301
|
Laskey A, Devenish J, Kang M, Savic M, Chmara J, Dan H, Lin M, Robertson J, Bessonov K, Gurnik S, Liu K, Nash JHE, Topp E, Guan J. Mobility of β-lactam resistance under ampicillin treatment in gut microbiota suffering from pre-disturbance. Microb Genom 2021; 7:000713. [PMID: 34882531 PMCID: PMC8767350 DOI: 10.1099/mgen.0.000713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments. For proof of concept, in the presence or absence of streptomycin pre-treatment, mice were inoculated orally with a β-lactam-susceptible Salmonella enterica serovar Heidelberg clinical isolate (recipient) and a β-lactam resistant Escherichia coli O80:H26 isolate (donor) carrying a blaCMY-2 gene on an IncI2 plasmid. Immediately following inoculation, mice were treated with or without ampicillin in drinking water for 7 days. Faeces were sampled, donor, recipient and transconjugant were enumerated, blaCMY-2 abundance was determined by quantitative PCR, faecal microbial community composition was determined by 16S rRNA amplicon sequencing and cecal samples were observed histologically for evidence of inflammation. In faeces of mice that received streptomycin pre-treatment, the donor abundance remained high, and the abundance of S. Heidelberg transconjugant and the relative abundance of Enterobacteriaceae increased significantly during the ampicillin treatment. Co-blooming of the donor, transconjugant and commensal Enterobacteriaceae in the inflamed intestine promoted significantly (P<0.05) higher and possibly wider dissemination of the blaCMY-2 gene in the gut microbiota of mice that received the combination of streptomycin pre-treatment and ampicillin treatment (Str-Amp) compared to the other mice. Following cessation of the ampicillin treatment, faecal shedding of S. Heidelberg transconjugant persisted much longer from mice in the Str-Amp group compared to the other mice. In addition, only mice in the Str-Amp group shed a commensal E. coli O2:H6 transconjugant, which carries three copies of the blaCMY-2 gene, one on the IncI2 plasmid and two on the chromosome. The findings highlight the significance of pre-existing gut microbiota for ARG dissemination and persistence during and following antibiotic treatments of infectious diseases.
Collapse
Affiliation(s)
- Alexander Laskey
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - John Devenish
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mirjana Savic
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - John Chmara
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Hanhong Dan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Min Lin
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Simone Gurnik
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kira Liu
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John H. E. Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jiewen Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
302
|
van der Graaf-van Bloois L, Wagenaar JA, Zomer AL. RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning. Microb Genom 2021; 7. [PMID: 34846288 PMCID: PMC8743549 DOI: 10.1099/mgen.0.000683] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial taxa, including Campylobacter, Escherichia coli and Salmonella, and has a taxon agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface.
Collapse
Affiliation(s)
- Linda van der Graaf-van Bloois
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| |
Collapse
|
303
|
Bernaquez I, Gaudreau C, Pilon PA, Bekal S. Evaluation of whole-genome sequencing-based subtyping methods for the surveillance of Shigella spp. and the confounding effect of mobile genetic elements in long-term outbreaks. Microb Genom 2021; 7. [PMID: 34730485 PMCID: PMC8743557 DOI: 10.1099/mgen.0.000672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Many public health laboratories across the world have implemented whole-genome sequencing (WGS) for the surveillance and outbreak detection of foodborne pathogens. PulseNet-affiliated laboratories have determined that most single-strain foodborne outbreaks are contained within 0–10 multi-locus sequence typing (MLST)-based allele differences and/or core genome single-nucleotide variants (SNVs). In addition to being a food- and travel-associated outbreak pathogen, most
Shigella
spp. cases occur through continuous person-to-person transmission, predominantly involving men who have sex with men (MSM), leading to long-term and recurrent outbreaks. Continuous transmission patterns coupled to genetic evolution under antibiotic treatment pressure require an assessment of existing WGS-based subtyping methods and interpretation criteria for cluster inclusion/exclusion. An evaluation of 4 WGS-based subtyping methods [SNVPhyl, coreMLST, core genome MLST (cgMLST) and whole-genome MLST (wgMLST)] was performed on 9 foodborne-, travel- and MSM-related retrospective outbreaks from a collection of 91
Shigella flexneri
and 232
Shigella sonnei
isolates to determine the methods’ epidemiological concordance, discriminatory power, robustness and ability to generate stable interpretation criteria. The discriminatory powers were ranked as follows: coreMLST<SNVPhyl<cgMLST<wgMLST (range: 0.970–1.000). The genetic differences observed for non-MSM-related
Shigella
spp. outbreaks respect the standard 0–10 allele/SNV guideline; however, mobile genetic element (MGE)-encoded loci caused inflated genetic variation and discrepant phylogenies for prolonged MSM-related
S. sonnei
outbreaks via wgMLST. The
S. sonnei
correlation coefficients of wgMLST were also the lowest at 0.680, 0.703 and 0.712 for SNVPhyl, coreMLST and cgMLST, respectively. Plasmid maintenance, mobilization and conjugation-associated genes were found to be the main source of genetic distance inflation in addition to prophage-related genes. Duplicated alleles arising from the repeated nature of IS elements were also responsible for many false cg/wgMLST differences. The coreMLST approach was shown to be the most robust, followed by SNVPhyl and wgMLST for inter-laboratory comparability. Our results highlight the need for validating species-specific subtyping methods based on microbial genome plasticity and outbreak dynamics in addition to the importance of filtering confounding MGEs for cluster detection.
Collapse
Affiliation(s)
- Isabelle Bernaquez
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Christiane Gaudreau
- Microbiologie médicale et infectiologie, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, H2X 3E4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Pierre A. Pilon
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de-l’île-de-Montréal, Montreal, QC, H2L 4M1, Canada
- Département de médecine sociale et préventive, Université de Montréal, Montreal, QC, H3N 1X9, Canada
| | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- *Correspondence: Sadjia Bekal,
| |
Collapse
|
304
|
Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685. [PMID: 34739369 PMCID: PMC8743544 DOI: 10.1099/mgen.0.000685] [Citation(s) in RCA: 331] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Command-line annotation software tools have continuously gained popularity compared to centralized online services due to the worldwide increase of sequenced bacterial genomes. However, results of existing command-line software pipelines heavily depend on taxon-specific databases or sufficiently well annotated reference genomes. Here, we introduce Bakta, a new command-line software tool for the robust, taxon-independent, thorough and, nonetheless, fast annotation of bacterial genomes. Bakta conducts a comprehensive annotation workflow including the detection of small proteins taking into account replicon metadata. The annotation of coding sequences is accelerated via an alignment-free sequence identification approach that in addition facilitates the precise assignment of public database cross-references. Annotation results are exported in GFF3 and International Nucleotide Sequence Database Collaboration (INSDC)-compliant flat files, as well as comprehensive JSON files, facilitating automated downstream analysis. We compared Bakta to other rapid contemporary command-line annotation software tools in both targeted and taxonomically broad benchmarks including isolates and metagenomic-assembled genomes. We demonstrated that Bakta outperforms other tools in terms of functional annotations, the assignment of functional categories and database cross-references, whilst providing comparable wall-clock runtimes. Bakta is implemented in Python 3 and runs on MacOS and Linux systems. It is freely available under a GPLv3 license at https://github.com/oschwengers/bakta. An accompanying web version is available at https://bakta.computational.bio.
Collapse
Affiliation(s)
- Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Marius Alfred Dieckmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Sebastian Beyvers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
305
|
AbuOun M, Jones H, Stubberfield E, Gilson D, Shaw LP, Hubbard ATM, Chau KK, Sebra R, Peto TEA, Crook DW, Read DS, Gweon HS, Walker AS, Stoesser N, Smith RP, Anjum MF, on behalf of the REHAB consortium. A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microb Genom 2021; 7:000630. [PMID: 34609275 PMCID: PMC8627209 DOI: 10.1099/mgen.0.000630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Enterobacterales from livestock are potentially important reservoirs for antimicrobial resistance (AMR) to pass through the food chain to humans, thereby increasing the AMR burden and affecting our ability to tackle infections. In this study 168 isolates from four genera of the order Enterobacterales , primarily Escherichia coli , were purified from livestock (cattle, pigs and sheep) faeces from 14 farms in the United Kingdom. Their genomes were resolved using long- and short-read sequencing to analyse AMR genes and their genetic context, as well as to explore the relationship between AMR burden and on-farm antimicrobial usage (AMU), in the three months prior to sampling. Although E. coli isolates were genomically diverse, phylogenetic analysis using a core-genome SNP tree indicated pig isolates to generally be distinct from sheep isolates, with cattle isolates being intermediates. Approximately 28 % of isolates harboured AMR genes, with the greatest proportion detected in pigs, followed by cattle then sheep; pig isolates also harboured the highest number of AMR genes per isolate. Although 90 % of sequenced isolates harboured diverse plasmids, only 11 % of plasmids (n =58 out of 522) identified contained AMR genes, with 91 % of AMR plasmids being from pig, 9 % from cattle and none from sheep isolates; these results indicated that pigs were a principle reservoir of AMR genes harboured by plasmids and likely to be involved in their horizontal transfer. Significant associations were observed between AMU (mg kg−1) and AMR. As both the total and the numbers of different antimicrobial classes used on-farm increased, the risk of multi-drug resistance (MDR) in isolates rose. However, even when AMU on pig farms was comparatively low, pig isolates had increased likelihood of being MDR; harbouring relatively more resistances than those from other livestock species. Therefore, our results indicate that AMR prevalence in livestock is not only influenced by recent AMU on-farm but also livestock-related factors, which can influence the AMR burden in these reservoirs and its plasmid mediated transmission.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Hannah Jones
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Daniel Gilson
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Liam P. Shaw
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alasdair T. M. Hubbard
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kevin K. Chau
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Sebra
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mt Sinai, Mt Sinai, New York, USA
| | - Tim E. A. Peto
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick W. Crook
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
| | - Daniel S. Read
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford, UK
| | - H. Soon Gweon
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford, UK
- School of Biological Sciences, University of Reading, UK
| | - A. Sarah Walker
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
| | - Nicole Stoesser
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
| | - Richard P. Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - on behalf of the REHAB consortium
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mt Sinai, Mt Sinai, New York, USA
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford, UK
- School of Biological Sciences, University of Reading, UK
| |
Collapse
|
306
|
Andrade NL, da Cruz Campos AC, Cabral AM, Damasco PH, Lo-Ten-Foe J, Rosa ACP, Damasco PV. Infective endocarditis caused by Enterobacteriaceae: phenotypic and molecular characterization of Escherichia coli and Klebsiella pneumoniae in Rio de Janeiro, Brazil. Braz J Microbiol 2021; 52:1887-1896. [PMID: 34549374 PMCID: PMC8578509 DOI: 10.1007/s42770-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
The etiological agent for infective endocarditis (IE), a life-threatening disease, is usually gram-positive bacteria. However, gram-negative bacteria can rarely cause IE and 4% of cases are associated with morbidity and mortality. This study aimed to characterize Escherichia coli and Klebsiella pneumoniae isolates from the blood of patients with IE. The characteristics of blood isolates were compared with those of urinary isolates from patients with urinary tract infections (UTIs). The results of this study revealed that K. pneumoniae isolates from patients with IE were phylogenetically related to those from patients with UTI. Additionally, the resistance phenotype, resistance gene, virulence gene, and plasmid profiles were similar between the blood and urinary isolates. The isolates belonging to the sequence types (STs) 76, 36, 101 (K. pneumoniae), and 69 (E. coli) are reported to be associated with drug resistance. The Enterobacteriaceae isolates from patients with IE did not produce extended-spectrum β-lactamase or carbapenemase. Additionally, this study investigated the virulence phenotype, biofilm formation ability, and the ability to adhere to the epithelial cells in vitro of the isolates. The isolates from patients with IE exhibited weaker biofilm formation ability than the urinary isolates. All isolates from patients with IE could adhere to the renal epithelial cells. However, three isolates from patients with UTIs could not adhere to the epithelial cells. The closely related K. pneumoniae isolates (648, KP1, KP2, KP3, and KP4) could not form biofilms or adhere to the epithelial cells. In summary, the molecular analysis revealed that the genetic characteristics of IE-causing K. pneumoniae and E. coli were similar to those of UTI-causing isolates. These isolates belonged to the STs that are considered treatable. Genetically similar isolates did not exhibit the same virulence phenotype. Thus, these non-hypervirulent clones must be monitored as they can cause complex infections in susceptible hosts.
