The study generated five quadratic models, which differed significantly at p < 0.05 for MDA levels as well as CAT, SOD, GST and POD activities in the sera of Wistar rats. The study revealed that exposure to Cd toxicity caused a marked increase (p < 0.05) in serum MDA levels, but a significant inhibition (p < 0.05) of serum SOD, CAT, GST and POD activities. However, Cd interaction with NFAV showed marked amelioration of Cd-induced oxidative stress, which was confirmed by significant decrease in serum MDA levels, but significant increase in serum SOD, CAT, GST and POD activities at p < 0.05 via the response surface plots. The study also confirmed the reliability and adequacy of the models for accurate prediction of the responses since R-squared (R2) values obtained were greater than 90%.
Conclusion
It was inferred from the present study that the adequacy of the models validated the potency of A. vogelii leaves graphically in the amelioration of Cd-induced oxidative stress in the serum of Wistar rats. Hence, the plant was considered a rich source of bioactive compounds with significant antioxidant properties.
Collapse
|
319
|
Barn P, Gombojav E, Ochir C, Boldbaatar B, Beejin B, Naidan G, Galsuren J, Legtseg B, Byambaa T, Hutcheon JA, Janes C, Janssen PA, Lanphear BP, McCandless LC, Takaro TK, Venners SA, Webster GM, Palmer CD, Parsons PJ, Allen RW. Coal smoke, gestational cadmium exposure, and fetal growth. ENVIRONMENTAL RESEARCH 2019; 179:108830. [PMID: 31678728 DOI: 10.1016/j.envres.2019.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gestational cadmium exposure may impair fetal growth. Coal smoke has largely been unexplored as a source of cadmium exposure. We investigated the relationship between gestational cadmium exposure and fetal growth, and assessed coal smoke as a potential source of airborne cadmium, among non-smoking pregnant women in Ulaanbaatar, Mongolia, where coal combustion in home heating stoves is a major source of outdoor and indoor air pollution. METHODS This observational study was nested within the Ulaanbaatar Gestation and Air Pollution Research (UGAAR) study, a randomized controlled trial of portable high efficiency particulate air (HEPA) filter air cleaner use during pregnancy, fetal growth, and early childhood development. We measured third trimester blood cadmium concentrations in 374 out of 465 participants who had a live birth. We used multiple linear and logistic regression to assess the relationships between log2-transformed maternal blood cadmium concentrations and birth weight, length, head circumference, ponderal index, low birth weight, small for gestational age, and preterm birth in crude and adjusted models. We also evaluated the relationships between log2-transformed blood cadmium concentrations and the density of coal-burning stoves within 5000 m of each participant's apartment as a proxy of coal smoke emissions from home heating stoves. RESULTS The median (25th,75th percentile) blood cadmium concentration was 0.20 (0.15, 0.29) μg/L. A doubling of blood cadmium was associated with a 95 g (95% CI: 34, 155 g) reduction in birth weight in adjusted models. An interquartile range increase in coal stove density (from 3.4 to 4.9 gers/hectare) surrounding participants' apartments was associated with a 12.2% (95% CI: 0.3, 25.6%) increase in blood cadmium concentrations. CONCLUSIONS Gestational cadmium exposure was associated with reduced birth weight. In settings where coal is a widely used fuel, cadmium may play a role in the putative association between air pollution and impaired fetal growth.
Collapse
Affiliation(s)
- Prabjit Barn
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Chimedsuren Ochir
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Bolor Beejin
- Ministry of Health of Mongolia, Olympic Street-2, Government Building VIII, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Gerel Naidan
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Bayarkhuu Legtseg
- Sukhbaatar District Health Center, 11 Horoo, Tsagdaagiin Gudamj, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Tsogtbaatar Byambaa
- Ministry of Health of Mongolia, Olympic Street-2, Government Building VIII, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Jennifer A Hutcheon
- Faculty of Medicine, Department of Obstetrics & Gynaecology, University of British Columbia, 4500 Oak Street, Vancouver, V6H 2N1, Canada
| | - Craig Janes
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
| | - Patricia A Janssen
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, V6T 1Z3, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Lawrence C McCandless
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Glenys M Webster
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Christopher D Palmer
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA
| | - Patrick J Parsons
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA
| | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| |
Collapse
|
320
|
Banik S, Akter M, Corpus Bondad SE, Saito T, Hosokawa T, Kurasaki M. Carvacrol inhibits cadmium toxicity through combating against caspase dependent/independent apoptosis in PC12 cells. Food Chem Toxicol 2019; 134:110835. [DOI: 10.1016/j.fct.2019.110835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
|
321
|
Kapahi M, Sachdeva S. Bioremediation Options for Heavy Metal Pollution. J Health Pollut 2019; 9:191203. [PMID: 31893164 PMCID: PMC6905138 DOI: 10.5696/2156-9614-9.24.191203] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. OBJECTIVES The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. METHODS Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. DISCUSSION Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. CONCLUSIONS Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Meena Kapahi
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
- Department of Chemistry, Manav Rachna University, Faridabad, India
| | - Sarita Sachdeva
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| |
Collapse
|
322
|
Seong JB, Bae YC, Lee HS, Huh JW, Lee SR, Lee HJ, Lee DS. Increasing ERK phosphorylation by inhibition of p38 activity protects against cadmium-induced apoptotic cell death through ERK/Drp1/p38 signaling axis in spermatocyte-derived GC-2spd cells. Toxicol Appl Pharmacol 2019; 384:114797. [PMID: 31676320 DOI: 10.1016/j.taap.2019.114797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/30/2023]
Abstract
Many studies report that cadmium chloride (CdCl2)-induces oxidative stress is associated with male reproductive damage in the testes. CdCl2 also induces mitochondrial fission by increasing dynamin-related protein 1 (Drp1) expression as well as the mitochondria-dependent apoptosis pathway by extracellular signal-regulated kinase (ERK) activation. However, it remains unclear whether mechanisms linked to the mitochondrial damage signal via CdCl2-induced mitogen-activated protein kinases (MAPK) cause damage to spermatocytes. In this study, increased intracellular and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) depolarization, and mitochondrial fragmentation and swelling were observed at 5 μM of CdCl2 exposure, resulting in increased apoptotic cell death. Moreover, CdCl2-induced cell death is closely associated with the ERK/Drp1/p38 signaling axis. Interestingly, SB203580, a p38 inhibitor, effectively prevented CdCl2-induced apoptotic cell death by reducing ∆Ψm depolarization and intracellular and mitochondrial ROS levels. Knockdown of Drp1 expression diminished CdCl2-induced mitochondrial deformation and ROS generation and protected GC-2spd cells from apoptotic cell death. In addition, electron microscopy showed that p38 inhibition reduced CdCl2-induced mitochondrial interior damage more effectively than N-acetyl-L-cysteine (NAC), an ROS scavenger; ERK inhibition; or Drp1 knockdown. Therefore, these results demonstrate that inhibition of p38 activity prevents CdCl2-induced apoptotic GC-2spd cell death by reducing depolarization of mitochondrial membrane potential and mitochondrial ROS levels via ERK phosphorylation in a signal pathway different from the CdCl2-induced ERK/Drp1/p38 axis and suggest a therapeutic strategy for CdCl2-induced male infertility.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hong Jun Lee
