301
|
Kaisers W, Schwender H, Schaal H. Hierarchical Clustering of DNA k-mer Counts in RNAseq Fastq Files Identifies Sample Heterogeneities. Int J Mol Sci 2018; 19:E3687. [PMID: 30469355 PMCID: PMC6274891 DOI: 10.3390/ijms19113687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/14/2023] Open
Abstract
We apply hierarchical clustering (HC) of DNA k-mer counts on multiple Fastq files. The tree structures produced by HC may reflect experimental groups and thereby indicate experimental effects, but clustering of preparation groups indicates the presence of batch effects. Hence, HC of DNA k-mer counts may serve as a diagnostic device. In order to provide a simple applicable tool we implemented sequential analysis of Fastq reads with low memory usage in an R package (seqTools) available on Bioconductor. The approach is validated by analysis of Fastq file batches containing RNAseq data. Analysis of three Fastq batches downloaded from ArrayExpress indicated experimental effects. Analysis of RNAseq data from two cell types (dermal fibroblasts and Jurkat cells) sequenced in our facility indicate presence of batch effects. The observed batch effects were also present in reads mapped to the human genome and also in reads filtered for high quality (Phred > 30). We propose, that hierarchical clustering of DNA k-mer counts provides an unspecific diagnostic tool for RNAseq experiments. Further exploration is required once samples are identified as outliers in HC derived trees.
Collapse
Affiliation(s)
- Wolfgang Kaisers
- Department of Anaesthesiology, HELIOS University Hospital Wuppertal, University of Witten/Herdecke, Heusnerstr. 40, 42283 Wuppertal, Germany.
- Institut fur Virologie, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Holger Schwender
- Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Heiner Schaal
- Institut fur Virologie, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
302
|
Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, Lu TP, Lai LC, Lin EC, Lee H, Ding ST, Tsai MH, Chen CY, Chuang EY. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant. Gigascience 2018; 7:4990948. [PMID: 29722814 PMCID: PMC5941149 DOI: 10.1093/gigascience/giy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. Results We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. Conclusions This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.
Collapse
Affiliation(s)
- Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Ping-Han Hsieh
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Mei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kuan-Yi Li
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Fang Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei 10051, Taiwan
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei 10672, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
303
|
Sarropoulou E, Sundaram AYM, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, Mylonas CC, Magoulas A. Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili. Gigascience 2018; 6:1-13. [PMID: 29126158 PMCID: PMC5751066 DOI: 10.1093/gigascience/gix108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/02/2017] [Indexed: 02/05/2023] Open
Abstract
Background Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Arvind Y M Sundaram
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Gregor D Gilfillan
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| |
Collapse
|
304
|
Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A. Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell 2018; 175:1533-1545.e20. [PMID: 30415838 DOI: 10.1016/j.cell.2018.10.023] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/12/2018] [Accepted: 10/04/2018] [Indexed: 11/17/2022]
Abstract
Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kelly V Buh
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Max A B Haase
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA; Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA
| | - Jennifer H Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Mingshuang Wang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Drew T Doering
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James T Boudouris
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel M Schneider
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Quinn K Langdon
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Rikiya Endoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center For Life Science Technologies, Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Neža Čadež
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, 8400 Bariloche, Argentina
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, CP 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
305
|
Stone CL, Frederick RD, Tooley PW, Luster DG, Campos B, Winegar RA, Melcher U, Fletcher J, Blagden T. Annotation and analysis of the mitochondrial genome of Coniothyrium glycines, causal agent of red leaf blotch of soybean, reveals an abundance of homing endonucleases. PLoS One 2018; 13:e0207062. [PMID: 30403741 PMCID: PMC6221350 DOI: 10.1371/journal.pone.0207062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/24/2018] [Indexed: 11/19/2022] Open
Abstract
Coniothyrium glycines, the causal agent of soybean red leaf blotch, is a USDA APHIS-listed Plant Pathogen Select Agent and potential threat to US agriculture. Sequencing of the C. glycines mt genome revealed a circular 98,533-bp molecule with a mean GC content of 29.01%. It contains twelve of the mitochondrial genes typically involved in oxidative phosphorylation (atp6, cob, cox1-3, nad1-6, and nad4L), one for a ribosomal protein (rps3), four for hypothetical proteins, one for each of the small and large subunit ribosomal RNAs (rns and rnl) and a set of 30 tRNAs. Genes were encoded on both DNA strands with cox1 and cox2 occurring as adjacent genes having no intergenic spacers. Likewise, nad2 and nad3 are adjacent with no intergenic spacers and nad5 is immediately followed by nad4L with an overlap of one base. Thirty-two introns, comprising 54.1% of the total mt genome, were identified within eight protein-coding genes and the rnl. Eighteen of the introns contained putative intronic ORFs with either LAGLIDADG or GIY-YIG homing endonuclease motifs, and an additional eleven introns showed evidence of truncated or degenerate endonuclease motifs. One intron possessed a degenerate N-acetyl-transferase domain. C. glycines shares some conservation of gene order with other members of the Pleosporales, most notably nad6-rnl-atp6 and associated conserved tRNA clusters. Phylogenetic analysis of the twelve shared protein coding genes agrees with commonly accepted fungal taxonomy. C. glycines represents the second largest mt genome from a member of the Pleosporales sequenced to date. This research provides the first genomic information on C. glycines, which may provide targets for rapid diagnostic assays and population studies.
Collapse
Affiliation(s)
- Christine L. Stone
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Reid D. Frederick
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Paul W. Tooley
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Douglas G. Luster
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, Maryland, United States of America
| | - Brittany Campos
- MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America
| | - Richard A. Winegar
- MRIGlobal, Global Health Surveillance & Diagnostics, Palm Bay, Florida, United States of America
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Trenna Blagden
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology & Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
306
|
Renaut S, Guerra D, Hoeh WR, Stewart DT, Bogan AE, Ghiselli F, Milani L, Passamonti M, Breton S. Genome Survey of the Freshwater Mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) Using a Hybrid De Novo Assembly Approach. Genome Biol Evol 2018; 10:1637-1646. [PMID: 29878181 PMCID: PMC6054159 DOI: 10.1093/gbe/evy117] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 02/03/2023] Open
Abstract
Freshwater mussels (Bivalvia: Unionida) serve an important role as aquatic ecosystem engineers but are one of the most critically imperilled groups of animals. Here, we used a combination of sequencing strategies to assemble and annotate a draft genome of Venustaconcha ellipsiformis, which will serve as a valuable genomic resource given the ecological value and unique “doubly uniparental inheritance” mode of mitochondrial DNA transmission of freshwater mussels. The genome described here was obtained by combining high-coverage short reads (65× genome coverage of Illumina paired-end and 11× genome coverage of mate-pairs sequences) with low-coverage Pacific Biosciences long reads (0.3× genome coverage). Briefly, the final scaffold assembly accounted for a total size of 1.54 Gb (366,926 scaffolds, N50 = 6.5 kb, with 2.3% of “N” nucleotides), representing 86% of the predicted genome size of 1.80 Gb, while over one third of the genome (37.5%) consisted of repeated elements and >85% of the core eukaryotic genes were recovered. Given the repeated genetic bottlenecks of V. ellipsiformis populations as a result of glaciations events, heterozygosity was also found to be remarkably low (0.6%), in contrast to most other sequenced bivalve species. Finally, we reassembled the full mitochondrial genome and found six polymorphic sites with respect to the previously published reference. This resource opens the way to comparative genomics studies to identify genes related to the unique adaptations of freshwater mussels and their distinctive mitochondrial inheritance mechanism.
Collapse
Affiliation(s)
- Sébastien Renaut
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Canada.,Quebec Centre for Biodiversity Science, Montréal, Québec, Canada
| | - Davide Guerra
- Département de Sciences Biologiques, Université de Montréal, Canada
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Arthur E Bogan
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina
| | - Fabrizio Ghiselli
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Liliana Milani
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Marco Passamonti
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, University of Bologna, Italy
| | - Sophie Breton
- Quebec Centre for Biodiversity Science, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
307
|
Corver J, Sen J, Hornung BVH, Mertens BJ, Berssenbrugge EKL, Harmanus C, Sanders IMJG, Kumar N, Lawley TD, Kuijper EJ, Hensbergen PJ, Nicolardi S. Identification and validation of two peptide markers for the recognition of Clostridioides difficile MLST-1 and MLST-11 by MALDI-MS. Clin Microbiol Infect 2018; 25:904.e1-904.e7. [PMID: 31130255 DOI: 10.1016/j.cmi.2018.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI) has become the main cause of nosocomial infective diarrhoea. To survey and control the spread of different C. difficile strains, there is a need for suitable rapid tests. The aim of this study was to identify peptide/protein markers for the rapid recognition of C. difficile strains by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). METHODS We analysed 44 well-characterized strains, belonging to eight different multi-locus sequence types (MLST), using ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS. The amino acid sequence of two peptide markers specific for MLST-1 and MLST-11 strains was elucidated by MALDI-TOF-MS/MS. The investigation of 2689 C. difficile genomes allowed the determination of the sensitivity and specificity of these markers. C18-solid-phased extraction was used to enrich the MLST-1 marker. RESULTS Two peptide markers (m/z 4927.81 and m/z 5001.84) were identified and characterized for MLST-1 and MLST-11 strains, respectively. The MLST-1 marker was found in 786 genomes of which three did not belong to MLST-1. The MLST-11 marker was found in 319 genomes, of which 14 did not belong to MLST-11. Importantly, all MLST-1 and MLST-11 genomes were positive for their respective marker. Furthermore, a peptide marker (m/z 5015.86) specific for MLST-15 was found in 59 genomes. We translated our findings into a fast and simple method that allowed the unambiguous identification of the MLST-1 marker on a MALDI-TOF-MS platform. CONCLUSIONS MALDI-FTICR MS-based peptide profiling resulted in the identification of peptide markers for C. difficile MLST-1 and MLST-11.
