301
|
Patel RV, Nahal HK, Breit R, Provart NJ. BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:1038-50. [PMID: 22607031 DOI: 10.1111/j.1365-313x.2012.05055.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Large numbers of sequences are now readily available for many plant species, allowing easy identification of homologous genes. However, orthologous gene identification across multiple species is made difficult by evolutionary events such as whole-genome or segmental duplications. Several developmental atlases of gene expression have been produced in the past couple of years, and it may be possible to use these transcript abundance data to refine ortholog predictions. In this study, clusters of homologous genes between seven plant species - Arabidopsis, soybean, Medicago truncatula, poplar, barley, maize and rice - were identified. Following this, a pipeline to rank homologs within gene clusters by both sequence and expression profile similarity was devised by determining equivalent tissues between species, with the best expression profile match being termed the 'expressolog'. Five electronic fluorescent pictograph (eFP) browsers were produced as part of this effort, to aid in visualization of gene expression data and to complement existing eFP browsers at the Bio-Array Resource (BAR). Within the eFP browser framework, these expression profile similarity rankings were incorporated into an Expressolog Tree Viewer to allow cross-species homolog browsing by both sequence and expression pattern similarity. Global analyses showed that orthologs with the highest sequence similarity do not necessarily exhibit the highest expression pattern similarity. Other orthologs may show different expression patterns, indicating that such genes may require re-annotation or more specific annotation. Ultimately, it is envisaged that this pipeline will aid in improvement of the functional annotation of genes and translational plant research.
Collapse
Affiliation(s)
- Rohan V Patel
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | | | | | | |
Collapse
|
302
|
Hamanishi ET, Thomas BR, Campbell MM. Drought induces alterations in the stomatal development program in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4959-71. [PMID: 22760471 PMCID: PMC3427991 DOI: 10.1093/jxb/ers177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.
Collapse
Affiliation(s)
- Erin T Hamanishi
- Faculty of ForestryUniversity of Toronto33 Willcocks St., Toronto, ON M5S 3B3Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto25 Willcocks St., Toronto, ON M5S 3B2Canada
| | - Barb R Thomas
- Alberta-Pacific Forest Industries IncP.O. Box 8000 Boyle, AB T0A 0M0Canada
- Department of Renewable ResourcesUniversity of Alberta731 General Services Building, Edmonton, AB T6G 2H1Canada
| | - Malcolm M Campbell
- Centre for the Analysis of Genome Evolution and FunctionUniversity of Toronto25 Willcocks St., Toronto, ON M5S 3B2Canada
- Department of Cell & Systems BiologyUniversity of Toronto25 Willcocks St., Toronto, ON M5S 3B2Canada
- Department of Biological SciencesUniversity of Toronto Scarborough1265 Military Trail, Toronto, ON M1C 1A4Canada
| |
Collapse
|
303
|
Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC PLANT BIOLOGY 2012; 12:106. [PMID: 22776508 PMCID: PMC3462118 DOI: 10.1186/1471-2229-12-106] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. RESULTS A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. CONCLUSIONS In this study we identified the largest MYB gene family in plants known to date. Our findings indicate that members of this large gene family may be involved in different plant biological processes, some of which may be potentially involved in legume-specific nodulation. Our comparative genomics analysis provides a solid foundation for future functional dissection of this family gene.
Collapse
Affiliation(s)
- Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Si-Si Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
| | - Zhe Liang
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003N-1432, Norway
| | - Bo-Run Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
| | - Lei Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
| | - Yu-Bi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
| | - Yi-Xiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
304
|
Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. PLANT PHYSIOLOGY 2012; 159:1204-20. [PMID: 22566493 PMCID: PMC3387705 DOI: 10.1104/pp.112.195420] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/06/2012] [Indexed: 05/18/2023]
Abstract
Proanthocyanidins (PAs) are oligomeric flavonoids and one group of end products of the phenylpropanoid pathway. PAs have been reported to be beneficial for human and animal health and are particularly important in pastoral agricultural systems for improved animal production and reduced greenhouse gas emissions. However, the main forage legumes grown in these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts of PAs in leaves. We have identified from the foliar PA-accumulating legume Trifolium arvense an R2R3-MYB transcription factor, TaMYB14, and provide evidence that this transcription factor is involved in the regulation of PA biosynthesis in legumes. TaMYB14 expression is necessary and sufficient to up-regulate late steps of the phenylpropanoid pathway and to induce PA biosynthesis. RNA interference silencing of TaMYB14 resulted in almost complete cessation of PA biosynthesis in T. arvense, whereas Nicotiana tabacum, M. sativa, and T. repens plants constitutively expressing TaMYB14 synthesized and accumulated PAs in leaves up to 1.8% dry matter. Targeted liquid chromatography-multistage tandem mass spectrometry analysis identified foliar PAs up to degree of polymerization 6 in leaf extracts. Hence, genetically modified M. sativa and T. repens plants expressing TaMYB14 provide a viable option for improving animal health and mitigating the negative environmental impacts of pastoral animal production systems.
Collapse
Affiliation(s)
| | - Vern Collette
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | - Karl Fraser
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | | - Hong Xue
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | | - Chris Jones
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | |
Collapse
|
305
|
Chai G, Hu R, Zhang D, Qi G, Zuo R, Cao Y, Chen P, Kong Y, Zhou G. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 2012; 13:253. [PMID: 22708723 PMCID: PMC3427045 DOI: 10.1186/1471-2164-13-253] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/05/2012] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND CCCH zinc finger proteins contain a typical motif of three cysteines and one histidine residues and serve regulatory functions at all stages of mRNA metabolism. In plants, CCCH type zinc finger proteins comprise a large gene family represented by 68 members in Arabidopsis and 67 in rice. These CCCH proteins have been shown to play diverse roles in plant developmental processes and environmental responses. However, this family has not been studied in the model tree species Populus to date. RESULTS In the present study, a comprehensive analysis of the genes encoding CCCH zinc finger family in Populus was performed. Using a thorough annotation approach, a total of 91 full-length CCCH genes were identified in Populus, of which most contained more than one CCCH motif and a type of non-conventional C-X(11)-C-X(6)-C-X(3)-H motif was unique for Populus. All of the Populus CCCH genes were phylogeneticly clustered into 13 distinct subfamilies. In each subfamily, the gene structure and motif composition were relatively conserved. Chromosomal localization of these genes revealed that most of the CCCHs (81 of 90, 90 %) are physically distributed on the duplicated blocks. Thirty-four paralogous pairs were identified in Populus, of which 22 pairs (64.7 %) might be created by the whole genome segment duplication, whereas 4 pairs seem to be resulted from tandem duplications. In 91 CCCH proteins, we also identified 63 putative nucleon-cytoplasm shuttling proteins and 3 typical RNA-binding proteins. The expression profiles of all Populus CCCH genes have been digitally analyzed in six tissues across different developmental stages, and under various drought stress conditions. A variety of expression patterns of CCCH genes were observed during Populus development, of which 34 genes highly express in root and 22 genes show the highest level of transcript abundance in differentiating xylem. Quantitative real-time RT-PCR (RT-qPCR) was further performed to confirm the tissue-specific expression and responses to drought stress treatment of 12 selected Populus CCCH genes. CONCLUSIONS This study provides the first systematic analysis of the Populus CCCH proteins. Comprehensive genomic analyses suggested that segmental duplications contribute significantly to the expansion of Populus CCCH gene family. Transcriptome profiling provides first insights into the functional divergences among members of Populus CCCH gene family. Particularly, some CCCH genes may be involved in wood development while others in drought tolerance regulation. Our results presented here may provide a starting point for the functional dissection of this family of potential RNA-binding proteins.
Collapse
Affiliation(s)
- Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Dongyuan Zhang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Ran Zuo
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Yingping Cao
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Peng Chen
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Yingzhen Kong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| |
Collapse
|
306
|
Xia R, Zhu H, An YQ, Beers EP, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012; 13:R47. [PMID: 22704043 PMCID: PMC3446319 DOI: 10.1186/gb-2012-13-6-r47] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/30/2012] [Accepted: 06/15/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. RESULTS We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. CONCLUSIONS Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family.
Collapse
Affiliation(s)
- Rui Xia
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
307
|
Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB transcription factor gene family in maize. PLoS One 2012; 7:e37463. [PMID: 22719841 PMCID: PMC3370817 DOI: 10.1371/journal.pone.0037463] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/20/2012] [Indexed: 12/15/2022] Open
Abstract
MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize.
