301
|
Boşgelmez-Tinaz G, Ulusoy S, Aridoğan B, Eroğlu F, Kaya S. N-butanoyl-l-homoserine lactone (BHL) deficient Pseudomonas aeruginosa isolates from an intensive care unit. Microbiol Res 2005; 160:399-403. [PMID: 16255145 DOI: 10.1016/j.micres.2005.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria, and several virulence genes of human pathogens are known to be controlled by AHLs. In this study, strains of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae, isolated from intensive care patients, were screened for AHL production by using AHL responsive indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1. Positive reactions were recorded for all 50 isolates of P. aeruginosa and 10 isolates of Acinetobacter baumannii with Agrobacterium tumefaciens NT1. Surprisingly, most P. aeruginosa isolates gave negative results with C. violaceum CV026 in contrast to previous reports. This suggests that the new isolates of P. aeruginosa either failed to make short chain AHLs or the level of the signal molecule is very low.
Collapse
|
302
|
Monier JM, Lindow SE. Spatial organization of dual-species bacterial aggregates on leaf surfaces. Appl Environ Microbiol 2005; 71:5484-93. [PMID: 16151141 PMCID: PMC1214633 DOI: 10.1128/aem.71.9.5484-5493.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/01/2005] [Indexed: 11/20/2022] Open
Abstract
The spatial organization of cells within bacterial aggregates on leaf surfaces was determined for pair-wise mixtures of three different bacterial species commonly found on leaves, Pseudomonas syringae, Pantoea agglomerans, and Pseudomonas fluorescens. Cells were coinoculated onto bean plants and allowed to grow under moist conditions, and the resulting aggregates were examined in situ by epifluorescence microscopy. Each bacterial strain could be localized because it expressed either the green or the cyan fluorescent protein constitutively, and the viability of individual cells was assessed by propidium iodide staining. Each pair of bacterial strains that was coinoculated onto leaves formed mixed aggregates. The degree of segregation of cells in mixed aggregates differed between the different coinoculated pairs of strains and was higher in mixtures of P. fluorescens A506 and P. agglomerans 299R and mixtures of P. syringae B728a and P. agglomerans 299R than in mixtures of two isogenic strains of P. agglomerans 299R. The fractions of the total cell population that were dead in mixed and monospecific aggregates of a gfp-marked strain of P. agglomerans 299R and a cfp-marked strain of P. agglomerans 299R, or of P. fluorescens A506 and P. agglomerans 299R, were similar. However, the proportion of dead cells in mixed aggregates of P. syringae B728a and P. agglomerans 299R was significantly higher (13.2% +/- 8.2%) than that in monospecific aggregates of these two strains (1.6% +/- 0.7%), and it increased over time. While dead cells in such mixed aggregates were preferentially found at the interface between clusters of cells of these strains, cells of these two strains located at the interface did not exhibit equal probabilities of mortality. After 9 days of incubation, about 77% of the P. agglomerans 299R cells located at the interface were dead, while only about 24% of the P. syringae B728a cells were dead. The relevance of our results to understanding bacterial interactions on leaf surfaces and the implications for biological control of pathogenic and other deleterious microorganisms is discussed.
Collapse
Affiliation(s)
- J-M Monier
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California-Berkeley, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
303
|
Pongsilp N, Triplett EW, Sadowsky MJ. Detection of homoserine lactone-like quorum sensing molecules in bradyrhizobium strains. Curr Microbiol 2005; 51:250-4. [PMID: 16132457 DOI: 10.1007/s00284-005-4550-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
One hundred and forty-two Bradyrhizobium strains were screened for their ability to produce N-acyl homoserine lactone-like molecules (AHLs) by using an Agrobacterium tumefaciens biosensor strain containing a traI-lacZ fusion. Approximately 22% (31 of 142) of the tested strains produced AHLs that induced moderate to elevated beta-galactosidase activity levels in the biosensor strain. Bradyrhizobium japonicum and Bradyrhizobium elkanii strains were both shown to produce AHLs. Age of culture, and media composition were each shown to influence production of AHL(s), with greater production occurring in 2 day-old cultures grown in rich media. Reverse-phase high-performance liquid chromatography and thin-layer chromatography analyses indicated that the B. japonicum strain USDA 290 produced at least two types of AHLs. Our results indicate that the production AHL-like autoinducers is widespread among both B. japonicum and B. elkanii strains.
Collapse
|
304
|
Rasch M, Andersen JB, Nielsen KF, Flodgaard LR, Christensen H, Givskov M, Gram L. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 2005; 71:3321-30. [PMID: 15933035 PMCID: PMC1151799 DOI: 10.1128/aem.71.6.3321-3330.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial communication signals, acylated homoserine lactones (AHLs), were extracted from samples of commercial bean sprouts undergoing soft-rot spoilage. Bean sprouts produced in the laboratory did not undergo soft-rot spoilage and did not contain AHLs or AHL-producing bacteria, although the bacterial population reached levels similar to those in the commercial sprouts, 10(8) to 10(9) CFU/g. AHL-producing bacteria (Enterobacteriaceae and pseudomonads) were isolated from commercial sprouts, and strains that were both proteolytic and pectinolytic were capable of causing soft-rot spoilage in bean sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic activity, and the higher pH probably facilitated the activity of pectate lyase. The AHL synthetase gene (I gene) from a spoilage Pectobacterium was cloned, sequenced, and inactivated in the parent strain. The predicted amino acid sequence showed 97% homology to HslI and CarI in Erwinia carotovora. Spoilage of laboratory bean sprouts inoculated with the AHL-negative mutant was delayed compared to sprouts inoculated with the wild type, and the AHL-negative mutant did not cause the pH to rise. Compared to the wild-type strain, the AHL-negative mutant had significantly reduced protease and pectinase activities and was negative in an iron chelation (siderophore) assay. This is the first study demonstrating AHL regulation of iron chelation in Enterobacteriaceae. The present study clearly demonstrates that the bacterial spoilage of some food products is influenced by quorum-sensing-regulated phenotypes, and understanding these processes may be useful in the development of novel food preservation additives that specifically block the quorum-sensing systems.
Collapse
Affiliation(s)
- Maria Rasch
- Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, c/o Technical University of Denmark Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
305
|
Burton EO, Read HW, Pellitteri MC, Hickey WJ. Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt. Appl Environ Microbiol 2005; 71:4906-9. [PMID: 16085894 PMCID: PMC1183371 DOI: 10.1128/aem.71.8.4906-4909.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 03/16/2005] [Indexed: 11/20/2022] Open
Abstract
Nitrosomonas europaea strain Schmidt produces at least three acyl homoserine lactone (AHL) signal molecules: C(6)-homoserine lactone (HSL), C(8)-HSL, and C(10)-HSL. These compounds were identified in extracts of chemostat culture effluent by three independent methods. The concentrations of AHL in effluent were low (0.4 to 2.2 nM) but within the range known to induce AHL-responsive systems. The absence of LuxI and LuxM homologs from the genome of N. europaea strain Schmidt suggested that AHL synthesis occurs by an alternate pathway, possibly mediated by an HdtS homolog. To the best of our knowledge, the present report is the first to document the types and levels of AHLs produced by N. europaea.
Collapse
Affiliation(s)
- E O Burton
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706-1299, USA
| | | | | | | |
Collapse
|
306
|
Burmølle M, Hansen LH, Sørensen SJ. Use of a whole-cell biosensor and flow cytometry to detect AHL production by an indigenous soil community during decomposition of litter. MICROBIAL ECOLOGY 2005; 50:221-9. [PMID: 16195831 DOI: 10.1007/s00248-004-0113-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 10/29/2004] [Indexed: 05/04/2023]
Abstract
Quorum sensing, mediated by acylated homoserine lactones (AHLs), is well described for pure culture bacteria, but few studies report detection of AHL compounds in natural bacterial habitats. In this study, we detect AHL production during a degradation process in soil by use of whole-cell biosensor technology and flow cytometry analysis. An indigenous soil bacterium, belonging to the family of Enterobacteriaceae, was isolated and transformed with a low-copy plasmid harboring a gene encoding an unstable variant of the green fluorescent protein (gfpASV) fused to the AHL-regulated P(luxI) promoter originating from Vibrio fischeri. This resulted in a whole-cell biosensor, responding to the presence of AHL compounds. The biosensor was introduced to compost soil microcosms amended with nettle leaves. After 3 days of incubation, cells were extracted and analyzed by flow cytometry. All microcosms contained induced biosensors. From these microcosms, AHL producers were isolated and further identified as species previously shown to produce AHLs. The results demonstrate that AHL compounds are produced during degradation of litter in soil, indicating the presence of AHL-mediated quorum sensing in this environment.