- College of Medicine, Chungbuk National University, Chungbuk, Republic of Korea; Department of Radiology, Chungbuk National University Hospital, Chungbuk, Republic of Korea; Research Institute, e-biogen Inc., Seoul, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
323
|
Branca JJV, Maresca M, Morucci G, Mello T, Becatti M, Pazzagli L, Colzi I, Gonnelli C, Carrino D, Paternostro F, Nicoletti C, Ghelardini C, Gulisano M, Di Cesare Mannelli L, Pacini A. Effects of Cadmium on ZO-1 Tight Junction Integrity of the Blood Brain Barrier. Int J Mol Sci 2019; 20:E6010. [PMID: 31795317 PMCID: PMC6928912 DOI: 10.3390/ijms20236010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cadmium (Cd) is a highly toxic environmental pollutant released from the smelting and refining of metals and cigarette smoking. Oral exposure to cadmium may result in adverse effects on a number of tissues, including the central nervous system (CNS). In fact, its toxicity has been related to neurological disorders, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Under normal conditions, Cd barely reaches the brain in adults because of the presence of the blood-brain barrier (BBB); however, it has been demonstrated that Cd-dependent BBB alteration contributes to pathogenesis of neurodegeneration. However, the mechanism underlying Cd-dependent BBB alteration remain obscure. Here, we investigated the signaling pathway of Cd-induced tight junction (TJ), F-actin, and vimentin protein disassembly in a rat brain endothelial cell line (RBE4). RBE4 cells treated with 10 μM cadmium chloride (CdCl2) showed a dose- and time-dependent significant increase in reactive oxygen species (ROS) production. This phenomenon was coincident with the alteration of the TJ zonula occludens-1 (ZO-1), F-actin, and vimentin proteins. The Cd-dependent ROS increase elicited the upregulation of GRP78 expression levels, a chaperone involved in endoplasmic reticulum (ER) stress that induces caspase-3 activation. Further signal profiling by the pannexin-1 (PANX1) specific inhibitor 10Panx revealed a PANX1-independent increase in ATP spillage in Cd-treated endothelial cells. Our results point out that a ROS-dependent ER stress-mediated signaling pathway involving caspase-3 activation and ATP release is behind the BBB morphological alterations induced by Cd.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Gabriele Morucci
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Luigia Pazzagli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (T.M.); (M.B.); (L.P.)
| | - Ilaria Colzi
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Cristina Gonnelli
- Department of Biology, Plant Ecology and Physiology Laboratory, University of Florence, 50121 Florence, Italy; (I.C.); (C.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (M.M.); (C.G.); (L.D.C.M.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, 50134 Florence, Italy; (G.M.); (D.C.); (F.P.); (C.N.); (M.G.)
| |
Collapse
|
324
|
Al-Ghafari A, Elmorsy E, Fikry E, Alrowaili M, Carter WG. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS One 2019; 14:e0225341. [PMID: 31756223 PMCID: PMC6874340 DOI: 10.1371/journal.pone.0225341] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
The heavy metals (HMs) lead and cadmium are persistent environmental pollutants capable of inducing ill-health in exposed individuals. One of the primary sites of accumulation and potential damage from HMs is bone, and we therefore examined the acute effects of lead and cadmium on human bone osteoblasts in vitro over a concentration range of 0.1 μM to 1mM, and for 3, 6, 12, 24, and 48 hour exposures. Incubation of osteoblasts with either lead or cadmium reduced cell viability in a concentrations and exposure durations dependent manner, as measured using MTT and LDH assays. Cytotoxicity was significant from 0.1 μM concentrations after 48 hour exposures. Both HMs damaged cellular bioenergetics with reductions of ATP production, mitochondrial complex activities, and aerobic respiration. There was a concomitant elevation of reactive oxygen species, with induction of redox stress measured as increased lipid peroxidation, and depleted cellular redox defense systems via reduced superoxide dismutase and catalase activity and cellular glutathione levels. Both HMs induced nuclear activation of Nrf2, presumably to increase transcription of antioxidant responsive genes to combat oxidative stress. Incubation of osteoblasts with HMs also compromised the secretion of procollagen type 1, osteocalcin, and alkaline phosphatase. Pre-incubation of osteoblasts with reduced glutathione prior to challenge with HMs lessened the cytotoxicity of the HMs, indicative that antioxidants may be a beneficial treatment adjunct in cases of acute lead or cadmium poisoning.
Collapse
Affiliation(s)
- Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar; Saudi Arabia
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Emad Fikry
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Majed Alrowaili
- Department of Surgery, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Wayne G. Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| |
Collapse
|
325
|
Markiewicz-Górka I, Pawlas K, Jaremków A, Januszewska L, Pawłowski P, Pawlas N. Alleviating Effect of α-Lipoic Acid and Magnesium on Cadmium-Induced Inflammatory Processes, Oxidative Stress and Bone Metabolism Disorders in Wistar Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4483. [PMID: 31739465 PMCID: PMC6888481 DOI: 10.3390/ijerph16224483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Cadmium exposure contributes to internal organ dysfunction and the development of chronic diseases. The aim of the study was to assess the alleviating effect of α-lipoic acid and/or magnesium on cadmium-induced oxidative stress and disorders in bone metabolism, kidney and liver function, and hematological and biochemical parameters changes. Male rats were exposed to cadmium (30 mg Cd/kg of feed) for three months. Some animals exposed to Cd were supplemented with magnesium (150 mg Mg/kg of feed) and/or with α-lipoic acid (100 mg/kg body weight, four times a week). Cd intake inhibited body weight gain and lowered hemoglobin concentration, whereas it increased the activities of liver enzymes, as well as the level of oxidative stress, CTX-1 (C-terminal telopeptide of type I collagen, bone resorption marker), and CRP (C-reactive protein, marker of inflammation); it decreased vitamin D3, GSH (reduced glutathione), and the serum urea nitrogen/creatinine index. Mg and/or α-lipoic acid supplementation increased the antioxidant potential, and partially normalized the studied biochemical parameters. The obtained results show that both magnesium and α-lipoic acid decrease oxidative stress and the level of inflammatory marker, as well as normalize bone metabolism and liver and kidney function. Combined intake of α-lipoic acid and magnesium results in reinforcement of the protective effect; especially, it increases antioxidant defense.
Collapse
Affiliation(s)
- Iwona Markiewicz-Górka
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, Wroclaw, 50-345, Poland; (K.P.); (A.J.); (L.J.)
| | - Krystyna Pawlas
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, Wroclaw, 50-345, Poland; (K.P.); (A.J.); (L.J.)
| | - Aleksandra Jaremków
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, Wroclaw, 50-345, Poland; (K.P.); (A.J.); (L.J.)
| | - Lidia Januszewska
- Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, Wroclaw, 50-345, Poland; (K.P.); (A.J.); (L.J.)