Collapse
Affiliation(s)
- Nathália L Andrade
- Department of Microbiology, Immunology and Parasitology, Biomedical Center, Rio de Janeiro State University, Blv 28 de Setembro, 87, 3th floor, Vila Isabel, Rio de Janeiro, Brazil
| | - Ana Carolina da Cruz Campos
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, EB80 Hanzeplein 1, 9713, GZ, Groningen, The Netherlands.
| | - Andrea Maria Cabral
- Pedro Ernesto University Hospital, Rio de Janeiro State University, Vila Isabel, Rio de Janeiro, Brazil
| | | | - Jerome Lo-Ten-Foe
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, EB80 Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Ana Cláudia P Rosa
- Department of Microbiology, Immunology and Parasitology, Biomedical Center, Rio de Janeiro State University, Blv 28 de Setembro, 87, 3th floor, Vila Isabel, Rio de Janeiro, Brazil
| | - Paulo V Damasco
- Pedro Ernesto University Hospital, Rio de Janeiro State University, Vila Isabel, Rio de Janeiro, Brazil.,Department of Infectious and Parasitic Diseases, Graffrée e Guinle University Hospital, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
307
|
Nielsen TK, Horemans B, Lood C, T'Syen J, van Noort V, Lavigne R, Ellegaard-Jensen L, Hylling O, Aamand J, Springael D, Hansen LH. The complete genome of 2,6-dichlorobenzamide (BAM) degrader Aminobacter sp. MSH1 suggests a polyploid chromosome, phylogenetic reassignment, and functions of plasmids. Sci Rep 2021; 11:18943. [PMID: 34556718 PMCID: PMC8460812 DOI: 10.1038/s41598-021-98184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells. Biological treatment with MSH1 is considered a potential sustainable alternative to remediate BAM-contamination in drinking water production. We present the complete genome of MSH1, which was determined independently in two institutes at Aarhus University and KU Leuven. Divergences were observed between the two genomes, i.e. one of them lacked four plasmids compared to the other. Besides the circular chromosome and the two previously described plasmids involved in BAM catabolism, pBAM1 and pBAM2, the genome of MSH1 contained two megaplasmids and three smaller plasmids. The MSH1 substrain from KU Leuven showed a reduced genome lacking a megaplasmid and three smaller plasmids and was designated substrain MK1, whereas the Aarhus variant with all plasmids was designated substrain DK1. A plasmid stability experiment indicate that substrain DK1 may have a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids per cell. Finally, strain MSH1 is reassigned as Aminobacter niigataensis MSH1.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Section for Microbiology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium.,Sustainable Materials Unit, BAT Knowledge Centre, Vlaams Instituut voor Technologisch Onderzoek, Mol, Belgium
| | - Cédric Lood
- Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Jeroen T'Syen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Lea Ellegaard-Jensen
- Section of Environmental Microbiology and Circular Resource Flow, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Hylling
- Section of Environmental Microbiology and Circular Resource Flow, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium.
| | - Lars Hestbjerg Hansen
- Section for Microbiology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
308
|
Apostolakos I, Laconi A, Mughini-Gras L, Yapicier ÖŞ, Piccirillo A. Occurrence of Colibacillosis in Broilers and Its Relationship With Avian Pathogenic Escherichia coli (APEC) Population Structure and Molecular Characteristics. Front Vet Sci 2021; 8:737720. [PMID: 34568479 PMCID: PMC8456121 DOI: 10.3389/fvets.2021.737720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the disease with the highest economic loss for the broiler industry. However, studies focusing on the prevalence and population structure of APEC in the broiler production pyramid are scarce. Here, we used genotyping and serotyping data to elucidate the APEC population structure and its changes in different broiler production stages along with whole-genome sequencing (WGS) in a subset of APEC isolates to determine transmission patterns amongst dominant APEC sequence types (STs) and characterize them in detail. Comparison of genotypes encountered in both APEC and avian fecal E. coli (AFEC) provided further insights. Overall, APEC-related mortality, as the proportion of the total sampled mortality in the broiler production, was high (35%), while phylogroup C and serogroup O78 were predominant amongst APEC isolates. We found a low (34.0%) and high (53.3%) incidence of colibacillosis in chicks and end-cycle broilers, respectively, which may be related to a shift in APEC genotypes, suggesting a trend from commensalism to pathogenicity across different broiler production stages. Despite considerable APEC genotypic diversity, there was substantial genotype overlap (40.9%, overall) over the production stages and convergence of STs to the four clusters. Within these clusters, WGS data provided evidence of clonal transmission events and revealed an enriched virulence and resistance APEC repertoire. More specifically, sequenced APEC were assigned to defined pathotypes based on their virulence gene content while the majority (86%) was genotypically multi-drug resistant. Interestingly, WGS-based phylogeny showed that a subset of APEC, which are cephalosporin-resistant, may originate directly from cephalosporin-resistant AFEC. Finally, exploration of the APEC plasmidome indicated that the small fraction of the APEC virulome carried by IncF plasmids is pivotal for the manifestation of the APEC pathotype; thus, plasmid exchange can promote pathogenicity in strains that are at the edge of the commensal and pathogenic states.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Lapo Mughini-Gras
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Özlem Şahan Yapicier
- Republic of Turkey Ministry of Agriculture and Forestry Veterinary Control, Central Research Institute, Bacteriology Diagnostic Laboratory, Ankara, Turkey
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
309
|
Matlock W, Lipworth S, Constantinides B, Peto TEA, Walker AS, Crook D, Hopkins S, Shaw LP, Stoesser N. Flanker: a tool for comparative genomics of gene flanking regions. Microb Genom 2021; 7:000634. [PMID: 34559044 PMCID: PMC8715433 DOI: 10.1099/mgen.0.000634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Analysing the flanking sequences surrounding genes of interest is often highly relevant to understanding the role of mobile genetic elements (MGEs) in horizontal gene transfer, particular for antimicrobial-resistance genes. Here, we present Flanker, a Python package that performs alignment-free clustering of gene flanking sequences in a consistent format, allowing investigation of MGEs without prior knowledge of their structure. These clusters, known as 'flank patterns' (FPs), are based on Mash distances, allowing for easy comparison of similarity across sequences. Additionally, Flanker can be flexibly parameterized to fine-tune outputs by characterizing upstream and downstream regions separately, and investigating variable lengths of flanking sequence. We apply Flanker to two recent datasets describing plasmid-associated carriage of important carbapenemase genes (blaOXA-48 and blaKPC-2/3) and show that it successfully identifies distinct clusters of FPs, including both known and previously uncharacterized structural variants. For example, Flanker identified four Tn4401 profiles that could not be sufficiently characterized using TETyper or MobileElementFinder, demonstrating the utility of Flanker for flanking-gene characterization. Similarly, using a large (n=226) European isolate dataset, we confirm findings from a previous smaller study demonstrating association between Tn1999.2 and blaOXA-48 upregulation and demonstrate 17 FPs (compared to the 5 previously identified). More generally, the demonstration in this study that FPs are associated with geographical regions and antibiotic-susceptibility phenotypes suggests that they may be useful as epidemiological markers. Flanker is freely available under an MIT license at https://github.com/wtmatlock/flanker.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bede Constantinides
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Timothy E. A. Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susan Hopkins
- National Infection Service, Public Health England, Colindale, London, UK
| | - Liam P. Shaw
- Department of Zoology, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
310
|
Prithvisagar KS, Krishna Kumar B, Kodama T, Rai P, Iida T, Karunasagar I, Karunasagar I. Whole genome analysis unveils genetic diversity and potential virulence determinants in Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Virulence 2021; 12:1936-1949. [PMID: 34415829 PMCID: PMC8381830 DOI: 10.1080/21505594.2021.1947448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus has caused widespread mortality in Indian shrimp aquaculture in recent years. However, there are insufficient genome data for the isolates from Indian shrimp vibriosis to analyze genetic diversity and track the acquisition of genetic features that could be involved in virulence and fitness. In this study, we have performed genome analysis of V. parahaemolyticus isolated from moribund shrimps collected from shrimp farms along coastal Karnataka, India, for better understanding of their diversity and virulence. Five newly sequenced genomes of V. parahaemolyticus along with 40 genomes retrieved from NCBI were subjected to comparative genome analysis. The sequenced genomes had an overall genome size of 5.2 Mb. MLST analysis and core genome phylogenomic analysis revealed considerable genetic diversity among the isolates obtained from the moribund shrimps. Interestingly, none of the V. parahaemolyticus isolates possessed the classical features (PirAB) of the strains associated with Acute Hepatopancreatic Necrosis Disease (AHPND). This study also revealed the presence of multiple virulence attributes, including ZOT, ACE and RTX toxins, secretion systems, and mobile genetic elements. The findings of this study provide insights into the possible transition of an environmental V. parahaemolyticus to emerge as pathogens of aquaculture species by increasing its virulence and host adaptation. Future studies focusing on continuous genomic surveillance of V. parahaemolyticus are required to study the evolution and transmission of new variants in shrimp aquaculture, as well as to design and implement biosecurity programs to prevent disease outbreaks.
Collapse
Affiliation(s)
- Kattapuni Suresh Prithvisagar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Toshio Kodama
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki Japan
| | - Praveen Rai
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Tetsuya Iida
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Iddya Karunasagar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to Be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangaluru-Karnataka, India
| |
Collapse
|
311
|
Robertson J, Bessonov K, Schonfeld J, Nash JHE. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb Genom 2021; 6. [PMID: 32969786 PMCID: PMC7660255 DOI: 10.1099/mgen.0.000435] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial plasmids play a large role in allowing bacteria to adapt to changing environments and can pose a significant risk to human health if they confer virulence and antimicrobial resistance (AMR). Plasmids differ significantly in the taxonomic breadth of host bacteria in which they can successfully replicate, this is commonly referred to as 'host range' and is usually described in qualitative terms of 'narrow' or 'broad'. Understanding the host range potential of plasmids is of great interest due to their ability to disseminate traits such as AMR through bacterial populations and into human pathogens. We developed the MOB-suite to facilitate characterization of plasmids and introduced a whole-sequence-based classification system based on clustering complete plasmid sequences using Mash distances (https://github.com/phac-nml/mob-suite). We updated the MOB-suite database from 12 091 to 23 671 complete sequences, representing 17 779 unique plasmids. With advances in new algorithms for rapidly calculating average nucleotide identity (ANI), we compared clustering characteristics using two different distance measures - Mash and ANI - and three clustering algorithms on the unique set of plasmids. The plasmid nomenclature is designed to group highly similar plasmids together that are unlikely to have multiple representatives within a single cell. Based on our results, we determined that clusters generated using Mash and complete-linkage clustering at a Mash distance of 0.06 resulted in highly homogeneous clusters while maintaining cluster size. The taxonomic distribution of plasmid biomarker sequences for replication and relaxase typing, in combination with MOB-suite whole-sequence-based clusters have been examined in detail for all high-quality publicly available plasmid sequences. We have incorporated prediction of plasmid replication host range into the MOB-suite based on observed distributions of these sequence features in combination with known plasmid hosts from the literature. Host range is reported as the highest taxonomic rank that covers all of the plasmids which share replicon or relaxase biomarkers or belong to the same MOB-suite cluster code. Reporting host range based on these criteria allows for comparisons of host range between studies and provides information for plasmid surveillance.
Collapse
Affiliation(s)
- James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Justin Schonfeld
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John H E Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| |
Collapse
|
312
|
Biggel M, Zurfluh K, Treier A, Nüesch-Inderbinen M, Stephan R. Characteristics of fosA-carrying plasmids in E. coli and Klebsiella spp. isolates originating from food and environmental samples. J Antimicrob Chemother 2021; 76:2004-2011. [PMID: 33842964 DOI: 10.1093/jac/dkab119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES Fosfomycin is an important antibiotic for the treatment of MDR Enterobacteriaceae infections. High susceptibility rates are, however, threatened by the spread of plasmids encoding fosfomycin-modifying enzymes. In this study, we sought to characterize the genetic context of fosA in plasmids from Escherichia coli and Klebsiella spp. isolates recovered from food, wastewater and surface water in Switzerland. METHODS E. coli and Klebsiella spp. isolates collected between 2012 and 2019 in Switzerland were screened for fosfomycin resistance. Presence of fosA was verified by PCR and sodium phosphonoformate (PPF) disc potentiation testing, and transferability was tested using conjugation assays. Whole-genome sequences including complete fosA-containing plasmids were determined using long- and short-read sequencing. RESULTS In 11 E. coli and two Klebsiella spp. isolates, high-level fosfomycin resistance was mediated by plasmids containing fosA3 (n = 12) or fosA8 (n = 1). Four isolates harboured a near-identical 45 kb IncN plasmid with fosA3, while replicon types varied in the remaining plasmids. The fosA genes were typically embedded in IS26-bounded transposition units and frequently located in the proximity of blaCTX-M transposition units. CONCLUSIONS Although fosfomycin resistance rates are currently low, the presence of fosA-encoding plasmids circulating in the Enterobacteriaceae population suggests that fosfomycin resistance may rapidly spread upon increased selection pressure. Transposition mobility of fosA and co-location on plasmids with other resistance genes may further promote its dissemination.