Collapse
Affiliation(s)
- Mette Burmølle
- Department of Microbiology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
307
|
Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 2005; 102:11064-9. [PMID: 16043691 PMCID: PMC1182459 DOI: 10.1073/pnas.0504930102] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The complete genomic sequence of Pseudomonas syringae pv. syringae B728a (Pss B728a) has been determined and is compared with that of P. syringae pv. tomato DC3000 (Pst DC3000). The two pathovars of this economically important species of plant pathogenic bacteria differ in host range and other interactions with plants, with Pss having a more pronounced epiphytic stage of growth and higher abiotic stress tolerance and Pst DC3000 having a more pronounced apoplastic growth habitat. The Pss B728a genome (6.1 Mb) contains a circular chromosome and no plasmid, whereas the Pst DC3000 genome is 6.5 mbp in size, composed of a circular chromosome and two plasmids. Although a high degree of similarity exists between the two sequenced Pseudomonads, 976 protein-encoding genes are unique to Pss B728a when compared with Pst DC3000, including large genomic islands likely to contribute to virulence and host specificity. Over 375 repetitive extragenic palindromic sequences unique to Pss B728a when compared with Pst DC3000 are widely distributed throughout the chromosome except in 14 genomic islands, which generally had lower GC content than the genome as a whole. Content of the genomic islands varies, with one containing a prophage and another the plasmid pKLC102 of Pseudomonas aeruginosa PAO1. Among the 976 genes of Pss B728a with no counterpart in Pst DC3000 are those encoding for syringopeptin, syringomycin, indole acetic acid biosynthesis, arginine degradation, and production of ice nuclei. The genomic comparison suggests that several unique genes for Pss B728a such as ectoine synthase, DNA repair, and antibiotic production may contribute to the epiphytic fitness and stress tolerance of this organism.
Collapse
Affiliation(s)
- Helene Feil
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Flodgaard LR, Dalgaard P, Andersen JB, Nielsen KF, Givskov M, Gram L. Nonbioluminescent strains of Photobacterium phosphoreum produce the cell-to-cell communication signal N-(3-Hydroxyoctanoyl)homoserine lactone. Appl Environ Microbiol 2005; 71:2113-20. [PMID: 15812045 PMCID: PMC1082519 DOI: 10.1128/aem.71.4.2113-2120.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence is a common phenotype in marine bacteria, such as Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets, which spoil due to growth of Photobacterium phosphoreum. Interestingly, AHLs were produced by 13 nonbioluminescent strains of P. phosphoreum isolated from the product. Of 177 strains of P. phosphoreum (including 18 isolates from this study), none of 74 bioluminescent strains elicited a reaction in the AHL monitor, whereas 48 of 103 nonbioluminescent strains did produce AHLs. AHLs were also detected in Aeromonas spp., but not in Shewanella strains. Thin-layer chromatographic profiles of cod extracts and P. phosphoreum culture supernatants identified a molecule similar in relative mobility (Rf value) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non-AHL-producing strain of P. phosphoreum) was strongly up-regulated during growth, whereas AHL production in a nonbioluminescent strain of P. phosphoreum appeared constitutive. AHLs apparently did not influence bioluminescence, as the addition of neither synthetic AHLs nor supernatants delayed or reduced this phenotype in luminescent strains of P. phosphoreum. The phenotypes of nonbioluminescent P. phosphoreum strains regulated by AHLs remains to be elucidated.
Collapse
Affiliation(s)
- L R Flodgaard
- Department of Seafood Research, Danish Institute for Fisheries Research, Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
309
|
Balestrino D, Haagensen JAJ, Rich C, Forestier C. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol 2005; 187:2870-80. [PMID: 15805533 PMCID: PMC1070389 DOI: 10.1128/jb.187.8.2870-2880.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing is a process by which bacteria communicate by using secreted chemical signaling molecules called autoinducers. Many bacterial species modulate the expression of a wide variety of physiological functions in response to changes in population density by this mechanism. In this study, the opportunistic pathogen Klebsiella pneumoniae was observed to secrete type 2 signaling molecules. A homologue of luxS, the gene required for AI-2 synthesis in Vibrio harveyi, was isolated from the K. pneumoniae genome. A V. harveyi bioassay showed the luxS functionality in K. pneumoniae and its ability to complement the luxS-negative phenotype of Escherichia coli DH5alpha. Autoinducer activity was detected in the supernatant, and maximum expression of specific messengers detected by quantitative reverse transcription-PCR analysis occurred during the late exponential phase. The highest levels of AI-2 were observed in minimal medium supplemented with glycerol. To determine the potential role of luxS in colonization processes, a K. pneumoniae luxS isogenic mutant was constructed and tested for its capacity to form biofilms in vitro on an abiotic surface and to colonize the intestinal tract in a murine model. No difference was observed in the level of intestinal colonization between the wild-type strain and the luxS mutant. Microscopic analysis of biofilm structures revealed that the luxS mutant was able to form a mature biofilm but with reduced capacities in the development of microcolonies, mostly in the early steps of biofilm formation. These data suggest that a LuxS-dependent signal plays a role in the early stages of biofilm formation by K. pneumoniae.
Collapse
Affiliation(s)
- Damien Balestrino
- Laboratoire de Bactériologie, Faculté de Pharmacie, Université d'Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
310
|
Molina L, Rezzonico F, Défago G, Duffy B. Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 2005; 187:3206-13. [PMID: 15838048 PMCID: PMC1082838 DOI: 10.1128/jb.187.9.3206-3213.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.
Collapse
Affiliation(s)
- Lázaro Molina
- Swiss Federal Institute of Technology (ETHZ), Institute for Plant Sciences, Phytopathology Group, Zürich, Switzerland.
| | | | | | | |
Collapse
|
311
|
Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 2005; 71:2632-41. [PMID: 15870355 PMCID: PMC1087586 DOI: 10.1128/aem.71.5.2632-2641.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-acylhomoserine lactones (AHLs) play an important role in regulating virulence factors in pathogenic bacteria. Recently, the enzymatic inactivation of AHLs, which can be used as antibacterial targets, has been identified in several soil bacteria. In this study, strain M664, identified as a Streptomyces sp., was found to secrete an AHL-degrading enzyme into a culture medium. The ahlM gene for AHL degradation from Streptomyces sp. strain M664 was cloned, expressed heterologously in Streptomyces lividans, and purified. The enzyme was found to be a heterodimeric protein with subunits of approximately 60 kDa and 23 kDa. A comparison of AhlM with known AHL-acylases, Ralstonia strain XJ12B AiiD and Pseudomonas aeruginosa PAO1 PvdQ, revealed 35% and 32% identities in the deduced amino acid sequences, respectively. However, AhlM was most similar to the cyclic lipopeptide acylase from Streptomyces sp. strain FERM BP-5809, exhibiting 93% identity. A mass spectrometry analysis demonstrated that AhlM hydrolyzed the amide bond of AHL, releasing homoserine lactone. AhlM exhibited a higher deacylation activity toward AHLs with long acyl chains rather than short acyl chains. Interestingly, AhlM was also found to be capable of degrading penicillin G by deacylation, showing that AhlM has a broad substrate specificity. The addition of AhlM to the growth medium reduced the accumulation of AHLs and decreased the production of virulence factors, including elastase, total protease, and LasA, in P. aeruginosa. Accordingly, these results suggest that AHL-acylase, AhlM could be effectively applied to the control of AHL-mediated pathogenicity.
Collapse
Affiliation(s)
- Sun-Yang Park
- R&D Center, INBIONET Corporation, Daejeon 305-390, Korea
| | | | | | | | | | | |
Collapse
|
312
|
Llamas I, Quesada E, Martínez-Cánovas MJ, Gronquist M, Eberhard A, González JE. Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the exopolysaccharide-producing species of Halomonas. Extremophiles 2005; 9:333-41. [PMID: 15909077 DOI: 10.1007/s00792-005-0448-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 03/11/2005] [Indexed: 01/24/2023]
Abstract
Some members of the moderately halophilic genus Halomonas, such as H. eurihalina, H. maura, H. ventosae and H. anticariensis, produce exopolysaccharides with applications in many industrial fields. We report here that these four species also produce autoinducer molecules that are involved in the cell-to-cell signaling process known as quorum sensing. By using the N-acyl homoserine lactone (AHL) indicator strains Agrobacterium tumefaciens NTL4 (pZRL4) and Chromobacterium violaceum CV026, we discovered that all the Halomonas strains examined synthesize detectable AHL signal molecules. The synthesis of these compounds was growth-phase dependent and maximal activity was reached during the late exponential to stationary phases. One of these AHLs seems to be synthesized only in the stationary phase. Some of the AHLs produced by H. anticariens FP35(T) were identified by gas chromatography/mass spectrometry and electrospray ionization tandem mass spectrometry as N-butanoyl homoserine lactone (C(4)-HL), N-hexanoyl homoserine lactone (C(6)-HL), N-octanoyl homoserine lactone (C(8)-HL) and N-dodecanoyl homoserine lactone (C(12)-HL). This study suggests that quorum sensing may also play an important role in extreme environments.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
313
|
Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, Van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Microbiol 2005; 55:1187-1192. [PMID: 15879253 DOI: 10.1099/ijs.0.63149-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic populations associated with various plants. Seven related strains were recovered from Dutch soils. Based on 16S rRNA gene sequence data, strain PsJNT and the Dutch strains were identified as representing a member of the genus Burkholderia, as they were closely related to Burkholderia fungorum (98·7 %) and Burkholderia phenazinium (98·5 %). Analysis of whole-cell protein profiles and DNA–DNA hybridization experiments confirmed that all eight strains belonged to a single species. Strain PsJNT had a DNA G+C content of 61·0 mol%. Only low levels of DNA–DNA hybridization to closely related species were found. Qualitative and quantitative differences in fatty acid composition between strain PsJNT and closely related species were identified. The predominant fatty acids in strain PsJNT were 16 : 0, 18 : 1ω7c and summed feature 3 (comprising 16 : 1ω7c and/or iso-15 : 0 2-OH). Isolate PsJNT showed high 1-aminocyclopropane-1-carboxylate deaminase activity and is therefore able to lower the ethylene level in a developing or stressed plant. Production of the quorum-sensing signal compound 3-hydroxy-C8-homoserine lactone was detected. Based on the results of this polyphasic taxonomic study, strain PsJNT and the seven Dutch isolates are considered to represent a single, novel species, for which the name Burkholderia phytofirmans sp. nov. is proposed. The type strain is strain PsJNT (=LMG 22146T=CCUG 49060T).