Collapse
Affiliation(s)
- J Corver
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands; Centre for Microbiota Analysis and Therapeutics, Department Medical Microbiology, Leiden University, Leiden, the Netherlands
| | - J Sen
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, Leiden, the Netherlands
| | - B V H Hornung
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands; Centre for Microbiota Analysis and Therapeutics, Department Medical Microbiology, Leiden University, Leiden, the Netherlands
| | - B J Mertens
- Leiden University Medical Centre, Department of Medical Statistics and Bioinformatics, Leiden, the Netherlands
| | - E K L Berssenbrugge
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands
| | - C Harmanus
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands
| | - I M J G Sanders
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands
| | - N Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - T D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - E J Kuijper
- Leiden University Medical Centre, Centre of Infectious Diseases, Department Medical Microbiology, Section Experimental Bacteriology, Leiden, the Netherlands; Centre for Microbiota Analysis and Therapeutics, Department Medical Microbiology, Leiden University, Leiden, the Netherlands
| | - P J Hensbergen
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, Leiden, the Netherlands.
| | - S Nicolardi
- Leiden University Medical Centre, Centre for Proteomics and Metabolomics, Leiden, the Netherlands.
| |
Collapse
|
308
|
Ogura A, Akizuki Y, Imoda H, Mineta K, Gojobori T, Nagai S. Comparative genome and transcriptome analysis of diatom, Skeletonema costatum, reveals evolution of genes for harmful algal bloom. BMC Genomics 2018; 19:765. [PMID: 30348078 PMCID: PMC6198448 DOI: 10.1186/s12864-018-5144-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
Background Diatoms play a great role in carbon fixation with about 20% of the whole fixation in the world. However, harmful algal bloom as known as red tide is a major problem in environment and fishery industry. Even though intensive studies have been conducted so far, the molecular mechanism behind harmful algal bloom was not fully understood. There are two major diatoms have been sequenced, but more diatoms should be examined at the whole genome level, and evolutionary genome studies were required to understand the landscape of molecular mechanism of the harmful algal bloom. Results Here we sequenced the genome of Skeletonema costatum, which is the dominant diatom in Japan causing a harmful algal bloom, and also performed RNA-sequencing analysis for conditions where harmful algal blooms often occur. As results, we found that both evolutionary genomic and comparative transcriptomic studies revealed genes for oxidative stress response and response to cytokinin is a key for the proliferation of the diatom. Conclusions Diatoms causing harmful algal blooms have gained multi-copy of genes related to oxidative stress response and response to cytokinin and obtained an ability to intensive gene expression at the blooms. Electronic supplementary material The online version of this article (10.1186/s12864-018-5144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsushi Ogura
- Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 5260829, Japan.
| | - Yuki Akizuki
- Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 5260829, Japan
| | - Hiroaki Imoda
- Nagahama Institute of Bioscience and Technology, 1266 Tamura, Nagahama, Shiga, 5260829, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Satoshi Nagai
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-8648, Japan.
| |
Collapse
|
309
|
Machado AM, Tørresen OK, Kabeya N, Couto A, Petersen B, Felício M, Campos PF, Fonseca E, Bandarra N, Lopes-Marques M, Ferraz R, Ruivo R, Fonseca MM, Jentoft S, Monroig Ó, da Fonseca RR, C Castro LF. " Out of the Can": A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus. Genes (Basel) 2018; 9:E485. [PMID: 30304855 PMCID: PMC6210256 DOI: 10.3390/genes9100485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/30/2022] Open
Abstract
Clupeiformes, such as sardines and herrings, represent an important share of worldwide fisheries. Among those, the European sardine (Sardina pilchardus, Walbaum 1792) exhibits significant commercial relevance. While the last decade showed a steady and sharp decline in capture levels, recent advances in culture husbandry represent promising research avenues. Yet, the complete absence of genomic resources from sardine imposes a severe bottleneck to understand its physiological and ecological requirements. We generated 69 Gbp of paired-end reads using Illumina HiSeq X Ten and assembled a draft genome assembly with an N50 scaffold length of 25,579 bp and BUSCO completeness of 82.1% (Actinopterygii). The estimated size of the genome ranges between 655 and 850 Mb. Additionally, we generated a relatively high-level liver transcriptome. To deliver a proof of principle of the value of this dataset, we established the presence and function of enzymes (Elovl2, Elovl5, and Fads2) that have pivotal roles in the biosynthesis of long chain polyunsaturated fatty acids, essential nutrients particularly abundant in oily fish such as sardines. Our study provides the first omics dataset from a valuable economic marine teleost species, the European sardine, representing an essential resource for their effective conservation, management, and sustainable exploitation.
Collapse
Affiliation(s)
- André M Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway.
| | - Naoki Kabeya
- Department of Aquatic Bioscience, The University of Tokyo, Tokyo 113-8654, Japan.
| | - Alvarina Couto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Bent Petersen
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark.
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, Asian Institute of Medicine, Science and Technology, Kedah 08000, Malaysia.
| | - Mónica Felício
- Portuguese Institute for the Sea and Atmosphere, (IPMA), 1749-077 Lisbon, Portugal.
| | - Paula F Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Elza Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, 4099-022 Porto, Portugal.
| | - Narcisa Bandarra
- Portuguese Institute for the Sea and Atmosphere, (IPMA), 1749-077 Lisbon, Portugal.
| | - Mónica Lopes-Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - Renato Ferraz
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4099-022 Porto, Portugal.
| | - Raquel Ruivo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - Miguel M Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway.
- Centre for Coastal Research, Department of Natural Sciences, University of Agder, 4630 Kristiansand, Norway.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Ribera de Cabanes, Spain.
| | - Rute R da Fonseca
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, 4099-022 Porto, Portugal.
| |
Collapse
|
310
|
Saxena R, Mittal P, Clavaud C, Dhakan DB, Hegde P, Veeranagaiah MM, Saha S, Souverain L, Roy N, Breton L, Misra N, Sharma VK. Comparison of Healthy and Dandruff Scalp Microbiome Reveals the Role of Commensals in Scalp Health. Front Cell Infect Microbiol 2018; 8:346. [PMID: 30338244 PMCID: PMC6180232 DOI: 10.3389/fcimb.2018.00346] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Several scalp microbiome studies from different populations have revealed the association of dandruff with bacterial and fungal dysbiosis. However, the functional role of scalp microbiota in scalp disorders and health remains scarcely explored. Here, we examined the bacterial and fungal diversity of the scalp microbiome and their potential functional role in the healthy and dandruff scalp of 140 Indian women. Propionibacterium acnes and Staphylococcus epidermidis emerged as the core bacterial species, where the former was associated with a healthy scalp and the latter with dandruff scalp. Along with the commonly occurring Malassezia species (M. restricta and M. globosa) on the scalp, a strikingly high association of dandruff with yet uncharacterized Malassezia species was observed in the core mycobiome. Functional analysis showed that the fungal microbiome was enriched in pathways majorly implicated in cell-host adhesion in the dandruff scalp, while the bacterial microbiome showed a conspicuous enrichment of pathways related to the synthesis and metabolism of amino acids, biotin, and other B-vitamins, which are reported as essential nutrients for hair growth. A systematic measurement of scalp clinical and physiological parameters was also carried out, which showed significant correlations with the microbiome and their associated functional pathways. The results point toward a new potential role of bacterial commensals in maintaining the scalp nutrient homoeostasis and highlights an important and yet unknown role of the scalp microbiome, similar to the gut microbiome. This study, therefore, provides new perspectives on the better understanding of the pathophysiology of dandruff.
Collapse
Affiliation(s)
- Rituja Saxena
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Parul Mittal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | - Darshan B Dhakan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | | | | | | | - Luc Souverain
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Nita Roy
- L'Oréal India Pvt. Ltd., Bengaluru, India
| | - Lionel Breton
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Namita Misra
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France.,L'Oréal India Pvt. Ltd., Bengaluru, India
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
311
|
Johnson AJ, McKenna DD, Jordal BH, Cognato AI, Smith SM, Lemmon AR, Lemmon EM, Hulcr J. Phylogenomics clarifies repeated evolutionary origins of inbreeding and fungus farming in bark beetles (Curculionidae, Scolytinae). Mol Phylogenet Evol 2018; 127:229-238. [DOI: 10.1016/j.ympev.2018.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
|
312
|
Jaiswal SK, Gupta A, Saxena R, Prasoodanan VPK, Sharma AK, Mittal P, Roy A, Shafer ABA, Vijay N, Sharma VK. Genome Sequence of Peacock Reveals the Peculiar Case of a Glittering Bird. Front Genet 2018; 9:392. [PMID: 30283495 PMCID: PMC6156156 DOI: 10.3389/fgene.2018.00392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/29/2018] [Indexed: 12/03/2022] Open
Abstract
The unique ornamental features and extreme sexual traits of Peacock have always intrigued scientists and naturalists for centuries. However, the genomic basis of these phenotypes are yet unknown. Here, we report the first genome sequence and comparative analysis of peacock with the high quality genomes of chicken, turkey, duck, flycatcher and zebra finch. Genes involved in early developmental pathways including TGF-β, BMP, and Wnt signaling, which have been shown to be involved in feather patterning, bone morphogenesis, and skeletal muscle development, revealed signs of adaptive evolution and provided useful clues on the phenotypes of peacock. Innate and adaptive immune genes involved in complement system and T-cell response also showed signs of adaptive evolution in peacock suggesting their possible role in building a robust immune system which is consistent with the predictions of the Hamilton–Zuk hypothesis. This study provides novel genomic and evolutionary insights into the molecular understanding toward the phenotypic evolution of Indian peacock.