Collapse
Affiliation(s)
- Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu, Sichuan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo-Run Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Si-Si Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu-Bi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu, Sichuan, China
- * E-mail: (YBH); (YXT)
| | - Yi-Xiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YBH); (YXT)
| |
Collapse
|
308
|
Ko JH, Kim HT, Hwang I, Han KH. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:587-96. [PMID: 22405574 DOI: 10.1111/j.1467-7652.2012.00690.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering.
Collapse
Affiliation(s)
- Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Giheung-Gu, Yongin-Si, Gyeonggi-Do, Korea.
| | | | | | | |
Collapse
|
309
|
Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. PLANT PHYSIOLOGY 2012; 159:531-47. [PMID: 22529285 PMCID: PMC3375922 DOI: 10.1104/pp.112.194753] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/23/2012] [Indexed: 05/20/2023]
Abstract
Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors.
Collapse
Affiliation(s)
- Dale Shelton
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Maria Stranne
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Lisbeth Mikkelsen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Nima Pakseresht
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Tracey Welham
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Hideki Hiraka
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Satoshi Tabata
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Shusei Sato
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Suzanne Paquette
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Trevor L. Wang
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | | | - Paul Bailey
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| |
Collapse
|
310
|
Lei L, Zhou SL, Ma H, Zhang LS. Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa. BMC Evol Biol 2012; 12:51. [PMID: 22497662 PMCID: PMC3402991 DOI: 10.1186/1471-2148-12-51] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Background Histone lysine methylation modifies chromatin structure and regulates eukaryotic gene transcription and a variety of developmental and physiological processes. SET domain proteins are lysine methyltransferases containing the evolutionarily-conserved SET domain, which is known to be the catalytic domain. Results We identified 59 SET genes in the Populus genome. Phylogenetic analyses of 106 SET genes from Populus and Arabidopsis supported the clustering of SET genes into six distinct subfamilies and identified 19 duplicated gene pairs in Populus. The chromosome locations of these gene pairs and the distribution of synonymous substitution rates showed that the expansion of the SET gene family might be caused by large-scale duplications in Populus. Comparison of gene structures and domain architectures of each duplicate pair indicated that divergence took place at the 3'- and 5'-terminal transcribed regions and at the N- and C-termini of the predicted proteins, respectively. Expression profile analysis of Populus SET genes suggested that most Populus SET genes were expressed widely, many with the highest expression in young leaves. In particular, the expression profiles of 12 of the 19 duplicated gene pairs fell into two types of expression patterns. Conclusions The 19 duplicated SET genes could have originated from whole genome duplication events. The differences in SET gene structure, domain architecture, and expression profiles in various tissues of Populus suggest that members of the SET gene family have a variety of developmental and physiological functions. Our study provides clues about the evolution of epigenetic regulation of chromatin structure and gene expression.
Collapse
Affiliation(s)
- Li Lei
- 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
311
|
Li E, Bhargava A, Qiang W, Friedmann MC, Forneris N, Savidge RA, Johnson LA, Mansfield SD, Ellis BE, Douglas CJ. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. THE NEW PHYTOLOGIST 2012; 194:102-115. [PMID: 22236040 DOI: 10.1111/j.1469-8137.2011.04016.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• The formation of secondary cell walls in cell types such as tracheary elements and fibers is a defining characteristic of vascular plants. The Arabidopsis transcription factor KNAT7 is a component of a transcription network that regulates secondary cell wall biosynthesis, but its function has remained unclear. • We conducted anatomical, biochemical and molecular phenotypic analyses of Arabidopsis knat7 loss-of-function alleles, KNAT7 over-expression lines and knat7 lines expressing poplar KNAT7. • KNAT7 was strongly expressed in concert with secondary wall formation in Arabidopsis and poplar. Arabidopsis knat7 loss-of-function alleles exhibited irregular xylem phenotypes, but also showed increased secondary cell wall thickness in fibers. Increased commitment to secondary cell wall biosynthesis was accompanied by increased lignin content and elevated expression of secondary cell wall biosynthetic genes. KNAT7 over-expression resulted in thinner interfascicular fiber cell walls. • Taken together with data demonstrating that KNAT7 is a transcriptional repressor, we hypothesize that KNAT7 is a negative regulator of secondary wall biosynthesis, and functions in a negative feedback loop that represses metabolically inappropriate commitment to secondary wall formation, thereby maintaining metabolic homeostasis. The conservation of the KNAT7 regulatory module in poplar suggests new ways to manipulate secondary cell wall deposition for improvement of bioenergy traits in this tree.
Collapse
Affiliation(s)
- Eryang Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Apurva Bhargava
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Weiya Qiang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- School of Life Science, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Michael C Friedmann
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Natascha Forneris
- Faculty of Forestry & Environmental Management, University of New Brunswick, Fredericton, NB, Canada, E3B 6C2
| | - Rodney A Savidge
- Faculty of Forestry & Environmental Management, University of New Brunswick, Fredericton, NB, Canada, E3B 6C2
| | - Lee A Johnson
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Brian E Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
312
|
Genome-wide identification, evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar (Populus trichocarpa). PLoS One 2012; 7:e31149. [PMID: 22359569 PMCID: PMC3281058 DOI: 10.1371/journal.pone.0031149] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/03/2012] [Indexed: 12/29/2022] Open
Abstract
Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles.
Collapse
|
313
|
Zhu T, Nevo E, Sun D, Peng J. Phylogenetic analyses unravel the evolutionary history of NAC proteins in plants. Evolution 2012; 66:1833-48. [PMID: 22671550 DOI: 10.1111/j.1558-5646.2011.01553.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NAC (NAM/ATAF/CUC) proteins are one of the largest groups of transcription factors in plants. Although many NAC proteins based on Arabidopsis and rice genomes have been reported in a number of species, a complete survey and classification of all NAC genes in plant species from disparate evolutionary groups is lacking. In this study, we analyzed whole-genome sequences from nine major lineages of land plants to unveil the relationships between these proteins. Our results show that there are fewer than 30 NAC proteins present in both mosses and lycophytes, whereas more than 100 were found in most of the angiosperms. Phylogenetic analyses suggest that NAC proteins consist of 21 subfamilies, most of which have highly conserved non-NAC domain motifs. Six of these subfamilies existed in early-diverged land plants, whereas the remainder diverged only within the angiosperms. We hypothesize that NAC proteins probably originated sometime more than 400 million years ago and expanded together with the differentiation of plants into organisms of increasing complexity possibly after the divergence of lycophytes from the other vascular plants.
Collapse
Affiliation(s)
- Tingting Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | | | | | | |
Collapse
|
314
|
Gou JY, Miller LM, Hou G, Yu XH, Chen XY, Liu CJ. Acetylesterase-mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction. THE PLANT CELL 2012; 24:50-65. [PMID: 22247250 PMCID: PMC3289554 DOI: 10.1105/tpc.111.092411] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/02/2011] [Accepted: 12/22/2011] [Indexed: 05/17/2023]
Abstract
Pectin is a major component of the primary cell wall of higher plants. Some galacturonyl residues in the backbone of pectinaceous polysaccharides are often O-acetylated at the C-2 or C-3 position, and the resulting acetylesters change dynamically during the growth and development of plants. The processes involve both enzymatic acetylation and deacetylation. Through genomic sequence analysis, we identified a pectin acetylesterase (PAE1) from black cottonwood (Populus trichocarpa). Recombinant Pt PAE1 exhibited preferential activity in releasing the acetate moiety from sugar beet (Beta vulgaris) and potato (Solanum tuberosum) pectin in vitro. Overexpressing Pt PAE1 in tobacco (Nicotiana tabacum) decreased the level of acetyl esters of pectin but not of xylan. Deacetylation engendered differential changes in the composition and/or structure of cell wall polysaccharides that subsequently impaired the cellular elongation of floral styles and filaments, the germination of pollen grains, and the growth of pollen tubes. Consequently, plants overexpressing PAE1 exhibited severe male sterility. Furthermore, in contrast to the conventional view, PAE1-mediated deacetylation substantially lowered the digestibility of pectin. Our data suggest that pectin acetylesterase functions as an important structural regulator in planta by modulating the precise status of pectin acetylation to affect the remodeling and physiochemical properties of the cell wall's polysaccharides, thereby affecting cell extensibility.