| | - Paweł Pawłowski
- Specialist Hospital dr Alfred Sokołowski, Sokołowskiego 4, Wałbrzych 58-309, Poland;
| | - Natalia Pawlas
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38, Zabrze 41-808, Poland;
| |
Collapse
|
326
|
Wei H, Li C, Xin H, Li S, Bi Y, Li X, Li J, Zhang R, Bao J. Keel Fracture Causes Stress and Inflammatory Responses and Inhibits the Expression of the Orexin System in Laying Hens. Animals (Basel) 2019; 9:ani9100804. [PMID: 31618855 PMCID: PMC6826903 DOI: 10.3390/ani9100804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/06/2019] [Accepted: 10/12/2019] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Keel fracture is an important health and welfare problem in laying hens in all production systems. Previous studies have shown that keel fracture can influence hens’ behavior, reduce production performances, and cause pain in laying hens. Additionally, keel fracture also affects their feed intake. However, it is not clear whether the keel fracture induces stress, inflammation, or influences the orexin systems in laying hens. Orexin, also called hypocretin, is associated with the regulation of feed intake, energy homeostasis, and metabolism in poultry animals. Therefore, this study aimed to investigate the effects of keel fracture on stress and inflammatory responses and the activity of the orexin system of laying hens. Our results indicate that keel fracture not only induced stress and inflammatory responses, but inhibited the activity of the orexin system in laying hens. This study provides insights into the adverse effects of keel fracture on laying hens. Abstract Keel fracture has negative effects on the health and welfare of laying hens. We investigated effects of keel fracture on stress, inflammation, and the orexin system in laying hens. Ninety 17-week-old Lohmann white laying hens were palpated and euthanatized at 42 weeks old, and marked as normal keel (NK)/fractured keel (FK) from absence/presence of keel fracture. Serum, brain, liver, and abdominal-muscle samples were collected from 10 NK and 10 FK hens to determine the stress and inflammatory responses and the activity of orexin systems by corticosterone content, expression of heat shock proteins (TNF-α 60, 70, 90), and inflammatory factors (tumor necrosis factor (TNF)-α, nuclear factor-kappa Bp65 (NF-κBp65), inducible nitric oxide synthase (iNOS), prostaglandin E synthases (PTGEs), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β)), orexin (ORX), and orexin-receptor 1/2 (ORXR1/ORXR2). The FK hens had higher serum corticosterone content, Hsps, and inflammatory factor mRNA expression levels than NK hens, although levels of iNOS in the liver and TNF-α in the muscle were similar. Protein levels of Hsp70 and Hsp90 in the brain and liver, iNOS and COX-2 in the liver, NF-κBp65, iNOS, and COX-2 in the brain of FK hens were increased compared with NK hens. Furthermore, FK hens had lower mRNA expression of ORX, ORXR1, and ORXR2 than NK hens. Therefore, keel fracture causes stress and inflammation, and inhibits the expression of the orexin system in laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Chun Li
- College of life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Hongwei Xin
- Institute of Agriculture, The University of Tennessee, Knoxville, TN 37996-4506, USA.
| | - Shuang Li
- College of life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Xiang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Jianhong Li
- College of life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
327
|
Huang H, Zhao Y, Xu Z, Zhang W, Jiang K. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:18-25. [PMID: 31154116 DOI: 10.1016/j.ecoenv.2019.05.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 05/17/2023]
Abstract
Effective phytoremediation of Mn contaminated soil requires the selection of a species with good manganese tolerance. Broussonetia papyrifera is an important economic plant and pioneer species, it could be well adapted to drought and saline-alkali environment. In order to understand the effect of Mn stress on B. papyrifera, the effects of different concentrations of Mn (0-50 mmol/L) stress on the growth, morphology, Mn tolerance and physiological indexes of the plant were explored. The results showed that the biomass, surface area, length, root volume, tips, forks, and crossings of B. papyrifera reached the maximum at the Mn concentration of 1 mmol/L. Mn content in the tissue and TF in plants increased with the increase of concentration, while the BCF increased first and then decreased, and the maximum BCF was 0.154 at 10 mmol/L. The accumulation of Mn lead to cell membrane lipid peroxidation, which increased toxic substances in plants, resulting in the increase of MDA and PRO, and affected the synthesis of chlorophyll. However, B. papyrifera could effectively alleviate oxidative stress by increasing the activities of antioxidant enzymes (SOD, POD, CAT), protein and soluble sugar. The results suggested that B. papyrifera had a good oxidative stress mechanism to Mn stress and could be used as candidates for remediation of pollution in mining areas.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China; Hunan Urban and Rural Ecological Planning and Restoration Engineering Research Center, Hunan City University, Yiyang, 413000, Hunan, PR China.
| | - Wan Zhang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| | - Kangkang Jiang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, PR China
| |
Collapse
|
328
|
Abyar S, Khandar AA, Salehi R, Abolfazl Hosseini-Yazdi S, Alizadeh E, Mahkam M, Jamalpoor A, White JM, Shojaei M, Aizpurua-Olaizola O, Masereeuw R, Janssen MJ. In vitro nephrotoxicity and anticancer potency of newly synthesized cadmium complexes. Sci Rep 2019; 9:14686. [PMID: 31604983 PMCID: PMC6789105 DOI: 10.1038/s41598-019-51109-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Complexes based on heavy metals have great potential for the treatment of a wide variety of cancers but their use is often limited due to toxic side effects. Here we describe the synthesis of two new cadmium complexes using N(4)-phenyl-2-formylpyridine thiosemicarbazone (L1) and 5-aminotetrazole (L2) as organic ligands and the evaluation of their anti-cancer and nephrotoxic potential in vitro. The complexes were characterized by Single-crystal X-ray data diffraction, 1HNMR, FT-IR, LC/MS spectrometry and CHN elemental analysis. Next, cytotoxicity of these cadmium complexes was evaluated in several cancer cell lines, including MCF-7 (breast), Caco-2 (colorectal) and cisplatin-resistant A549 (lung) cancer cell lines, as well as in conditionally-immortalized renal proximal tubule epithelial cell lines for evaluating nephrotoxicity compared to cisplatin. We found that both compounds were toxic to the cancer cell lines in a cell-cycle dependent manner and induced caspase-mediated apoptosis and caspase-independent cell death. Nephrotoxicity of these compounds was compared to cisplatin, a known nephrotoxic drug, in vitro. Our results demonstrate that compound {2}, but not compound {1}, exerts increased cytotoxicity in MCF-7 and A549 cell lines, combined with reduced nephrotoxic potential compared to cisplatin. Together these data make compound {2} a likely candidate for further development in cancer treatment.
Collapse
Affiliation(s)
- Selda Abyar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166614766, Iran
- Division of pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Ali Akbar Khandar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166614766, Iran.
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran.
| | | | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mehrdad Mahkam
- Chemistry Department, Faculty of Science, Azerbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Amer Jamalpoor
- Division of pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Jonathan M White
- School of Chemistry and BIO-21 Institute, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Motahhareh Shojaei
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166614766, Iran
| | - O Aizpurua-Olaizola
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, Netherlands
| | - Rosalinde Masereeuw
- Division of pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Manoe J Janssen
- Division of pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands.
| |
Collapse
|
329
|
Knani L, Bartolini D, Kechiche S, Tortoioli C, Murdolo G, Moretti M, Messaoudi I, Reiter RJ, Galli F. Melatonin prevents cadmium-induced bone damage: First evidence on an improved osteogenic/adipogenic differentiation balance of mesenchymal stem cells as underlying mechanism. J Pineal Res 2019; 67:e12597. [PMID: 31340072 DOI: 10.1111/jpi.12597] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
Abstract
Melatonin (MLT) plays a role in preserving bone health, a function that may depend on homeostatic effects on both mature osteoblasts and mesenchymal stem cells (MSCs) of the bone tissue. In this study, these functions of MLT have been investigated in rat bone (femur) and in human adipose MSC (hMSC) during chronic exposure to low-grade cadmium (Cd) toxicity, a serious public health concern. The in vivo findings demonstrate that MLT protects against Cd-induced bone metabolism disruption and accumulation of bone marrow adipocytes, a cue of impaired osteogenic potential of skeletal MSC niches. This latter symptom was recapitulated in hMSCs in which Cd toxicity stimulated adipogenic differentiation. MLT was found to rescue, at least in part, the osteogenic differentiation properties of these cells. This study reports on a new bone cytoprotection function of MLT pertinent to Cd toxicity and its interfering effect on skeletal MSC differentiation properties that is worth investigating for its possible impact on human bone pathophysiology.