Collapse
Affiliation(s)
- Shubham K Jaiswal
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ankit Gupta
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Rituja Saxena
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishnu P K Prasoodanan
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ashok K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Parul Mittal
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ankita Roy
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Aaron B A Shafer
- Forensic Science and Environmental and Life Sciences, Trent University, Peterborough, ON, Canada
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vineet K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
313
|
Borsenberger V, Onésime D, Lestrade D, Rigouin C, Neuvéglise C, Daboussi F, Bordes F. Multiple Parameters Drive the Efficiency of CRISPR/Cas9-Induced Gene Modifications in Yarrowia lipolytica. J Mol Biol 2018; 430:4293-4306. [PMID: 30227135 DOI: 10.1016/j.jmb.2018.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
Yarrowia lipolytica is an oleaginous yeast of growing industrial interest for biotechnological applications. In the last few years, genome edition has become an easier and more accessible prospect with the world wild spread development of CRISPR/Cas9 technology. In this study, we focused our attention on the production of the two key elements of the CRISPR-Cas9 ribonucleic acid protein complex in this non-conventional yeast. The efficiency of NHEJ-induced knockout was measured by time-course monitoring using multiple parameters flow cytometry, as well as phenotypic and genotypic observations, and linked to nuclease production levels showing that its strong overexpression is unnecessary. Thus, the limiting factor for the generation of a functional ribonucleic acid protein complex clearly resides in guide expression, which was probed by testing different linker lengths between the transfer RNA promoter and the sgRNA. The results highlight a clear deleterious effect of mismatching bases at the 5' end of the target sequence. For the first time in yeast, an investigation of its maturation from the primary transcript was undertaken by sequencing multiple sgRNAs extracted from the host. These data provide insights into of the yeast small RNA processing, from synthesis to maturation, and suggests a pathway for their degradation in Y. lipolytica. Subsequently, a whole-genome sequencing of a modified strain detected no abnormal modification due to off-target effects, confirming CRISPR/Cas9 as a safe strategy for editing Y. lipolytica genome. Finally, the optimized system was used to promote in vivo directed mutagenesis via homology-directed repair with a ssDNA oligonucleotide.
Collapse
Affiliation(s)
| | - Djamila Onésime
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, Paris, France
| | | | - Coraline Rigouin
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, Paris, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Florence Bordes
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.
| |
Collapse
|
314
|
Lehmann R, Lightfoot DJ, Schunter C, Michell CT, Ohyanagi H, Mineta K, Foret S, Berumen ML, Miller DJ, Aranda M, Gojobori T, Munday PL, Ravasi T. Finding Nemo's Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula. Mol Ecol Resour 2018; 19:570-585. [PMID: 30203521 PMCID: PMC7379943 DOI: 10.1111/1755-0998.12939] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.
Collapse
Affiliation(s)
- Robert Lehmann
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Damien J Lightfoot
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Celia Schunter
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Craig T Michell
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hajime Ohyanagi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sylvain Foret
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
315
|
van der Zee A, Kraak WB, Burggraaf A, Goessens WHF, Pirovano W, Ossewaarde JM, Tommassen J. Spread of Carbapenem Resistance by Transposition and Conjugation Among Pseudomonas aeruginosa. Front Microbiol 2018; 9:2057. [PMID: 30233535 PMCID: PMC6133989 DOI: 10.3389/fmicb.2018.02057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of carbapenem-resistant Pseudomonas aeruginosa represents a worldwide problem. To understand the carbapenem-resistance mechanisms and their spreading among P. aeruginosa strains, whole genome sequences were determined of two extensively drug-resistant strains that are endemic in Dutch hospitals. Strain Carb01 63 is of O-antigen serotype O12 and of sequence type ST111, whilst S04 90 is a serotype O11 strain of ST446. Both strains carry a gene for metallo-β-lactamase VIM-2 flanked by two aacA29 genes encoding aminoglycoside acetyltransferases on a class 1 integron. The integron is located on the chromosome in strain Carb01 63 and on a plasmid in strain S04 90. The backbone of the 159-kb plasmid, designated pS04 90, is similar to a previously described plasmid, pND6-2, from Pseudomonas putida. Analysis of the context of the integron showed that it is present in both strains on a ∼30-kb mosaic DNA segment composed of four different transposons that can presumably act together as a novel, active, composite transposon. Apart from the presence of a 1237-bp insertion sequence element in the composite transposon on pS04 90, these transposons show > 99% sequence identity indicating that transposition between plasmid and chromosome could have occurred only very recently. The pS04 90 plasmid could be transferred by conjugation to a susceptible P. aeruginosa strain. A second class 1 integron containing a gene for a CARB-2 β-lactamase flanked by an aacA4′-8 and an aadA2 gene, encoding an aminoglycoside acetyltransferase and adenylyltransferase, respectively, was present only in strain Carb01 63. This integron is located also on a composite transposon that is inserted in an integrative and conjugative element on the chromosome. Additionally, this strain contains a frameshift mutation in the oprD gene encoding a porin involved in the transport of carbapenems across the outer membrane. Together, the results demonstrate that integron-encoded carbapenem and carbapenicillin resistance can easily be disseminated by transposition and conjugation among Pseudomonas aeruginosa strains.
Collapse
Affiliation(s)
- Anneke van der Zee
- Laboratory of Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - W Bart Kraak
- Laboratory of Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | - Arjan Burggraaf
- Laboratory of Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands
| | | | | | - Jacobus M Ossewaarde
- Laboratory of Medical Microbiology, Molecular Diagnostics Unit, Maasstad Hospital, Rotterdam, Netherlands.,Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
316
|
Kobmoo N, Wichadakul D, Arnamnart N, Rodríguez De La Vega RC, Luangsa-ard JJ, Giraud T. A genome scan of diversifying selection inOphiocordycepszombie-ant fungi suggests a role for enterotoxins in co-evolution and host specificity. Mol Ecol 2018; 27:3582-3598. [DOI: 10.1111/mec.14813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Noppol Kobmoo
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay France
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | - Duangdao Wichadakul
- Chulalongkorn University Big Data Analytics and IoT Center (CUBIC); Department of Computer Engineering; Faculty of Engineering; Chulalongkorn University; Bangkok Thailand
- Center of Excellence in Systems Biology; Faculty of Medicine; Chulalongkorn University; Bangkok Thailand
| | - Nuntanat Arnamnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | | | - Janet J. Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC); National Science and Development Agency (NSTDA); Klhong Luang Thailand
| | - Tatiana Giraud
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay France
| |
Collapse
|
317
|
Lin J, Kimura BY, Oikarinen S, Nykter M. Bioinformatics Assembling and Assessment of Novel Coxsackievirus B1 Genome. Methods Mol Biol 2018; 1838:261-272. [PMID: 30129002 DOI: 10.1007/978-1-4939-8682-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The human microbiome project via application of metagenomic next-generation sequencing techniques has found surprising large and diverse amounts of microbial sequences across different body sites. There is a wave of investigators studying autoimmune related diseases designing from birth case and control studies to elucidate microbial associations and potential direct triggers. Sequencing analysis, considered big data as it typically includes millions of reads, is challenging but particularly demanding and complex is virome profiling due to its lack of pan-viral genomic signature. Impressively thousands of virus complete genomes have been deposited and these high-quality references are core components of virus profiling pipelines and databases. Still it is commonly known that most viral sequences do not map to known viruses. Moreover human viruses, particularly RNA groups, are notoriously heterogeneous due to high mutation rates. Here, we present the related assembling challenges and a series of bioinformatics steps that were applied in the construction of the complete consensus genome of a novel clinical isolate of Coxsackievirus B1. We further demonstrate our effort in calling mutations between prototype Coxsackievirus B1 sequence from GenBank and serial clinical isolate genome grown in cell culture.