Collapse
Affiliation(s)
- A Sessitsch
- ARC Seibersdorf research GmbH, Department of Bioresources/Microbiology, A-2444 Seibersdorf, Austria
| | - T Coenye
- Laboratory of Microbiology, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - A V Sturz
- Prince Edward Island Department of Agriculture and Forestry, PO Box 1600, Charlottetown, PEI, Canada C1A 7N3
| | - P Vandamme
- Laboratory of Microbiology, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | - E Ait Barka
- Université de Reims Champagne-Ardenne, UFR Sciences, URVVC, Laboratoire de Stress, Défenses et Reproduction des Plantes, BP 1039, F-51687 Reims Cedex 2, France
| | - J F Salles
- Plant Research International, Wageningen, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - J D Van Elsas
- Department of Microbial Ecology, Groningen University, Biological Center, PO Box 14, 9750 RA Haren, The Netherlands
| | - D Faure
- Institut des Sciences du Végétal, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - B Reiter
- ARC Seibersdorf research GmbH, Department of Bioresources/Microbiology, A-2444 Seibersdorf, Austria
| | - B R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - G Wang-Pruski
- Department of Plant and Animal Sciences, Nova Scotia Agricultural College, PO Box 550, Truro, NS, Canada B2N 5E3
| | - J Nowak
- Department of Horticulture, Virginia Polytechnic Institute and State University, 0327-301 Saunders Hall, Blacksburg, VA 24060, USA
| |
Collapse
|
314
|
Jacques MA, Josi K, Darrasse A, Samson R. Xanthomonas axonopodis pv. phaseoli var. fuscans is aggregated in stable biofilm population sizes in the phyllosphere of field-grown beans. Appl Environ Microbiol 2005; 71:2008-15. [PMID: 15812033 PMCID: PMC1082538 DOI: 10.1128/aem.71.4.2008-2015.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/05/2004] [Indexed: 11/20/2022] Open
Abstract
The occurrence of "Xanthomonas axonopodis pv. phaseoli var. fuscans" (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 10(5) CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.
Collapse
Affiliation(s)
- M-A Jacques
- UMR PaVé, Centre INRA, 42, rue George Morel, BP 60057, 49071 Beaucouzé cedex, France.
| | | | | | | |
Collapse
|
315
|
Wang YJ, Leadbetter JR. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl Environ Microbiol 2005; 71:1291-9. [PMID: 15746331 PMCID: PMC1065188 DOI: 10.1128/aem.71.3.1291-1299.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/08/2004] [Indexed: 11/20/2022] Open
Abstract
Signal degradation impacts all communications. Although acyl-homoserine lactone (acyl-HSL) quorum-sensing signals are known to be degraded by defined laboratory cultures, little is known about their stability in nature. Here, we show that acyl-HSLs are biodegraded in soils sampled from diverse U.S. sites and by termite hindgut contents. When amended to samples at physiologically relevant concentrations, 14C-labeled acyl-HSLs were mineralized to 14CO2 rapidly and, at most sites examined, without lag. A lag-free turf soil activity was characterized in further detail. Heating or irradiation of the soil prior to the addition of radiolabel abolished mineralization, whereas protein synthesis inhibitors did not. Mineralization exhibited an apparent Km of 1.5 microM acyl-HSL, ca. 1,000-fold lower than that reported for a purified acyl-HSL lactonase. Under optimal conditions, acyl-HSL degradation proceeded at a rate of 13.4 nmol x h(-1) x g of fresh weight soil(-1). Bioassays established that the final extent of signal inactivation was greater than for its full conversion to CO2 but that the two processes were well coupled kinetically. A most probable number of 4.6 x 10(5) cells . g of turf soil(-1) degraded physiologically relevant amounts of hexanoyl-[1-14C]HSL to 14CO2. It would take chemical lactonolysis months to match the level of signal decay achieved in days by the observed biological activity. Rapid decay might serve either to quiet signal cross talk that might otherwise occur between spatially separated microbial aggregates or as a full system reset. Depending on the context, biological signal decay might either promote or complicate cellular communications and the accuracy of population density-based controls on gene expression in species-rich ecosystems.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Environmental Science and Engineering, WM Keck Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
316
|
Yap MN, Yang CH, Barak JD, Jahn CE, Charkowski AO. The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. J Bacteriol 2005; 187:639-48. [PMID: 15629935 PMCID: PMC543537 DOI: 10.1128/jb.187.2.639-648.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacterial animal pathogens exhibit aggregative multicellular behavior, which is manifested as pellicles on the culture surface and biofilms at the surface-liquid-air interface. Pellicle formation behavior requires production of extracellular polysaccharide, cellulose, and protein filaments, known as curli. Protein filaments analogous to curli are formed by many protein secretion systems, including the type III secretion system (TTSS). Here, we demonstrate that Erwinia chrysanthemi, which does not carry curli genes, requires the TTSS for pellicle formation. These data support a model where cellulose and generic protein filaments, which consist of either curli or TTSS-secreted proteins, are required for enterobacterial aggregative multicellular behavior. Using this assay, we found that hrpY, which encodes a two-component system response regulator homolog, is required for activity of hrpS, which encodes a sigma54-dependent enhancer-binding protein homolog. In turn, hrpS is required for activity of the sigma factor homolog hrpL, which activates genes encoding TTSS structural and secreted proteins. Pellicle formation was temperature dependent and pellicles did not form at 36 degrees C, even though TTSS genes were expressed at this temperature. We found that cellulose is a component of the E. chrysanthemi pellicle but that pellicle formation still occurs in a strain with an insertion in a cellulose synthase subunit homolog. Since the TTSS, but not the cellulose synthase subunit, is required for E. chrysanthemi pellicle formation, this inexpensive assay can be used as a high throughput screen for TTSS mutants or inhibitors.
Collapse
Affiliation(s)
- Mee-Ngan Yap
- Department of Plant Pathology, 1630 Linden Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
317
|
Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 2005; 33:577-86. [PMID: 15673718 PMCID: PMC548351 DOI: 10.1093/nar/gki206] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nucleotide sequence was determined for the genome of Xanthomonas oryzae pathovar oryzae (Xoo) KACC10331, a bacterium that causes bacterial blight in rice (Oryza sativa L.). The genome is comprised of a single, 4 941 439 bp, circular chromosome that is G + C rich (63.7%). The genome includes 4637 open reading frames (ORFs) of which 3340 (72.0%) could be assigned putative function. Orthologs for 80% of the predicted Xoo genes were found in the previously reported X.axonopodis pv. citri (Xac) and X.campestris pv. campestris (Xcc) genomes, but 245 genes apparently specific to Xoo were identified. Xoo genes likely to be associated with pathogenesis include eight with similarity to Xanthomonas avirulence (avr) genes, a set of hypersensitive reaction and pathogenicity (hrp) genes, genes for exopolysaccharide production, and genes encoding extracellular plant cell wall-degrading enzymes. The presence of these genes provides insights into the interactions of this pathogen with its gramineous host.