Collapse
Affiliation(s)
- Latifa Knani
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Safa Kechiche
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Cristina Tortoioli
- Section of Internal Medicine, Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Giuseppe Murdolo
- Section of Internal Medicine, Endocrine and Metabolic Sciences, University of Perugia, Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-ressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisie
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
330
|
Ibiwoye M, Matthews Q, Travers K, Foster J. Association of Acute, High-dose Cadmium Exposure with Alterations in Vascular Endothelial Barrier Antigen Expression and Astrocyte Morphology in the Developing Rat Central Nervous System. J Comp Pathol 2019; 172:37-47. [DOI: 10.1016/j.jcpa.2019.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/25/2019] [Indexed: 01/17/2023]
|
331
|
Tao C, Zhao X, Gao K, Ji W, Zhang Y. Thoracoabdominal respiratory disorder induced by cadmium aerosol and analyzed with a new machine vision model in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:668-680. [PMID: 31150887 DOI: 10.1016/j.scitotenv.2019.05.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Inhalable environmental pollutants induce pulmonary malfunction, which alters thoracoabdominal respiratory conditions. Traditional methods of recording pressure differences or existing machine vision analyses for detecting respiratory abnormalities are not suitable for synchronous thoracic and abdominal respiratory detections. The present study provides a new method that combines a model of thoracoabdominal localization and distribution based on respiratory physiological characteristics and a machine vision analysis on respiratory conditions in mice exposed to aqueous aerosol containing cadmium with classical symptoms. Thoracoabdominal respirations of mice were similar to male humans based on thoracic and abdominal composite respiration and the primarily presented abdominal respiration. Under environmental inhalable cadmium doses (1, 3, 5 mM CdCl2 in solution respectively atomized to be 112.41, 337.23, 562.05 μg/g Cd/Aerosol), the pathological thoracoabdominal respirations of mice showed that abdominal respiration contributed more to respiratory compensation and presented greater adaptive adjustments and more obvious fluctuations during lung injury than thoracic respiration, which suggests that toxic aerosol from a high-risk work environment quickly induces discernible respiratory clinical manifestations in occupational groups, as a warning for health, and abdominal obesity is unfavorable for male respiratory compensation. The respiratory abnormality shown in machine vision analysis was verified in pulmonary structural changes and hypoxia stress. Conclusively, the present method may be used to test the effects of aerosols on respiratory state and provides new prospects for toxicity determinations and risk evaluations of aerosols in the respiratory system in vivo.
Collapse
Affiliation(s)
- Chen Tao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuejing Zhao
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
| | - Ke Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weihong Ji
- Institute of Natural and Mathematical Sciences, Massey University, Albany 0745, Auckland, New Zealand
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
332
|
Chen M, Wu P, Huang Z, Liu J, Li Y, Zhu N, Dang Z, Bi Y. Environmental application of MgMn-layered double oxide for simultaneous efficient removal of tetracycline and Cd pollution: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:164-173. [PMID: 31176978 DOI: 10.1016/j.jenvman.2019.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
The MgMn-layered double oxide (MgMn-LDO), which was fabricated by calcining MgMn-layered double hydroxide (MgMn-LDH), was used to remove tetracycline (TC) and cadmium (Cd) pollution. In MgMn-LDO activated peroxymonosulfate (PMS) system, 97.1% of TC was degraded within 20 min. The high oxidizing sites exposed on MgMn-LDO surface played a main role on activating PMS to generate OH, SO4-, O2- and 1O2 (the key species) for TC degradation. MgMn-LDO could keep excellent degradation performance in a wide range of pH (from 4 to 10). The degradation degree of TC in distilled water is basically the same as that in Pearl River water, and even above 80% of TC could be degraded in human urine. The good reusability and high structure stability of MgMn-LDO were further verified. Meanwhile, Cd immobilization on MgMn-LDO reached equilibrium within 10 min, and its maximum fixed quantity was 8.234 mmol g-1 (922.208 mg g-1). The outstanding Cd fixed ability resulted from the formation of CdCO3 and Cd (OH)2. In combined system, the existence of TC promoted the immobilization of Cd on MgMn-LDO. Low concentration of Cd (0.0125 mM) had synergism effect on TC degradation, while high concentration of Cd (0.025 and 0.05 mM) had inhibiting action. Finally, a column filled with MgMn-LDO was designed for repairing TC and Cd pollution hierarchically. This study provided an effective strategy to clean up the organic-heavy metal combined pollution.
Collapse
Affiliation(s)
- Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Zhiyan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Junqin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Yihao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yinzhi Bi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
333
|
Ke Y, Yu K, Zeng W, Lian G. Protective roles of Pyracantha fortuneana extract on acute renal toxicity induced by cadmium chloride in rats. Acta Cir Bras 2019; 34:e201900706. [PMID: 31531540 PMCID: PMC6746561 DOI: 10.1590/s0102-865020190070000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate the protective roles of pyracantha fortune fruit extract (PFE) on acute renal toxicity induced by cadmium chloride (CdCl2) in rats. Methods: Rats were pretreated with PFE and consecutively injected with CdCl2 (6.5 mg/kg) for 5 days. Results: The concentration of Cd, kidney weight, malondialdehyde (MDA), and nitric oxide (NO) production were remarkably increased in CdCl2 group as well as the levels of plasma uric acid, urea, and creatinine (P < 0.001). However, the body weight and glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione peroxidase (GR) levels were markedly reduced by CdCl2 treatment (P < 0.001). Histological manifestations of renal tissue showed severely adverse changes. Moreover, CdCl2 treatment significantly decreased the B-cell lymphoma-2 (Bcl-2) expression while increased the Bcl-2-Associated X Protein (Bax), tumor necrosis factor-α (TNF-α) expression (P < 0.001). Additionally, the expression of Nrf2/Keap 1 related proteins Keap-1 gained a significant increase (P < 0.001), whereas the Nrf2, HO-1, γ-GCS, GSH-Px and NQO1 expression decreased by CdCl2 treatment (P < 0.05). These rats were pretreated with PFE to improve the changes caused by CdCl2 treatment. Conclusion: PFE could protect the kidney against acute renal toxicity induced by CdCl2.