Collapse
Affiliation(s)
- Jake Lin
- Computational Biology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland. .,Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| | - Bryn Y Kimura
- Computational Biology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Sami Oikarinen
- Computational Biology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Matti Nykter
- Computational Biology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
318
|
Turner JW, Tallman JJ, Macias A, Pinnell LJ, Elledge NC, Nasr Azadani D, Nilsson WB, Paranjpye RN, Armbrust EV, Strom MS. Comparative Genomic Analysis of Vibrio diabolicus and Six Taxonomic Synonyms: A First Look at the Distribution and Diversity of the Expanded Species. Front Microbiol 2018; 9:1893. [PMID: 30158916 PMCID: PMC6104160 DOI: 10.3389/fmicb.2018.01893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio is a diverse genus of Gammaproteobacteria autochthonous to marine environments worldwide. Vibrio diabolicus and V. antiquarius were originally isolated from deep-sea hydrothermal fields in the East Pacific Rise. These species are closely related to members of the Harveyi clade (e.g., V. alginolyticus and V. parahaemolyticus) that are commonly isolated from coastal systems. This study reports the discovery and draft genome sequence of a novel isolate (Vibrio sp. 939) cultured from Pacific oysters (Crassostrea gigas). Questions surrounding the identity of Vibrio sp. 939 motivated a genome-scale taxonomic analysis of the Harveyi clade. A 49-genome phylogeny based on 1,109 conserved coding sequences and a comparison of average nucleotide identity (ANI) values revealed a clear case of synonymy between Vibrio sp. 939, V. diabolicus Art-Gut C1 and CNCM I-1629, V. antiquarius EX25 and four V. alginolyticus strains (E0666, FF273, TS13, and V2). This discovery expands the V. diabolicus species and makes available six additional genomes for comparative genomic analyses. The distribution of the expanded species is thought to be global given the range of isolation sources (horse mackerel, seawater, sediment, dentex, oyster, artemia and polycheate) and origins (China, India, Greece, United States, East Pacific Rise, and Chile). A subsequent comparative genomic analysis of this new eight-genome subclade revealed a high degree of individual genome plasticity and a large repertoire of genes related to virulence and defense. These findings represent a significant revision to the understanding of V. diabolicus and V. antiquarius as both have long been regarded as distinct species. This first look at the expanded V. diabolicus subclade suggests that the distribution and diversity of this species mirrors that of other Harveyi clade species, which are notable for their ubiquity and diversity.
Collapse
Affiliation(s)
- Jeffrey W Turner
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - James J Tallman
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Amanda Macias
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Lee J Pinnell
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Nicole C Elledge
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Danial Nasr Azadani
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - William B Nilsson
- Division of Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - Rohinee N Paranjpye
- Division of Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - E V Armbrust
- Center for Environmental Genomics, School of Oceanography, University of Washington, Seattle, WA, United States
| | - Mark S Strom
- Division of Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| |
Collapse
|
319
|
Lemos RPM, Matielo CBD, Beise DC, da Rosa VG, Sarzi DS, Roesch LFW, Stefenon VM. Characterization of Plastidial and Nuclear SSR Markers for Understanding Invasion Histories and Genetic Diversity of Schinus molle L. BIOLOGY 2018; 7:biology7030043. [PMID: 30103413 PMCID: PMC6163545 DOI: 10.3390/biology7030043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
Invasive plant species are expected to display high dispersal capacity but low levels of genetic diversity due to the founder effect occurring at each invasion episode. Understanding the history of invasions and the levels of genetic diversity of such species is an important task for planning management and monitoring strategy for these events. Peruvian Peppertree (Schinus molle L.) is a pioneer tree species native from South America which was introduced in North America, Europe and Africa, becoming a threat to these non-native habitats. In this study, we report the discovery and characterization of 17 plastidial (ptSSR) and seven nuclear (nSSR) markers for S. molle based on low-coverage whole-genome sequencing data acquired through next-generation sequencing. The markers were tested in 56 individuals from two natural populations sampled in the Brazilian Caatinga and Pampa biomes. All loci are moderately to highly polymorphic and revealed to be suitable for genetic monitoring of new invasions, for understanding the history of old invasions, as well as for genetic studies of native populations in their natural occurrence range and of orchards established with commercial purposes.
Collapse
Affiliation(s)
- Rafael Plá Matielo Lemos
- Núcleo de Ecologia Molecular e Micropropagação de Plantas, Universidade Federal do Pampa, São Gabriel ZIP 97307-020, Brazil.
| | | | - Dalvan Carlos Beise
- Núcleo de Ecologia Molecular e Micropropagação de Plantas, Universidade Federal do Pampa, São Gabriel ZIP 97307-020, Brazil.
| | - Vanessa Gonçalves da Rosa
- Núcleo de Ecologia Molecular e Micropropagação de Plantas, Universidade Federal do Pampa, São Gabriel ZIP 97307-020, Brazil.
| | - Deise Schröder Sarzi
- Instituto de Bioquímica Médica Leopoldo de Meis-CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Luiz Fernando Würdig Roesch
- Centro Interdisciplinar de Pesquisas em Biotecnologia-CIP-Biotec, Campus São Gabriel, Universidade Federal do Pampa, São Gabriel ZIP 97307-020, Brazil.
| | - Valdir Marcos Stefenon
- Núcleo de Ecologia Molecular e Micropropagação de Plantas, Universidade Federal do Pampa, São Gabriel ZIP 97307-020, Brazil.
| |
Collapse
|
320
|
Pickett BD, Miller JB, Ridge PG. Kmer-SSR: a fast and exhaustive SSR search algorithm. Bioinformatics 2018; 33:3922-3928. [PMID: 28968741 PMCID: PMC5860095 DOI: 10.1093/bioinformatics/btx538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Motivation One of the main challenges with bioinformatics software is that the size and complexity of datasets necessitate trading speed for accuracy, or completeness. To combat this problem of computational complexity, a plethora of heuristic algorithms have arisen that report a ‘good enough’ solution to biological questions. However, in instances such as Simple Sequence Repeats (SSRs), a ‘good enough’ solution may not accurately portray results in population genetics, phylogenetics and forensics, which require accurate SSRs to calculate intra- and inter-species interactions. Results We present Kmer-SSR, which finds all SSRs faster than most heuristic SSR identification algorithms in a parallelized, easy-to-use manner. The exhaustive Kmer-SSR option has 100% precision and 100% recall and accurately identifies every SSR of any specified length. To identify more biologically pertinent SSRs, we also developed several filters that allow users to easily view a subset of SSRs based on user input. Kmer-SSR, coupled with the filter options, accurately and intuitively identifies SSRs quickly and in a more user-friendly manner than any other SSR identification algorithm. Availability and implementation The source code is freely available on GitHub at https://github.com/ridgelab/Kmer-SSR.
Collapse
|
321
|
MacManes MD. The Oyster River Protocol: a multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ 2018; 6:e5428. [PMID: 30083482 PMCID: PMC6078068 DOI: 10.7717/peerj.5428] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 07/21/2018] [Indexed: 11/24/2022] Open
Abstract
Characterizing transcriptomes in non-model organisms has resulted in a massive increase in our understanding of biological phenomena. This boon, largely made possible via high-throughput sequencing, means that studies of functional, evolutionary, and population genomics are now being done by hundreds or even thousands of labs around the world. For many, these studies begin with a de novo transcriptome assembly, which is a technically complicated process involving several discrete steps. The Oyster River Protocol (ORP), described here, implements a standardized and benchmarked set of bioinformatic processes, resulting in an assembly with enhanced qualities over other standard assembly methods. Specifically, ORP produced assemblies have higher Detonate and TransRate scores and mapping rates, which is largely a product of the fact that it leverages a multi-assembler and kmer assembly process, thereby bypassing the shortcomings of any one approach. These improvements are important, as previously unassembled transcripts are included in ORP assemblies, resulting in a significant enhancement of the power of downstream analysis. Further, as part of this study, I show that assembly quality is unrelated with the number of reads generated, above 30 million reads. Code Availability: The version controlled open-source code is available at https://github.com/macmanes-lab/Oyster_River_Protocol. Instructions for software installation and use, and other details are available at http://oyster-river-protocol.rtfd.org/.
Collapse
Affiliation(s)
- Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
322
|
Chen Q, Lan C, Zhao L, Wang J, Chen B, Chen YPP. Recent advances in sequence assembly: principles and applications. Brief Funct Genomics 2018; 16:361-378. [PMID: 28453648 DOI: 10.1093/bfgp/elx006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The application of advanced sequencing technologies and the rapid growth of various sequence data have led to increasing interest in DNA sequence assembly. However, repeats and polymorphism occur frequently in genomes, and each of these has different impacts on assembly. Further, many new applications for sequencing, such as metagenomics regarding multiple species, have emerged in recent years. These not only give rise to higher complexity but also prevent short-read assembly in an efficient way. This article reviews the theoretical foundations that underlie current mapping-based assembly and de novo-based assembly, and highlights the key issues and feasible solutions that need to be considered. It focuses on how individual processes, such as optimal k-mer determination and error correction in assembly, rely on intelligent strategies or high-performance computation. We also survey primary algorithms/software and offer a discussion on the emerging challenges in assembly.