Collapse
Affiliation(s)
- Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Andrea Treier
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland.,Swiss National Center for Enteropathogenic Bacteria and Listeria (NENT), University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, 8057 Zurich, Switzerland
| |
Collapse
|
313
|
Matlock W, Chau KK, AbuOun M, Stubberfield E, Barker L, Kavanagh J, Pickford H, Gilson D, Smith RP, Gweon HS, Hoosdally SJ, Swann J, Sebra R, Bailey MJ, Peto TEA, Crook DW, Anjum MF, Read DS, Walker AS, Stoesser N, Shaw LP. Genomic network analysis of environmental and livestock F-type plasmid populations. THE ISME JOURNAL 2021; 15:2322-2335. [PMID: 33649550 PMCID: PMC8319146 DOI: 10.1038/s41396-021-00926-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/02/2022]
Abstract
F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance (AMR) such as extended-spectrum β-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network communities. We show that such communities define unique combinations of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation. The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Kevin K Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hayleah Pickford
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Gilson
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - H Soon Gweon
- UK Centre for Ecology & Hydrology, Wallingford, UK
- University of Reading, Reading, UK
| | | | - Jeremy Swann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Sebra
- Icahn Institute of Data Science and Genomic Technology, Mt Sinai, NY, USA
| | | | - Timothy E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Muna F Anjum
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
314
|
Paganini JA, Plantinga NL, Arredondo-Alonso S, Willems RJL, Schürch AC. Recovering Escherichia coli Plasmids in the Absence of Long-Read Sequencing Data. Microorganisms 2021; 9:1613. [PMID: 34442692 PMCID: PMC8400445 DOI: 10.3390/microorganisms9081613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of infections caused by multidrug-resistant E. coli strains has risen in the past years. Antibiotic resistance in E. coli is often mediated by acquisition and maintenance of plasmids. The study of E. coli plasmid epidemiology and genomics often requires long-read sequencing information, but recently a number of tools that allow plasmid prediction from short-read data have been developed. Here, we reviewed 25 available plasmid prediction tools and categorized them into binary plasmid/chromosome classification tools and plasmid reconstruction tools. We benchmarked six tools (MOB-suite, plasmidSPAdes, gplas, FishingForPlasmids, HyAsP and SCAPP) that aim to reliably reconstruct distinct plasmids, with a special focus on plasmids carrying antibiotic resistance genes (ARGs) such as extended-spectrum beta-lactamase genes. We found that two thirds (n = 425, 66.3%) of all plasmids were correctly reconstructed by at least one of the six tools, with a range of 92 (14.58%) to 317 (50.23%) correctly predicted plasmids. However, the majority of plasmids that carried antibiotic resistance genes (n = 85, 57.8%) could not be completely recovered as distinct plasmids by any of the tools. MOB-suite was the only tool that was able to correctly reconstruct the majority of plasmids (n = 317, 50.23%), and performed best at reconstructing large plasmids (n = 166, 46.37%) and ARG-plasmids (n = 41, 27.9%), but predictions frequently contained chromosome contamination (40%). In contrast, plasmidSPAdes reconstructed the highest fraction of plasmids smaller than 18 kbp (n = 168, 61.54%). Large ARG-plasmids, however, were frequently merged with sequences derived from distinct replicons. Available bioinformatic tools can provide valuable insight into E. coli plasmids, but also have important limitations. This work will serve as a guideline for selecting the most appropriate plasmid reconstruction tool for studies focusing on E. coli plasmids in the absence of long-read sequencing data.
Collapse
Affiliation(s)
- Julian A. Paganini
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| | - Nienke L. Plantinga
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| | - Sergio Arredondo-Alonso
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.A.P.); (N.L.P.); (R.J.L.W.)
| |
Collapse
|
315
|
Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON. Whole Genome-Based Characterization of Listeria monocytogenes Isolates Recovered From the Food Chain in South Africa. Front Microbiol 2021; 12:669287. [PMID: 34276601 PMCID: PMC8283694 DOI: 10.3389/fmicb.2021.669287] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen which has the ability to adapt and survive in food and food processing facilities where it can persist for years. In this study, a total of 143 L. monocytogenes isolates in South Africa (SA) were characterized for their strain’s genetic relatedness, virulence profiles, stress tolerance and resistance genes associated with L. monocytogenes. The Core Genome Multilocus Sequence Typing (cgMLST) analysis revealed that the most frequent serogroups were IVb and IIa; Sequence Types (ST) were ST204, ST2, and ST1; and Clonal Complexes (CC) were CC204, CC1, and CC2. Examination of genes involved in adaptation and survival of L. monocytogenes in SA showed that ST1, ST2, ST121, ST204, and ST321 are well adapted in food processing environments due to the significant over-representation of Benzalkonium chloride (BC) resistance genes (bcrABC cassette, ermC, mdrL and Ide), stress tolerance genes (SSI-1 and SSI-2), Prophage (φ) profiles (LP_101, vB LmoS 188, vB_LmoS_293, and B054 phage), plasmids profiles (N1-011A, J1776, and pLM5578) and biofilm formation associated genes. Furthermore, the L. monocytogenes strains that showed hyper-virulent potential were ST1, ST2 and ST204, and hypo-virulent were ST121 and ST321 because of the presence and absence of major virulence factors such as LIPI-1, LIPI-3, LIPI-4 and the internalin gene family members including inlABCEFJ. The information provided in this study revealed that hyper-virulent strains ST1, ST2, and ST204 could present a major public health risk due to their association with meat products and food processing environments in SA.
Collapse
Affiliation(s)
- Thendo Mafuna
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa.,Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Itumeleng Matle
- Bacteriology Division, Agricultural Research Council: Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Forestry and Fisheries, Private Bag X138, Pretoria, South Africa
| | - Rian E Pierneef
- Agricultural Research Council, Biotechnology Platform, Private Bag X05, Onderstepoort, South Africa
| | - Oleg N Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
316
|
Pradier L, Tissot T, Fiston-Lavier AS, Bedhomme S. PlasForest: a homology-based random forest classifier for plasmid detection in genomic datasets. BMC Bioinformatics 2021; 22:349. [PMID: 34174810 PMCID: PMC8236179 DOI: 10.1186/s12859-021-04270-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmids are mobile genetic elements that often carry accessory genes, and are vectors for horizontal transfer between bacterial genomes. Plasmid detection in large genomic datasets is crucial to analyze their spread and quantify their role in bacteria adaptation and particularly in antibiotic resistance propagation. Bioinformatics methods have been developed to detect plasmids. However, they suffer from low sensitivity (i.e., most plasmids remain undetected) or low precision (i.e., these methods identify chromosomes as plasmids), and are overall not adapted to identify plasmids in whole genomes that are not fully assembled (contigs and scaffolds). Results We developed PlasForest, a homology-based random forest classifier identifying bacterial plasmid sequences in partially assembled genomes. Without knowing the taxonomical origin of the samples, PlasForest identifies contigs as plasmids or chromosomes with a F1 score of 0.950. Notably, it can detect 77.4% of plasmid contigs below 1 kb with 2.8% of false positives and 99.9% of plasmid contigs over 50 kb with 2.2% of false positives. Conclusions PlasForest outperforms other currently available tools on genomic datasets by being both sensitive and precise. The performance of PlasForest on metagenomic assemblies are currently well below those of other k-mer-based methods, and we discuss how homology-based approaches could improve plasmid detection in such datasets. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04270-w.
Collapse
Affiliation(s)
- Léa Pradier
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche Pour le Développement, 34000, Montpellier, France.
| | - Tazzio Tissot
- Genomics, Bioinformatics and Evolution. Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.,Centre de Recerca Matemàtica, 08193, Cerdanyola del Vallès, Spain
| | - Anna-Sophie Fiston-Lavier
- Institut des Sciences de l'Evolution de Montpellier (ISE-M), Equipe Evolution, Vecteurs, Adaptation et Symbiose, UMR 5554, CNRS-Université Montpellier, 34090, Montpellier Cedex 05, France
| | - Stéphanie Bedhomme
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, Université de Montpellier, Université Paul Valéry Montpellier 3, Ecole Pratique des Hautes Etudes, Institut de Recherche Pour le Développement, 34000, Montpellier, France.
| |
Collapse
|
317
|
On-Farm Anaerobic Digestion of Dairy Manure Reduces the Abundance of Antibiotic Resistance-Associated Gene Targets and the Potential for Plasmid Transfer. Appl Environ Microbiol 2021; 87:e0298020. [PMID: 33931422 DOI: 10.1128/aem.02980-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the impact of on-farm anaerobic digestion on the abundance of enteric bacteria, antibiotic resistance-associated gene targets, and the horizontal transfer potential of extended-spectrum β-lactamase (ESBL) genes. Samples of raw and digested manure were obtained from six commercial dairy farms in Ontario, Canada. Digestion significantly abated populations of viable coliforms in all six farms. Conjugative transfer of plasmids carrying β-lactamase genes from manure bacteria enriched overnight with buffered peptone containing 4 mg/liter cefotaxime into a β-lactam-sensitive green fluorescent protein (GFP)-labeled Escherichia coli recipient strain was evaluated in patch matings. Digestion significantly decreased the frequency of the horizontal transfer of ESBL genes. Twenty-five transconjugants were sequenced, revealing six distinct plasmids, ranging in size from 40 to 180 kb. A variety of ESBL genes were identified: blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, blaCTX-M-55, and blaPER-1. blaCTX-M-15 was the most prevalent ESBL gene detected on plasmids harbored by transconjugants. Various mobile genetic elements were found located proximal to resistance genes. Ten gene targets, including sul1, str(A), str(B), erm(B), erm(F), intI1, aadA, incW, blaPSE, and blaOXA-20, were quantified by quantitative PCR on a subset of 18 raw and 18 digested samples. Most targets were significantly more abundant in raw manure; however, erm(B) and erm(F) targets were more abundant in digested samples. Overall, on-farm digestion of dairy manure abated coliform bacteria, a number of antibiotic resistance-associated gene targets, and the potential for in vitro conjugation of plasmids conferring resistance to extended-spectrum β-lactams and other classes of antibiotics into E. coli CV601. IMPORTANCE Using livestock manure for fertilization can entrain antibiotic-resistant bacteria into soil. Manure on some dairy farms is anaerobically digested before being land applied. Recommending the widespread implementation of the practice should be founded on understanding the impact of this treatment on various endpoints of human health concern. Although lab-scale anaerobic treatments have shown potential for reducing the abundance of antibiotic resistance genes, there are very few data from commercial farms. Anaerobic digestion of manure on six dairy farms efficiently abated coliform bacteria, E. coli, and a majority of antibiotic resistance-associated gene targets. In addition, the conjugation potential of plasmids carrying ESBL genes into introduced E. coli strain CV601 was reduced. Overall, anaerobic digestion abated coliform bacteria, the genes that they carry, and the potential for ESBL-carrying plasmid transfer.
Collapse
|
318
|
Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc Natl Acad Sci U S A 2021; 118:2008731118. [PMID: 33526659 DOI: 10.1073/pnas.2008731118] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that plasmids play an important role in the dissemination of antimicrobial resistance (AMR) genes; however, little is known about the role of the underlying interactions between different plasmid categories and other mobile genetic elements (MGEs) in shaping the promiscuous spread of AMR genes. Here, we developed a tool designed for plasmid classification, AMR gene annotation, and plasmid visualization and found that most plasmid-borne AMR genes, including those localized on class 1 integrons, are enriched in conjugative plasmids. Notably, we report the discovery and characterization of a massive insertion sequence (IS)-associated AMR gene transfer network (245 combinations covering 59 AMR gene subtypes and 53 ISs) linking conjugative plasmids and phylogenetically distant pathogens, suggesting a general evolutionary mechanism for the horizontal transfer of AMR genes mediated by the interaction between conjugative plasmids and ISs. Moreover, our experimental results confirmed the importance of the observed interactions in aiding the horizontal transfer and expanding the genetic range of AMR genes within complex microbial communities.