Collapse
Affiliation(s)
- Jin-Ying Gou
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Lisa M. Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
| | - Guichuan Hou
- Appalachian State University, Boone, North Carolina 28608-2027
| | - Xiao-Hong Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Xiao-Ya Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
315
|
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:67-77. [DOI: 10.1016/j.bbagrm.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 02/02/2023]
|
316
|
Du H, Feng BR, Yang SS, Huang YB, Tang YX. The R2R3-MYB transcription factor gene family in maize. PLoS One 2012. [PMID: 22719841 DOI: 10.3171/journal.pone.0037463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
MYB proteins comprise a large family of plant transcription factors, members of which perform a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, we performed a comprehensive computational analysis, to yield a complete overview of the R2R3-MYB gene family in maize, including the phylogeny, expression patterns, and also its structural and functional characteristics. The MYB gene structure in maize and Arabidopsis were highly conserved, indicating that they were originally compact in size. Subgroup-specific conserved motifs outside the MYB domain may reflect functional conservation. The genome distribution strongly supports the hypothesis that segmental and tandem duplication contribute to the expansion of maize MYB genes. We also performed an updated and comprehensive classification of the R2R3-MYB gene families in maize and other plant species. The result revealed that the functions were conserved between maize MYB genes and their putative orthologs, demonstrating the origin and evolutionary diversification of plant MYB genes. Species-specific groups/subgroups may evolve or be lost during evolution, resulting in functional divergence. Expression profile study indicated that maize R2R3-MYB genes exhibit a variety of expression patterns, suggesting diverse functions. Furthermore, computational prediction potential targets of maize microRNAs (miRNAs) revealed that miR159, miR319, and miR160 may be implicated in regulating maize R2R3-MYB genes, suggesting roles of these miRNAs in post-transcriptional regulation and transcription networks. Our comparative analysis of R2R3-MYB genes in maize confirm and extend the sequence and functional characteristics of this gene family, and will facilitate future functional analysis of the MYB gene family in maize.
Collapse
Affiliation(s)
- Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | | | | | | |
Collapse
|
317
|
Zhang L, Zhao G, Jia J, Liu X, Kong X. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:203-14. [PMID: 21934119 PMCID: PMC3245462 DOI: 10.1093/jxb/err264] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The proteins of the MYB superfamily play central roles in developmental processes and defence responses in plants. Sixty unique wheat MYB genes that contain full-length cDNA sequences were isolated. These 60 genes were grouped into three categories, namely one R1R2R3-MYB, 22 R2R3-MYBs, and 37 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the 22 wheat R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily among wheat, rice, and Arabidopsis revealed that the putative functions of some wheat MYB proteins were clustered into the Arabidopsis functional clades. Tissue-specific expression profiles showed that most of the wheat MYB genes were expressed in all of the tissues examined, suggesting that wheat MYB genes take part in multiple cellular processes. The expression analysis during abiotic stress identified a group of MYB genes that respond to one or more stress treatments. The overexpression of a salt-inducible gene, TaMYB32, enhanced the tolerance to salt stress in transgenic Arabidopsis. This study is the first comprehensive study of the MYB gene family in Triticeae.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Kong
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
318
|
Large Scale In Silico Identification of MYB Family Genes from Wheat Expressed Sequence Tags. Mol Biotechnol 2011; 52:184-92. [DOI: 10.1007/s12033-011-9486-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
319
|
Zhang J, Gao G, Chen JJ, Taylor G, Cui KM, He XQ. Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. THE NEW PHYTOLOGIST 2011; 192:869-884. [PMID: 21883236 DOI: 10.1111/j.1469-8137.2011.03855.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Regeneration is a common strategy for plants to repair damage to their tissue after attacks from other organisms or physical assaults. However, how differentiating cells acquire regenerative competence and rebuild the pattern of new tissues remains largely unknown. Using anatomical observation and microarray analysis, we investigated the morphological process and molecular features of secondary vascular tissue regeneration after bark girdling in trees. After bark girdling, new phloem and cambium regenerate from differentiating xylem cells and rebuild secondary vascular tissue pattern within 1 month. Differentiating xylem cells acquire regenerative competence through epigenetic regulation and cell cycle re-entry. The xylem developmental program was blocked, whereas the phloem or cambium program was activated, resulting in the secondary vascular tissue pattern re-establishment. Phytohormones play important roles in vascular tissue regeneration. We propose a model describing the molecular features of secondary vascular tissue regeneration after bark girdling in trees. It provides information for understanding mechanisms of tissue regeneration and pattern formation of the secondary vascular tissues in plants.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Jia Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gail Taylor
- School of Biological Sciences, University of Southampton SO16 7PX, UK
| | - Ke-Ming Cui
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
320
|
Ye CY, Li T, Tuskan GA, Tschaplinski TJ, Yang X. Comparative analysis of GT14/GT14-like gene family in Arabidopsis, Oryza, Populus, Sorghum and Vitis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:688-95. [PMID: 21958711 DOI: 10.1016/j.plantsci.2011.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 05/22/2023]
Abstract
Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
321
|
Zhong R, McCarthy RL, Lee C, Ye ZH. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. PLANT PHYSIOLOGY 2011; 157:1452-68. [PMID: 21908685 PMCID: PMC3252164 DOI: 10.1104/pp.111.181354] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/08/2011] [Indexed: 05/17/2023]
Abstract
Wood biomass is mainly made of secondary cell walls; hence, elucidation of the molecular mechanisms underlying the transcriptional regulation of secondary wall biosynthesis during wood formation will be instrumental to design strategies for genetic improvement of wood biomass. Here, we provide direct evidence demonstrating that the poplar (Populus trichocarpa) wood-associated NAC domain transcription factors (PtrWNDs) are master switches activating a suite of downstream transcription factors, and together, they are involved in the coordinated regulation of secondary wall biosynthesis during wood formation. We show that transgenic poplar plants with dominant repression of PtrWNDs functions exhibit a drastic reduction in secondary wall thickening in woody cells, and those with PtrWND overexpression result in ectopic deposition of secondary walls. Analysis of PtrWND2B overexpressors revealed up-regulation of the expression of a number of wood-associated transcription factors, the promoters of which were also activated by PtrWND6B and the Eucalyptus EgWND1. Transactivation analysis and electrophoretic mobility shift assay demonstrated that PtrWNDs and EgWND1 activated gene expression through direct binding to the secondary wall NAC-binding elements, which are present in the promoters of several wood-associated transcription factors and a number of genes involved in secondary wall biosynthesis and modification. The WND-regulated transcription factors PtrNAC150, PtrNAC156, PtrNAC157, PtrMYB18, PtrMYB74, PtrMYB75, PtrMYB121, PtrMYB128, PtrZF1, and PtrGATA8 were able to activate the promoter activities of the biosynthetic genes for all three major wood components. Our study has uncovered that the WND master switches together with a battery of their downstream transcription factors form a transcriptional network controlling secondary wall biosynthesis during wood formation.
Collapse
|
322
|
Hacquard S, Petre B, Frey P, Hecker A, Rouhier N, Duplessis S. The poplar-poplar rust interaction: insights from genomics and transcriptomics. J Pathog 2011; 2011:716041. [PMID: 22567338 PMCID: PMC3335510 DOI: 10.4061/2011/716041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/28/2011] [Indexed: 11/28/2022] Open
Abstract
Poplars are extensively cultivated worldwide, and their susceptibility to the leaf rust fungus Melampsora larici-populina leads to considerable damages in plantations. Despite a good knowledge of the poplar rust life cycle, and particularly the epidemics on poplar, the perennial status of the plant host and the obligate biotrophic lifestyle of the rust fungus are bottlenecks for molecular investigations. Following the completion of both M. larici-populina and Populus trichocarpa genome sequences, gene families involved in poplar resistance or in rust fungus virulence were investigated, allowing the identification of key genetic determinants likely controlling the outcome of the interaction. Specific expansions of resistance and defense-related genes in poplar indicate probable innovations in perennial species in relation with host-pathogen interactions. The genome of M. Larici-populina contains a strikingly high number of genes encoding small secreted proteins (SSPs) representing hundreds of candidate effectors. Transcriptome analyses of interacting partners in compatible and incompatible interactions revealed conserved set of genes involved in poplar defense reactions as well as timely regulated expression of SSP transcripts during host tissues colonisation. Ongoing functional studies of selected candidate effectors will be achieved mainly on the basis of recombinant protein purification and subsequent characterisation.