Collapse
|
323
|
Xu J, Chu Y, Liao B, Xiao S, Yin Q, Bai R, Su H, Dong L, Li X, Qian J, Zhang J, Zhang Y, Zhang X, Wu M, Zhang J, Li G, Zhang L, Chang Z, Zhang Y, Jia Z, Liu Z, Afreh D, Nahurira R, Zhang L, Cheng R, Zhu Y, Zhu G, Rao W, Zhou C, Qiao L, Huang Z, Cheng YC, Chen S. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 2018; 6:1-15. [PMID: 29048480 PMCID: PMC5710592 DOI: 10.1093/gigascience/gix093] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/22/2017] [Indexed: 11/14/2022] Open
Abstract
Ginseng, which contains ginsenosides as bioactive compounds, has been regarded as an important traditional medicine for several millennia. However, the genetic background of ginseng remains poorly understood, partly because of the plant's large and complex genome composition. We report the entire genome sequence of Panax ginseng using next-generation sequencing. The 3.5-Gb nucleotide sequence contains more than 60% repeats and encodes 42 006 predicted genes. Twenty-two transcriptome datasets and mass spectrometry images of ginseng roots were adopted to precisely quantify the functional genes. Thirty-one genes were identified to be involved in the mevalonic acid pathway. Eight of these genes were annotated as 3-hydroxy-3-methylglutaryl-CoA reductases, which displayed diverse structures and expression characteristics. A total of 225 UDP-glycosyltransferases (UGTs) were identified, and these UGTs accounted for one of the largest gene families of ginseng. Tandem repeats contributed to the duplication and divergence of UGTs. Molecular modeling of UGTs in the 71st, 74th, and 94th families revealed a regiospecific conserved motif located at the N-terminus. Molecular docking predicted that this motif captures ginsenoside precursors. The ginseng genome represents a valuable resource for understanding and improving the breeding, cultivation, and synthesis biology of this key herb.
Collapse
Affiliation(s)
- Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Rui Bai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Linlin Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Qian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingli Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guozheng Li
- National Data Center of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhengwei Jia
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Zhixiang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Daniel Afreh
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
| | - Ruth Nahurira
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
| | - Lianjuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Rao
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Chao Zhou
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Lirui Qiao
- Waters Corporation Shanghai Science & Technology Co Ltd, Shanghai 201206, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Yung-Chi Cheng
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
324
|
Draft Genome Sequence of Bioactive Strain Streptomyces sp. SMS_SU21, Isolated from Soil Sediment of the Sundarbans Mangrove Ecosystem. GENOME ANNOUNCEMENTS 2018; 6:6/27/e00614-18. [PMID: 29976609 PMCID: PMC6033983 DOI: 10.1128/genomea.00614-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptomyces sp. SMS_SU21 possesses strong antimicrobial activity and antioxidant potential. This strain was isolated from the Sundarbans mangrove ecosystem, and its draft genome comprises 7,449,420 bp with 6,680 open reading frames. Genome analysis of strain SMS_SU21 provides insight into its secondary metabolite arsenal and reveals the gene clusters putatively responsible for its bioactive potential.
Collapse
|
325
|
Draft Genome Sequence of Bacillus altitudinis Lc5, a Biocontrol and Plant Growth-Promoting Endophyte Strain Isolated from Indigenous Black Rice of Manipur. GENOME ANNOUNCEMENTS 2018; 6:6/26/e00601-18. [PMID: 29954905 PMCID: PMC6025931 DOI: 10.1128/genomea.00601-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the 3.6-Mb draft genome of Bacillus altitudinis Lc5, a potential plant growth promoter and an active antagonistic endophyte of black rice. This genome study will provide better insights into the strain's mechanisms for plant growth promotion and biocontrol, thus facilitating its application in organic agriculture.
Collapse
|
326
|
Lee H, Golicz AA, Bayer PE, Severn-Ellis AA, Chan CKK, Batley J, Kendrick GA, Edwards D. Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3689-3702. [PMID: 29912443 PMCID: PMC6022596 DOI: 10.1093/jxb/ery147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/12/2018] [Indexed: 05/06/2023]
Abstract
Seagrasses are marine angiosperms that live fully submerged in the sea. They evolved from land plant ancestors, with multiple species representing at least three independent return-to-the-sea events. This raises the question of whether these marine angiosperms followed the same adaptation pathway to allow them to live and reproduce under the hostile marine conditions. To compare the basis of marine adaptation between seagrass lineages, we generated genomic data for Halophila ovalis and compared this with recently published genomes for two members of Zosteraceae, as well as genomes of five non-marine plant species (Arabidopsis, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Halophila and Zosteraceae represent two independent seagrass lineages separated by around 30 million years. Genes that were lost or conserved in both lineages were identified. All three species lost genes associated with ethylene and terpenoid biosynthesis, and retained genes related to salinity adaptation, such as those for osmoregulation. In contrast, the loss of the NADH dehydrogenase-like complex is unique to H. ovalis. Through comparison of two independent return-to-the-sea events, this study further describes marine adaptation characteristics common to seagrass families, identifies species-specific gene loss, and provides molecular evidence for convergent evolution in seagrass lineages.
Collapse
Affiliation(s)
- HueyTyng Lee
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, WA, Australia
| | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - Gary A Kendrick
- School of Biological Sciences, University of Western Australia, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, WA, Australia
| |
Collapse
|
327
|
Zhang X, Hu Y, Liu M, Lang T. Optimization of Assembly Pipeline may Improve the Sequence of the Chloroplast Genome in Quercus spinosa. Sci Rep 2018; 8:8906. [PMID: 29891987 PMCID: PMC5995970 DOI: 10.1038/s41598-018-27298-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/14/2018] [Indexed: 11/23/2022] Open
Abstract
Obtaining chloroplast (cp) genome sequence is necessary for studying physiological roles in plants. However, it is difficult to use traditional sequencing methods to get cp genome sequences because of the complex procedures of preparing templates. With the advent of next-generation sequencing technology, massive genome sequences can be produced. Thus, a good pipeline to assemble next-generation sequence reads with optimized k-mer length is essential to get whole cp genome sequences. Moreover, adjustment of other parameters is also very important, especially for the assembly of the cp genome. In this study, we developed a pipeline to generate the cp genome for Quercus spinosa. When Quercus rubra was used as a reference, we achieved coverage of 97.75% after optimizing k-mer length as well as other parameters. The efficiency of the pipeline makes it a useful method for cp genome construction in plants. It also provides great perspective on the analysis of cp genome characteristics and evolution.
Collapse
Affiliation(s)
- Xiangzhou Zhang
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China
| | - Yong Hu
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China
| | - Mei Liu
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China
| | - Tiange Lang
- Big Data Decision Institute, Jinan University, Tianhe, Guangzhou, P.R. China.
| |
Collapse
|
328
|
Grigorev K, Kliver S, Dobrynin P, Komissarov A, Wolfsberger W, Krasheninnikova K, Afanador-Hernández YM, Brandt AL, Paulino LA, Carreras R, Rodríguez LE, Núñez A, Brandt JR, Silva F, Hernández-Martich JD, Majeske AJ, Antunes A, Roca AL, O'Brien SJ, Martínez-Cruzado JC, Oleksyk TK. Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola. Gigascience 2018; 7:4931057. [PMID: 29718205 PMCID: PMC6009670 DOI: 10.1093/gigascience/giy025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/26/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022] Open
Abstract
Solenodons are insectivores that live in Hispaniola and Cuba. They form an isolated branch in the tree of placental mammals that are highly divergent from other eulipothyplan insectivores The history, unique biology, and adaptations of these enigmatic venomous species could be illuminated by the availability of genome data. However, a whole genome assembly for solenodons has not been previously performed, partially due to the difficulty in obtaining samples from the field. Island isolation and reduced numbers have likely resulted in high homozygosity within the Hispaniolan solenodon (Solenodon paradoxus). Thus, we tested the performance of several assembly strategies on the genome of this genetically impoverished species. The string graph-based assembly strategy seemed a better choice compared to the conventional de Bruijn graph approach due to the high levels of homozygosity, which is often a hallmark of endemic or endangered species. A consensus reference genome was assembled from sequences of 5 individuals from the southern subspecies (S. p. woodi). In addition, we obtained an additional sequence from 1 sample of the northern subspecies (S. p. paradoxus). The resulting genome assemblies were compared to each other and annotated for genes, with an emphasis on venom genes, repeats, variable microsatellite loci, and other genomic variants. Phylogenetic positioning and selection signatures were inferred based on 4,416 single-copy orthologs from 10 other mammals. We estimated that solenodons diverged from other extant mammals 73.6 million years ago. Patterns of single-nucleotide polymorphism variation allowed us to infer population demography, which supported a subspecies split within the Hispaniolan solenodon at least 300 thousand years ago.