Collapse
|
319
|
Cadel-Six S, Cherchame E, Douarre PE, Tang Y, Felten A, Barbet P, Litrup E, Banerji S, Simon S, Pasquali F, Gourmelon M, Mensah N, Borowiak M, Mistou MY, Petrovska L. The Spatiotemporal Dynamics and Microevolution Events That Favored the Success of the Highly Clonal Multidrug-Resistant Monophasic Salmonella Typhimurium Circulating in Europe. Front Microbiol 2021; 12:651124. [PMID: 34093465 PMCID: PMC8175864 DOI: 10.3389/fmicb.2021.651124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023] Open
Abstract
The European epidemic monophasic variant of Salmonella enterica serovar Typhimurium (S. 1,4,[5],12:i:-) characterized by the multi locus sequence type ST34 and the antimicrobial resistance ASSuT profile has become one of the most common serovars in Europe (EU) and the United States (US). In this study, we reconstructed the time-scaled phylogeny and evolution of this Salmonella in Europe. The epidemic S. 1,4,[5],12:i:- ST34 emerged in the 1980s by an acquisition of the Salmonella Genomic Island (SGI)-4 at the 3' end of the phenylalanine phe tRNA locus conferring resistance to copper and arsenic toxicity. Subsequent integration of the Tn21 transposon into the fljAB locus gave resistance to mercury toxicity and several classes of antibiotics used in food-producing animals (ASSuT profile). The second step of the evolution occurred in the 1990s, with the integration of mTmV and mTmV-like prophages carrying the perC and/or sopE genes involved in the ability to reduce nitrates in intestinal contents and facilitate the disruption of the junctions of the host intestinal epithelial cells. Heavy metals are largely used as food supplements or pesticide for cultivation of seeds intended for animal feed so the expansion of the epidemic S. 1,4,[5],12:i:- ST34 was strongly related to the multiple-heavy metal resistance acquired by transposons, integrative and conjugative elements and facilitated by the escape until 2011 from the regulatory actions applied in the control of S. Typhimurium in Europe. The genomic plasticity of the epidemic S. 1,4,[5],12:i:- was demonstrated in our study by the analysis of the plasmidome. We were able to identify plasmids harboring genes mediating resistance to phenicols, colistin, and fluoroquinolone and also describe for the first time in six of the analyzed genomes the presence of two plasmids (pERR1744967-1 and pERR2174855-2) previously described only in strains of enterotoxigenic Escherichia coli and E. fergusonii.
Collapse
Affiliation(s)
- Sabrina Cadel-Six
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Emeline Cherchame
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | | | - Yue Tang
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Arnaud Felten
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Pauline Barbet
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Eva Litrup
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sangeeta Banerji
- Robert Koch-Institute, Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Wernigerode, Germany
| | - Sandra Simon
- Robert Koch-Institute, Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Wernigerode, Germany
| | - Federique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Michèle Gourmelon
- Ifremer, RBE, SGMM, Health, Environment and Microbiology Laboratory, Plouzané, France
| | - Nana Mensah
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Maria Borowiak
- Department for Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Michel-Yves Mistou
- Université Paris-Saclay, INRAE, Centre International de Ressource Microbienne (CIRM) MaIAGE, Jouy-en-Josas, France
| | - Liljana Petrovska
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
320
|
Fountain K, Blackett T, Butler H, Carchedi C, Schilling AK, Meredith A, Gibbon MJ, Lloyd DH, Loeffler A, Feil EJ. Fatal exudative dermatitis in island populations of red squirrels ( Sciurus vulgaris): spillover of a virulent Staphylococcus aureus clone (ST49) from reservoir hosts. Microb Genom 2021; 7:000565. [PMID: 34016250 PMCID: PMC8209723 DOI: 10.1099/mgen.0.000565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 01/20/2023] Open
Abstract
Fatal exudative dermatitis (FED) is a significant cause of death of red squirrels (Sciurus vulgaris) on the island of Jersey in the Channel Islands where it is associated with a virulent clone of Staphylococcus aureus, ST49. S. aureus ST49 has been found in other hosts such as small mammals, pigs and humans, but the dynamics of carriage and disease of this clone, or any other lineage in red squirrels, is currently unknown. We used whole-genome sequencing to characterize 228 isolates from healthy red squirrels on Jersey, the Isle of Arran (Scotland) and Brownsea Island (England), from red squirrels showing signs of FED on Jersey and the Isle of Wight (England) and a small number of isolates from other hosts. S. aureus was frequently carried by red squirrels on the Isle of Arran with strains typically associated with small ruminants predominating. For the Brownsea carriage, S. aureus was less frequent and involved strains associated with birds, small ruminants and humans, while for the Jersey carriage S. aureus was rare but ST49 predominated in diseased squirrels. By combining our data with publicly available sequences, we show that the S. aureus carriage in red squirrels largely reflects frequent but facile acquisitions of strains carried by other hosts sharing their habitat ('spillover'), possibly including, in the case of ST188, humans. Genome-wide association analysis of the ruminant lineage ST133 revealed variants in a small number of mostly bacterial-cell-membrane-associated genes that were statistically associated with squirrel isolates from the Isle of Arran, raising the possibility of specific adaptation to red squirrels in this lineage. In contrast there is little evidence that ST49 is a common carriage isolate of red squirrels and infection from reservoir hosts such as bank voles or rats, is likely to be driving the emergence of FED in red squirrels.
Collapse
Affiliation(s)
- Kay Fountain
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tiffany Blackett
- Voluntary Co-ordinator of the JSPCA Animals' Shelter Red Squirrel Disease Surveillance Scheme, JSPCA Animals' Shelter, 89 St Saviours Road, St Helier, Jersey JE2 4GJ, Jersey
| | - Helen Butler
- Wight Squirrel Project, PO Box 33 Nicholson Road, Ryde, Isle of Wight PO33 1BH, UK
| | - Catherine Carchedi
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Anna-Katarina Schilling
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
| | - Anna Meredith
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville Campus, Melbourne, VIC, 3010, Australia
| | - Marjorie J. Gibbon
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David H. Lloyd
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Anette Loeffler
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Edward J. Feil
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
321
|
Greenman NA, Jurgensen SK, Holmes CP, Kapsak CJ, Davis RE, Maza WM, Edemba D, Esser BA, Hise SM, Keen TN, Larson HG, Lockwood DJ, Wang B, Harsh JA, Herrick JB. Genomics of Environmental Salmonella: Engaging Students in the Microbiology and Bioinformatics of Foodborne Pathogens. Front Microbiol 2021; 12:592422. [PMID: 33967968 PMCID: PMC8100199 DOI: 10.3389/fmicb.2021.592422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed and implemented an undergraduate microbiology course in which students isolate, characterize, and perform whole genome assembly and analysis of Salmonella enterica from stream sediments and poultry litter. In the development of the course and over three semesters, successive teams of undergraduate students collected field samples and performed enrichment and isolation techniques specific for the detection of S. enterica. Eighty-eight strains were confirmed using standard microbiological methods and PCR of the invA gene. The isolates' genomes were Illumina-sequenced by the Center for Food Safety and Applied Nutrition at the FDA and the Virginia state Division of Consolidated Laboratory Services as part of the GenomeTrakr program. Students used GalaxyTrakr and other web- and non-web-based platforms and tools to perform quality control on raw and assembled sequence data, assemble, and annotate genomes, identify antimicrobial resistance and virulence genes, putative plasmids, and other mobile genetic elements. Strains with putative plasmid-borne antimicrobial resistance genes were further sequenced by students in our research lab using the Oxford Nanopore MinIONTM platform. Strains of Salmonella that were isolated include human infectious serotypes such as Typhimurium and Infantis. Over 31 of the isolates possessed antibiotic resistance genes, some of which were located on large, multidrug resistance plasmids. Plasmid pHJ-38, identified in a Typhimurium isolate, is an apparently self-transmissible 183 kb IncA/C2 plasmid that possesses multiple antimicrobial resistance and heavy-metal resistance genes. Plasmid pFHS-02, identified in an Infantis isolate, is an apparently self-transmissible 303 kb IncF1B plasmid that also possesses numerous heavy-metal and antimicrobial resistance genes. Using direct and indirect measures to assess student outcomes, results indicate that course participation contributed to cognitive gains in relevant content knowledge and research skills such as field sampling, molecular techniques, and computational analysis. Furthermore, participants self-reported a deeper interest in scientific research and careers as well as psychosocial outcomes (e.g., sense of belonging and self-efficacy) commonly associated with student success and persistence in STEM. Overall, this course provided a powerful combination of field, wet lab, and computational biology experiences for students, while also providing data potentially useful in pathogen surveillance, epidemiological tracking, and for the further study of environmental reservoirs of S. enterica.
Collapse
Affiliation(s)
- Noah A. Greenman
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Sophie K. Jurgensen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Charles P. Holmes
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Curtis J. Kapsak
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Raechel E. Davis
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - William M. Maza
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Desiree Edemba
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Bethany A. Esser
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Selena M. Hise
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Tara N. Keen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Hunter G. Larson
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Brian Wang
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Joseph A. Harsh
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - James B. Herrick
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- Center for Genome and Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
322
|
Worsley-Tonks KEL, Miller EA, Anchor CL, Bender JB, Gehrt SD, McKenzie SC, Singer RS, Johnson TJ, Craft ME. Importance of anthropogenic sources at shaping the antimicrobial resistance profile of a peri-urban mesocarnivore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144166. [PMID: 33401044 DOI: 10.1016/j.scitotenv.2020.144166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenically derived antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARG) have been detected in wildlife. The likelihood of detecting ARB and ARG in wildlife increases with wildlife exposure to anthropogenic sources of antimicrobial resistance (AMR). Whether anthropogenic sources also increase the risk for AMR to spread in bacteria of wildlife is not well understood. The spread of AMR in bacteria of wildlife can be estimated by examining the richness of ARB and ARG, and the prevalence of ARB that have mobilizable ARG (i.e., ARG that can be transferred across bacteria via plasmids). Here, we investigated whether raccoons (Procyon lotor), with different exposures to anthropogenic sources, differed in prevalence and richness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli, richness of ARG present in ESC-R E. coli, and prevalence of ESC-R E. coli with plasmid-associated ARG. Sampling took place over the course of 10 months at seven sites in Chicago, USA. ESC-R E. coli were isolated from over half of the 211 raccoons sampled and were more likely to be isolated from urban than suburban raccoons. When examining the whole-genome sequences of ESC-R E. coli, 56 sequence types were identified, most of which were associated with the ARG blaCMY and blaCTX-M. A greater richness of ESC-R E. coli sequence types was found at sites with a wastewater treatment plant (WWTP) than without, but no difference was detected based on urban context. ARG richness in ESC-R E. coli did not significantly vary by urban context nor with presence of a WWTP. Importantly, ESC-R E. coli carrying plasmid-associated blaCTX-M and blaCMY ARG were more likely to be isolated from raccoons sampled at sites with a WWTP than without. Our findings indicate that anthropogenic sources may shape the AMR profile of wildlife, reinforcing the need to prevent dissemination of AMR into the environment.
Collapse
Affiliation(s)
- Katherine E L Worsley-Tonks
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, United States of America.
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, United States of America
| | - Chris L Anchor
- Forest Preserve District of Cook County, 28W040 IL-58, Elgin, IL 60120, United States of America
| | - Jeff B Bender
- School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, United States of America
| | - Stanley D Gehrt
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States of America
| | - Shane C McKenzie
- Max McGraw Wildlife Foundation, 14N322 IL-25, Dundee Township, IL 60118, United States of America
| | - Randall S Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, United States of America
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, United States of America
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Avenue, Saint Paul, MN 55108, United States of America; Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, United States of America
| |
Collapse
|
323
|
Lyu N, Feng Y, Pan Y, Huang H, Liu Y, Xue C, Zhu B, Hu Y. Genomic Characterization of Salmonella enterica Isolates From Retail Meat in Beijing, China. Front Microbiol 2021; 12:636332. [PMID: 33897640 PMCID: PMC8058101 DOI: 10.3389/fmicb.2021.636332] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella enterica remains one of the leading causes of foodborne bacterial disease. Retail meat is a major source of human salmonellosis. However, comparative genomic analyses of S. enterica isolates from retail meat from different sources in China are lacking. A total of 341 S. enterica strains were isolated from retail meat in sixteen districts of Beijing, China, at three different time points (January 1st, May 1st, and October 1st) in 2017. Comparative genomics was performed to investigate the genetic diversity, virulence and antimicrobial resistance gene (ARG) profiles of these isolates. The most common serotype was S. Enteritidis (203/341, 59.5%), which dominated among isolates from three different time points during the year. Laboratory retesting confirmed the accuracy of the serotyping results predicted by the Salmonella In Silico Typing Resource (SISTR) (96.5%). The pangenome of the 341 S. enterica isolates contained 13,931 genes, and the core genome contained 3,635 genes. Higher Salmonella phage 118970 sal3 (219/341, 64.2%) and Gifsy-2 (206/341, 60.4%) prevalence contributed to the diversity of the accessory genes, especially those with unknown functions. IncFII(S), IncX1, and IncFIB(S) plasmid replicons were more common in these isolates and were major sources of horizontally acquired foreign genes. The virulence gene profile showed fewer virulence genes associated with type III secretion systems in certain isolates from chicken. A total of 88 different ARGs were found in the 341 isolates. Three beta-lactamases, namely, blaCTX–M–55 (n = 15), blaCTX–M–14 (n = 11), and blaCTX–M–65 (n = 11), were more prevalent in retail meats. The emergence of qnrE1 and blaCTX–M–123 indicated a potential increase in the prevalence of retail meats. After the prohibition of colistin in China, three and four isolates were positive for the colistin resistance genes mcr-1.1 and mcr-9, respectively. Thus, we explored the evolution and genomic features of S. enterica isolates from retail meats in Beijing, China. The diverse ARGs of these isolates compromise food security and are a clinical threat.