Collapse
Affiliation(s)
- Yixin Ke
- Graduate student, Department of Health Inspection and Quarantine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China. Conception and design of the study, acquisition of data, technical procedures, manuscript preparation and writing
| | - Kaihang Yu
- Graduate student, Department of Health Inspection and Quarantine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China. Technical procedures, acquisition of data
| | - Weiliang Zeng
- Graduate student, Department of Health Inspection and Quarantine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China. Statistical analysis, interpretation of data
| | - Guojun Lian
- Associate Professor, Department of Health Inspection and Quarantine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China. Conception and design of the study, acquisition of data, technical procedures, manuscript preparation and writing, final approval
| |
Collapse
|
334
|
Tan HW, Liang ZL, Yao Y, Wu DD, Mo HY, Gu J, Chiu JF, Xu YM, Lau ATY. Lasting DNA Damage and Aberrant DNA Repair Gene Expression Profile Are Associated with Post-Chronic Cadmium Exposure in Human Bronchial Epithelial Cells. Cells 2019; 8:cells8080842. [PMID: 31390735 PMCID: PMC6721754 DOI: 10.3390/cells8080842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a widespread environmental pollutant and carcinogen. Although the exact mechanisms of Cd-induced carcinogenesis remain unclear, previous acute/chronic Cd exposure studies have shown that Cd exerts its cytotoxic and carcinogenic effects through multiple mechanisms, including interference with the DNA repair system. However, the effects of post-chronic Cd exposure remain unknown. Here, we establish a unique post-chronic Cd-exposed human lung cell model (the "CR0" cells) and investigate the effects of post-chronic Cd exposure on the DNA repair system. We found that the CR0 cells retained Cd-resistant property even though it was grown in Cd-free culture medium for over a year. The CR0 cells had lasting DNA damage due to reduced DNA repair capacity and an aberrant DNA repair gene expression profile. A total of 12 DNA repair genes associated with post-chronic Cd exposure were identified, and they could be potential biomarkers for identifying post-chronic Cd exposure. Clinical database analysis suggests that some of the DNA repair genes play a role in lung cancer patients with different smoking histories. Generally, CR0 cells were more sensitive to chemotherapeutic (cisplatin, gemcitabine, and vinorelbine tartrate) and DNA damaging (H2O2) agents, which may represent a double-edged sword for cancer prevention and treatment. Overall, we demonstrated for the first time that the effects of post-chronic Cd exposure on human lung cells are long-lasting and different from that of acute and chronic exposures. Findings from our study unveiled a new perspective on Cd-induced carcinogenesis-the post-chronic exposure of Cd. This study encourages the field of post-exposure research which is crucial but has long been ignored.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhan-Ling Liang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yue Yao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Dan-Dan Wu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiang Gu
- Provincial Key Laboratory of Infectious Diseases and Molecular Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jen-Fu Chiu
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
- Provincial Key Laboratory of Infectious Diseases and Molecular Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China.
- Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
- Provincial Key Laboratory of Infectious Diseases and Molecular Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China.
- Collaborative and Creative Center of Molecular Pathology and Personalized Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
335
|
Wu CY, Wong CS, Chung CJ, Wu MY, Huang YL, Ao PL, Lin YF, Lin YC, Shiue HS, Su CT, Chen HH, Hsueh YM. The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:224-232. [PMID: 31075550 DOI: 10.1016/j.jhazmat.2019.04.082] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to determine the interaction of red blood cell cadmium and lead, total urinary arsenic, and plasma selenium in chronic kidney disease (CKD). We recruited 220 CKD patients as well as 438 gender- and age-matched controls, and we defined CKD as <60 mL/min/1.73 m2 estimated glomerular filtration rate (eGFR) for three or more consecutive months. Plasma selenium and red blood cell cadmium and lead concentrations were measured by ICP-MS. Urinary arsenic species were determined via HPLC-HG-AAS and were summed to determine the total urinary arsenic concentration. Plasma selenium was positively correlated to eGFR, and subjects with high plasma selenium levels (>243.90 μg/L) had a significantly lower odds ratio (OR) and 95% confidence interval (CI) (0.23, 0.13-0.42) for CKD compared to those with low plasma selenium levels (≤ 196.70 μg/L). High plasma selenium and low red blood cell cadmium or lead concentrations interacted to decrease the OR and 95% CI for CKD (0.12, 0.06-0.26; 0.09, 0.04-0.19). High plasma selenium and low red blood cell lead levels also interacted to increase the eGFR (20.70, 15.56-26.01 mL/min/1.73 m2). This study is the first to suggest that selenium modifies the eGFR and OR in CKD induced by environmental toxicants.
Collapse
Affiliation(s)
- Chih-Yin Wu
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Shun Wong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pui-Lam Ao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chien-Tien Su
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yu-Mei Hsueh
- Department of Family Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
336
|
Abdeen A, Abou-Zaid OA, Abdel-Maksoud HA, Aboubakr M, Abdelkader A, Abdelnaby A, Abo-Ahmed AI, El-Mleeh A, Mostafa O, Abdel-Daim M, Aleya L. Cadmium overload modulates piroxicam-regulated oxidative damage and apoptotic pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25167-25177. [PMID: 31256392 DOI: 10.1007/s11356-019-05783-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a common environmental pollutant that threatens humans' and animals' health. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used drugs due to their wide therapeutic action; however, they have significant side effects. Since, under many circumstances, humans and animals may be co-exposed to Cd and NSAIDs, the current investigation was assigned to explore the intertwining relationship between Cd and NSAIDs. Four groups of male Wister rats were used: control group: rats received saline; Cd group: rats received cadmium (Cd, 2 mg/kg) orally; Px group: rats received a NSAID (piroxicam, Px, 7 mg/kg, i.p.); and Cd+Px group: rats received both Cd+Px. All treatments were given once a day for 28 consecutive days. Then, blood samples, stomach, liver, and kidney tissues were collected. The results indicated that Px provoked gastric ulcer indicated by high ulcer index, while Cd had no effect on the gastric mucosa. In addition, treatment with Cd or Px alone significantly induced liver and kidney injuries indicated by serum elevations of AST, ALT, ALP, ALB, total protein, creatinine, and urea along with histopathological alterations. Significant increases in malondialdehyde and reduction in GSH and CAT contents were reported along with up-regulated expression of Bax and Bcl-2 after Cd or Px exposure. However, when Cd and Px were given in a combination, Cd obviously potentiated the Px-inflicted cellular injury and death in the liver and kidney but not in the stomach when compared to their individual exposure. This study concluded that oxidative stress mechanisms were supposed to be the main modulator in promoting Cd and Px toxicities when given in combination.