Collapse
Affiliation(s)
- Stéphane Hacquard
- Institut National de la Recherche Agronomique (INRA), Nancy Université, Unité Mixte de Recherche 1136, "Interactions Arbres/Micro-organismes," Centre INRA de Nancy, 54280 Champenoux, France
| | | | | | | | | | | |
Collapse
|
323
|
Busch BL, Schmitz G, Rossmann S, Piron F, Ding J, Bendahmane A, Theres K. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. THE PLANT CELL 2011; 23:3595-609. [PMID: 22039213 PMCID: PMC3229137 DOI: 10.1105/tpc.111.087981] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/19/2011] [Accepted: 10/17/2011] [Indexed: 05/18/2023]
Abstract
Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems.
Collapse
Affiliation(s)
- Bernhard L. Busch
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Susanne Rossmann
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Florence Piron
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Jia Ding
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Address correspondence to
| |
Collapse
|
324
|
Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, Shi F, Ohme-Takagi M, Demura T. A NAC domain protein family contributing to the regulation of wood formation in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:499-512. [PMID: 21649762 DOI: 10.1111/j.1365-313x.2011.04614.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wood harvested from trees is one of the most widely utilized natural materials on our planet. Recent environmental issues have prompted an increase in the demand for wood, especially as a cost-effective and renewable resource for industry and energy, so it is important to understand the process of wood formation. In the present study, we focused on poplar (Populus trichocarpa) NAC domain protein genes which are homologous to well-known Arabidopsis transcription factors regulating the differentiation of xylem vessels and fiber cells. From phylogenetic analysis, we isolated 16 poplar NAC domain protein genes, and named them PtVNS (VND-, NST/SND- and SMB-related proteins) genes. Expression analysis revealed that 12 PtVNS (also called PtrWND) genes including both VND and NST groups were expressed in developing xylem tissue and phloem fiber, whereas in primary xylem vessels, only PtVNS/PtrWND genes of the VND group were expressed. By using the post-translational induction system of Arabidopsis VND7, a master regulator of xylem vessel element differentiation, many poplar genes functioning in xylem vessel differentiation downstream from NAC domain protein genes were identified. Transient expression assays showed the variation in PtVNS/PtrWND transactivation activity toward downstream genes, even between duplicate gene pairs. Furthermore, overexpression of PtVNS/PtrWND genes induced ectopic secondary wall thickening in poplar leaves as well as in Arabidopsis seedlings with different levels of induction efficiency according to the gene. These results suggest that wood formation in poplar is regulated by cooperative functions of the NAC domain proteins.
Collapse
Affiliation(s)
- Misato Ohtani
- RIKEN Biomass Engineering Program, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Childs KL, Davidson RM, Buell CR. Gene coexpression network analysis as a source of functional annotation for rice genes. PLoS One 2011; 6:e22196. [PMID: 21799793 PMCID: PMC3142134 DOI: 10.1371/journal.pone.0022196] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/20/2011] [Indexed: 11/26/2022] Open
Abstract
With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa) gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional annotation of those modules. Additionally, the expression patterns of genes across the treatments/conditions of an expression experiment comprise a second form of useful annotation.
Collapse
Affiliation(s)
- Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America.
| | | | | |
Collapse
|
326
|
Lee C, Teng Q, Zhong R, Ye ZH. Molecular dissection of xylan biosynthesis during wood formation in poplar. MOLECULAR PLANT 2011; 4:730-47. [PMID: 21596688 DOI: 10.1093/mp/ssr035] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Xylan, being the second most abundant polysaccharide in dicot wood, is considered to be one of the factors contributing to wood biomass recalcitrance for biofuel production. To better utilize wood as biofuel feedstock, it is crucial to functionally characterize all the genes involved in xylan biosynthesis during wood formation. In this report, we investigated roles of poplar families GT43 and GT8 glycosyltransferases in xylan biosynthesis during wood formation. There exist seven GT43 genes in the genome of poplar (Populus trichocarpa), five of which, namely PtrGT43A, PtrGT43B, PtrGT43C, PtrGT43D, and PtrGT43E, were shown to be highly expressed in the developing wood and their encoded proteins were localized in the Golgi. Comprehensive genetic complementation coupled with chemical analyses demonstrated that overexpression of PtrGT43A/B/E but not PtrGT43C/D was able to rescue the xylan defects conferred by the Arabidopsis irx9 mutant, whereas overexpression of PtrGT43C/D but not PtrGT43A/B/E led to a complementation of the xylan defects in the Arabidopsis irx14 mutant. The essential roles of poplar GT43 members in xylan biosynthesis was further substantiated by RNAi down-regulation of GT43B in the hybrid poplar (Populus alba x tremula) leading to reductions in wall thickness and xylan content in wood, and an elevation in the abundance of the xylan reducing end sequence. Wood digestibility analysis revealed that cellulase digestion released more glucose from the wood of poplar GT43B RNAi lines than the control wood, indicating a decrease in wood biomass recalcitrance. Furthermore, RNAi down-regulation of another poplar wood-associated glycosyltransferase, PoGT8D, was shown to cause decreases in wall thickness and xylan content as well as in the abundance of the xylan reducing end sequence. Together, these findings demonstrate that the poplar GT43 members form two functionally non-redundant groups, namely PtrGT43A/B/E as functional orthologs of Arabidopsis IRX9 and PtrGT43C/D as functional orthologs of Arabidopsis IRX14, all of which are involved in the biosynthesis of xylan backbones, and that the poplar GT8D is essential for the biosynthesis of the xylan reducing end sequence.
Collapse
Affiliation(s)
- Chanhui Lee
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
327
|
Hsu CT, Liao DC, Wu FH, Liu NT, Shen SC, Chou SJ, Tung SY, Yang CH, Chan MT, Lin CS. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey. BMC PLANT BIOLOGY 2011; 11:60. [PMID: 21473751 PMCID: PMC3079641 DOI: 10.1186/1471-2229-11-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 04/07/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. RESULTS Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR). A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI) genes (OnTI1, OnTI2 and OnTI3), which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. CONCLUSIONS By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.
Collapse
Affiliation(s)
- Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Nien-Tze Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Chen Shen
- Scientific Instrument Center, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
328
|
Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:94-116. [PMID: 21443626 DOI: 10.1111/j.1365-313x.2010.04459.x] [Citation(s) in RCA: 766] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The expansion of gene families encoding regulatory proteins is typically associated with the increase in complexity characteristic of multi-cellular organisms. The MYB and basic helix-loop-helix (bHLH) families provide excellent examples of how gene duplication and divergence within particular groups of transcription factors are associated with, if not driven by, the morphological and metabolic diversity that characterize the higher plants. These gene families expanded dramatically in higher plants; for example, there are approximately 339 and 162 MYB and bHLH genes, respectively, in Arabidopsis, and approximately 230 and 111, respectively, in rice. In contrast, the Chlamydomonas genome has only 38 MYB genes and eight bHLH genes. In this review, we compare the MYB and bHLH gene families from structural, evolutionary and functional perspectives. The knowledge acquired on the role of many of these factors in Arabidopsis provides an excellent reference to explore sequence-function relationships in crops and other plants. The physical interaction and regulatory synergy between particular sub-classes of MYB and bHLH factors is perhaps one of the best examples of combinatorial plant gene regulation. However, members of the MYB and bHLH families also interact with a number of other regulatory proteins, forming complexes that either activate or repress the expression of sets of target genes that are increasingly being identified through a diversity of high-throughput genomic approaches. The next few years are likely to witness an increasing understanding of the extent to which conserved transcription factors participate at similar positions in gene regulatory networks across plant species.
Collapse
Affiliation(s)
- Antje Feller
- Plant Biotechnology Center and Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
329
|
MacAlister CA, Bergmann DC. Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. Evol Dev 2011; 13:182-92. [PMID: 21410874 PMCID: PMC3139685 DOI: 10.1111/j.1525-142x.2011.00468.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stomata are a broadly conserved feature of land plants with a crucial role regulating transpiration and gas exchange between the plant and atmosphere. Stereotyped cell divisions within a specialized cell lineage of the epidermis generate stomata and define the pattern of their distribution. The behavior of the stomatal lineage varies in its detail among different plant groups, but general features include asymmetric cell divisions and an immediate precursor (the guard mother cell [GMC]) that divides symmetrically to form the pair of cells that will differentiate into the guard cells. In Arabidopsis, the closely related basic helix-loop-helix (bHLH) subgroup Ia transcription factors SPEECHLESS, MUTE, and FAMA promote asymmetric divisions, the acquisition of GMC identity and guard cell differentiation, respectively. Genome sequence data indicate that these key positive regulators of stomatal development are broadly conserved among land plants. While orthologies can be established among individual family members within the angiosperms, more distantly related groups contain subgroup Ia bHLHs of unclear affinity. We demonstrate group Ia members from the moss Physcomitrella patens can partially complement MUTE and FAMA and recapitulate gain of function phenotypes of group Ia genes in multiple steps in the stomatal lineage in Arabidopsis. Our data are consistent with a mechanism whereby a multifunctional transcription factor underwent duplication followed by specialization to provide the three (now nonoverlapping) functions of the angiosperm stomatal bHLHs.