Collapse
Affiliation(s)
- Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanlong Pan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Huang
- Beijing Products Quality Supervision and Inspection Institute, Beijing, China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenyu Xue
- Beijing Municipal Center for Food Safety Monitoring and Risk Assessment, Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
324
|
Shaw LP, Chau KK, Kavanagh J, AbuOun M, Stubberfield E, Gweon HS, Barker L, Rodger G, Bowes MJ, Hubbard ATM, Pickford H, Swann J, Gilson D, Smith RP, Hoosdally SJ, Sebra R, Brett H, Peto TEA, Bailey MJ, Crook DW, Read DS, Anjum MF, Walker AS, Stoesser N. Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. SCIENCE ADVANCES 2021; 7:eabe3868. [PMID: 33837077 PMCID: PMC8034854 DOI: 10.1126/sciadv.abe3868] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/22/2021] [Indexed: 05/07/2023]
Abstract
Escherichia coli and other Enterobacteriaceae are diverse species with "open" pangenomes, where genes move intra- and interspecies via horizontal gene transfer. However, most analyses focus on clinical isolates. The pangenome dynamics of natural populations remain understudied, despite their suggested role as reservoirs for antimicrobial resistance (AMR) genes. Here, we analyze near-complete genomes for 827 Enterobacteriaceae (553 Escherichia and 274 non-Escherichia spp.) with 2292 circularized plasmids in total, collected from 19 locations (livestock farms and wastewater treatment works in the United Kingdom) within a 30-km radius at three time points over a year. We find different dynamics for chromosomal and plasmid-borne genes. Plasmids have a higher burden of AMR genes and insertion sequences, and AMR-gene-carrying plasmids show evidence of being under stronger selective pressure. Environmental niche and local geography both play a role in shaping plasmid dynamics. Our results highlight the importance of local strategies for controlling the spread of AMR.
Collapse
Affiliation(s)
- Liam P Shaw
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Kevin K Chau
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - James Kavanagh
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - H Soon Gweon
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
- School of Biological Sciences, University of Reading, Reading RG6 6AS, UK
| | - Leanne Barker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Gillian Rodger
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Mike J Bowes
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Alasdair T M Hubbard
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Hayleah Pickford
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jeremy Swann
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Daniel Gilson
- Department of Epidemiological Sciences, The Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Richard P Smith
- Department of Epidemiological Sciences, The Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Sarah J Hoosdally
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Sema4, a Mount Sinai venture, 333 Ludlow Street, North Tower, 8th floor, Stamford, CT 06902, USA
| | - Howard Brett
- Thames Water Utilities, Clearwater Court, Vastern Road, Reading RG1 8DB, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Mark J Bailey
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Daniel S Read
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford OX4 9DU, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
325
|
Resistance determinants and their genetic context in enterobacteria from a longitudinal study of pigs reared under various husbandry conditions. Appl Environ Microbiol 2021; 87:AEM.02612-20. [PMID: 33514521 PMCID: PMC8091121 DOI: 10.1128/aem.02612-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum β-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were bla CTX-M-1, bla CTX-M-15 and bla CMY-2 and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis.Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.
Collapse
|
326
|
Janse I, Beeloo R, Swart A, Visser M, Schouls L, van Duijkeren E, van Passel MWJ. The extent of carbapenemase-encoding genes in public genome sequences. PeerJ 2021; 9:e11000. [PMID: 33732552 PMCID: PMC7953867 DOI: 10.7717/peerj.11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla NDM, bla OXA, bla VIM, bla IMP and bla KPC. We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.
Collapse
Affiliation(s)
- Ingmar Janse
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Rick Beeloo
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Arno Swart
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Michael Visser
- Sequencing and Bioinformatics, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Leo Schouls
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands
| | - Mark W J van Passel
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Utrecht, The Netherlands.,Ministry of Health, Welfare and Sport, The Hague, The Netherlands
| |
Collapse
|
327
|
Juraschek K, Borowiak M, Tausch SH, Malorny B, Käsbohrer A, Otani S, Schwarz S, Meemken D, Deneke C, Hammerl JA. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli. Microorganisms 2021; 9:microorganisms9030598. [PMID: 33799479 PMCID: PMC8000739 DOI: 10.3390/microorganisms9030598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to public health worldwide. Currently, AMR typing changes from phenotypic testing to whole-genome sequence (WGS)-based detection of resistance determinants for a better understanding of the isolate diversity and elements involved in gene transmission (e.g., plasmids, bacteriophages, transposons). However, the use of WGS data in monitoring purposes requires suitable techniques, standardized parameters and approved guidelines for reliable AMR gene detection and prediction of their association with mobile genetic elements (plasmids). In this study, different sequencing and assembly strategies were tested for their suitability in AMR monitoring in Escherichia coli in the routines of the German National Reference Laboratory for Antimicrobial Resistances. To assess the outcomes of the different approaches, results from in silico predictions were compared with conventional phenotypic- and genotypic-typing data. With the focus on (fluoro)quinolone-resistant E.coli, five qnrS-positive isolates with multiple extrachromosomal elements were subjected to WGS with NextSeq (Illumina), PacBio (Pacific BioSciences) and ONT (Oxford Nanopore) for in depth characterization of the qnrS1-carrying plasmids. Raw reads from short- and long-read sequencing were assembled individually by Unicycler or Flye or a combination of both (hybrid assembly). The generated contigs were subjected to bioinformatics analysis. Based on the generated data, assembly of long-read sequences are error prone and can yield in a loss of small plasmid genomes. In contrast, short-read sequencing was shown to be insufficient for the prediction of a linkage of AMR genes (e.g., qnrS1) to specific plasmid sequences. Furthermore, short-read sequencing failed to detect certain duplications and was unsuitable for genome finishing. Overall, the hybrid assembly led to the most comprehensive typing results, especially in predicting associations of AMR genes and mobile genetic elements. Thus, the use of different sequencing technologies and hybrid assemblies currently represents the best approach for reliable AMR typing and risk assessment.
Collapse
Affiliation(s)
- Katharina Juraschek
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| | - Maria Borowiak
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Simon H. Tausch
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Burkhard Malorny
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Annemarie Käsbohrer
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Saria Otani
- DTU Food, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800 Kgs Lyngby, Denmark;
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Carlus Deneke
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Jens Andre Hammerl
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| |
Collapse
|
328
|
Gibbon MJ, Couto N, David S, Barden R, Standerwick R, Jagadeesan K, Birkwood H, Dulyayangkul P, Avison MB, Kannan A, Kibbey D, Craft T, Habib S, Thorpe HA, Corander J, Kasprzyk-Hordern B, Feil EJ. A high prevalence of blaOXA-48 in Klebsiella ( Raoultella) ornithinolytica and related species in hospital wastewater in South West England. Microb Genom 2021; 7:mgen000509. [PMID: 33416467 PMCID: PMC8190614 DOI: 10.1099/mgen.0.000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae (Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-susceptibility to carbapenems and other beta-lactam antibiotics. Whilst it has been proposed that the urban water cycle facilitates transmission of pathogens between clinical settings and the environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in contemporaneous samples of wastewater from an English hospital and influent to the associated wastewater treatment plant (WWTP). As we aimed to characterize representative samples of Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were of equal dominance in the hospital wastewater, and four other Klebsiella species were present in low abundance in this sample. In contrast, despite being the species most closely associated with healthcare settings, Kpne was the dominant species within the WWTP influent. In total, 29 % of all isolates harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively recovered from the hospital wastewater. This gene was far more common in Korn (68 % of isolates) than in Kpne (3.4 % of isolates). In general plasmid-borne, but not chromosomal, resistance genes were significantly enriched in the hospital wastewater sample. These data implicate hospital wastewater as an important reservoir for antibiotic-resistant Klebsiella, and point to an unsuspected role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne blaOXA-48. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Marjorie J. Gibbon
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Natacha Couto
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sophia David
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | - Hollie Birkwood
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Punyawee Dulyayangkul
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Matthew B. Avison
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Andrew Kannan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Dan Kibbey
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath BA1 3NG, UK
| | - Samia Habib
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Harry A. Thorpe
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Jukka Corander
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
329
|
Cooper AL, Carrillo CD, DeschÊnes M, Blais BW. Genomic Markers for Quaternary Ammonium Compound Resistance as a Persistence Indicator for Listeria monocytogenes Contamination in Food Manufacturing Environments. J Food Prot 2021; 84:389-398. [PMID: 33038236 DOI: 10.4315/jfp-20-328] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
ABSTRACT Persistent contamination of food manufacturing environments by Listeria monocytogenes is an important public health risk, because such contamination events defy standard sanitization protocols, for example, the application of quaternary ammonium compounds such as benzalkonium chloride (BC), providing a source for prolonged dissemination of the bacteria in food products. We performed whole genome sequencing analyses of 1,279 well-characterized L. monocytogenes isolates from various foods and food manufacturing environments and identified the bcrABC gene cassette associated with BC resistance in 531 (41.5%) isolates. The bcrABC cassette was significantly associated with L. monocytogenes isolates belonging to clonal complex (CC) 321, CC155, CC204, and CC199, which are among the 10 most prevalent genotypes recovered from foods and food production environments. All but 1 of the 177 CC321 isolates harbored the bcrABC cassette. In addition, 384 (38.6%) of the 994 isolates recovered from foods representing 67 different CCs and 119 (59.2%) of isolates from food manufacturing environmental samples representing 26 different CCs were found to harbor the intact bcrABC cassette. A representative set of 69 isolates with and without bcrABC was assayed for the ability to grow in the presence of BC, and 34 of 35 isolates harboring the bcrABC cassette exhibited MICs of ≥10 μg/mL BC. Determination of bcrABC in isolates could be achieved using both PCR and whole genome sequencing techniques, providing food testing laboratories with options for the characterization of isolates. The ability to determine markers of quaternary ammonium compound resistance such as bcrABC and epidemiologic lineage may provide risk managers with a tool to assess the potential for persistent contamination of the food manufacturing environment and the need for more targeted surveillance to ensure the efficacy of mitigation actions. HIGHLIGHTS
Collapse
Affiliation(s)
- Ashley L Cooper
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| | - Catherine D Carrillo
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| | - MylÈne DeschÊnes
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| | - Burton W Blais
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada K1A 0Y9
| |
Collapse
|
330
|
Barretto C, Rincón C, Portmann AC, Ngom-Bru C. Whole Genome Sequencing Applied to Pathogen Source Tracking in Food Industry: Key Considerations for Robust Bioinformatics Data Analysis and Reliable Results Interpretation. Genes (Basel) 2021; 12:275. [PMID: 33671973 PMCID: PMC7919020 DOI: 10.3390/genes12020275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Whole genome sequencing (WGS) has arisen as a powerful tool to perform pathogen source tracking in the food industry thanks to several developments in recent years. However, the cost associated to this technology and the degree of expertise required to accurately process and understand the data has limited its adoption at a wider scale. Additionally, the time needed to obtain actionable information is often seen as an impairment for the application and use of the information generated via WGS. Ongoing work towards standardization of wet lab including sequencing protocols, following guidelines from the regulatory authorities and international standardization efforts make the technology more and more accessible. However, data analysis and results interpretation guidelines are still subject to initiatives coming from distinct groups and institutions. There are multiple bioinformatics software and pipelines developed to handle such information. Nevertheless, little consensus exists on a standard way to process the data and interpret the results. Here, we want to present the constraints we face in an industrial setting and the steps we consider necessary to obtain high quality data, reproducible results and a robust interpretation of the obtained information. All of this, in a time frame allowing for data-driven actions supporting factories and their needs.