Collapse
Affiliation(s)
- Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
- Department of Biochemistry and Clinical Biochemistry, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Omayma A Abou-Zaid
- Department of Biochemistry and Clinical Biochemistry, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Hussein A Abdel-Maksoud
- Department of Biochemistry and Clinical Biochemistry, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Amany Abdelnaby
- Agricultural Research Center, Animal Health Research Institute, Dokki, Giza, 12618, Egypt
| | - Ahmed I Abo-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menufyia University, Shebin El Kom, 32514, Egypt
| | - Ola Mostafa
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, 13518, Egypt
| | - Mohamed Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environment Laboratory, Bourgogne Franche-Comté University, UMR CNRS 6249, 25030, Besançon Cedex, France
| |
Collapse
|
337
|
Cheng Y, Zhang J, Wu T, Jiang X, Jia H, Qing S, An Q, Zhang Y, Su J. Reproductive toxicity of acute Cd exposure in mouse: Resulting in oocyte defects and decreased female fertility. Toxicol Appl Pharmacol 2019; 379:114684. [PMID: 31325558 DOI: 10.1016/j.taap.2019.114684] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd), a known metal contaminant, is widespreadly used in industry, thereby human health is severely affected through the way of occupational and environmental exposure. The adverse effects of the exposure to Cd on the female reproductive system, especially oocyte maturation and fertility have not been clearly defined. In this study, we found the arrested development of ovaries and uteri after Cd exposure and determined oocyte quality via assessing the key regulators during meiotic maturation and fertilization. We found that Cd exposure impeded the mouse oocyte meiotic progression by disrupting the normal spindle assembly, chromosome alignment and actin cap formation. Besides, exposure to Cd induced oxidative stress with the increased reactive oxygen species and apoptosis levels, leading to abnormal mitochondrial distribution, insufficient energy supply, and DNA damage, which ultimately led to oocyte quality deterioration. We also analyzed the effects of cadmium on epigenetic modifications, and the levels of 5mC, H3K9me3 and H3K9ac decreased after acute exposure to cadmium. Further experiments showed that the litter size in Cd-exposed female mice reduced, thereby indicating increased reproductive Cd toxicity. In conclusion, Cd exposure impairs oocyte maturation and fertilization ability induced by oxidative stress, early apoptosis and epigenetic modifications, which lead to the decrease of female fertility.
Collapse
Affiliation(s)
- Yuyao Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jun Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai Province 810003, PR China
| | - Teng Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xianlei Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Huiqun Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Quanli An
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
338
|
Wu CW, Wimberly K, Pietras A, Dodd W, Atlas MB, Choe KP. RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress. BMC Biol 2019; 17:56. [PMID: 31311534 PMCID: PMC6631800 DOI: 10.1186/s12915-019-0675-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/24/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada.
| | - Keon Wimberly
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Adele Pietras
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - William Dodd
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - M Blake Atlas
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Keith P Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
339
|
Pallio G, Micali A, Benvenga S, Antonelli A, Marini HR, Puzzolo D, Macaione V, Trichilo V, Santoro G, Irrera N, Squadrito F, Altavilla D, Minutoli L. Myo-inositol in the protection from cadmium-induced toxicity in mice kidney: An emerging nutraceutical challenge. Food Chem Toxicol 2019; 132:110675. [PMID: 31306689 DOI: 10.1016/j.fct.2019.110675] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) induces functional and morphological changes in kidney. Therefore, the effects of a natural nutraceutical antioxidant, myo-inositol (MI), were evaluated in mice kidneys after Cd challenge. Twenty-eight C57 BL/6 J mice were divided into these groups: 0.9% NaCl; MI (360 mg/kg/day); CdCl2 (2 mg/kg/day) plus vehicle; CdCl2 (2 mg/kg/day) plus MI (360 mg/kg/day). After 14 days, kidneys were processed for structural, biochemical and morphometric evaluation. Treatment with CdCl2 increased urea nitrogen and creatinine in serum and augmented tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Furthermore, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (KIM-1) and myo-inositol oxygenase (MIOX) immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells number were significantly higher than control and MI groups. Glutathione (GSH) content and glutathione peroxidase (GPx) activity were reduced and structural changes were evident. The treatment with MI significantly lowered urea nitrogen and creatinine levels, TNF-α and iNOS expression, MCP-1, KIM-1 and MIOX immunoreactivity and TUNEL positive cells number, increased GSH content and GPx activity and preserved kidney morphology. A protection of MI against Cd-induced damages in mice kidney was demonstrated, suggesting a strong antioxidant role of this nutraceutical against environmental Cd harmful effects on kidney lesions.
Collapse
Affiliation(s)
- Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy.
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Herbert R Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Vincenzo Trichilo
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Giuseppe Santoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98121, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98121, Messina, Italy
| |
Collapse
|
340
|
Khan Z, Nisar MA, Muzammil S, Zafar S, Zerr I, Rehman A. Cadmium induces GAPDH- and- MDH mediated delayed cell aging and dysfunction in Candida tropicalis 3Aer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:490. [PMID: 31297613 DOI: 10.1007/s10661-019-7631-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotes employ various mechanisms to survive environmental stress conditions. Multicellular organisms eliminate permanently damaged cells by apoptosis, while unicellular eukaryotes like yeast react by decelerating cell aging. In the present study, transcriptomic and proteomic approaches were employed to elucidate the underlying mechanism of delayed apoptosis. Our findings suggest that Candida tropicalis 3Aer has a set of tightly controlled genes that are activated under Cd+2 exposition. Acute exposure to Cd+2 halts the cell cycle at the G2/M phase checkpoint and activates multiple cytoplasmic proteins that overcome effects of Cd+2-induced reactive oxygen species. Prolonged Cd+2 stress damages DNA and initiates GAPDH amyloid formation. This is the first report that Cd+2 challenge initiates dynamic redistribution of GAPDH and MDH and alters various metabolic pathways including the pentose phosphate pathway. In conclusion, the intracellular redistribution of GAPDH and MDH induced by prolonged cadmium stress modulates various cellular reactions, which facilitate delayed aging in the yeast cell.
Collapse
Affiliation(s)
- Zaman Khan
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad, Pakistan
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
341
|
Ağır MS, Eraslan G. The effect of diosmin against liver damage caused by cadmium in rats. J Food Biochem 2019; 43:e12966. [PMID: 31489662 DOI: 10.1111/jfbc.12966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
A total of 40, male Wistar Albino, 2-3-months-old rats were used and divided into four groups. Control group received the vehicle alone, diosmin group received 100 mg/kg.bw diosmin, the cadmium group received 200 ppm cadmium, cadmium plus diosmin group received 200 ppm cadmium, and 100 mg/kg.bw diosmin for 30 days. Some biochemical parameters (aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase) and oxidative stress parameters (malondialdehyde [MDA], nitric oxide [NO], superoxide dismutase [SOD], catalase [CAT], gluthatione peroxidase [GSH-Px], and glutathione [GSH]) were analyzed in the samples. Histo-pathological findings were evaluated in the liver. The body weights and liver weights of the animals were measured. The MDA and NO levels and biochemical enzyme activities examined were increased, whereas SOD, CAT, and GSH-Px activities and GSH levels decreased in cadmium-exposed group. There were also negative changes in body weight, liver weight, and liver tissue histo-phathology. Positive improvements were observed in all these parameters evaluated of the group co-administered cadmium and diosmin. PRACTICAL APPLICATIONS: Cadmium is one of the common environmental pollutants. Diosmin is a type of flavonoid found mainly in citrus fruits. It can also be produced from hesperidine. This compound is used for medical purposes and also has strong antioxidant properties. One of the toxic effects mechanisms of cadmium is oxidative stress and causes liver damage with different pathways. This compound can be used as a supporting agent in addition to the main treatment options against liver damage in case of exposure to possible cadmium. This flavonoid can also be taken with food for prophylactic purposes.