Collapse
Affiliation(s)
- Byoung-Moo Lee
- National Institute of Agricultural Biotechnology, Rural Development Administration Suwon 441-707, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Hao G, Zhang H, Zheng D, Burr TJ. luxR homolog avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hypersensitive response. J Bacteriol 2005; 187:185-92. [PMID: 15601702 PMCID: PMC538803 DOI: 10.1128/jb.187.1.185-192.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 09/16/2004] [Indexed: 11/20/2022] Open
Abstract
The luxR homolog aviR in Agrobacterium vitis strain F2/5 was recently shown to be associated with induction of a hypersensitive response (HR) on tobacco and necrosis on grape plants, indicating that the responses are regulated by quorum sensing. We now report a second luxR homolog, avhR, whose disruption (mutant M1320) results in HR-negative and reduced grape necrosis phenotypes. The deduced AvhR protein has characteristic autoinducer binding and DNA binding domains and is unique among reported functional LuxR homologs in having substitutions at highly conserved Asp70, Trp57, and Trp85 residues, which are predicted to play important roles in autoinducer binding in TraR. M1320 was fully complemented with cloned avhR. The same array of N-acylhomoserine lactones (AHL) from F2/5, M1320, and complemented M1320 were observed; however, the signal strength from extracts of 6-day-old M1320 cultures was stronger than that of F2/5. Cultures of F2/5 amended with AHL extracts from overnight and 6-day cultures of F2/5 and M1320 were not affected in ability to cause HR or necrosis. A region of about 14 kb flanking avhR was sequenced and compared with homologous regions of A. tumefaciens C58 and Sinorhizobium meliloti Rm1021 genomes. Gene order and homology are conserved between the species. A site-directed mutation in a putative gene that resides downstream of avhR and that has homology to genes belonging to the ATP-binding cassette transporter family did not affect HR or necrosis phenotypes. It was determined that avhR and aviR are expressed independently and that neither regulates the expression of a clpA homolog in F2/5.
Collapse
Affiliation(s)
- Guixia Hao
- Department of Plant Pathology, NYSAES, Cornell University, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
319
|
d'Angelo-Picard C, Faure D, Carlier A, Uroz S, Raffoux A, Fray R, Dessaux Y. Bacterial populations in the rhizosphere of tobacco plants producing the quorum-sensing signals hexanoyl-homoserine lactone and 3-oxo-hexanoyl-homoserine lactone. FEMS Microbiol Ecol 2004; 51:19-29. [PMID: 16329853 DOI: 10.1016/j.femsec.2004.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 06/21/2004] [Accepted: 07/10/2004] [Indexed: 11/15/2022] Open
Abstract
A tobacco line genetically modified to produce two N-acyl homoserine lactones and its non-transformed parental line were grown in non-sterile soil. Microbial populations inhabiting the bulk soil, and those colonizing the root system of the two tobacco lines, were analyzed using cultivation-independent (phospholipid fatty acid and denaturing gradient gel electrophoresis) and cultivation-based assays. The cell density of total cultivable bacteria, fluorescent pseudomonads, sporulated, and thermotolerant bacteria was also determined in a time-course experiment (15 weeks). A possible "rhizosphere effect" related to the development of the plant was seen. However, no dissimilarities in cell population densities or population ratios of the microbial groups were detected in the rhizosphere of the two plant lines. Similarly, bacterial communities that either produced N-acyl homoserine lactone or degraded the signal hexanoyl homoserine lactone were enumerated from the two plant lines. No noticeable differences were evidenced from one plant genotype to the other. Whilst the transgenic plants released detectable amounts of the quorum-sensing signal molecules and efficiently cross-talked with the surrounding microbial populations, the bias generated by these signals in the reported experimental conditions therefore appears to remain weak, if not non-existent.
Collapse
Affiliation(s)
- Cathy d'Angelo-Picard
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, Bâtiment 23, F-91198, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
320
|
Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N. Involvement of N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1269-78. [PMID: 15553252 DOI: 10.1094/mpmi.2004.17.11.1269] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Erwinia carotovora subsp. atroseptica is responsible for potato blackleg disease in the field and tuber soft rot during crop storage. The process leading to the disease occurs in two phases: a primary invasion step followed by a maceration step. Bacteria-to-bacteria communication is associated with a quorum-sensing (QS) process based on the production of N-acylhomoserine lactones (HSL). The role of HSL throughout plant infection was analyzed. To this purpose, HSL produced by a specific E. carotovora subsp. atroseptica wild-type strain, which was particularly virulent on potato, were identified. A derivative of this strain that expressed an HSL lactonase gene and produced low amounts of HSL was generated. The comparison of these strains allowed the evaluation of the role of HSL and QS in disease establishment and development. Bacterial growth and motility; activity of proteins secreted by type I, II, and III systems; and hypersensitive and maceration reactions were evaluated. Results indicated that HSL production and QS regulate only those traits involved in the second stage of the host plant infection (i.e., tissue maceration) and hypersensitive response in nonhost tobacco plants. Therefore, the use of QS quenching strategies for biological control in E. carotovora subsp. atroseptica cannot prevent initial infection and multiplication of this pathogen.
Collapse
Affiliation(s)
- Bruno Smadja
- Laboratoire de Microbiologie du Froid--UPRES 2123, Université de Rouen, 55 rue Saint-Germain, 27000 Evreux, France
| | | | | | | | | | | |
Collapse
|
321
|
Bruhn JB, Christensen AB, Flodgaard LR, Nielsen KF, Larsen TO, Givskov M, Gram L. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat. Appl Environ Microbiol 2004; 70:4293-302. [PMID: 15240313 PMCID: PMC444785 DOI: 10.1128/aem.70.7.4293-4302.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an R(f) value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS) analysis confirmed the presence of OHHL in pure cultures of H. alvei. Vacuum-packed meat spoiled at the same rate when inoculated with the H. alvei wild type compared to a corresponding AHL-lacking mutant. Addition of specific QS inhibitors to the AHL-producing H. alvei inoculated in meat or to naturally contaminated meat did not influence the spoilage of vacuum-packed meat. An extracellular protein of approximately 20 kDa produced by the H. alvei wild-type was not produced by the AHL-negative mutant but was restored in the mutant when complemented by OHHL, thus indicating that AHLs do have a regulatory role in H. alvei. Coinoculation of H. alvei wild-type with an AHL-deficient Serratia proteamaculans B5a, in which protease secretion is QS regulated, caused spoilage of liquid milk. By contrast, coinoculation of AHL-negative strains of H. alvei and S. proteamaculans B5a did not cause spoilage. In conclusion, AHL and AHL-producing bacteria are present in vacuum-packed meat during storage and spoilage, but AHL does not appear to influence the spoilage of this particular type of conserved meat. Our data indicate that AHL-producing H. alvei may induce food quality-relevant phenotypes in other bacterial species in the same environment. H. alvei may thus influence spoilage of food products in which Enterobacteriaceae participate in the spoilage process.
Collapse
Affiliation(s)
- Jesper Bartholin Bruhn
- Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, c/o Technical University of Denmark bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
322
|
Carlier A, Chevrot R, Dessaux Y, Faure D. The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:951-7. [PMID: 15384485 DOI: 10.1094/mpmi.2004.17.9.951] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Agrobacterium tumefaciens C58 communicates using N-acyl-homoserine lactones (acyl-HSL) and contains two lactonase-encoding genes, attM and aiiB, the products of which are capable of inactivating the acyl-HSL signal. In A. tumefaciens A6, the expression of the attKLM operon is controlled by the transcriptional repressor encoded by an adjacent gene, attJ. An attJ::Tn5 mutant does not accumulate acyl-HSL because of the constitutive expression of the lactonase AttM, the activity of which inactivates acyl-HSL. In this work, the attKLM operon of A. tumefaciens C58 was shown to be involved in an assimilative pathway of gamma-butyrolactone (GBL), gamma-hydroxybutyrate (GHB), and succinate semialdehyde (SSA), in which AttM and AttL are key enzymes for GBL and GHB assimilation. The expression of the attKLM promoter was activated in the presence of GBL, GHB, and SSA. Under these conditions, A. tumefaciens C58 did not accumulate the acyl-HSL that it naturally synthesizes, and also became able to inactivate exogenous acyl-HSL signals. Therefore, in A. tumefaciens C58, the assimilative pathway of gamma-butyrolactone interferes with the acyl-HSL signaling.
Collapse
Affiliation(s)
- Aurélien Carlier
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
323
|
Llamas I, Keshavan N, González JE. Use of Sinorhizobium meliloti as an indicator for specific detection of long-chain N-acyl homoserine lactones. Appl Environ Microbiol 2004; 70:3715-23. [PMID: 15184178 PMCID: PMC427785 DOI: 10.1128/aem.70.6.3715-3723.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population-density-dependent gene expression in gram-negative bacteria involves the production of signal molecules characterized as N-acyl homoserine lactones (AHLs). The synthesis of AHLs by numerous microorganisms has been identified by using biosensor strains based on the Agrobacterium tumefaciens and Chromobacterium violaceum quorum-sensing systems. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti is rapidly becoming a model organism for the study of quorum sensing. This organism harbors at least three different quorum-sensing systems (Sin, Mel, and Tra), which play a role in its symbiotic relationship with its host plant, alfalfa. The Sin system is distinguished among them for the production of long-chain AHLs, including C(18)-HL, the longest AHL reported so far. In this work, we show that construction of a sinI::lacZ transcriptional fusion results in a strain that detects long-chain AHLs with exquisite sensitivity. Overexpression of the SinR regulator protein from a vector promoter increases its sensitivity without loss of specificity. We also show that the resulting indicator strain can recognize long-chain AHLs produced by unrelated bacteria such as Paracoccus denitrificans and Rhodobacter capsulatus. This S. meliloti indicator strain should serve as a tool for the specific detection of long-chain AHLs in new systems.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | |
Collapse
|
324
|
Martinelli D, Grossmann G, Séquin U, Brandl H, Bachofen R. Effects of natural and chemically synthesized furanones on quorum sensing in Chromobacterium violaceum. BMC Microbiol 2004; 4:25. [PMID: 15233843 PMCID: PMC509243 DOI: 10.1186/1471-2180-4-25] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 07/02/2004] [Indexed: 11/10/2022] Open
Abstract
Background Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1. Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? Results The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. Conclusion As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for LuxR proteins. For further experiments it is important to be aware of the fact that quorum sensing active compounds have non-linear effects. Inducers can act as inhibitors and inhibitors might be able to activate or enhance the quorum sensing system depending on chemical structure and concentration levels.