Collapse
Affiliation(s)
- Caroline Barretto
- Institute of Food Safety and Analytical Sciences, Nestlé Research, 1000 Lausanne 26, Switzerland; (C.R.); (A.-C.P.); (C.N.-B.)
| | | | | | | |
Collapse
|
331
|
Vezina B, Al-Harbi H, Ramay HR, Soust M, Moore RJ, Olchowy TWJ, Alawneh JI. Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds. Sci Rep 2021; 11:3046. [PMID: 33542314 PMCID: PMC7862697 DOI: 10.1038/s41598-021-82357-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Streptococcus uberis is one of the most frequent mastitis-causing pathogens isolated from dairy cows. Further understanding of S. uberis genetics may help elucidate the disease pathogenesis. We compared the genomes of S. uberis isolates cultured from dairy cows located in distinctly different geographic regions of Australia. All isolates had novel multi locus sequence types (MLST) indicating a highly diverse population of S. uberis. Global clonal complexes (GCC) were more conserved. GCC ST86 and GCC ST143 represented 30% of the total isolates (n = 27) and were clustered within different geographic regions. Core genome phylogeny revealed low phylogenetic clustering by region, isolation source, and MLST. Identification of putative sortase (srtA) substrates and generation of a custom putative virulence factor database revealed genes which may explain the affinity of S. uberis for mammary tissue, evasion of antimicrobial efforts and disease pathogenesis. Of 27 isolates, four contained antibiotic resistance genes including an antimicrobial resistance cluster containing mel/mef(A), mrsE, vatD, lnuD, and transposon-mediated lnuC was also identified. These are novel genes for S. uberis, which suggests interspecies lateral gene transfer. The presence of resistance genes across the two geographic regions tested within one country supports the need for a careful, tailored, implementation and monitoring of antimicrobial stewardship.
Collapse
Affiliation(s)
- Ben Vezina
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.,Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Hulayyil Al-Harbi
- The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, 4573, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, 3083, Australia
| | - Timothy W J Olchowy
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.,Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T3R 1J3, Canada
| | - John I Alawneh
- Good Clinical Practice Research Group (GCPRG), The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia. .,The University of Queensland, School of Veterinary Science, Gatton, QLD, 4343, Australia.
| |
Collapse
|
332
|
Complete Genome Sequences of 12 Quinolone-Resistant Escherichia coli Strains Containing qnrS1 Based on Hybrid Assemblies. Microbiol Resour Announc 2021; 10:10/4/e01190-20. [PMID: 33509985 PMCID: PMC7844070 DOI: 10.1128/mra.01190-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In total, 12 quinolone-resistant Escherichia coli (QREC) strains containing qnrS1 were submitted to long-read sequencing using a FLO-MIN106 flow cell on a MinION device. The long reads were assembled with short reads (Illumina) and analyzed using the MOB-suite pipeline. Six of these QREC genome sequences were closed after hybrid assembly. In total, 12 quinolone-resistant Escherichia coli (QREC) strains containing qnrS1 were submitted to long-read sequencing using a FLO-MIN106 flow cell on a MinION device. The long reads were assembled with short reads (Illumina) and analyzed using the MOB-suite pipeline. Six of these QREC genome sequences were closed after hybrid assembly.
Collapse
|
333
|
Herencias C, Rodríguez-Beltrán J, León-Sampedro R, Alonso-del Valle A, Palkovičová J, Cantón R, San Millán Á. Collateral sensitivity associated with antibiotic resistance plasmids. eLife 2021; 10:e65130. [PMID: 33470194 PMCID: PMC7837676 DOI: 10.7554/elife.65130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.
Collapse
Affiliation(s)
- Cristina Herencias
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
| | - Jerónimo Rodríguez-Beltrán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Centro de Investigación Biológica en Red Epidemiología y Salud Pública, Instituto de Salud Carlos IIIMadridSpain
| | - Ricardo León-Sampedro
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Centro de Investigación Biológica en Red Epidemiología y Salud Pública, Instituto de Salud Carlos IIIMadridSpain
| | - Aida Alonso-del Valle
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
| | - Jana Palkovičová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
| | - Rafael Cantón
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Red Española de Investigación en Patología Infecciosa. Instituto de Salud Carlos IIIMadridSpain
| | - Álvaro San Millán
- Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación SanitariaMadridSpain
- Centro de Investigación Biológica en Red Epidemiología y Salud Pública, Instituto de Salud Carlos IIIMadridSpain
- Centro Nacional de Biotecnología-CSICMadridSpain
| |
Collapse
|
334
|
Calderón VV, Bonnelly R, Del Rosario C, Duarte A, Baraúna R, Ramos RT, Perdomo OP, Rodriguez de Francisco LE, Franco EF. Distribution of Beta-Lactamase Producing Gram-Negative Bacterial Isolates in Isabela River of Santo Domingo, Dominican Republic. Front Microbiol 2021; 11:519169. [PMID: 33519720 PMCID: PMC7838461 DOI: 10.3389/fmicb.2020.519169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria carrying antibiotic resistance genes (ARGs) are naturally prevalent in lotic ecosystems such as rivers. Their ability to spread in anthropogenic waters could lead to the emergence of multidrug-resistant bacteria of clinical importance. For this study, three regions of the Isabela river, an important urban river in the city of Santo Domingo, were evaluated for the presence of ARGs. The Isabela river is surrounded by communities that do not have access to proper sewage systems; furthermore, water from this river is consumed daily for many activities, including recreation and sanitation. To assess the state of antibiotic resistance dissemination in the Isabela river, nine samples were collected from these three bluedistinct sites in June 2019 and isolates obtained from these sites were selected based on resistance to beta-lactams. Physico-chemical and microbiological parameters were in accordance with the Dominican legislation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses of ribosomal protein composition revealed a total of 8 different genera. Most common genera were as follows: Acinetobacter (44.6%) and Escherichia (18%). Twenty clinically important bacterial isolates were identified from urban regions of the river; these belonged to genera Escherichia (n = 9), Acinetobacter (n = 8), Enterobacter (n = 2), and Klebsiella (n = 1). Clinically important multi-resistant isolates were not obtained from rural areas. Fifteen isolates were selected for genome sequencing and analysis. Most isolates were resistant to at least three different families of antibiotics. Among beta-lactamase genes encountered, we found the presence of blaTEM, blaOXA, blaSHV, and blaKPC through both deep sequencing and PCR amplification. Bacteria found from genus Klebsiella and Enterobacter demonstrated ample repertoire of antibiotic resistance genes, including resistance from a family of last resort antibiotics reserved for dire infections: carbapenems. Some of the alleles found were KPC-3, OXA-1, OXA-72, OXA-132, CTX-M-55, CTX-M-15, and TEM-1.
Collapse
Affiliation(s)
- Víctor V. Calderón
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Roberto Bonnelly
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Camila Del Rosario
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Albert Duarte
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | - Rafael Baraúna
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Brazil
| | - Rommel T. Ramos
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Brazil
| | - Omar P. Perdomo
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
| | | | - Edian F. Franco
- Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic
- Institute of Biological Sciences, Federal University of Pará-UFPA, Belem, Brazil
- Instituto de Innovación en Biotecnología e Industria (IIBI), Santo Domingo, Dominican Republic
| |
Collapse
|
335
|
Chen H, Song J, Zeng X, Chen D, Chen R, Qiu C, Zhou K. National Prevalence of Salmonella enterica Serotype Kentucky ST198 with High-Level Resistance to Ciprofloxacin and Extended-Spectrum Cephalosporins in China, 2013 to 2017. mSystems 2021; 6:e00935-20. [PMID: 33436512 PMCID: PMC7901479 DOI: 10.1128/msystems.00935-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serotype Kentucky is frequently associated with high-level fluoroquinolone resistance and has gained epidemiological importance globally. A retrospective screening was performed to understand the national prevalence of ciprofloxacin-resistant S Kentucky in China. S. enterica strains (n = 15,405) were collected within the frame of two national surveillance networks between 2013 and 2017. Thirty-three S. Kentucky strains were detected in 5 of 10 provinces, and 27 were assigned to sequence type 198 (ST198). The 27 isolates were multidrug resistant, with high-level resistance to ciprofloxacin, and 21 isolates were further resistant to extended-spectrum cephalosporins (ESCs). Phylogenomic analysis classified ST198 isolates into two clades (198.1 and 198.2), and recent occurrences of inter-/intraregion and interhost transmission were identified. Phylogenetic reconstruction with a global collection showed that one subclade of clade 198.2 was clustered with historical strains from Egypt, and the other one was clustered with strains from Southeast Asia. Isolates of clade 198.1 were clustered with strains isolated from North America. The various patterns of mutations detected in quinolone resistance-determining regions of GyrA and ParC are accordant with the phylogenetic structure. These findings indicate that our isolates may have various origins. SGI1 was exclusively detected in isolates of clade 198.2 with a highly mosaic structure, which were mainly identified as SGI1-K derivatives. Plasmid-mediated quinolone resistance genes qnrS1 and aac(6')-Ib-cr were identified in three isolates, and bla CTX-M-9 and bla CTX-M-27 were detected in 20 of 21 ESC-resistant isolates. This is the first report of the genetic and epidemiological characterization for the S Kentucky epidemic clone ST198 in China, warranting the necessity of surveillance for the high-risk clone.IMPORTANCE Ciprofloxacin and extended-spectrum cephalosporins are the choice for treatment of severe nontyphoidal S. enterica infections in adults. S. enterica serotype Kentucky ST198 has gained epidemiological importance globally, because the clone is frequently resistant to both of these high-level-resistance drug groups. The genetic and epidemiological characterization of S. Kentucky has been well studied in Western countries; however, the information is unclear for China. To fill in the gap, we here did a retrospective screening on a large collection in China, and ST198 isolates were systematically analyzed by whole-genome sequencing. Our study revealed that multidrug-resistant ST198 has spread in five provinces, and the occurrences of interregion and cross-host clonal disseminations were detected. Of note, phylogenomic analysis suggests that the Chinese isolates may have emerged with diverse origins, including Egypt, Southeast Asia, and North America. This study warrants the necessity of surveillance for the high-risk clone to prevent its further dissemination in China.
Collapse
Affiliation(s)
- Honghu Chen
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, China
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jingjie Song
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Xianying Zeng
- Guangxi Provincial Center for Disease Control and Prevention, Nanning, China
| | - Dandan Chen
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Chen Qiu
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| |
Collapse
|
336
|
Lai S, Jia L, Subramanian B, Pan S, Zhang J, Dong Y, Chen WH, Zhao XM. mMGE: a database for human metagenomic extrachromosomal mobile genetic elements. Nucleic Acids Res 2021; 49:D783-D791. [PMID: 33074335 PMCID: PMC7778953 DOI: 10.1093/nar/gkaa869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Extrachromosomal mobile genetic elements (eMGEs), including phages and plasmids, that can move across different microbes, play important roles in genome evolution and shaping the structure of microbial communities. However, we still know very little about eMGEs, especially their abundances, distributions and putative functions in microbiomes. Thus, a comprehensive description of eMGEs is of great utility. Here we present mMGE, a comprehensive catalog of 517 251 non-redundant eMGEs, including 92 492 plasmids and 424 759 phages, derived from diverse body sites of 66 425 human metagenomic samples. About half the eMGEs could be further grouped into 70 074 clusters using relaxed criteria (referred as to eMGE clusters below). We provide extensive annotations of the identified eMGEs including sequence characteristics, taxonomy affiliation, gene contents and their prokaryotic hosts. We also calculate the prevalence, both within and across samples for each eMGE and eMGE cluster, enabling users to see putative associations of eMGEs with human phenotypes or their distribution preferences. All eMGE records can be browsed or queried in multiple ways, such as eMGE clusters, metagenomic samples and associated hosts. The mMGE is equipped with a user-friendly interface and a BLAST server, facilitating easy access/queries to all its contents easily. mMGE is freely available for academic use at: https://mgedb.comp-sysbio.org.
Collapse
Affiliation(s)
- Senying Lai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Longhao Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Balakrishnan Subramanian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Pan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jinglong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yanqi Dong
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China
- Research Institute of Intelligent Complex System, Fudan University, Shanghai 200433, China
| |
Collapse
|
337
|
Complete Genome Sequences for 36 Canadian Salmonella enterica Serovar Typhimurium and I 1,4,[5],12:i:- Isolates from Clinical and Animal Sources. Microbiol Resour Announc 2021; 10:10/1/e00734-20. [PMID: 33414281 PMCID: PMC8407683 DOI: 10.1128/mra.00734-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here, we report the complete genome sequences for 36 Canadian isolates of Salmonella enterica subsp. enterica serovar Typhimurium and its monophasic variant I 1,4,[5]:12:i:– from both clinical and animal sources. These genome sequences will provide useful references for understanding the genetic variation within this prominent serotype. Here, we report the complete genome sequences for 36 Canadian isolates of Salmonella enterica subsp. enterica serovar Typhimurium and its monophasic variant I 1,4,[5]:12:i:– from both clinical and animal sources. These genome sequences will provide useful references for understanding the genetic variation within this prominent serotype.