Collapse
Affiliation(s)
- Mehmet Selim Ağır
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
342
|
Lv Y, Ezemaduka AN, Wang Y, Xu J, Li X. AgsA response to cadmium and copper effects at different temperatures in Escherichia coli. J Biochem Mol Toxicol 2019; 33:e22344. [PMID: 31211484 DOI: 10.1002/jbt.22344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/31/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Abstract
Small heat shock proteins (sHsps), present from prokaryotes to eukaryotes, are a highly conserved molecular chaperone family. They play a crucial role in protecting organisms against cellular insults from single or multiple environmental stressors including heavy metal exposure, heat or cold shock, oxidative stress, desiccation, etc. Here, the toxicity of cadmium and copper, and their ability to modify the cellular growth rate at different temperatures in Escherichia coli cells were tested. Also, the response mechanism of the sHSP aggregation-suppressing protein (AgsA) in such multiple stress conditions was investigated. The results showed that the half effect concentration (EC50 ) of cadmium in AgsA-transformed E. coli cells at 37°C, 42°C, and 50°C were 11.106, 29.50, and 4.35 mg/L, respectively, and that of the control cells lacking AgsA were 5.05, 0.93, and 0.18 mg/L, respectively, while the half effect concentration (EC50 ) of copper in AgsA-transformed E. coli cells at 37°C, 42°C, and 50°C were 27.3, 3.40, and 1.28 mg/L, respectively, and that of the control cells lacking AgsA were 27.7, 5.93, and 0.134 mg/L, respectively. The toxicities of cadmium and copper at different temperatures as observed by their modification of the cellular growth rate and inhibitory effects were in a dose-dependent manner. Additionally, biochemical characterization of AgsA protein in cells subjected to cadmium and copper stresses at different temperatures implicated suppressed aggregation of cellular proteins in AgsA-transformed E. coli cells. Altogether, our data implicate the AgsA protein as a sensitive protein-based biomarker for metal-induced toxicity monitoring.
Collapse
Affiliation(s)
- Yanchun Lv
- Environmental Sciences, School of Environment, Northeast Normal University, Changchun, China
| | - Anastasia N Ezemaduka
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yunbiao Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jingbo Xu
- Environmental Sciences, School of Environment, Northeast Normal University, Changchun, China
| | - Xiujun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
343
|
Abu-El-Zahab HSH, Hamza RZ, Montaser MM, El-Mahdi MM, Al-Harthi WA. Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:419-428. [PMID: 30798185 DOI: 10.1016/j.ecoenv.2019.02.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
L-carnitine (LC) and selenium (Se) have significant protective and antioxidant effects on several tissues. Cadmium (Cd), widely used in some industries and emitted from fossil fuels, is a heavy metal having a number of side effects, including hepatotoxicity. This study aims to assess the ameliorative function of both LC and SeCl4 on cadmium chloride (CdCl2)-induced liver toxicity. In total, 70 male mice included in this study were allocated to seven groups: control, CdCl2, LC, SeCl4, CdCl2 plus SeCl4, CdCl2 plus LC, CdCl2 plus SeCl4 and LC groups. Hepatic aminotransferase (aspartate aminotransferase [AST] and alanine transaminase [ALT]) activity and tumor necrosis factor-alpha [TNF-α] levels, as well as the antioxidant biomarkers (superoxide dismutase [SOD], glutathione reductase [GRx], glutathione-S-transferase [GST] and catalase [CAT], were examined. Histological and transmission electron microscopic [TEM] variations in the liver were used as indicators of liver damage after the administration of CdCl2-alone or CdCl2 with LC, SeCl4, or both. Genotoxic effects of CdCl2 were also evaluated and the possible roles of SeCl4 and/or LC on the expression of the antioxidant enzymes were studied. Results showed that administration of LC and SeCl4 decreased CdCl2-induced increase in ALT and AST levels and reduced oxidative stress to normal levels. In addition, LC combined with SeCl4 had a highly synergistic effect and elevated significantly the enzymatic antioxidants and decreased lipid peroxidation levels compared with those in the CdCl2-treated group. It is clear from the data that both LC and SeCl4 inhibit liver injury and improve the redox state in mice.
Collapse
Affiliation(s)
| | - Reham Z Hamza
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; Biology Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia.
| | - Metwally M Montaser
- Biotechnology Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia; Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Magda M El-Mahdi
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt; Biology Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia
| | - Wed A Al-Harthi
- Biology Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia
| |
Collapse
|
344
|
Zhu JQ, Liu Y, Zhang JH, Liu YF, Cao JQ, Huang ZT, Yuan Y, Bian JC, Liu ZP. Cadmium Exposure of Female Mice Impairs the Meiotic Maturation of Oocytes and Subsequent Embryonic Development. Toxicol Sci 2019; 164:289-299. [PMID: 29684212 DOI: 10.1093/toxsci/kfy089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cadmium is one major pollutant that is highly toxic to animals and humans. The mechanism of cadmium toxicity on the female reproductive system, particularly oocyte maturation and fertility, remains to be clarified. In this study, we used a mouse model to investigate the effects of cadmium in the drinking water on the meiotic maturation of oocytes and subsequent embryonic development, and the underlying mechanisms associated with the impairment of oocyte maturation such as mitochondrial distribution and histone modifications. Our results show that cadmium exposure decreased the number of ovulated oocytes and impaired oocyte meiotic maturation rate both in vivo and in vitro. The embryonic development after fertilization was also impaired even when the potential hazards of cadmium on the spermatozoa or the genital tract have been excluded by fertilization and embryonic development in culture. Cadmium exposure disrupted meiotic spindle morphology and actin filament, which are responsible for successful chromosome segregation and the polar body extrusion during oocyte maturation and fertilization. ATP contents, which are required for proper meiotic spindle assembly in the oocyte, were decreased, consistent with altered mitochondrial distribution after cadmium exposure. Finally, cadmium exposure affected the levels of H3K9me2 and H4K12ac in the oocyte, which are closely associated with the acquisition of oocyte developmental competence and subsequent embryonic development. In conclusion, cadmium exposure in female mice impaired meiotic maturation of oocytes and subsequent embryonic development by affecting the cytoskeletal organization, mitochondrial function, and histone modifications.
Collapse
Affiliation(s)
- Jia-Qiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jiang-Hong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yan-Fang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jiang-Qin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Zhu-Tao Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yan Yuan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China
| | - Jian-Chun Bian
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Zong-Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
345
|
Mahmoudi R, Azizi A, Abedini S, Hemayatkhah Jahromi V, Abidi H, Jafari Barmak M. Green tea improves rat sperm quality and reduced cadmium chloride damage effect in spermatogenesis cycle. J Med Life 2019; 11:371-380. [PMID: 30894897 PMCID: PMC6418325 DOI: 10.25122/jml-2018-0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: Testicular tissue is part of the reproductive system that some mineral compounds such as cadmium chloride (CdCl2) destroy. Green tea (Camellia sinensis) extract can reduce the tissue damage caused by toxins due to its antioxidant properties. The aim of this study was to evaluate the effect of green tea extract on sperm quality in cadmium chloride toxicity. Materials and Methods: In the present study, male Wistar rats were allotted randomly into four groups, namely control group (C), CdCl2 (1.5mg/kg), GT 1.5% (w/v) and in combinationCdCl2+GT groups. CdCl2 was injected intraperitoneally (1.5 mg /kg) whereas the green tea extract was administrated orally. At 13, 25 and 49 days after treatment, the rats were euthanized and the reproductive organs (testes, epididymis) were excised and used for sperm analysis and histo-morphometric examinations. Results: The mean of the diameter of seminiferous tubes, the number of spermatogonia, Sertoli, Leydig cells and thickness of the germinal layer in the testis were significantly increased (P<0.05) in all groups compared to the CdCl2 group (P<0.05). Sperm motility, sperm count and testosterone were significantly decreased in the CdCl2 group compared to all groups of treatment (p<0.05). The mean of MDA was significantly increased in the CdCl2 group compared to other groups (p<0.05). Conclusion: Green tea has an antioxidant effect that reduces the effects of free oxygen radicals produced from toxins such as cadmium chloride. In addition, it could decrease lipid peroxidation of the cell membrane and ultimately prevent the destruction of tissues in the long run.