Collapse
Affiliation(s)
- Daniel Martinelli
- University of Zurich, Institut für Umweltwissenschaften, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- University of Zurich, Institute of Plant Biology, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Gilles Grossmann
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Urs Séquin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Helmut Brandl
- University of Zurich, Institut für Umweltwissenschaften, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Reinhard Bachofen
- University of Zurich, Institute of Plant Biology, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
325
|
Lazdunski AM, Ventre I, Sturgis JN. Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2004; 2:581-92. [PMID: 15197393 DOI: 10.1038/nrmicro924] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Andrée M Lazdunski
- Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | |
Collapse
|
326
|
Hentzer M, Eberl L, Nielsen J, Givskov M. Quorum sensing : a novel target for the treatment of biofilm infections. BioDrugs 2004; 17:241-50. [PMID: 12899641 DOI: 10.2165/00063030-200317040-00003] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Present-day treatment of chronic infections is based on compounds that aim to kill or inhibit growth of bacteria. Two problems are recognised to be intrinsically associated with this approach: (i) the frequently observed development of resistance to antimicrobial compounds; and (ii) the fact that all therapeutics are considerably less effective on bacteria growing as biofilms when compared with planktonic cells. The latter point is of particular importance as evidence has accumulated over the past few years that most chronic bacterial infections involve biofilms. The discovery of bacterial communication systems (quorum sensing systems) in Gram-negative bacteria which are believed to orchestrate important temporal events during the infectious process, including the production of virulence factors and the formation of biofilms, has afforded a novel opportunity to control the activity of infecting bacteria by other means than interfering with growth. Compounds that interfere with communication systems are present in nature. Such compounds should not only specifically attenuate the production of virulence factors but should also affect biofilm formation in a manner that is unlikely to pose a selective pressure for the development of resistant mutants.
Collapse
Affiliation(s)
- Morten Hentzer
- Molecular Microbiology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
327
|
Jafra S, van der Wolf JM. Fast screening method for detection of acyl-HSL-degrading soil isolates. J Microbiol Methods 2004; 57:415-20. [PMID: 15134889 DOI: 10.1016/j.mimet.2004.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/17/2022]
Abstract
A reliable method was developed for screening of bacteria isolates capable of degrading acyl-HSLs, the signal molecules in quorum-sensing-mediated processes of many Proteobacteria. The microtiter assay was based on the use of a GFP-marked Escherichia coli strain, which fluoresces upon the presence of acyl-HSLs. Measurement of GFP fluorescence with a Molecular Imager FX scanner (fluorometer) detected isolates capable of degrading acyl-HSLs. The potential of this method was demonstrated by isolation of different bacteria from a potato rhizosphere able to inactivate synthetic and natural acyl HSLs produced by Pectobacterium carotovorum subsp. carotovorum (Pcc) (Erwinia carotovora subsp. carotovora (Ecc)).
Collapse
Affiliation(s)
- Sylwia Jafra
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
328
|
Veselova M, Kholmeckaya M, Klein S, Voronina E, Lipasova V, Metlitskaya A, Mayatskaya A, Lobanok E, Khmel I, Chernin L. Production of N-acylhomoserine lactone signal molecules by gram-negative soil-borne and plant-associated bacteria. Folia Microbiol (Praha) 2004; 48:794-8. [PMID: 15058194 DOI: 10.1007/bf02931516] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum-sensing control mediated by N-acylhomoserine lactone (AHL) signal molecules has been established as a key feature in the regulation of various metabolic traits in many bacteria. Approximately 300 strains representing 6 genera and 18 species of soil-borne and plant-associated Gram-negative bacteria isolated in various regions of the former USSR using two reporter systems were screened for AHL production. The production was observed in 17.5% of the screened bacterial strains. Positive response was detected in all of the 14 tested strains of Erwinia herbicola, in 41 of the 239 strains of Pseudomonas species; in all 5 strains of Xanthomonas ampelina, X. campestris pv. malvacearum, pv. translucens, pv. vesicatoria and in one strain of Pantoea stewartii. AHL assay of 41 strains of X. maltophilia (syn. Stenotrophomonas maltophilia) isolated from soils with Chromobacterium violaceum reporter has revealed no strains synthesizing these signal molecules; 26 strains analyzed with Agrobacterium tumefaciens reporter showed the same result.
Collapse
Affiliation(s)
- M Veselova
- Institute of Molecular Genetics, Russian Academy of Sciences, 123 182 Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Quiñones B, Pujol CJ, Lindow SE. Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:521-531. [PMID: 15141956 DOI: 10.1094/mpmi.2004.17.5.521] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pseudomonas syringae forms large cell aggregates that are more stress tolerant than solitary cells during epiphytic growth on plants. The differential survival of aggregates on leaves suggests that epiphytic fitness traits may be controlled in a density-dependent manner via cell-cell signaling. We investigated this hypothesis in P. syringae B728a. Synthesis of N-acyl-homoserine lactone (AHL), 3-oxo-hexanoyl homoserine lactone, and the expression of the gene encoding AHL synthase ahlI were maximal at high cell concentrations. The expression of the AHL regulator ahlR, in contrast, was similar at all cell concentrations. A screen of Tn5 mutants revealed that P. syringae B728a requires a novel transcriptional activator for AHL production. This regulator, which belongs to the TetR family, was also required for epiphytic fitness and has been designated AefR (for AHL and epiphytic fitness regulator). The expression of ahlI was greatly reduced in both aefR- and gacA- mutants and was completely restored in either mutant after addition of exogenous AHL. In contrast, the expression of aefR was not reduced in either gacS- or gacA- mutants. Thus, AefR appears to positively regulate AHL production independently of the regulators GacS/GacA and also controls traits in P. syringae B728a that are required for epiphytic colonization.
Collapse
Affiliation(s)
- Beatriz Quiñones
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
330
|
Dénervaud V, TuQuoc P, Blanc D, Favre-Bonté S, Krishnapillai V, Reimmann C, Haas D, van Delden C. Characterization of cell-to-cell signaling-deficient Pseudomonas aeruginosa strains colonizing intubated patients. J Clin Microbiol 2004; 42:554-62. [PMID: 14766816 PMCID: PMC344450 DOI: 10.1128/jcm.42.2.554-562.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell-to-cell signaling involving N-acyl-homoserine lactone compounds termed autoinducers (AIs) is instrumental to virulence factor production and biofilm development by Pseudomonas aeruginosa. In order to determine the importance of cell-to-cell signaling during the colonization of mechanically ventilated patients, we collected 442 P. aeruginosa pulmonary isolates from 13 patients. Phenotypic characterization showed that 81% of these isolates produced the AI-dependent virulence factors elastase, protease, and rhamnolipids. We identified nine genotypically distinct P. aeruginosa strains. Six of these strains produced AIs [N-butanoyl-homoserine lactone or N-(3-oxo-dodecanoyl)-homoserine lactone] and extracellular virulence factors (elastase, total exoprotease, rhamnolipid, hydrogen cyanide, or pyocyanin) in vitro. Three of the nine strains were defective in the production of both AIs and extracellular virulence factors. Two of these strains had mutational defects in both the lasR and rhlR genes, which encode the N-acyl-homoserine lactone-dependent transcriptional regulators LasR and RhlR, respectively. The third of these AI-deficient strains was only mutated in the lasR gene. Our observations suggest that most, but not all, strains colonizing intubated patients are able to produce virulence factors and that mutations affecting the cell-to-cell signaling circuit are preferentially located in the transcriptional regulator genes.
Collapse
Affiliation(s)
- Valérie Dénervaud
- Institut de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Monier JM, Lindow SE. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 2004; 70:346-55. [PMID: 14711662 PMCID: PMC321242 DOI: 10.1128/aem.70.1.346-355.2004] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using epifluorescence microscopy and image analysis, we have quantitatively described the frequency, size, and spatial distribution of bacterial aggregates on leaf surfaces of greenhouse-grown bean plants inoculated with the plant-pathogenic bacterium Pseudomonas syringae pv. syringae strain B728a. Bacterial cells were not randomly distributed on the leaf surface but occurred in a wide range of cluster sizes, ranging from single cells to over 10(4) cells per aggregate. The average cluster size increased through time, and aggregates were more numerous and larger when plants were maintained under conditions of high relative humidity levels than under dry conditions. The large majority of aggregates observed were small (less than 100 cells), and aggregate sizes exhibited a strong right-hand-skewed frequency distribution. While large aggregates are not frequent on a given leaf, they often accounted for the majority of cells present. We observed that up to 50% of cells present on a leaf were located in aggregates containing 10(3) cells or more. Aggregates were associated with several different anatomical features of the leaf surface but not with stomates. Aggregates were preferentially associated with glandular trichomes and veins. The biological and ecological significance of aggregate formation by epiphytic bacteria is discussed.