Collapse
Affiliation(s)
- Kirill Grigorev
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Sergey Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Pavel Dobrynin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | - Walter Wolfsberger
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
- Biology Department, Uzhhorod National University, Uzhhorod, Ukraine
| | - Ksenia Krasheninnikova
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
| | | | - Adam L Brandt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Natural Sciences, St. Norbert College, De Pere, Wisconsin, USA
| | - Liz A Paulino
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Rosanna Carreras
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Luis E Rodríguez
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Adrell Núñez
- Department of Conservation and Science, Parque Zoologico Nacional (ZOODOM), Santo Domingo, Dominican Republic
| | - Jessica R Brandt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biology, Marian University, Fond du Lac, Wisconsin, USA
| | - Filipe Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto. Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - J David Hernández-Martich
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Audrey J Majeske
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto. Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | - Taras K Oleksyk
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
- Biology Department, Uzhhorod National University, Uzhhorod, Ukraine
| |
Collapse
|
329
|
Zhu S, Xu M, Wang H, Pan H, Wang G, Huang M. Study of spontaneous mutations in the transmission of poplar chloroplast genomes from mother to offspring. BMC Genomics 2018; 19:411. [PMID: 29843600 PMCID: PMC5975492 DOI: 10.1186/s12864-018-4813-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/22/2018] [Indexed: 11/12/2022] Open
Abstract
Background Chloroplasts have their own genomes, independent from nuclear genomes, that play vital roles in growth, which is a major targeted trait for genetic improvement in Populus. Angiosperm chloroplast genomes are maternally inherited, but the chloroplast’ variation pattern of poplar at the single-base level during the transmission from mother to offspring remains unknown. Results Here, we constructed high-quality and almost complete chloroplast genomes for three poplar clones, ‘NL895’ and its parents, ‘I69’ and ‘I45’, from the short-read datasets using multi-pass sequencing (15–16 times per clone) and ultra-high coverage (at least 8500× per clone), with the four-step strategy of Simulation–Assembly–Merging–Correction. Each of the three resulting chloroplast assemblies contained contigs covering > 99% of Populus trichocarpa chloroplast DNA as a reference. A total of 401 variant loci were identified by a hybrid strategy of genome comparison-based and mapping-based single nucleotide polymorphism calling. The genotypes of 94 variant loci were different among the three poplar clones. However, only 1 of the 94 loci was a missense mutation, which was located in the exon region of rpoC1 encoding the β’ subunit of plastid-encoded RNA polymerase. The genotype of the loci in NL895 and its female parent (I69) was different from that of its male parent (I45). Conclusions This research provides resources for further chloroplast genomic studies of a F1 full-sibling family derived from a cross between I69 and I45, and will improve the application of chloroplast genomic information in modern Populus breeding programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4813-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Haoran Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Huixin Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guangping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minren Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
330
|
Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 2018; 33:2202-2204. [PMID: 28369201 DOI: 10.1093/bioinformatics/btx153] [Citation(s) in RCA: 1129] [Impact Index Per Article: 161.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 03/17/2017] [Indexed: 02/03/2023] Open
Abstract
Summary GenomeScope is an open-source web tool to rapidly estimate the overall characteristics of a genome, including genome size, heterozygosity rate and repeat content from unprocessed short reads. These features are essential for studying genome evolution, and help to choose parameters for downstream analysis. We demonstrate its accuracy on 324 simulated and 16 real datasets with a wide range in genome sizes, heterozygosity levels and error rates. Availability and Implementation http://genomescope.org , https://github.com/schatzlab/genomescope.git . Contact mschatz@jhu.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gregory W Vurture
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Fritz J Sedlazeck
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Maria Nattestad
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Charles J Underwood
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Han Fang
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - James Gurtowski
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.,Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
331
|
Anselmetti Y, Duchemin W, Tannier E, Chauve C, Bérard S. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes. BMC Genomics 2018; 19:96. [PMID: 29764366 PMCID: PMC5954271 DOI: 10.1186/s12864-018-4466-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. Results We present a computational method, ADseq, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADseq provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADseq to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. Conclusions We demonstrate the method’s ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression. Electronic supplementary material The online version of this article (10.1186/s12864-018-4466-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoann Anselmetti
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France
| | - Wandrille Duchemin
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France.,INRIA Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin, 38330, France
| | - Eric Tannier
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 43 Boulevard du 11 novembre 1918, Villeurbanne cedex, 69622, France.,INRIA Grenoble - Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot-Saint-Martin, 38330, France
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, V5A1S6, BC, Canada
| | - Sèverine Bérard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| |
Collapse
|
332
|
Genome Sequence of Lysinibacillus sphaericus, a Lignin-Degrading Bacterium Isolated from Municipal Solid Waste Soil. GENOME ANNOUNCEMENTS 2018; 6:6/18/e00353-18. [PMID: 29724838 PMCID: PMC5940948 DOI: 10.1128/genomea.00353-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report here the draft genome sequence of Lysinibacillus sphaericus strain A1, a potential lignin-degrading bacterium isolated from municipal solid waste (MSW) soil and capable of enhancing gas release from lignocellulose-containing soil.
Collapse
|
333
|
Complete Genome Sequence of Escherichia coli AS19, an Antibiotic-Sensitive Variant of E. coli Strain B REL606. GENOME ANNOUNCEMENTS 2018; 6:6/18/e00385-18. [PMID: 29724850 PMCID: PMC5940949 DOI: 10.1128/genomea.00385-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chemically mutagenized Escherichia coli strain AS19 was isolated on the basis of its enhanced sensitivity to different antibiotics, in particular to actinomycin. The strain was later modified to study rRNA modifications that confer antibiotic resistance. Here, we present the genome sequence of the variant E. coli AS19-RrmA-.
Collapse
|
334
|
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F. Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality. Genome Biol Evol 2018; 9:1781-1787. [PMID: 28854634 PMCID: PMC5570047 DOI: 10.1093/gbe/evx125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
The putatively asexual Colpodean ciliates potentially pose a problem to macro-organismic theories of evolution. They are extremely ancient (although asexuality is thought to hasten extinction), and yet there is one apparently derived sexual species (implying an unlikely regain of a complex trait). If macro-organismic theories of evolution also broadly apply to microbial eukaryotes, though, then most or all of the colpodean ciliates should merely be secretively sexual. Here we show using de novo genome sequencing, that colpodean ciliates have the meiotic genes required for sex and these genes are under functional constraint. Along with these genomic data, we argue that these ciliates are sexual given the cytological observations of both micronuclei and macronuclei within their cells, and the behavioral observations of brief fusions as if the cells were mating. The challenge that colpodean ciliates pose is therefore not to evolutionary theory, but to our ability to induce microbial eukaryotic sex in the laboratory.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Karen Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| |
Collapse
|
335
|
Tvedte ES, Forbes AA, Logsdon JM. Retention of Core Meiotic Genes Across Diverse Hymenoptera. J Hered 2018; 108:791-806. [PMID: 28992199 DOI: 10.1093/jhered/esx062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
The cellular mechanisms of meiosis are critical for proper gamete formation in sexual organisms. Functional studies in model organisms have identified genes essential for meiosis, yet the extent to which this core meiotic machinery is conserved across non-model systems is not fully understood. Moreover, it is unclear whether deviation from canonical modes of sexual reproduction is accompanied by modifications in the genetic components involved in meiosis. We used a robust approach to identify and catalogue meiosis genes in Hymenoptera, an insect order typically characterized by haplodiploid reproduction. Using newly available genome data, we searched for 43 genes involved in meiosis in 18 diverse hymenopterans. Seven of eight genes with roles specific to meiosis were found across a majority of surveyed species, suggesting the preservation of core meiotic machinery in haplodiploid hymenopterans. Phylogenomic analyses of the inventory of meiosis genes and the identification of shared gene duplications and losses provided support for the grouping of species within Proctotrupomorpha, Ichneumonomorpha, and Aculeata clades, along with a paraphyletic Symphyta. The conservation of meiosis genes across Hymenoptera provides a framework for studying transitions between reproductive modes in this insect group.
Collapse
Affiliation(s)
- Eric S Tvedte
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Andrew A Forbes
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
336
|
Blanchoud S, Rutherford K, Zondag L, Gemmell NJ, Wilson MJ. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution. Sci Rep 2018; 8:5518. [PMID: 29615780 PMCID: PMC5882950 DOI: 10.1038/s41598-018-23749-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians.
Collapse
Affiliation(s)
- Simon Blanchoud
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kim Rutherford
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Lisa Zondag
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
337
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
338
|
Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, Belkaid Y, Segre JA, Kong HH. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med 2018; 9:9/397/eaal4651. [PMID: 28679656 DOI: 10.1126/scitranslmed.aal4651] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/22/2017] [Indexed: 12/13/2022]
Abstract
The heterogeneous course, severity, and treatment responses among patients with atopic dermatitis (AD; eczema) highlight the complexity of this multifactorial disease. Prior studies have used traditional typing methods on cultivated isolates or sequenced a bacterial marker gene to study the skin microbial communities of AD patients. Shotgun metagenomic sequence analysis provides much greater resolution, elucidating multiple levels of microbial community assembly ranging from kingdom to species and strain-level diversification. We analyzed microbial temporal dynamics from a cohort of pediatric AD patients sampled throughout the disease course. Species-level investigation of AD flares showed greater Staphylococcus aureus predominance in patients with more severe disease and Staphylococcus epidermidis predominance in patients with less severe disease. At the strain level, metagenomic sequencing analyses demonstrated clonal S. aureus strains in more severe patients and heterogeneous S. epidermidis strain communities in all patients. To investigate strain-level biological effects of S. aureus, we topically colonized mice with human strains isolated from AD patients and controls. This cutaneous colonization model demonstrated S. aureus strain-specific differences in eliciting skin inflammation and immune signatures characteristic of AD patients. Specifically, S. aureus isolates from AD patients with more severe flares induced epidermal thickening and expansion of cutaneous T helper 2 (TH2) and TH17 cells. Integrating high-resolution sequencing, culturing, and animal models demonstrated how functional differences of staphylococcal strains may contribute to the complexity of AD disease.