Collapse
Affiliation(s)
- Cora A MacAlister
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
330
|
Arabidopsis as a model for wood formation. Curr Opin Biotechnol 2010; 22:293-9. [PMID: 21144727 DOI: 10.1016/j.copbio.2010.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/11/2010] [Indexed: 12/22/2022]
Abstract
Wood (secondary xylem) is one of the most important sustainable energy sources for humans. Arabidopsis, despite its herbaceous nature, has become an excellent model to study wood formation. Recent progress has shown that conserved molecular mechanisms may exist in herbaceous plants and trees during vascular development and wood formation. Several transcription factor families and plant hormone species as well as other factors contribute to the regulation of xylem development in both Arabidopsis and woody plants. In this review, we highlight how information gained from the analysis of vascular development in Arabidopsis has improved our understanding of wood formation in trees.
Collapse
|
331
|
Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza CDA, Heitz T, Douglas CJ, Legrand M. Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. THE PLANT CELL 2010; 22:4067-83. [PMID: 21193572 PMCID: PMC3027178 DOI: 10.1105/tpc.110.080036] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The precise structure of the sporopollenin polymer that is the major constituent of exine, the outer pollen wall, remains poorly understood. Recently, characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated the role of fatty acid derivatives as precursors of sporopollenin building units. Fatty acyl-CoA esters synthesized by ACYL-COA SYNTHETASE5 (ACOS5) are condensed with malonyl-CoA by POLYKETIDE SYNTHASE A (PKSA) and PKSB to yield α-pyrone polyketides required for exine formation. Here, we show that two closely related genes encoding oxidoreductases are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the reductases displayed a range of pollen exine layer defects, depending on the mutant allele. Phylogenetic studies indicated that the two reductases belong to a large reductase/dehydrogenase gene family and cluster in two distinct clades with putative orthologs from several angiosperm lineages and the moss Physcomitrella patens. Recombinant proteins produced in bacteria reduced the carbonyl function of tetraketide α-pyrone compounds synthesized by PKSA/B, and the proteins were therefore named TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 (previously called DRL1 and CCRL6, respectively). TKPR activities, together with those of ACOS5 and PKSA/B, identify a conserved biosynthetic pathway leading to hydroxylated α-pyrone compounds that were previously unknown to be sporopollenin precursors.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Sung Soo Kim
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Benjamin Lallemand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Pierrette Geoffroy
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Dimitri Heintz
- Plate-Forme d’Analyses Métaboliques de l’Institut de Biologie Moléculaire des Plantes, Institut de Botanique, 67083 Strasbourg Cedex, France
| | - Clarice de Azevedo Souza
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michel Legrand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Address correspondence to
| |
Collapse
|
332
|
Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. TRENDS IN PLANT SCIENCE 2010; 15:625-32. [PMID: 20833576 DOI: 10.1016/j.tplants.2010.08.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/12/2010] [Accepted: 08/16/2010] [Indexed: 05/17/2023]
Abstract
The ability to make secondary cell walls was a pivotal step for vascular plants in their conquest of dry land. Here, we review recent molecular and genetic studies that reveal that a group of Arabidopsis (Arabidopsis thaliana) secondary wall-associated NAC domain transcription factors are master switches regulating a cascade of downstream transcription factors, leading to activation of the secondary wall biosynthetic program. Close homologs of the Arabidopsis secondary wall NACs and their downstream transcription factors exist in diverse taxa of vascular plants and some are functional orthologs of their Arabidopsis counterparts. There is evidence to suggest that the secondary wall NAC-mediated transcriptional regulation of secondary wall biosynthesis is a conserved mechanism throughout vascular plants.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
333
|
Migeon A, Blaudez D, Wilkins O, Montanini B, Campbell MM, Richaud P, Thomine S, Chalot M. Genome-wide analysis of plant metal transporters, with an emphasis on poplar. Cell Mol Life Sci 2010; 67:3763-84. [PMID: 20623158 PMCID: PMC11115807 DOI: 10.1007/s00018-010-0445-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/27/2022]
Abstract
The specific transport of metal ions, mediated by membrane-localized metal transporters, is of fundamental importance in all eukaryotes. Genome-wide analysis of metal transporters was undertaken, making use of whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, as well as of the yeast Saccharomyces cerevisiae. A repertoire of 430 metal transporters was found in total across eight photosynthetic plants, as well as in S. cerevisiae. Seventy-two full-length metal transporter genes were identified in the Populus genome alone, which is the largest number of metal transporters genes identified in any single species to date. Diversification of some transporter family gene clusters appears to have occurred in a lineage-specific manner. Expression analysis of Populus metal transporters indicates that some family members show tissue-specific transcript abundance. Taken together, the data provide a picture into the diversification of these important gene families.
Collapse
Affiliation(s)
- Aude Migeon
- UMR INRA/UHP 1136 “Tree–microbe Interactions”, Faculty of Sciences and Technology, Nancy-University, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | - Damien Blaudez
- UMR INRA/UHP 1136 “Tree–microbe Interactions”, Faculty of Sciences and Technology, Nancy-University, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| | - Olivia Wilkins
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2 Canada
| | - Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy
| | - Malcolm M. Campbell
- Department of Cell and Systems Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON M5S 3B2 Canada
| | - Pierre Richaud
- Laboratoire des Echanges Membranaires et Signalisation, CEA, DSV, iBEB, 13108 St. Paul les Durance, France
- CNRS, UMR 6191, 13108 St. Paul les Durance, France
- Université Aix-Marseille, 13108 St. Paul les Durance, France
| | - Sébastien Thomine
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Michel Chalot
- UMR INRA/UHP 1136 “Tree–microbe Interactions”, Faculty of Sciences and Technology, Nancy-University, BP 70239, 54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
334
|
Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:419-32. [PMID: 20807210 DOI: 10.1111/j.1365-313x.2010.04343.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichomes are specialized epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation-tagged Populus tremula × Populus alba 717-1B4 trees, we identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared with wild-type poplar. The fuzzy mutant had significant resistance to feeding by larvae of the white-spotted tussock moth (Orgyia leucostigma), a generalist insect pest of poplar trees. The fuzzy trichome phenotype is attributable to activation tagging and increased expression of the gene encoding PtaMYB186, which is related to Arabidopsis thaliana MYB106, a known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable that a plant with misexpression of a gene responsible for trichome development also had altered traits related to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful targets for plant improvement.
Collapse
Affiliation(s)
- Jonathan M Plett
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
335
|
Yordanov YS, Regan S, Busov V. Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. THE PLANT CELL 2010; 22:3662-77. [PMID: 21097711 PMCID: PMC3015109 DOI: 10.1105/tpc.110.078634] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/04/2010] [Accepted: 10/26/2010] [Indexed: 05/18/2023]
Abstract
Regulation of secondary (woody) growth is of substantial economic and environmental interest but is poorly understood. We identified and subsequently characterized an activation-tagged poplar (Populus tremula × Populus alba) mutant with enhanced woody growth and changes in bark texture caused primarily by increased secondary phloem production. Molecular characterization of the mutation through positioning of the tag and retransformation experiments shows that the phenotype is conditioned by activation of an uncharacterized gene that encodes a novel member of the LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors. Homology analysis showed highest similarity to an uncharacterized LBD1 gene from Arabidopsis thaliana, and we consequently named it Populus tremula × Populus alba (Pta) LBD1. Dominant-negative suppression of Pta LBD1 via translational fusion with the repressor SRDX domain caused decreased diameter growth and suppressed and highly irregular phloem development. In wild-type plants, LBD1 was most highly expressed in the phloem and cambial zone. Two key Class I KNOTTED1-like homeobox genes that promote meristem identity in the cambium were downregulated, while an Altered Phloem Development gene that is known to promote phloem differentiation was upregulated in the mutant. A set of four LBD genes, including the LBD1 gene, was predominantly expressed in wood-forming tissues, suggesting a broader regulatory role of these transcription factors during secondary woody growth in poplar.