Collapse
Affiliation(s)
- J-M Monier
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
332
|
Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O'Gara F. What can bacterial genome research teach us about bacteria-plant interactions? CURRENT OPINION IN PLANT BIOLOGY 2004; 7:137-147. [PMID: 15003213 DOI: 10.1016/j.pbi.2004.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological research is changing dramatically. Genomic and post-genomic research is responsible for the accumulation of enormous datasets, which allow the formation of holistic views of the organisms under investigation. In the field of microbiology, bacteria represent ideal candidates for this new development. It is relatively easy to sequence the genomes of bacteria, to analyse their transcriptomes and to collect information at the proteomic level. Genome research on symbiotic, pathogenic and associative bacteria is providing important information on bacteria-plant interactions, especially on type-III secretion systems (TTSS) and their role in the interaction of bacteria with plants.
Collapse
Affiliation(s)
- Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, 33594 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
333
|
Zhu J, Chai Y, Zhong Z, Li S, Winans SC. Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 2004; 69:6949-53. [PMID: 14602662 PMCID: PMC262303 DOI: 10.1128/aem.69.11.6949-6953.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An ultrasensitive bioassay system for the detection of N-acylhomoserine lactones (AHLs) was constructed in Agrobacterium tumefaciens by using the T7 expression system to overproduce the AHL receptor TraR. This strain detected many diverse AHLs, some at extremely low concentrations. We used this strain to detect for the first time AHLs made by Mesorhizobium huakuii, which symbiotically fixes nitrogen in association with the legume Astragalus sinicus, a source of green manure throughout eastern Asia.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
334
|
Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 2003; 112:1300-7. [PMID: 14597754 PMCID: PMC228474 DOI: 10.1172/jci20074] [Citation(s) in RCA: 428] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. The discovery of bacterial-communication systems (quorum-sensing systems), which orchestrate important temporal events during the infection process, has afforded a novel opportunity to ameliorate bacterial infection by means other than growth inhibition. Compounds able to override bacterial signaling are present in nature. Herein we discuss the known signaling mechanisms and potential antipathogenic drugs that specifically target quorum-sensing systems in a manner unlikely to pose a selective pressure for the development of resistant mutants.
Collapse
Affiliation(s)
- Morten Hentzer
- Center for Biomedical Microbiology, BioCentrum, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | |
Collapse
|
335
|
Abstract
Members of the rhizobia are distinguished for their ability to establish a nitrogen-fixing symbiosis with leguminous plants. While many details of this relationship remain a mystery, much effort has gone into elucidating the mechanisms governing bacterium-host recognition and the events leading to symbiosis. Several signal molecules, including plant-produced flavonoids and bacterially produced nodulation factors and exopolysaccharides, are known to function in the molecular conversation between the host and the symbiont. Work by several laboratories has shown that an additional mode of regulation, quorum sensing, intercedes in the signal exchange process and perhaps plays a major role in preparing and coordinating the nitrogen-fixing rhizobia during the establishment of the symbiosis. Rhizobium leguminosarum, for example, carries a multitiered quorum-sensing system that represents one of the most complex regulatory networks identified for this form of gene regulation. This review focuses on the recent stream of information regarding quorum sensing in the nitrogen-fixing rhizobia. Seminal work on the quorum-sensing systems of R. leguminosarum bv. viciae, R. etli, Rhizobium sp. strain NGR234, Sinorhizobium meliloti, and Bradyrhizobium japonicum is presented and discussed. The latest work shows that quorum sensing can be linked to various symbiotic phenomena including nodulation efficiency, symbiosome development, exopolysaccharide production, and nitrogen fixation, all of which are important for the establishment of a successful symbiosis. Many questions remain to be answered, but the knowledge obtained so far provides a firm foundation for future studies on the role of quorum-sensing mediated gene regulation in host-bacterium interactions.
Collapse
Affiliation(s)
- Juan E González
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| | | |
Collapse
|
336
|
Luo ZQ, Su S, Farrand SK. In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acyl-homoserine lactone ligands: kinetics and consequences. J Bacteriol 2003; 185:5665-72. [PMID: 13129937 PMCID: PMC193949 DOI: 10.1128/jb.185.19.5665-5672.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 07/16/2003] [Indexed: 11/20/2022] Open
Abstract
Conjugal transfer of Ti plasmids of Agrobacterium tumefaciens is controlled by a quorum-sensing system composed of the transcriptional activator TraR and its acyl-homoserine lactone quormone N-(3-oxo-octanoyl)-L-homoserine lactone (3-oxo-C8-HSL). The population density dependence of quorum-sensing systems can often be circumvented by addition of the quormone to cultures at low cell numbers. However, the quorum-dependent activation of Ti plasmid conjugal transfer exhibited a lag of almost 8 h when the quormone was added to donor cells at low population densities (Piper and Farrand, J. Bacteriol. 182:1080-1088, 2000). As measured by activation of a TraR-dependent traG::lacZ reporter fusion, TraR in cells exposed to the cognate signal for 5 min showed detectable activity, while exposure for 15 min resulted in full activity. Thus, the lag in activation is not due to some intrinsic property of TraR. Cells exposed to the agonistic analog N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) exhibited similar induction kinetics. However, activation of the reporter in cells exposed to the poorly effective alkanoyl acyl-HSL N-hexanoyl-L-homoserine lactone (C6-HSL) required the continued presence of the signal. As measured by an in vivo repressor assay, TraR activated by 3-oxo-C6-HSL or by 3-oxo-C8-HSL remained active for as long as 8 h after removal of exogenous signal. However, TraR activated by the alkanoyl quormone C6-HSL rapidly lost activity following removal of the signal. In quormone retention assays, which measure signal binding by TraR, cells grown with either of the two 3-oxo-acyl-HSL quormones retained the ligand after washing, while cells grown with C6-HSL lost the alkanoyl-HSL concomitant with the rapid loss of TraR activity. We conclude that TraR rapidly binds its quormone and that, once bound, the cognate signal and its close homologs are tightly retained. Moreover, in the absence of other regulatory factors, activated TraR remains functional after removal of the signal. On the other hand, poorly active signals are not tightly bound, and their removal by washing leads to rapid loss of TraR activity.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
337
|
Gao M, Teplitski M, Robinson JB, Bauer WD. Production of substances by Medicago truncatula that affect bacterial quorum sensing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:827-34. [PMID: 12971606 DOI: 10.1094/mpmi.2003.16.9.827] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Earlier work showed that higher plants produce unidentified compounds that specifically stimulate or inhibit quorum sensing (QS) regulated responses in bacteria. The ability of plants to produce substances that affect QS regulation may provide plants with important tools to manipulate gene expression and behavior in the bacteria they encounter. In order to examine the kinds of QS active substances produced by the model legume M. truncatula, young seedlings and seedling exudates were systematically extracted with various organic solvents, and the extracts were fractionated by reverse phase C18 high-performance liquid chromatography. M. truncatula appears to produce at least 15 to 20 separable substances capable of specifically stimulating or inhibiting responses in QS reporter bacteria, primarily substances that affect QS regulation dependent on N-acyl homoserine lactone (AHL) signals. The secretion of AHL QS mimic activities by germinating seeds and seedlings was found to change substantially with developmental age. The secretion of some mimic activities may be dependent upon prior exposure of the plants to bacteria.
Collapse
Affiliation(s)
- Mengsheng Gao
- Department of Horticulture and Crop Science, 2021 Coffey Rd., Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
338
|
Danino VE, Wilkinson A, Edwards A, Downie JA. Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 2003; 50:511-25. [PMID: 14617175 DOI: 10.1046/j.1365-2958.2003.03699.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the regulation of plasmid transfer genes on the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae has revealed a novel regulatory relay that is specifically poised to detect an N-acyl-homoserine lactone (AHL) made by different cells (potential recipients of pRL1JI). Adjacent to the traI-trbBCDEJKLFGHI plasmid transfer operon on pRL1JI are two regulatory genes, bisR and traR, which encode LuxR-type quorum-sensing regulators required for conjugation. Potential recipients of pRL1JI induce the traI-trb operon and plasmid transfer via a quorum-sensing relay involving BisR, TraR and the traI-trb operon in donor cells. BisR induces expression of traR in response to N-(3-hydroxy-7-cis-tetradecenoyl)-l-homoserine lactone (3-OH-C14:1-HSL), which is produced by CinI in potential recipient strains. In donor strains (carrying pRL1JI), BisR represses the expression of the chromosomal gene cinI; this repression results in a very low level of formation of 3-OH-C14:1-HSL and hence relatively low levels of expression of traR and the traI-trb operon in strains carrying pRL1JI. However, if 3-OH-C14:1-HSL from potential recipients is present, then traR and plasmid transfer are induced. The induction of traR occurs at very low concentrations of 3-OH-C14:1-HSL (around 1 nm). TraR then induces the traI-trb operon in a quorum-sensing dependent manner in re-sponse to the TraI-made AHLs, N-(3-oxo-octanoyl)-l-homoserine lactone and N-(octanoyl)-l-homoserine lactone. The resulting autoinduction results in high levels of expression of the traI-trb operon. Premature expression of the traI-trb operon is reduced by TraM, which probably titres out TraR preventing expression of traI when there are low levels of traR expression. Expression of traR in stationary phase cells is limited by feedback inhibition mediated by TraI-made AHLs.