Collapse
|
338
|
Cooper AL, Carter C, McLeod H, Wright M, Sritharan P, Tamber S, Wong A, Carrillo CD, Blais BW. Detection of carbapenem-resistance genes in bacteria isolated from wastewater in Ontario. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial carbapenem resistance is a major public health concern since these antimicrobials are often the last resort to treat serious human infections. To evaluate methodologies for detection of carbapenem resistance, carbapenem-tolerant bacteria were isolated from wastewater treatment plants in Toronto, Ottawa, and Arnprior, Ontario. A total of 135 carbapenem-tolerant bacteria were recovered. Polymerase chain reaction (PCR) indicated the presence of carbapenem hydrolysing enzymes KPC ( n = 10), GES ( n = 5), VIM ( n = 7), and IMP ( n = 1), and β-lactamases TEM ( n = 7), PER ( n = 1), and OXA-variants ( n = 16). A subset of 46 isolates were sequenced and analysed using ResFinder and CARD-RGI. Both programs detected carbapenem resistance genes in 35 sequenced isolates and antimicrobial resistance genes (ARGs) conferring resistance to multiple class of other antibiotics. Where β-lactamase resistance genes were not initially identified, lowering the thresholds for ARG detection enabled identification of closely related β-lactamases. However, no known carbapenem resistance genes were found in seven sequenced Pseudomonas spp. isolates. Also of note was a multi-drug-resistant Klebsiella pneumoniae isolate from Ottawa, which harboured resistance to seven antimicrobial classes including β-lactams. These results highlight the diversity of genes encoding carbapenem resistance in Ontario and the utility of whole genome sequencing over PCR for ARG detection where resistance may result from an assortment of genes.
Collapse
Affiliation(s)
- Ashley L. Cooper
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Cassandra Carter
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Hana McLeod
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Marie Wright
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Prithika Sritharan
- Applied Science and Environmental Technology, Algonquin College, Ottawa, ON K2G 1V8, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Catherine D. Carrillo
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
| | - Burton W. Blais
- Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1A 0Y9, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
339
|
Quereda JJ, Leclercq A, Moura A, Vales G, Gómez-Martín Á, García-Muñoz Á, Thouvenot P, Tessaud-Rita N, Bracq-Dieye H, Lecuit M. Listeria valentina sp. nov., isolated from a water trough and the faeces of healthy sheep. Int J Syst Evol Microbiol 2020; 70:5868-5879. [PMID: 33016862 DOI: 10.1099/ijsem.0.004494] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the context of a study on the occurrence of Listeria species in an animal farm environment in Valencia, Spain, six Listeria-like isolates could not be assigned to any known species. Phylogenetic analysis based on the 16S rRNA gene and on 231 Listeria core genes grouped these isolates in a monophyletic clade within the genus Listeria, with highest similarity to Listeria thailandensis. Whole-genome sequence analyses based on in silico DNA-DNA hybridization, the average nucleotide blast and the pairwise amino acid identities against all currently known Listeria species confirmed that these isolates constituted a new taxon within the genus Listeria. Phenotypically, these isolates differed from other Listeria species mainly by the production of acid from inositol, the absence of acidification in presence of methyl α-d-glucoside, and the absence of α-mannosidase and nitrate reductase activities. The name Listeria valentina sp. nov. is proposed for this novel species, and the type strain is CLIP 2019/00642T (=CIP 111799T=DSM 110544T).
Collapse
Affiliation(s)
- Juan J Quereda
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Alexandre Leclercq
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Alexandra Moura
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France.,Inserm U1117, Paris, France
| | - Guillaume Vales
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Ángel Gómez-Martín
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Ángel García-Muñoz
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Pierre Thouvenot
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Nathalie Tessaud-Rita
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Hélène Bracq-Dieye
- Institut Pasteur, Biology of Infection Unit, Paris, France.,Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France
| | - Marc Lecuit
- Institut Pasteur, National Reference Centre, WHO Collaborating Centre for Listeria, Paris, France.,Institut Pasteur, Biology of Infection Unit, Paris, France.,Inserm U1117, Paris, France.,Université de Paris, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Paris, France
| |
Collapse
|
340
|
Arredondo-Alonso S, Bootsma M, Hein Y, Rogers MRC, Corander J, Willems RJL, Schürch AC. gplas: a comprehensive tool for plasmid analysis using short-read graphs. Bioinformatics 2020; 36:3874-3876. [PMID: 32271863 PMCID: PMC7320608 DOI: 10.1093/bioinformatics/btaa233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/27/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Summary Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read sequence data. Availability and implementation Gplas is written in R, Bash and uses a Snakemake pipeline as a workflow management system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/gplas.git. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Martin Bootsma
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care of the UMC Utrecht.,Department of Mathematics, Faculty of Sciences, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Yaïr Hein
- Department of Mathematics, Faculty of Sciences, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jukka Corander
- Department of Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Saffron Walden CB10 1RQ, UK.,Department of Biostatistics, University of Oslo, 0317 Oslo, Norway.,Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), University of Helsinki, FI-00014 Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Anita C Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
341
|
Alawneh JI, Vezina B, Ramay HR, Al-Harbi H, James AS, Soust M, Moore RJ, Olchowy TWJ. Survey and Sequence Characterization of Bovine Mastitis-Associated Escherichia coli in Dairy Herds. Front Vet Sci 2020; 7:582297. [PMID: 33365333 PMCID: PMC7750360 DOI: 10.3389/fvets.2020.582297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli is frequently associated with mastitis in cattle. "Pathogenic" and "commensal" isolates appear to be genetically similar. With a few exceptions, no notable genotypic differences have been found between commensal and mastitis-associated E. coli. In this study, 24 E. coli strains were isolated from dairy cows with clinical mastitis in three geographic regions of Australia (North Queensland, South Queensland, and Victoria), sequenced, then genomically surveyed. There was no observed relationship between sequence type (ST) and region (p = 0.51). The most common Multi Locus Sequence Type was ST10 (38%), then ST4429 (13%). Pangenomic analysis revealed a soft-core genome of 3,463 genes, including genes associated with antibiotic resistance, chemotaxis, motility, adhesion, biofilm formation, and pili. A total of 36 different plasmids were identified and generally found to have local distributions (p = 0.02). Only 2 plasmids contained antibiotic resistance genes, a p1303_5-like plasmid encoding multidrug-resistance (trimethoprim, quaternary ammonium, beta-lactam, streptomycin, sulfonamide, and kanamycin) from two North Queensland isolates on the same farm, while three Victorian isolates from the same farm contained a pCFSAN004177P_01-like plasmid encoding tetracycline-resistance. This pattern is consistent with a local spread of antibiotic resistance through plasmids of bovine mastitis cases. Notably, co-occurrence of plasmids containing virulence factors/antibiotic resistance with putative mobilization was rare, though the multidrug resistant p1303_5-like plasmid was predicted to be conjugative and is of some concern. This survey has provided greater understanding of antibiotic resistance within E. coli-associated bovine mastitis which will allow greater prediction and improved decision making in disease management.
Collapse
Affiliation(s)
- John I. Alawneh
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ben Vezina
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Hena R. Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hulayyil Al-Harbi
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ameh S. James
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Timothy W. J. Olchowy
- Good Clinical Practice Research Group, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
342
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
343
|
Rodríguez-Rubio L, Serna C, Ares-Arroyo M, Matamoros BR, Delgado-Blas JF, Montero N, Bernabe-Balas C, Wedel EF, Mendez IS, Muniesa M, Gonzalez-Zorn B. Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. J Antimicrob Chemother 2020; 75:3173-3180. [PMID: 32719862 PMCID: PMC7566468 DOI: 10.1093/jac/dkaa311] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To investigate the relevance of multicopy plasmids in antimicrobial resistance and assess their mobilization mediated by phage particles. METHODS Several databases with complete sequences of plasmids and annotated genes were analysed. The 16S methyltransferase gene armA conferring high-level aminoglycoside resistance was used as a marker in eight different plasmids, from different incompatibility groups, and with differing sizes and plasmid copy numbers. All plasmids were transformed into Escherichia coli bearing one of four different lysogenic phages. Upon induction, encapsidation of armA in phage particles was evaluated using qRT-PCR and Southern blotting. RESULTS Multicopy plasmids carry a vast set of emerging clinically important antimicrobial resistance genes. However, 60% of these plasmids do not bear mobility (MOB) genes. When carried on these multicopy plasmids, mobilization of a marker gene armA into phage capsids was up to 10000 times more frequent than when it was encoded by a large plasmid with a low copy number. CONCLUSIONS Multicopy plasmids and phages, two major mobile genetic elements (MGE) in bacteria, represent a novel high-efficiency transmission route of antimicrobial resistance genes that deserves further investigation.
Collapse
Affiliation(s)
- Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Serna
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ares-Arroyo
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Bosco R Matamoros
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Jose F Delgado-Blas
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Natalia Montero
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bernabe-Balas
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Emilia F Wedel
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Irene S Mendez
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit ARU, Departamento de Sanidad Animal and Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
344
|
Fang Z, Zhou H. Identification of the conjugative and mobilizable plasmid fragments in the plasmidome using sequence signatures. Microb Genom 2020; 6:mgen000459. [PMID: 33074084 PMCID: PMC7725325 DOI: 10.1099/mgen.0.000459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/03/2020] [Indexed: 12/24/2022] Open
Abstract
Plasmids are the key element in horizontal gene transfer in the microbial community. Recently, a large number of experimental and computational methods have been developed to obtain the plasmidomes of microbial communities. Distinguishing transmissible plasmid sequences, which are derived from conjugative or at least mobilizable plasmids, from non-transmissible plasmid sequences in the plasmidome is essential for understanding the diversity of plasmids and how they regulate the microbial community. Unfortunately, due to the highly fragmented characteristics of DNA sequences in the plasmidome, effective identification methods are lacking. In this work, we used information entropy from information theory to assess the randomness of synonymous codon usage over 4424 plasmid genomes. The results showed that for all amino acids, the choice of a synonymous codon in conjugative and mobilizable plasmids is more random than that in non-transmissible plasmids, indicating that transmissible plasmids have different sequence signatures from non-transmissible plasmids. Inspired by this phenomenon, we further developed a novel algorithm named PlasTrans. PlasTrans takes the triplet code sequences and base sequences of plasmid DNA fragments as input and uses the convolutional neural network of the deep learning technique to further extract the more complex signatures of the plasmid sequences and identify the conjugative and mobilizable DNA fragments. Tests showed that PlasTrans could achieve an AUC of as high as 84-91%, even though the fragments only contained hundreds of base pairs. To the best of our knowledge, this is the first quantitative analysis of the difference in sequence signatures between transmissible and non-transmissible plasmids, and we developed the first tool to perform transferability annotation for DNA fragments in the plasmidome. We expect that PlasTrans will be a useful tool for researchers who analyse the properties of novel plasmids in the microbial community and horizontal gene transfer, especially the spread of resistance genes and virulence factors associated with plasmids. PlasTrans is freely available via https://github.com/zhenchengfang/PlasTrans.
Collapse
Affiliation(s)
- Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China
- Center for Quantitative Biology, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing 100871, PR China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, PR China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
345
|
Schwengers O, Barth P, Falgenhauer L, Hain T, Chakraborty T, Goesmann A. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores. Microb Genom 2020; 6:mgen000398. [PMID: 32579097 PMCID: PMC7660248 DOI: 10.1099/mgen.0.000398] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Plasmids are extrachromosomal genetic elements that replicate independently of the chromosome and play a vital role in the environmental adaptation of bacteria. Due to potential mobilization or conjugation capabilities, plasmids are important genetic vehicles for antimicrobial resistance genes and virulence factors with huge and increasing clinical implications. They are therefore subject to large genomic studies within the scientific community worldwide. As a result of rapidly improving next-generation sequencing methods, the quantity of sequenced bacterial genomes is constantly increasing, in turn raising the need for specialized tools to (i) extract plasmid sequences from draft assemblies, (ii) derive their origin and distribution, and (iii) further investigate their genetic repertoire. Recently, several bioinformatic methods and tools have emerged to tackle this issue; however, a combination of high sensitivity and specificity in plasmid sequence identification is rarely achieved in a taxon-independent manner. In addition, many software tools are not appropriate for large high-throughput analyses or cannot be included in existing software pipelines due to their technical design or software implementation. In this study, we investigated differences in the replicon distributions of protein-coding genes on a large scale as a new approach to distinguish plasmid-borne from chromosome-borne contigs. We defined and computed statistical discrimination thresholds for a new metric: the replicon distribution score (RDS), which achieved an accuracy of 96.6 %. The final performance was further improved by the combination of the RDS metric with heuristics exploiting several plasmid-specific higher-level contig characterizations. We implemented this workflow in a new high-throughput taxon-independent bioinformatics software tool called Platon for the recruitment and characterization of plasmid-borne contigs from short-read draft assemblies. Compared to PlasFlow, Platon achieved a higher accuracy (97.5 %) and more balanced predictions (F1=82.6 %) tested on a broad range of bacterial taxa and better or equal performance against the targeted tools PlasmidFinder and PlaScope on sequenced Escherichia coli isolates. Platon is available at: http://platon.computational.bio/.