Collapse
Affiliation(s)
- Yordan S. Yordanov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| | - Sharon Regan
- Department of Biology, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Victor Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931-1295
| |
Collapse
|
336
|
Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. TRENDS IN PLANT SCIENCE 2010; 15:573-81. [PMID: 20674465 DOI: 10.1016/j.tplants.2010.06.005] [Citation(s) in RCA: 2012] [Impact Index Per Article: 134.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/18/2010] [Accepted: 06/30/2010] [Indexed: 05/18/2023]
Abstract
The MYB family of proteins is large, functionally diverse and represented in all eukaryotes. Most MYB proteins function as transcription factors with varying numbers of MYB domain repeats conferring their ability to bind DNA. In plants, the MYB family has selectively expanded, particularly through the large family of R2R3-MYB. Members of this family function in a variety of plant-specific processes, as evidenced by their extensive functional characterization in Arabidopsis (Arabidopsis thaliana). MYB proteins are key factors in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses. The elucidation of MYB protein function and regulation that is possible in Arabidopsis will provide the foundation for predicting the contributions of MYB proteins to the biology of plants in general.
Collapse
Affiliation(s)
- Christian Dubos
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, 78026 Versailles Cedex, France.
| | | | | | | | | | | |
Collapse
|
337
|
Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Séguin A, MacKay J. Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3847-64. [PMID: 20732878 PMCID: PMC2935864 DOI: 10.1093/jxb/erq196] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 05/18/2023]
Abstract
Transcription factors play a fundamental role in plants by orchestrating temporal and spatial gene expression in response to environmental stimuli. Several R2R3-MYB genes of the Arabidopsis subgroup 4 (Sg4) share a C-terminal EAR motif signature recently linked to stress response in angiosperm plants. It is reported here that nearly all Sg4 MYB genes in the conifer trees Picea glauca (white spruce) and Pinus taeda (loblolly pine) form a monophyletic clade (Sg4C) that expanded following the split of gymnosperm and angiosperm lineages. Deeper sequencing in P. glauca identified 10 distinct Sg4C sequences, indicating over-representation of Sg4 sequences compared with angiosperms such as Arabidopsis, Oryza, Vitis, and Populus. The Sg4C MYBs share the EAR motif core. Many of them had stress-responsive transcript profiles after wounding, jasmonic acid (JA) treatment, or exposure to cold in P. glauca and P. taeda, with MYB14 transcripts accumulating most strongly and rapidly. Functional characterization was initiated by expressing the P. taeda MYB14 (PtMYB14) gene in transgenic P. glauca plantlets with a tissue-preferential promoter (cinnamyl alcohol dehydrogenase) and a ubiquitous gene promoter (ubiquitin). Histological, metabolite, and transcript (microarray and targeted quantitative real-time PCR) analyses of PtMYB14 transgenics, coupled with mechanical wounding and JA application experiments on wild-type plantlets, allowed identification of PtMYB14 as a putative regulator of an isoprenoid-oriented response that leads to the accumulation of sesquiterpene in conifers. Data further suggested that PtMYB14 may contribute to a broad defence response implicating flavonoids. This study also addresses the potential involvement of closely related Sg4C sequences in stress responses and plant evolution.
Collapse
Affiliation(s)
- Frank Bedon
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
- UMR UPS/CNRS 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville Tolosane, 31326 Castanet Tolosan, France
| | - Claude Bomal
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| | - Sébastien Caron
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| | - Caroline Levasseur
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (QC), G1V A06, Canada
| | - Brian Boyle
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| | - Shawn D. Mansfield
- Canada Research Chair in Wood and Fibre Quality, Department of Wood Science, University of British Columbia, 4030-2424 Main Mall, Vancouver (BC), V6T 1Z4, Canada
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str.8, Beutenberg-Campus, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Str.8, Beutenberg-Campus, D-07745 Jena, Germany
| | - Jacqueline Grima-Pettenati
- UMR UPS/CNRS 5546, Pôle de Biotechnologies Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville Tolosane, 31326 Castanet Tolosan, France
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec (QC), G1V A06, Canada
| | - John MacKay
- Centre d’Étude de la Forêt, Université Laval, Québec (QC), G1V A06, Canada
| |
Collapse
|
338
|
Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC PLANT BIOLOGY 2010; 10:145. [PMID: 20630103 PMCID: PMC3017804 DOI: 10.1186/1471-2229-10-145] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 07/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND NAC (NAM, ATAF1/2 and CUC2) domain proteins are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. NAC transcription factors comprise of a large gene family represented by more than 100 members in Arabidopsis, rice and soybean etc. Recently, a preliminary phylogenetic analysis was reported for NAC gene family from 11 plant species. However, no comprehensive study incorporating phylogeny, chromosomal location, gene structure, conserved motifs, and expression profiling analysis has been presented thus far for the model tree species Populus. RESULTS In the present study, a comprehensive analysis of NAC gene family in Populus was performed. A total of 163 full-length NAC genes were identified in Populus, and they were phylogenetically clustered into 18 distinct subfamilies. The gene structure and motif compositions were considerably conserved among the subfamilies. The distributions of 120 Populus NAC genes were non-random across the 19 linkage groups (LGs), and 87 genes (73%) were preferentially retained duplicates that located in both duplicated regions. The majority of NACs showed specific temporal and spatial expression patterns based on EST frequency and microarray data analyses. However, the expression patterns of a majority of duplicate genes were partially redundant, suggesting the occurrence of subfunctionalization during subsequent evolutionary process. Furthermore, quantitative real-time RT-PCR (RT-qPCR) was performed to confirm the tissue-specific expression patterns of 25 NAC genes. CONCLUSION Based on the genomic organizations, we can conclude that segmental duplications contribute significantly to the expansion of Populus NAC gene family. The comprehensive expression profiles analysis provides first insights into the functional divergence among members in NAC gene family. In addition, the high divergence rate of expression patterns after segmental duplications indicates that NAC genes in Populus are likewise to have been retained by substantial subfunctionalization. Taken together, our results presented here would be helpful in laying the foundation for functional characterization of NAC gene family and further gaining an understanding of the structure-function relationship between these family members.
Collapse
Affiliation(s)
- Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Guang Qi
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Yingzhen Kong
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
- Current address: Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Dejing Kong
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Qian Gao
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Gongke Zhou
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
339
|
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, Robertson DL. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. PLANT PHYSIOLOGY 2010; 153:1398-412. [PMID: 20472752 PMCID: PMC2899937 DOI: 10.1104/pp.110.153593] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 05/13/2010] [Indexed: 05/18/2023]
Abstract
Basic helix-loop-helix proteins (bHLHs) are found throughout the three eukaryotic kingdoms and constitute one of the largest families of transcription factors. A growing number of bHLH proteins have been functionally characterized in plants. However, some of these have not been previously classified. We present here an updated and comprehensive classification of the bHLHs encoded by the whole sequenced genomes of Arabidopsis (Arabidopsis thaliana), Populus trichocarpa, Oryza sativa, Physcomitrella patens, and five algae species. We define a plant bHLH consensus motif, which allowed the identification of novel highly diverged atypical bHLHs. Using yeast two-hybrid assays, we confirm that (1) a highly diverged bHLH has retained protein interaction activity and (2) the two most conserved positions in the consensus play an essential role in dimerization. Phylogenetic analysis permitted classification of the 638 bHLH genes identified into 32 subfamilies. Evolutionary and functional relationships within subfamilies are supported by intron patterns, predicted DNA-binding motifs, and the architecture of conserved protein motifs. Our analyses reveal the origin and evolutionary diversification of plant bHLHs through differential expansions, domain shuffling, and extensive sequence divergence. At the functional level, this would translate into different subfamilies evolving specific DNA-binding and protein interaction activities as well as differential transcriptional regulatory roles. Our results suggest a role for bHLH proteins in generating plant phenotypic diversity and provide a solid framework for further investigations into the role carried out in the transcriptional regulation of key growth and developmental processes.