Collapse
Affiliation(s)
- Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arsalan Azizi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | | | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
346
|
Everson TM, Marable C, Deyssenroth MA, Punshon T, Jackson BP, Lambertini L, Karagas MR, Chen J, Marsit CJ. Placental Expression of Imprinted Genes, Overall and in Sex-Specific Patterns, Associated with Placental Cadmium Concentrations and Birth Size. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57005. [PMID: 31082282 PMCID: PMC6791491 DOI: 10.1289/ehp4264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal cadmium (Cd) exposure has been recognized to restrict growth, and male and female fetuses may have differential susceptibility to the developmental toxicity of Cd. Imprinted genes, which exhibit monoallelic expression based on parent of origin, are highly expressed in placental tissues. The function of these genes is particularly critical to fetal growth and development, and some are expressed in sex-specific patterns. OBJECTIVES We aimed to examine whether prenatal Cd associates with the expression of imprinted placental genes, overall or in fetal sex-specific patterns, across two independent epidemiologic studies. METHODS We tested for Cd–sex interactions in association with gene expression, then regressed the placental expression levels of 74 putative imprinted genes on placental log-Cd concentrations while adjusting for maternal age, sex, smoking history, and educational attainment. These models were performed within study- and sex-specific strata in the New Hampshire Birth Cohort Study (NHBCS; [Formula: see text]) and the Rhode Island Child Health Study (RICHS; [Formula: see text]). We then used fixed-effects models to estimate the sex-specific and overall associations across strata and then examine heterogeneity in the associations by fetal sex. RESULTS We observed that higher Cd concentrations were associated with higher expression of distal-less homeobox 5 (DLX5) ([Formula: see text]), and lower expression of h19 imprinted maternally expressed transcript (H19) ([Formula: see text]) and necdin, MAGE family member (NDN) ([Formula: see text]) across study and sex-specific strata, while three other genes [carboxypeptidase A4 (CPA4), growth factor receptor bound protein 10 (GRB10), and integrin-linked kinase (ILK)] were significantly associated with Cd concentrations, but only among female placenta ([Formula: see text]). Additionally, the expression of DLX5, H19, and NDN, the most statistically significant Cd-associated genes, were also associated with standardized birth weight z-scores. DISCUSSION The differential regulation of a set of imprinted genes, particularly DLX5, H19, and NDN, in association with prenatal Cd exposure may be involved in overall developmental toxicity, and some imprinted genes may respond to Cd exposure in a manner that is specific to infant gender. https://doi.org/10.1289/EHP4264.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Carmen Marable
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| | - Maya A. Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, USA
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health at Emory University, Atlanta, Georgia, USA
| |
Collapse
|
347
|
Zheng J, Chen Q, Xu J, Wen L, Li F, Zhang L. Effect of Degree of Silicification on Silica/Silicic Acid Binding Cd(II) and Its Mechanism. J Phys Chem A 2019; 123:3718-3727. [DOI: 10.1021/acs.jpca.9b00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jiewei Zheng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P R China
| | - Quan Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P R China
| | - Jianchang Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P R China
| | - Liyang Wen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P R China
| | - Fangbai Li
- Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environment and Soil Science, Guangzhou 510650, China
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P R China
| |
Collapse
|
348
|
Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci Rep 2019; 9:5825. [PMID: 30967588 PMCID: PMC6456607 DOI: 10.1038/s41598-019-42368-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
Cadmium exposure induces nephrotoxicity by mediating oxidative stress, inflammation, and apoptosis. The purpose of this study was to examine the protective effect of royal jelly on Cd-induced nephrotoxicity. Adult male mice were distributed randomly into 4 clusters: untreated, royal jelly-treated (85 mg/kg, oral), CdCl2-treated (6.5 mg/kg, intraperitoneal), and pretreated with royal jelly (85 mg/kg) 2 h before CdCl2 injection (6.5 mg/kg, intraperitoneal) for seven consecutive days. Cd concentration in the renal tissue and absolute kidney weight of the Cd-treated mice were significantly higher than those of control group. The levels of kidney function markers, kidney injury molecules-1 (KIM-1), metallothionein, lipid peroxidation, nitric oxide, tumor necrosis factor-α, interleukin-1β, and the apoptosis regulators Bax and caspases-3 also increased significantly in the renal tissue of Cd-treated mice, whereas the levels of glutathione, antioxidant enzyme activities, and the apoptosis inhibitor Bcl-2 were significantly reduced in the renal tissue of Cd-treated group. Histopathological studies showed vacuolation and congested glomeruli in the kidney tissue of Cd-treated mice. However, all aforementioned Cd-induced changes were attenuated by pretreatment with royal jelly. We therefore concluded that royal jelly attenuated Cd-induced nephrotoxicity and it is suggested that this nephroprotective effect could be linked to its ability to promote the nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway.
Collapse
|
349
|
Exposure routes and health effects of heavy metals on children. Biometals 2019; 32:563-573. [DOI: 10.1007/s10534-019-00193-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
350
|
Salama SA, Arab HH, Hassan MH, Al Robaian MM, Maghrabi IA. Cadmium-induced hepatocellular injury: Modulatory effects of γ-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J Trace Elem Med Biol 2019; 52:74-82. [PMID: 30732903 DOI: 10.1016/j.jtemb.2018.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Cadmium is an extremely toxic pollutant that reaches human body through intake of the industrially polluted food and water as well as through cigarette smoking and exposure to polluted air. Cadmium accumulates in different body organs especially the liver. It induces tissue injury largely through inflammation and oxidative stress-based mechanisms. The aim of the current study was to investigate the ability of γ glutamyl cysteine (γGC) to protect against cadmium-induced hepatocellular injury employing Wistar rats as a mammalian model. The results of the current work indicated that γGC upregulated the level of the anti-inflammatory cytokine IL-10 and downregulated the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the cadmium-exposed rats. In addition, γGC reduced the liver tissues cadmium content in the cadmium-treated rats, suppressed the cadmium-induced hepatocellular apoptosis and oxidative modifications of cellular DNA, lipids, and proteins. Additionally, γGC enhanced the antioxidant potential of the liver tissues in the cadmium-treated rats as evidenced by a remarkable increase in the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and significant increase in the levels of the total antioxidant capacity and reduced glutathione as well as a significant reduction in oxidized to reduced glutathione (GSSG/GSH) ratio. Moreover, it effectively improved liver cell integrity in the cadmium-treated rats as demonstrated by a significant reduction in the serum activity of the liver enzymes (ALT and AST) and amelioration of the cadmium-evoked histopathological alterations. Together, these findings underscore, for the first time, the alleviating effects of γGC against cadmium-induced hepatocellular injury that is potentially mediated through reduction of liver tissue cadmium content along with modulation of both hepatocellular redox status and inflammatory cytokines.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Hany H Arab
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, El-Madinah El-Munaworah, 30001, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, 11751, Egypt
| | - Majed M Al Robaian
- Department of Pharmaceutics, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|