Collapse
|
339
|
Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 2003; 69:4989-93. [PMID: 12902298 PMCID: PMC169067 DOI: 10.1128/aem.69.8.4989-4993.2003] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Agrobacterium tumefaciens C58 genome contains three putative N-acyl homoserine lactone (acyl-HSL) hydrolases, which are closely related to the lactonase AiiA of Bacillus. When expressed in Escherichia coli, two of the putative acyl-HSL hydrolases, AttM and AiiB, conferred the ability to degrade acyl-HSLs on the host. In Erwinia strain 6276, the lactonases reduced the endogenous acyl-HSL level and the bacterial virulence in planta.
Collapse
Affiliation(s)
- A Carlier
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
340
|
Uroz S, D'Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y. Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1981-1989. [PMID: 12904538 DOI: 10.1099/mic.0.26375-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria degrading the quorum-sensing (QS) signal molecule N-hexanoylhomoserine lactone were isolated from a tobacco rhizosphere. Twenty-five isolates degrading this homoserine lactone fell into six groups according to their genomic REP-PCR and rrs PCR-RFLP profiles. Representative strains from each group were identified as members of the genera Pseudomonas, Comamonas, Variovorax and Rhodococcus: all these isolates degraded N-acylhomoserine lactones other than the hexanoic acid derivative, albeit with different specificity and kinetics. One of these isolates, Rhodococcus erythropolis strain W2, was used to quench QS-regulated functions of other microbes. In vitro, W2 strongly interfered with violacein production by Chromobacterium violaceum, and transfer of pathogenicity in Agrobacterium tumefaciens. In planta, R. erythropolis W2 markedly reduced the pathogenicity of Pectobacterium carotovorum subsp. carotovorum in potato tubers. These series of results reveal the diversity of the QS-interfering bacteria in the rhizosphere and demonstrate the validity of targeting QS signal molecules to control pathogens with natural bacterial isolates.
Collapse
Affiliation(s)
- Stéphane Uroz
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Cathy D'Angelo-Picard
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Aurélien Carlier
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Miena Elasri
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Carine Sicot
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annik Petit
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Phil Oger
- Laboratoire de Sciences de la Terre, Ecole Normale Supérieure, 43 allée d'Italie, 6364 Lyon Cedex, France
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Denis Faure
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Yves Dessaux
- Interactions plantes et micro-organismes de la rhizosphère, Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
341
|
Ravn Flodgaard L, Christensen AB, Molin S, Givskov M, Gram L. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae. Int J Food Microbiol 2003; 84:145-56. [PMID: 12781938 DOI: 10.1016/s0168-1605(02)00405-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Quorum-dependent regulation is mediated by N-acyl-L-homoserine lactones (AHLs) in several Gram-negative bacteria. The production of AHLs has typically been studied using pure bacteria cultures grown in nutrient-rich media at optimal temperature. AHLs are produced in several chill-stored foods by Gram-negative bacteria participating in spoilage. As part of our investigation of the role of AHLs in food quality, we studied the AHL production in two Enterobacteriaceae isolated from cold-smoked salmon under growth conditions typical of those found in cold-smoked salmon. We tested the influence of carbon source (glucose, sucrose, xylose, arabinose, mannose, mannitol and sorbitol), temperature (5 and 25 degrees C), salt concentration (0-7%), pH (6, 7 and 8) and co-existing lactic acid bacteria microflora on the AHL profile and production rate from Serratia proteamaculans strain B5a and Enterobacter agglomerans strain B6a. The two strains produced the same types of AHLs under all conditions tested. The specific AHL concentrations (moles/liter/OD(450)) changed slightly for both strains at the various conditions. S. proteamaculans strain B5a produced approximately 150 nM/OD(450) N-3-oxo-hexanoyl homoserine lactone (OHHL) and E. agglomerans strain B6a produced two major signals, OHHL and N-3-oxo-octanoyl homoserine lactone (OOHL) in a 1:9 ratio with a total concentration of approximately 3000 nM/OD(450). The AHL signal molecules became unstable with increasing pH (>7.5). In cold-smoked salmon, pH is approximately 6 and therefore only a low degree of pH-induced turnover is expected to occur in this product. Overall, our study demonstrates that food-derived Enterobacteriaceae produce AHLs of the same type and in the same magnitude when grown under food-relevant conditions as when grown in laboratory media at high temperature. Also, the AHLs produced in foods will be relatively stable and their regulatory impact lasting during storage.
Collapse
Affiliation(s)
- Lars Ravn Flodgaard
- Department of Seafood Research, Danish Institute for Fisheries Research, Søltofts Plads, c/o Technical University of Denmark, Bldg. 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
342
|
Zheng D, Zhang H, Carle S, Hao G, Holden MR, Burr TJ. A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:650-8. [PMID: 12848431 DOI: 10.1094/mpmi.2003.16.7.650] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A Tn5 mutant of Agrobacterium vitis F2/5 (M1154) differs from the wild-type strain in that it has lost its abilities to cause necrosis on grape and a hypersensitive-like response (HR) on tobacco. The Tn5 insertion occurred in an open reading frame (ORF) aviR that is homologous to genes encoding the LuxR family of transcriptional regulators, thereby suggesting that the HR and necrosis are regulated by a quorum-sensing system. Fewer N-acyl-homoserine lactone autoinducers were detected in extracts from M1154 compared with extracts from F2/5 and from aviR-complemented M1154. The complemented mutant regained full ability to cause grape necrosis and HR. Eighteen ORFs located on a 36.6-kb insert in cosmid clone CPB221, which includes aviR, were sequenced and aligned with homologous genes from A. tumefaciens C58 and Sinorhizobium meliloti Rm1021. The order of several clustered genes is conserved among the bacteria; however, rearrangements are also apparent. Reverse transcriptase-polymerase chain reaction analysis indicated that ORF2 and ORF14 may be regulated by an aviR-encoded transcriptional regulator. Single site-directed mutations in each of the ORFs, however, had no effect on expression of HR or necrosis as compared with the wild-type parent.
Collapse
Affiliation(s)
- Desen Zheng
- Department of Plant Pathology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | | | | | | | |
Collapse
|
343
|
Scarpari LM, Lambais MR, Silva DS, Carraro DM, Carrer H. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro. FEMS Microbiol Lett 2003; 222:83-92. [PMID: 12757950 DOI: 10.1016/s0378-1097(03)00251-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.
Collapse
Affiliation(s)
- Leandra M Scarpari
- Departamento de Solos e Nutrição de Plantas, ESALQ, Universidade de São Paulo, Caixa Postal 9, 13418-900, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
344
|
Luo ZQ, Smyth AJ, Gao P, Qin Y, Farrand SK. Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing transcriptional activator. J Biol Chem 2003; 278:13173-82. [PMID: 12569101 DOI: 10.1074/jbc.m210035200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TraR, the quorum-sensing activator of the Agrobacterium tumefaciens Ti plasmid conjugation system, induces gene expression in response to its quormone, N-(3-oxooctanoyl)-L-homoserine lactone. Ligand binding results in dimerization of TraR and is required for its activity. Analysis of N- and C-terminal deletion mutants of TraR localized the quormone-binding domain to a region between residues 39 and 140 and the primary dimerization domain to a region between residues 119 and 156. The dominant-negative properties of these mutants predicted a second dimerization domain at the C terminus of the protein. Analysis of fusions of N-terminal fragments of TraR to lambda cI' confirmed the dimerization activity of these two domains. Fifteen single amino acid substitution mutants of TraR defective in dimerization were isolated. According to the analysis of these mutants, Asp-70 and Gly-113 are essential for quormone binding, whereas Ala-38 and Ala-105 are important, but not essential. Additional residues located within the N-terminal half of TraR, including three located in alpha-helix 9, contribute to dimerization, but are not required for ligand binding. These results and the recently reported crystal structure of TraR are consistent with and complement each other and together define some of the structural and functional relationships of this quorum-sensing activator.