Collapse
|
340
|
Rahantamalala A, Rech P, Martinez Y, Chaubet-Gigot N, Grima-Pettenati J, Pacquit V. Coordinated transcriptional regulation of two key genes in the lignin branch pathway--CAD and CCR--is mediated through MYB- binding sites. BMC PLANT BIOLOGY 2010; 10:130. [PMID: 20584286 PMCID: PMC3017776 DOI: 10.1186/1471-2229-10-130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/28/2010] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them. Here, in the lignin-specific branch, we studied the functional role of MYB elements as well as other cis-elements identified in the regulatory regions of EgCAD2 and EgCCR promoters, in the transcriptional activity of these gene promoters. RESULTS By using promoter deletion analysis and in vivo footprinting, we identified an 80 bp regulatory region in the Eucalyptus gunnii EgCAD2 promoter that contains two MYB elements, each arranged in a distinct module with newly identified cis-elements. A directed mutagenesis approach was used to introduce block mutations in all putative cis-elements of the EgCAD2 promoter and in those of the 50 bp regulatory region previously delineated in the EgCCR promoter. We showed that the conserved MYB elements in EgCAD2 and EgCCR promoters are crucial both for the formation of DNA-protein complexes in EMSA experiments and for the transcriptional activation of EgCAD2 and EgCCR promoters in vascular tissues in planta. In addition, a new regulatory cis-element that modulates the balance between two DNA-protein complexes in vitro was found to be important for EgCAD2 expression in the cambial zone. CONCLUSIONS Our assignment of functional roles to the identified cis-elements clearly demonstrates the importance of MYB cis-elements in the transcriptional regulation of two genes of the lignin-specific pathway and support the hypothesis that MYB elements serve as a common means for the coordinated regulation of genes in the entire lignin biosynthetic pathway.
Collapse
Affiliation(s)
- Anjanirina Rahantamalala
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| | - Philippe Rech
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
- Université Pierre et Marie Curie Paris 6, EAC7180 CNRS, UR5, Mécanismes de la Régénération des Plantes, F-75252 Paris cedex 05, France
| | - Yves Martinez
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| | - Nicole Chaubet-Gigot
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| | - Valérie Pacquit
- Université de Toulouse; UPS; UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux; BP 42617, F-31326, Castanet-Tolosan, France
- CNRS; UMR 5546; BP 42617, F-31326, Castanet-Tolosan, France
| |
Collapse
|
341
|
McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye ZH. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. PLANT & CELL PHYSIOLOGY 2010; 51:1084-90. [PMID: 20427511 DOI: 10.1093/pcp/pcq064] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dicot wood is mainly composed of cellulose, xylan and lignin, and its formation requires the coordinated regulation of their biosynthesis. In this report, we demonstrate that the poplar wood-associated MYB transcriptional activators, PtrMYB3 and PtrMYB20, activate the biosynthetic pathways of cellulose, xylan and lignin when overexpressed in Arabidopsis and they are also able to activate the promoter activities of poplar wood biosynthetic genes. We also show that PtrMYB3 and PtrMYB20 are functional orthologs of Arabidopsis MYB46 and MYB83, and their expression is directly activated by poplar PtrWND2, suggesting their involvement in the regulation of wood formation in poplar.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
342
|
Zhong R, Ye ZH. The poplar PtrWNDs are transcriptional activators of secondary cell wall biosynthesis. PLANT SIGNALING & BEHAVIOR 2010; 5:469-72. [PMID: 20383071 PMCID: PMC2958599 DOI: 10.4161/psb.5.4.11400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/17/2023]
Abstract
Secondary cell walls, consisting of cellulose, hemicelluloses and lignin, make up the bulk of wood biomass. It is therefore expected that dissection of the molecular mechanisms underlying secondary wall biosynthesis and its regulation will be instrumental to unravel the process of wood formation in tree species. Wood formation requires the coordinated activation of genes in the secondary wall biosynthetic program that is essential for the biosynthesis and assembly of wood components. It has recently been discovered that a group of poplar (Populus trichocarpa) wood-associated NAC domain transcription factors, PtrWNDs, which are functional orthologs of the Arabidopsis SND1, are capable of turning on the entire secondary wall biosynthetic program when expressed in Arabidopsis. In addition, two of the PtrWNDs were found to be able to activate the promoters of poplar wood biosynthetic genes and a number of other poplar wood-associated transcription factors. Further testing reveals that the promoters of these poplar wood-associated transcription factors are also activated by other PtrWNDs. It is therefore proposed that PtrWNDs are master transcriptional switches regulating a cascade of downstream transcription factors and thereby mediate the coordinated activation of wood biosynthetic genes during wood formation.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
343
|
Winzell A, Aspeborg H, Wang Y, Ezcurra I. Conserved CA-rich motifs in gene promoters of Pt×tMYB021-responsive secondary cell wall carbohydrate-active enzymes in Populus. Biochem Biophys Res Commun 2010; 394:848-53. [DOI: 10.1016/j.bbrc.2010.03.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
|
344
|
Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. PLANT PHYSIOLOGY 2010; 152:1731-47. [PMID: 20089770 PMCID: PMC2832263 DOI: 10.1104/pp.109.151738] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/13/2010] [Indexed: 05/17/2023]
Abstract
Although phenylpropanoid-polyamine conjugates (PPCs) occur ubiquitously in plants, their biological roles remain largely unexplored. The two major PPCs of Nicotiana attenuata plants, caffeoylputrescine (CP) and dicaffeoylspermidine, increase dramatically in local and systemic tissues after herbivore attack and simulations thereof. We identified NaMYB8, a homolog of NtMYBJS1, which in BY-2 cells regulates PPC biosynthesis, and silenced its expression by RNA interference in N. attenuata (ir-MYB8), to understand the ecological role(s) of PPCs. The regulatory role of NaMYB8 in PPC biosynthesis was validated by a microarray analysis, which revealed that transcripts of several key biosynthetic genes in shikimate and polyamine metabolism accumulated in a NaMYB8-dependent manner. Wild-type N. attenuata plants typically contain high levels of PPCs in their reproductive tissues; however, NaMYB8-silenced plants that completely lacked CP and dicaffeoylspermidine showed no changes in reproductive parameters of the plants. In contrast, a defensive role for PPCs was clear; both specialist (Manduca sexta) and generalist (Spodoptera littoralis) caterpillars feeding on systemically preinduced young stem leaves performed significantly better on ir-MYB8 plants lacking PPCs compared with wild-type plants expressing high levels of PPCs. Moreover, the growth of M. sexta caterpillars was significantly reduced when neonates were fed ir-MYB8 leaves sprayed with synthetic CP, corroborating the role of PPCs as direct plant defense. The spatiotemporal accumulation and function of PPCs in N. attenuata are consistent with the predictions of the optimal defense theory: plants preferentially protect their most fitness-enhancing and vulnerable parts, young tissues and reproductive organs, to maximize their fitness.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Gális
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, D–07745 Jena, Germany
| |
Collapse
|
345
|
Zhong R, Lee C, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors. PLANT PHYSIOLOGY 2010; 152:1044-55. [PMID: 19965968 PMCID: PMC2815876 DOI: 10.1104/pp.109.148270] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/29/2009] [Indexed: 05/15/2023]
Abstract
Wood is the most abundant biomass produced by land plants. Dissection of the molecular mechanisms underlying the transcriptional regulation of wood formation is a fundamental issue in plant biology and has important implications in tree biotechnology. Although a number of transcription factors in tree species have been shown to be associated with wood formation and some of them are implicated in lignin biosynthesis, none of them have been demonstrated to be key regulators of the biosynthesis of all three major components of wood. In this report, we have identified a group of NAC domain transcription factors, PtrWNDs, that are preferentially expressed in developing wood of poplar (Populus trichocarpa). Expression of PtrWNDs in the Arabidopsis (Arabidopsis thaliana) snd1 nst1 double mutant effectively complemented the secondary wall defects in fibers, indicating that PtrWNDs are capable of activating the entire secondary wall biosynthetic program. Overexpression of PtrWND2B and PtrWND6B in Arabidopsis induced the expression of secondary wall-associated transcription factors and secondary wall biosynthetic genes and, concomitantly, the ectopic deposition of cellulose, xylan, and lignin. Furthermore, PtrWND2B and PtrWND6B were able to activate the promoter activities of a number of poplar wood-associated transcription factors and wood biosynthetic genes. Together, these results demonstrate that PtrWNDs are functional orthologs of SND1 and suggest that PtrWNDs together with their downstream transcription factors form a transcriptional network involved in the regulation of wood formation in poplar.