Collapse
Affiliation(s)
- Allyson L Byrd
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.,Department of Bioinformatics, Boston University, Boston, MA 02215, USA.,Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Clay Deming
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sara K B Cassidy
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Oliver J Harrison
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Weng-Ian Ng
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sean Conlan
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA.,NIAID Microbiome Program, Department of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Heidi H Kong
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
339
|
Toenshoff ER, Fields PD, Bourgeois YX, Ebert D. The End of a 60-year Riddle: Identification and Genomic Characterization of an Iridovirus, the Causative Agent of White Fat Cell Disease in Zooplankton. G3 (BETHESDA, MD.) 2018; 8:1259-1272. [PMID: 29487186 PMCID: PMC5873915 DOI: 10.1534/g3.117.300429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
The planktonic freshwater crustacean of the genus Daphnia are a model system for biomedical research and, in particular, invertebrate-parasite interactions. Up until now, no virus has been characterized for this system. Here we report the discovery of an iridovirus as the causative agent of White Fat Cell Disease (WFCD) in Daphnia WFCD is a highly virulent disease of Daphnia that can easily be cultured under laboratory conditions. Although it has been studied from sites across Eurasia for more than 60 years, its causative agent had not been described, nor had an iridovirus been connected to WFCD before now. Here we find that an iridovirus-the Daphnia iridescent virus 1 (DIV-1)-is the causative agent of WFCD. DIV-1 has a genome sequence of about 288 kbp, with 39% G+C content and encodes 367 predicted open reading frames. DIV-1 clusters together with other invertebrate iridoviruses but has by far the largest genome among all sequenced iridoviruses. Comparative genomics reveal that DIV-1 has apparently recently lost a substantial number of unique genes but has also gained genes by horizontal gene transfer from its crustacean host. DIV-1 represents the first invertebrate iridovirus that encodes proteins to purportedly cap RNA, and it contains unique genes for a DnaJ-like protein, a membrane glycoprotein and protein of the immunoglobulin superfamily, which may mediate host-pathogen interactions and pathogenicity. Our findings end a 60-year search for the causative agent of WFCD and add to our knowledge of iridovirus genomics and invertebrate-virus interactions.
Collapse
Affiliation(s)
- Elena R Toenshoff
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter D Fields
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Yann X Bourgeois
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Dieter Ebert
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
340
|
Rasmussen TB, Boniotti MB, Papetti A, Grasland B, Frossard JP, Dastjerdi A, Hulst M, Hanke D, Pohlmann A, Blome S, van der Poel WHM, Steinbach F, Blanchard Y, Lavazza A, Bøtner A, Belsham GJ. Full-length genome sequences of porcine epidemic diarrhoea virus strain CV777; Use of NGS to analyse genomic and sub-genomic RNAs. PLoS One 2018; 13:e0193682. [PMID: 29494671 PMCID: PMC5832266 DOI: 10.1371/journal.pone.0193682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 11/30/2022] Open
Abstract
Porcine epidemic diarrhoea virus, strain CV777, was initially characterized in 1978 as the causative agent of a disease first identified in the UK in 1971. This coronavirus has been widely distributed among laboratories and has been passaged both within pigs and in cell culture. To determine the variability between different stocks of the PEDV strain CV777, sequencing of the full-length genome (ca. 28kb) has been performed in 6 different laboratories, using different protocols. Not surprisingly, each of the different full genome sequences were distinct from each other and from the reference sequence (Accession number AF353511) but they are >99% identical. Unique and shared differences between sequences were identified. The coding region for the surface-exposed spike protein showed the highest proportion of variability including both point mutations and small deletions. The predicted expression of the ORF3 gene product was more dramatically affected in three different variants of this virus through either loss of the initiation codon or gain of a premature termination codon. The genome of one isolate had a substantially rearranged 5´-terminal sequence. This rearrangement was validated through the analysis of sub-genomic mRNAs from infected cells. It is clearly important to know the features of the specific sample of CV777 being used for experimental studies.
Collapse
Affiliation(s)
- Thomas Bruun Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| | - Maria Beatrice Boniotti
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Alice Papetti
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Béatrice Grasland
- ANSES–Laboratory of Ploufragan-Plouzané –BP 53, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Jean-Pierre Frossard
- Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom
| | - Akbar Dastjerdi
- Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom
| | - Marcel Hulst
- Wageningen BioVeterinary Research, Department of Virology, Lelystad, The Netherlands
| | - Dennis Hanke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Germany
| | | | - Falko Steinbach
- Animal and Plant Health Agency, Department of Virology, Weybridge, Addlestone, Surrey, United Kingdom
| | - Yannick Blanchard
- ANSES–Laboratory of Ploufragan-Plouzané –BP 53, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Antonio Lavazza
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Anette Bøtner
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| | - Graham J. Belsham
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, Kalvehave, Denmark
| |
Collapse
|
341
|
Li F, Harkess A. A guide to sequence your favorite plant genomes. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1030. [PMID: 29732260 PMCID: PMC5895188 DOI: 10.1002/aps3.1030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/29/2017] [Indexed: 05/12/2023]
Abstract
With the rapid development of sequencing technology and the plummeting cost, assembling whole genomes from non-model plants will soon become routine for plant systematists and evolutionary biologists. Here we summarize and compare several of the latest genome sequencing and assembly approaches, offering a practical guide on how to approach a genome project. We also highlight certain precautions that need to be taken before investing time and money into a genome project.
Collapse
Affiliation(s)
- Fay‐Wei Li
- Boyce Thompson InstituteIthacaNew York14853USA
- Plant Biology SectionCornell UniversityIthacaNew York14853USA
| | - Alex Harkess
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| |
Collapse
|
342
|
Marcionetti A, Rossier V, Bertrand JAM, Litsios G, Salamin N. First draft genome of an iconic clownfish species (Amphiprion frenatus). Mol Ecol Resour 2018; 18:1092-1101. [PMID: 29455459 DOI: 10.1111/1755-0998.12772] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Victor Rossier
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joris A M Bertrand
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Glenn Litsios
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
343
|
Xu L, Li Y, Biggins JB, Bowman BR, Verdine GL, Gloer JB, Alspaugh JA, Bills GF. Identification of cyclosporin C from Amphichorda felina using a Cryptococcus neoformans differential temperature sensitivity assay. Appl Microbiol Biotechnol 2018; 102:2337-2350. [PMID: 29396588 DOI: 10.1007/s00253-018-8792-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
We used a temperature differential assay with the opportunistic fungal pathogen Cryptococcus neoformans as a simple screening platform to detect small molecules with antifungal activity in natural product extracts. By screening of a collection extracts from two different strains of the coprophilous fungus, Amphichorda felina, we detected strong, temperature-dependent antifungal activity using a two-plate agar zone of inhibition assay at 25 and 37 °C. Bioassay-guided fractionation of the crude extract followed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) identified cyclosporin C (CsC) as the main component of the crude extract responsible for growth inhibition of C. neoformans at 37 °C. The presence of CsC was confirmed by comparison with a commercial standard. We sequenced the genome of A. felina to identify and annotate the CsC biosynthetic gene cluster. The only previously characterized gene cluster for the biosynthesis of similar compounds is that of the related immunosuppressant drug cyclosporine A (CsA). The CsA and CsC gene clusters share a high degree of synteny and sequence similarity. Amino acid changes in the adenylation domain of the CsC nonribosomal peptide synthase's sixth module may be responsible for the substitution of L-threonine compared to L-α-aminobutyric acid in the CsA peptide core. This screening strategy promises to yield additional antifungal natural products with a focused spectrum of antimicrobial activity.
Collapse
Affiliation(s)
- Lijian Xu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA
- College of Agricultural Resources and Environment, Heilongjiang University, Harbin, 150080, China
| | - Yan Li
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - John B Biggins
- LifeMine Therapeutics, 430 E. 29th Street, Suite 830, New York, NY, 10016, USA
| | - Brian R Bowman
- LifeMine Therapeutics, 430 E. 29th Street, Suite 830, New York, NY, 10016, USA
| | - Gregory L Verdine
- LifeMine Therapeutics, 430 E. 29th Street, Suite 830, New York, NY, 10016, USA
| | - James B Gloer
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - J Andrew Alspaugh
- Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1881 East Road, 3SCR6.4676, Houston, TX, 77054, USA.