Collapse
Affiliation(s)
- Zhao-Qing Luo
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
345
|
Heurlier K, Dénervaud V, Pessi G, Reimmann C, Haas D. Negative control of quorum sensing by RpoN (sigma54) in Pseudomonas aeruginosa PAO1. J Bacteriol 2003; 185:2227-35. [PMID: 12644493 PMCID: PMC151487 DOI: 10.1128/jb.185.7.2227-2235.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa PAO1, the expression of several virulence factors such as elastase, rhamnolipids, and hydrogen cyanide depends on quorum-sensing regulation, which involves the lasRI and rhlRI systems controlled by N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone, respectively, as signal molecules. In rpoN mutants lacking the transcription factor sigma(54), the expression of the lasR and lasI genes was elevated at low cell densities, whereas expression of the rhlR and rhlI genes was markedly enhanced throughout growth by comparison with the wild type and the complemented mutant strains. As a consequence, the rpoN mutants had elevated levels of both signal molecules and overexpressed the biosynthetic genes for elastase, rhamnolipids, and hydrogen cyanide. The quorum-sensing regulatory protein QscR was not involved in the negative control exerted by RpoN. By contrast, in an rpoN mutant, the expression of the gacA global regulatory gene was significantly increased during the entire growth cycle, whereas another global regulatory gene, vfr, was downregulated at high cell densities. In conclusion, it appears that GacA levels play an important role, probably indirectly, in the RpoN-dependent modulation of the quorum-sensing machinery of P. aeruginosa.
Collapse
Affiliation(s)
- Karin Heurlier
- Laboratoire de Biologie Microbienne, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
346
|
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
347
|
Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 2003; 185:1681-92. [PMID: 12591886 PMCID: PMC148057 DOI: 10.1128/jb.185.5.1681-1692.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli CFN42 contains six plasmids. Only one of them, p42a, is self-conjugative at high frequency. This plasmid is strictly required for mobilization of the symbiotic plasmid (pSym). To study the transfer mechanism of p42a, a self-transmissible cosmid clone containing its transfer region was isolated. Its sequence showed that most of the tra genes are highly similar to genes of Agrobacterium tumefaciens pTiC58 and other related plasmids. Four putative regulatory genes were identified; three of these (traI, traR, and cinR) belong to the LuxR-LuxI family. Mutagenesis of these genes confirmed their requirement for p42a transfer. We found that the conjugative transfer of p42a is dependent on quorum sensing, and consequently pSym transfer also was found to be similarly regulated, establishing a complex link between environmental conditions and pSym transfer. Although R. etli has been shown to produce different N-acyl-homoserine lactones, only one of them, a 3-oxo-C(8)-homoserine lactone encoded by the traI gene described here, was involved in transfer. Mutagenesis of the fourth regulatory gene, traM, had no effect on transfer. Analysis of transcriptional fusions of the regulatory genes to a reporter gene suggests a complex regulation scheme for p42a conjugative transfer. Conjugal transfer gene expression was found to be directly upregulated by TraR and the 3-oxo-C(8)-homoserine lactone synthesized by TraI. The traI gene was autoregulated by these elements and positively regulated by CinR, while cinR expression required traI. Finally, we did not detect expression of traM, indicating that in p42a TraM may be expressed so weakly that it cannot inhibit conjugal transfer, leading to the unrepressed transfer of p42a.
Collapse
Affiliation(s)
- Cristina Tun-Garrido
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación Sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
348
|
Schmidt-Eisenlohr H, Gast A, Baron C. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere. Appl Environ Microbiol 2003; 69:1817-26. [PMID: 12620875 PMCID: PMC150057 DOI: 10.1128/aem.69.3.1817-1826.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum-sensing-controlled processes are considered to be important for the competitiveness of microorganisms in the rhizosphere. They affect cell-cell communication, biofilm formation, and antibiotic production, and the GacS-GacA two-component system plays a role as a key regulator. In spite of the importance of this system for the regulation of various processes, strains with a Gac(-) phenotype are readily recovered from natural habitats. To analyze the influence of quorum sensing and the influence of the production of the antibiotic phenazine-1-carboxamide on rhizosphere colonization by Pseudomonas chlororaphis, a gnotobiotic system based on Arabidopsis thaliana seedlings in soil was investigated. Transposon insertion mutants of P. chlororaphis isolate SPR044 carrying insertions in different genes required for the production of N-acyl-homoserine lactones and phenazine-1-carboxamide were generated. Analysis of solitary rhizosphere colonization revealed that after prolonged growth, the population of the wild type was significantly larger than that of the homoserine lactone-negative gacS mutant and that of a phenazine-1-carboxamide-overproducing strain. In cocultivation experiments, however, the population size of the gacS mutant was similar to that of the wild type after extended growth in the rhizosphere. A detailed analysis of growth kinetics was performed to explain this phenomenon. After cells grown to the stationary phase were transferred to fresh medium, the gacS mutant had a reduced lag phase, and production of the stationary-phase-specific sigma factor RpoS was strongly reduced. This may provide a relative competitive advantage in cocultures with other bacteria, because it permits faster reinitiation of growth after a change to nutrient-rich conditions. In addition, delayed entry into the stationary phase may allow more efficient nutrient utilization. Thus, GacS-GacA-regulated processes are not absolutely required for efficient rhizosphere colonization in populations containing the wild type and Gac(-) mutants.
Collapse
Affiliation(s)
- Heike Schmidt-Eisenlohr
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, D-80638 Munich, Germany
| | | | | |
Collapse
|
349
|
Christensen AB, Riedel K, Eberl L, Flodgaard LR, Molin S, Gram L, Givskov M. Quorum-sensing-directed protein expression in Serratia proteamaculans B5a. MICROBIOLOGY (READING, ENGLAND) 2003; 149:471-483. [PMID: 12624209 DOI: 10.1099/mic.0.25575-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Acyl-L-homoserine-lactone-producing Serratia species are frequently encountered in spoiling foods of vegetable and protein origin. The role of quorum sensing in the food spoiling properties of these bacteria is currently being investigated. A set of luxR luxI homologous genes encoding a putative quorum sensor was identified in the N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL)-producing Serratia proteamaculans strain B5a. The 3-oxo-C6-HSL synthase SprI showed 79 % similarity with EsaI from Pantoea stewartii and the putative regulatory protein SprR was 86 % similar to the SpnR of Serratia marcescens. Proteome analysis suggested that the presence of at least 39 intracellular proteins was affected by the 3-oxo-C6-HSL-based quorum sensing system. The lipB-encoded secretion system was identified as one target gene of the quorum sensing system. LipB was required for the production of extracellular lipolytic and proteolytic activities, thus rendering the production of food-deterioration-relevant exoenzymes indirectly under the control of quorum sensing. Strain B5a caused quorum-sensing-controlled spoilage of milk. Furthermore, chitinolytic activity was controlled by quorum sensing. This control appeared to be direct and not mediated via LipB. The data presented here demonstrate that quorum-sensing-controlled exoenzymic activities affect food quality.
Collapse
Affiliation(s)
- Allan B Christensen
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Kathrin Riedel
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | - Leo Eberl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | - Lars R Flodgaard
- Danish Institute for Fisheries Research, Department of Seafood Research, Building 221, c/o Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Søren Molin
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Danish Institute for Fisheries Research, Department of Seafood Research, Building 221, c/o Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Michael Givskov
- Section of Molecular Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
350
|
He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C. Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 2003; 185:809-22. [PMID: 12533456 PMCID: PMC142814 DOI: 10.1128/jb.185.3.809-822.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 forms symbiotic, nitrogen-fixing nodules on a wide range of legumes via functions largely encoded by the plasmid pNGR234a. The pNGR234a sequence revealed a region encoding plasmid replication (rep) and conjugal transfer (tra) functions similar to those encoded by the rep and tra genes from the tumor-inducing (Ti) plasmids of Agrobacterium tumefaciens, including homologues of the Ti plasmid quorum-sensing regulators TraI, TraR, and TraM. In A. tumefaciens, TraI, a LuxI-type protein, catalyzes synthesis of the acylated homoserine lactone (acyl-HSL) N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL). TraR binds 3-oxo-C8-HSL and activates expression of Ti plasmid tra and rep genes, increasing conjugation and copy number at high population densities. TraM prevents this activation under noninducing conditions. Although the pNGR234a TraR, TraI, and TraM appear to function similarly to their A. tumefaciens counterparts, the TraR and TraM orthologues are not cross-functional, and the quorum-sensing systems have differences. NGR234 TraI synthesizes an acyl-HSL likely to be 3-oxo-C8-HSL, but traI mutants and a pNGR234a-cured derivative produce low levels of a similar acyl-HSL and another, more hydrophobic signal molecule. TraR activates expression of several pNGR234a tra operons in response to 3-oxo-C8-HSL and is inhibited by TraM. However, one of the pNGR234a tra operons is not activated by TraR, and conjugal efficiency is not affected by TraR and 3-oxo-C8-HSL. The growth rate of NGR234 is significantly decreased by TraR and 3-oxo-C8-HSL through functions encoded elsewhere in the NGR234 genome.
Collapse
Affiliation(s)
- Xuesong He
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|