Collapse
Affiliation(s)
- Oliver Schwengers
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Patrick Barth
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
- Present address: Institute of Hygiene and Environmental Health, Justus Liebig University, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
346
|
Mansour MN, Yaghi J, El Khoury A, Felten A, Mistou MY, Atoui A, Radomski N. Prediction of Salmonella serovars isolated from clinical and food matrices in Lebanon and genomic-based investigation focusing on Enteritidis serovar. Int J Food Microbiol 2020; 333:108831. [PMID: 32854018 DOI: 10.1016/j.ijfoodmicro.2020.108831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Salmonella enterica subsp. enterica serovars are considered major causes of food poisoning and we performed this study because Salmonella is a burden in Lebanon. The present study investigated the ability of genomic information to predict serovar using a collection of Salmonella isolates from infected humans (n = 24) and contaminated food (n = 63) in Lebanon. Further, the phylogenomic relationships of the serovar the predominated in Lebanon (i.e., S. Enteritidis; n = 25) were investigated in comparison with isolates from other countries (n = 130) based on coregenome single nucleotide polymorphisms (SNPs). Genetic elements, specifically Salmonella pathogenicity islands (SPIs), plasmid replicons, and antibiotic-resistance genes were screened in S. Enteritidis genomes (n = 155). Our results revealed that the Salmonella serovars identification by seroagglutination from the samples isolated in Lebanon (n = 87) was highly correlated with the genomic-based prediction of serovars (80.4-85.0% with SeqSero1 and 93.1-94.2% with SeqSero2). The Salmonella serovars isolated from human and food samples in Lebanon were mainly Enteritidis (28.7%) and Infantis (26%). To a rare extent, other serovars included Amager, Anatum, Bredeney, Chincol, Heidelberg, Hofit, Kentucky, Montevideo, Muenster, Newport, Schwarzengrund, Senftenberg and Typhimurium. In comparison with other countries, S. Enteritidis samples isolated in Lebanon (56 ± 27 intra-group pairwise SNP differences) presented a strong phylogenomic relativeness at the coregenome level with samples, as for example with samples isolated from Syria (65 ± 31 inter-group pairwise SNP differences). Most of the studied S. Enteritidis genomes encoded 10 SPIs involved in survival in immune cells (i.e. SPIs 1, 2, 3, 4, 5, 12, 13, 14, 16 and 17). The plasmid replicons IncFIB (S)_1 and IncFII (S)_1 encoding elements involved in virulence were identified in the majority of the S. Enteritidis genomes (94% and 96%, respectively), the majority exhibiting aminoglycosides (gene aac(6')-Iaa_1). The IncI_1_Alpha replicon responsible for ampicillin-resistance was only detected in 2 of 25 S. Enteritidis Lebanese strains. Genomic-based risk assessment of Salmonella serovars in Lebanon showed that food imported from Syria might be an origin of the S. Enteritidis human cases in Lebanon. The detection of several SPIs involved in the survival, plasmid replicons involved in virulence, and aminoglycoside-resistance genes, emphasizes that S. Enteritidis is of paramount importance for public health in Lebanon and other countries.
Collapse
Affiliation(s)
- Marie Noel Mansour
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche « Technologies et Valorisation Agro-alimentaire » (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon.
| | - Joseph Yaghi
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche « Technologies et Valorisation Agro-alimentaire » (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon.
| | - André El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche « Technologies et Valorisation Agro-alimentaire » (UR-TVA), Faculty of Sciences, Saint-Joseph University of Beirut, Campus of Sciences and Technologies, Mar Roukos, Lebanon.
| | - Arnaud Felten
- Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Maisons-Alfort, France.
| | - Michel-Yves Mistou
- Applied Mathematics and Computer Science, From Genomes to the Environment (MaIAGE), National Institute for Agricultural, Food and Environmental Research (INRAE), Université Paris-Saclay, Jouy-en-Josas, France.
| | - Ali Atoui
- Laboratory of Microbiology, Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon.
| | - Nicolas Radomski
- Paris-Est University, French Agency for Food, Environmental and Occupational Health and Safety (Anses), Laboratory for Food Safety (LSAL), Maisons-Alfort, France.
| |
Collapse
|
347
|
Laskey A, Ottenbrite M, Devenish J, Kang M, Savic M, Nadin-Davis S, Chmara J, Lin M, Robertson J, Bessonov K, Gurnik S, Liu K, Nash JHE, Scott A, Topp E, Guan J. Mobility of β-Lactam Resistance Under Bacterial Co-infection and Ampicillin Treatment in a Mouse Model. Front Microbiol 2020; 11:1591. [PMID: 32733428 PMCID: PMC7358583 DOI: 10.3389/fmicb.2020.01591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to the dissemination of antibiotic-resistance genes in the gut microbiota and the development of antibiotic-resistant bacterial infection, a significant threat to animal and public health. Food or water may be contaminated with multiple resistant bacteria, but animal models on gene transfer were mainly based on single-strain infections. In this study, we investigated the mobility of β-lactam resistance following infection with single- versus multi-strain of resistant bacteria under ampicillin treatment. We characterized three bacterial strains isolated from food-animal production systems, Escherichia coli O80:H26 and Salmonella enterica serovars Bredeney and Heidelberg. Each strain carries at least one conjugative plasmid that encodes a β-lactamase. We orally infected mice with each or all three bacterial strain(s) in the presence or absence of ampicillin treatment. We assessed plasmid transfer from the three donor bacteria to an introduced E. coli CV601gfp recipient in the mouse gut, and evaluated the impacts of the bacterial infection on gut microbiota and gut health. In the absence of ampicillin treatment, none of the donor or recipient bacteria established in the normal gut microbiota and plasmid transfer was not detected. In contrast, the ampicillin treatment disrupted the gut microbiota and enabled S. Bredeney and Heidelberg to colonize and transfer their plasmids to the E. coli CV601gfp recipient. E. coli O80:H26 on its own failed to colonize the mouse gut. However, during co-infection with the two Salmonella strains, E. coli O80:H26 colonized and transferred its plasmid to the E. coli CV601gfp recipient and a residential E. coli O2:H6 strain. The co-infection significantly increased plasmid transfer frequency, enhanced Proteobacteria expansion and resulted in inflammation in the mouse gut. Our findings suggest that single-strain infection models for evaluating in vivo gene transfer may underrepresent the consequences of multi-strain infections following the consumption of heavily contaminated food or water.
Collapse
Affiliation(s)
- Alexander Laskey
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Marie Ottenbrite
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - John Devenish
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mingsong Kang
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Mirjana Savic
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Susan Nadin-Davis
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - John Chmara
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Min Lin
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kyrylo Bessonov
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Simone Gurnik
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Kira Liu
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John H. E. Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - Andrew Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Jiewen Guan
- Ottawa Laboratory, Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
348
|
Stohr JJ, Kluytmans-van den Bergh MF, Wedema R, Friedrich AW, Kluytmans JA, Rossen JW. Detection of extended-spectrum beta-lactamase (ESBL) genes and plasmid replicons in Enterobacteriaceae using PlasmidSPAdes assembly of short-read sequence data. Microb Genom 2020; 6:mgen000400. [PMID: 32589571 PMCID: PMC7478632 DOI: 10.1099/mgen.0.000400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/04/2020] [Indexed: 01/11/2023] Open
Abstract
Knowledge of the epidemiology of plasmids is essential for understanding the evolution and spread of antimicrobial resistance. PlasmidSPAdes attempts to reconstruct plasmids using short-read sequence data. Accurate detection of extended-spectrum beta-lactamase (ESBL) genes and plasmid replicon genes is a prerequisite for the use of plasmid assembly tools to investigate the role of plasmids in the spread and evolution of ESBL production in Enterobacteriaceae. This study evaluated the performance of PlasmidSPAdes plasmid assembly for Enterobacteriaceae in terms of detection of ESBL-encoding genes, plasmid replicons and chromosomal wgMLST genes, and assessed the effect of k-mer size. Short-read sequence data for 59 ESBL-producing Enterobacteriaceae were assembled with PlasmidSPAdes using different k-mer sizes (21, 33, 55, 77, 99 and 127). For every k-mer size, the presence of ESBL genes, plasmid replicons and a selection of chromosomal wgMLST genes in the plasmid assembly was determined. Out of 241 plasmid replicons and 66 ESBL genes detected by whole-genome assembly, 213 plasmid replicons [88 %; 95 % confidence interval (CI): 83.9-91.9] and 43 ESBL genes (65 %; 95 % CI: 53.1-75.6) were detected in the plasmid assemblies obtained by PlasmidSPAdes. For most ESBL genes (83.3 %) and plasmid replicons (72.0 %), detection results did not differ between the k-mer sizes used in the plasmid assembly. No optimal k-mer size could be defined for the number of ESBL genes and plasmid replicons detected. For most isolates, the number of chromosomal wgMLST genes detected in the plasmid assemblies decreased with increasing k-mer size. Based on our findings, PlasmidSPAdes is not a suitable plasmid assembly tool for short-read sequence data for ESBL-encoding plasmids of Enterobacteriaceae.
Collapse
Affiliation(s)
- Joep J.J.M. Stohr
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Marjolein F.Q. Kluytmans-van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ronald Wedema
- Department of Life Science and Technology, Hanze University of Applied Sciences, Groningen, The Netherlands
| | - Alexander W. Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan A.J.W. Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - John W.A. Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
349
|
Genomic and Proteomic Characterization of the Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Strain CCUG 73778: A Virulent, Nosocomial Outbreak Strain. Microorganisms 2020; 8:microorganisms8060893. [PMID: 32545759 PMCID: PMC7355845 DOI: 10.3390/microorganisms8060893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/23/2023] Open
Abstract
Escherichia coli strain CCUG 78773 is a virulent extended-spectrum β-lactamase (ESBL)-producing ST131-O25b type strain isolated during an outbreak at a regional university hospital. The complete and closed genome sequence, comprising one chromosome (5,076,638 bp) and six plasmids (1718–161,372 bp), is presented. Characterization of the genomic features detected the presence of 59 potential antibiotic resistance factors, including three prevalent β-lactamases. Several virulence associated elements were determined, mainly related with adherence, invasion, biofilm formation and antiphagocytosis. Twenty-eight putative type II toxin-antitoxin systems were found. The plasmids were characterized, through in silico analyses, confirming the two β-lactamase-encoding plasmids to be conjugative, while the remaining plasmids were mobilizable. BLAST analysis of the plasmid sequences showed high similarity with plasmids in E. coli from around the world. Expression of many of the described virulence and AMR factors was confirmed by proteomic analyses, using bottom-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS). The detailed characterization of E. coli strain CCUG 78773 provides a reference for the relevance of genetic elements, as well as the characterization of antibiotic resistance and the spread of bacteria harboring ESBL genes in the hospital environment.
Collapse
|
350
|
Hilpert C, Bricheux G, Debroas D. Reconstruction of plasmids by shotgun sequencing from environmental DNA: which bioinformatic workflow? Brief Bioinform 2020; 22:5838452. [PMID: 32427283 DOI: 10.1093/bib/bbaa059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Plasmids play important roles in microbial evolution and also in the spread of antibiotic resistance. Plasmid sequences are extensively studied from clinical isolates but rarely from the environment with a metagenomic approach focused on the plasmid fraction referred to as the plasmidome. A clear challenge in this context is to define a workflow for discriminating plasmids from chromosomal contaminants existing in the plasmidome. For this purpose, we benchmarked existing tools from assembly to detection of the plasmids by reference-free methods (cBar and PlasFlow) and database-guided approaches. Our simulations took into account short-reads alone or combined with moderate long-reads like those actually generated in environmental genomics experiments. This benchmark allowed us to select the best tools for limiting false-positives associated to plasmid prediction tools and a combination of reference-guided methods based on plasmid and bacterial databases.
Collapse
Affiliation(s)
- Cécile Hilpert
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 Clermont-Ferrand, France
| | - Geneviève Bricheux
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 Clermont-Ferrand, France
| |
Collapse
|