| |
Collapse
|
344
|
Kraaijeveld K, Anvar SY, Frank J, Schmitz A, Bast J, Wilbrandt J, Petersen M, Ziesmann T, Niehuis O, de Knijff P, den Dunnen JT, Ellers J. Decay of Sexual Trait Genes in an Asexual Parasitoid Wasp. Genome Biol Evol 2018; 8:3685-3695. [PMID: 28172869 PMCID: PMC5381511 DOI: 10.1093/gbe/evw273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 12/25/2022] Open
Abstract
Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, The Netherlands.,Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Seyed Yahya Anvar
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Frank
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud Schmitz
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jeanne Wilbrandt
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Malte Petersen
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Tanja Ziesmann
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Oliver Niehuis
- Zoological Research Museum Alexander Koenig, Center for Molecular Biodiversity Research, Bonn, Germany
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan T den Dunnen
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Animal Ecology, Department of Ecological Sciences, VU University Amsterdam, The Netherlands
| |
Collapse
|
345
|
Touzain F, Le Devendec L, de Boisséson C, Baron S, Jouy E, Perrin-Guyomard A, Blanchard Y, Kempf I. Characterization of plasmids harboring blaCTX-M and blaCMY genes in E. coli from French broilers. PLoS One 2018; 13:e0188768. [PMID: 29360838 PMCID: PMC5779644 DOI: 10.1371/journal.pone.0188768] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Resistance to extended-spectrum cephalosporins (ESC) is a global health issue. The aim of this study was to analyze and compare plasmids coding for resistance to ESC isolated from 16 avian commensal and 17 avian pathogenic Escherichia coli (APEC) strains obtained respectively at slaughterhouse or from diseased broilers in 2010-2012. Plasmid DNA was used to transform E. coli DH5alpha, and the resistances of the transformants were determined. The sequences of the ESC-resistance plasmids prepared from transformants were obtained by Illumina (33 plasmids) or PacBio (1 plasmid). Results showed that 29 of these plasmids contained the blaCTX-M-1 gene and belonged to the IncI1/ST3 type, with 27 and 20 of them carrying the sul2 or tet(A) genes respectively. Despite their diverse origins, several plasmids showed very high percentages of identity. None of the blaCTX-M-1-containing plasmid contained APEC virulence genes, although some of them were detected in the parental strains. Three plasmids had the blaCMY-2 gene, but no other resistance gene. They belonged to IncB/O/K/Z-like or IncFIA/FIB replicon types. The blaCMY-2 IncFIA/FIB plasmid was obtained from a strain isolated from a diseased broiler and also containing a blaCTX-M-1 IncI1/ST3 plasmid. Importantly APEC virulence genes (sitA-D, iucA-D, iutA, hlyF, ompT, etsA-C, iss, iroB-E, iroN, cvaA-C and cvi) were detected on the blaCMY-2 plasmid. In conclusion, our results show the dominance and high similarity of blaCTX-M-1 IncI1/ST3 plasmids, and the worrying presence of APEC virulence genes on a blaCMY-2 plasmid.
Collapse
Affiliation(s)
- Fabrice Touzain
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Laetitia Le Devendec
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Claire de Boisséson
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Sandrine Baron
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Eric Jouy
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Agnès Perrin-Guyomard
- Université Bretagne Loire, Rennes, France
- ANSES, Fougères Laboratory, Fougères, France
| | - Yannick Blanchard
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| | - Isabelle Kempf
- ANSES, Ploufragan Laboratory, Ploufragan, France
- Université Bretagne Loire, Rennes, France
| |
Collapse
|
346
|
Acuña-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genomics 2018; 19:54. [PMID: 29338683 PMCID: PMC5771137 DOI: 10.1186/s12864-017-4429-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation. RESULTS We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. CONCLUSIONS In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.,Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aline Primot
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Alain Roulet
- GenoToul Genome & Transcriptome (GeT-PlaGe), INRA, US1426, Castanet-Tolosan, France
| | - Frédérique Barloy-Hubler
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.
| |
Collapse
|
347
|
Liu Z, Wang Y, Tong X, Su Y, Yang L, Wang D, Zhao Y. De novo assembly and comparative transcriptome characterization of Poecilobdella javanica provide insight into blood feeding of medicinal leeches. Mol Omics 2018; 14:352-361. [DOI: 10.1039/c8mo00098k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leeches (family Hirudinidae) are classic model invertebrates used in diverse clinical treatments, such as reconstructive microsurgery, hypertension, and gangrene treatment.
Collapse
Affiliation(s)
- Zichao Liu
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Yanjie Wang
- Jules Stein Eye Institute, Department of Ophthalmology, University of California
- Los Angeles
- USA
| | - Xiangrong Tong
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Yuan Su
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Lijiang Yang
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Debin Wang
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles
- Los Angeles
- USA
| |
Collapse
|
348
|
Abstract
A high-quality, annotated genome assembly is the foundation for many downstream studies. However, obtaining such an assembly is a complex, reiterative process that requires the assimilation of high-quality data and combines different approaches and data types. While some software packages incorporating multiple steps of genome assembly are commercially available, they may not be flexible enough to be routinely applied to all organisms, particularly to nonmodel species such as pathogenic oomycetes and fungi. If researchers understand and apply the most appropriate, currently available tools for each step, it is possible to customize parameters and optimize results for their organism of study. Based on our experience of de novo assembly and annotation of several oomycete species, this chapter provides a modular workflow from processing of raw reads, to initial assembly generation, through optimization, chromosome-scale scaffolding and annotation, outlining input and output data as well as examples and alternative software used for each step. The accompanying Notes provide background information for each step as well as alternative options. The final result of this workflow could be an annotated, high-quality, validated, chromosome-scale assembly or a draft assembly of sufficient quality to meet specific needs of a project.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, Davis, CA, USA
| | - Richard Michelmore
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, Davis, CA, USA.
| |
Collapse
|
349
|
Burger NFV, Botha AM. Genome of Russian wheat aphid an economically important cereal aphid. Stand Genomic Sci 2017; 12:90. [PMID: 29299110 PMCID: PMC5745598 DOI: 10.1186/s40793-017-0307-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
Although the hemipterans (Aphididae) are comprised of roughly 50,000 extant insect species, only four have sequenced genomes that are publically available, namely Acyrthosiphon pisum (pea aphid), Rhodnius prolixus (Kissing bug), Myzus persicae (Green peach aphid) and Diuraphis noxia (Russian wheat aphid). As a significant proportion of agricultural pests are phloem feeding aphids, it is crucial for sustained global food security that a greater understanding of the genomic and molecular functioning of this family be elucidated. Recently, the genome of US D. noxia biotype US2 was sequenced but its assembly only incorporated ~ 32% of produced reads and contained a surprisingly low gene count when compared to that of the model/first sequenced aphid, A. pisum. To this end, we present here the genomes of two South African Diuraphis noxia (Kurdjumov, Hemiptera: Aphididae) biotypes (SA1 and SAM), obtained after sequencing the genomes of the only two D. noxia biotypes with documented linked genealogy. To better understand overall targets and patterns of heterozygosity, we also sequenced a pooled sample of 9 geographically separated D. noxia populations (MixIX). We assembled a 399 Mb reference genome (PRJNA297165, representing 64% of the projected genome size 623 Mb) using ± 28 Gb of 101 bp paired-end HiSeq2000 reads from the D. noxia biotype SAM, whilst ± 13 Gb 101 bp paired-end HiSeq2000 reads from the D. noxia biotype SA1 were generated to facilitate genomic comparisons between the two biotypes. Sequencing the MixIX sample yielded ±26 Gb 50 bp paired-end SOLiD reads which facilitated SNP detection when compared to the D. noxia biotype SAM assembly. Ab initio gene calling produced a total of 31,885 protein coding genes from the assembled contigs spanning ~ 399 Mb (GCA_001465515.1).
Collapse
Affiliation(s)
| | - Anna-Maria Botha
- University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, Western Cape 7602 South Africa
| |
Collapse
|
350
|
López G, Diaz-Cárdenas C, Shapiro N, Woyke T, Kyrpides NC, David Alzate J, González LN, Restrepo S, Baena S. Draft genome sequence of Pseudomonas extremaustralis strain USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand Genomic Sci 2017; 12:78. [PMID: 29255573 PMCID: PMC5731063 DOI: 10.1186/s40793-017-0292-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Here we present the physiological features of Pseudomonas extremaustralis strain USBA-GBX-515 (CMPUJU 515), isolated from soils in Superparamo ecosystems, > 4000 m.a.s.l, in the northern Andes of South America, as well as the thorough analysis of the draft genome. Strain USBA-GBX-515 is a Gram-negative rod shaped bacterium of 1.0–3.0 μm × 0.5–1 μm, motile and unable to form spores, it grows aerobically and cells show one single flagellum. Several genetic indices, the phylogenetic analysis of the 16S rRNA gene sequence and the phenotypic characterization confirmed that USBA-GBX-515 is a member of Pseudomonas genus and, the similarity of the 16S rDNA sequence was 100% with P. extremaustralis strain CT14–3T. The draft genome of P. extremaustralis strain USBA-GBX-515 consisted of 6,143,638 Mb with a G + C content of 60.9 mol%. A total of 5665 genes were predicted and of those, 5544 were protein coding genes and 121 were RNA genes. The distribution of genes into COG functional categories showed that most genes were classified in the category of amino acid transport and metabolism (10.5%) followed by transcription (8.4%) and signal transduction mechanisms (7.3%). We performed experimental analyses of the lipolytic activity and results showed activity mainly on short chain fatty acids. The genome analysis demonstrated the existence of two genes, lip515A and est515A, related to a triacylglycerol lipase and carboxylesterase, respectively. Ammonification genes were also observed, mainly nitrate reductase genes. Genes related with synthesis of poly-hydroxyalkanoates (PHAs), especially poly-hydroxybutyrates (PHBs), were detected. The phaABC and phbABC operons also appeared complete in the genome. P. extremaustralis strain USBA-GBX-515 conserves the same gene organization of the type strain CT14–3T. We also thoroughly analyzed the potential for production of secondary metabolites finding close to 400 genes in 32 biosynthetic gene clusters involved in their production.
Collapse
Affiliation(s)
- Gina López
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, DC Colombia
| | - Carolina Diaz-Cárdenas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, DC Colombia
| | - Nicole Shapiro
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - J David Alzate
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A - 12, Bogotá, DC Colombia
| | - Laura N González
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A - 12, Bogotá, DC Colombia
| | - Silvia Restrepo
- Biological Sciences Department, Universidad de los Andes, Cra 1 No. 18A - 12, Bogotá, DC Colombia
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá, DC Colombia
| |
Collapse
|