Collapse
Affiliation(s)
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
346
|
Zhu Z, Zhang Y, Long M. Extensive structural renovation of retrogenes in the evolution of the Populus genome. PLANT PHYSIOLOGY 2009; 151:1943-51. [PMID: 19789289 PMCID: PMC2785971 DOI: 10.1104/pp.109.142984] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Retroposition, as an important copy mechanism for generating new genes, was believed to play a negligible role in plants. As a representative dicot, the genomic sequences of Populus (poplar; Populus trichocarpa) provide an opportunity to investigate this issue. We identified 106 retrogenes and found the majority (89%) of them are associated with functional signatures in sequence evolution, transcription, and (or) translation. Remarkably, examination of gene structures revealed extensive structural renovation of these retrogenes: we identified 18 (17%) of them undergoing either chimerization to form new chimerical genes and (or) intronization (transformation into intron sequences of previously exonic sequences) to generate new intron-containing genes. Such a change might occur at a high speed, considering eight out of 18 such cases occurred recently after divergence between Arabidopsis (Arabidopsis thaliana) and Populus. This pattern also exists in Arabidopsis, with 15 intronized retrogenes occurring after the divergence between Arabidopsis and papaya (Carica papaya). Thus, the frequency of intronization in dicots revealed its importance as a mechanism in the evolution of exon-intron structure. In addition, we also examined the potential impact of the Populus nascent sex determination system on the chromosomal distribution of retrogenes and did not observe any significant effects of the extremely young sex chromosomes.
Collapse
|
347
|
Gupta AB, Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC PLANT BIOLOGY 2009; 9:134. [PMID: 19930558 PMCID: PMC2789079 DOI: 10.1186/1471-2229-9-134] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/20/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Members of major intrinsic proteins (MIPs) include water-conducting aquaporins and glycerol-transporting aquaglyceroporins. MIPs play important role in plant-water relations. The model plants Arabidopsis thaliana, rice and maize contain more than 30 MIPs and based on phylogenetic analysis they can be divided into at least four subfamilies. Populus trichocarpa is a model tree species and provides an opportunity to investigate several tree-specific traits. In this study, we have investigated Populus MIPs (PtMIPs) and compared them with their counterparts in Arabidopsis, rice and maize. RESULTS Fifty five full-length MIPs have been identified in Populus genome. Phylogenetic analysis reveals that Populus has a fifth uncharacterized subfamily (XIPs). Three-dimensional models of all 55 PtMIPs were constructed using homology modeling technique. Aromatic/arginine (ar/R) selectivity filters, characteristics of loops responsible for solute selectivity (loop C) and gating (loop D) and group conservation of small and weakly polar interfacial residues have been analyzed. Majority of the non-XIP PtMIPs are similar to those in Arabidopsis, rice and maize. Additional XIPs were identified from database search and 35 XIP sequences from dicots, fungi, moss and protozoa were analyzed. Ar/R selectivity filters of dicots XIPs are more hydrophobic compared to fungi and moss XIPs and hence they are likely to transport hydrophobic solutes. Loop C is longer in one of the subgroups of dicot XIPs and most probably has a significant role in solute selectivity. Loop D in dicot XIPs has higher number of basic residues. Intron loss is observed on two occasions: once between two subfamilies of eudicots and monocot and in the second instance, when dicot and moss XIPs diverged from fungi. Expression analysis of Populus MIPs indicates that Populus XIPs don't show any tissue-specific transcript abundance. CONCLUSION Due to whole genome duplication, Populus has the largest number of MIPs identified in any single species. Non-XIP MIPs are similar in all four plant species considered in this study. Small and weakly polar residues at the helix-helix interface are group conserved presumably to maintain the hourglass fold of MIP channels. Substitutions in ar/R selectivity filter, insertion/deletion in loop C, increasing basic nature of loop D and loss of introns are some of the events occurred during the evolution of dicot XIPs.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
348
|
Wilkins O, Waldron L, Nahal H, Provart NJ, Campbell MM. Genotype and time of day shape the Populus drought response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:703-15. [PMID: 19682285 DOI: 10.1111/j.1365-313x.2009.03993.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As exposure to episodic drought can impinge significantly on forest health and the establishment of productive tree plantations, there is great interest in understanding the mechanisms of drought response in trees. The ecologically dominant and economically important genus Populus, with its sequenced genome, provides an ideal opportunity to examine transcriptome level changes in trees in response to a drought stimulus. The transcriptome level drought response of two commercially important Populus clones (P. deltoides x P. nigra, DN34, and P. nigra x P. maximowiczii, NM6) was characterized over a diurnal period using a 4 x 2 x 2 complete randomized factorial anova experimental design (four time points, two genotypes and two treatment conditions), using Affymetrix Poplar GeneChip microarrays. Notably, the specific genes that exhibited changes in transcript abundance in response to drought differed between the genotypes and/or the time of day that they exhibited their greatest differences. This study emphasizes the fact that it is not possible to draw simple, generalized conclusions about the drought response of the genus Populus on the basis of one species, nor on the basis of results collected at a single time point. The data derived from our studies provide insights into the variety of genetic mechanisms underpinning the Populus drought response, and provide candidates for future experiments aimed at understanding this response across this economically and ecologically important genus.
Collapse
Affiliation(s)
- Olivia Wilkins
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | | | | | | | | |
Collapse
|
349
|
Morse AM, Whetten RW, Dubos C, Campbell MM. Post-translational modification of an R2R3-MYB transcription factor by a MAP Kinase during xylem development. THE NEW PHYTOLOGIST 2009; 183:1001-1013. [PMID: 19566814 DOI: 10.1111/j.1469-8137.2009.02900.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the pivotal role played by R2R3-MYB family members in the regulation of plant gene expression, little is known about post-translational regulation of these proteins. In animals, the MYB family member, c-MYB, is post-translationally modified by a mitogen-activated protein kinase (MAPK), p42(mapk). In order to test the hypothesis that R2R3-MYB proteins may be regulated by MAPK activity, interplay between a R2R3-MYB family member expressed in differentiating pine xylem (Pinus taeda MYB4, PtMYB4) and MAPK proteins expressed in the same tissue was examined. One of the MAPK proteins expressed in pine xylem, PtMAPK6, phosphorylated PtMYB4. Recombinant PtMAPK6 phosphorylated PtMYB4 on serine-236, located in the C-terminal activation domain of this transcription factor in a context that is found in other plant MYB proteins. Modification of the PtMAPK6 target serine in PtMYB4 did not appear to alter DNA binding in vitro but did alter the ability of PtMYB4 to promote transcriptional activation in yeast. PtMAPK6 activity was detected in developing xylem cells that had ceased cell division and formed secondary walls. Together, the data support a role for PtMAPK6 during early xylem development and suggest a function for this kinase in regulating gene expression through phosphorylation of PtMYB4.
Collapse
Affiliation(s)
- Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, 5231 Jordan Hall, Box 8008, Raleigh, NC, 27695, USA
| | - Christian Dubos
- Centre for the Analysis of Genome Evolution & Function, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | - Malcolm M Campbell
- Centre for the Analysis of Genome Evolution & Function, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| |
Collapse
|
350
|
Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP. The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. PLANT PHYSIOLOGY 2009; 150:924-41. [PMID: 19395405 PMCID: PMC2689947 DOI: 10.1104/pp.109.139071] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/21/2009] [Indexed: 05/18/2023]
Abstract
In poplar (Populus spp.), the major defense phenolics produced in leaves are the flavonoid-derived proanthocyanidins (PAs) and the salicin-based phenolic glycosides. Transcriptional activation of PA biosynthetic genes leading to PA accumulation in leaves occurs following herbivore damage and mechanical wounding as well as infection by the fungal biotroph Melampsora medusae. In this study, we have identified a poplar R2R3 MYB transcription factor gene, MYB134, that exhibits close sequence similarity to the Arabidopsis (Arabidopsis thaliana) PA regulator TRANSPARENT TESTA2 and that is coinduced with PA biosynthetic genes following mechanical wounding, M. medusae infection, and exposure to elevated ultraviolet B light. Overexpression of MYB134 in poplar resulted in transcriptional activation of the full PA biosynthetic pathway and a significant plant-wide increase in PA levels, and electrophoretic mobility shift assays showed that recombinant MYB134 protein is able to bind to promoter regions of PA pathway genes. MYB134-overexpressing plants exhibited a concomitant reduction in phenolic glycoside concentrations and other minor alterations to levels of small phenylpropanoid metabolites. Our data provide insight into the regulatory mechanisms controlling stress-induced PA metabolism in poplar, and the identification of a regulator of stress-responsive PA biosynthesis constitutes a valuable tool for manipulating PA metabolism in poplar and investigating the biological functions of PAs in resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Robin D Mellway
- Centre for Forest Biology and Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8W 3N5
| | | | | | | | | |
Collapse
|