301
|
Koyama K, Sadamatsu K, Goto-Yamamoto N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct Integr Genomics 2009; 10:367-81. [PMID: 19841954 DOI: 10.1007/s10142-009-0145-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 09/24/2009] [Accepted: 09/27/2009] [Indexed: 12/11/2022]
Abstract
We investigated the effect of exogenous abscisic acid (ABA) application on the transcriptome as well as the phenolic profiles in the skins of Vitis vinifera cv. Cabernet Sauvignon grape berries grown on the vine and cultured in vitro. ABA application rapidly induced the accumulation of anthocyanin and flavonol. Correlatively, the structural genes in the phenylpropanoid and flavonoid pathways, their transcriptional regulators, as well as genes considered to be involved in the acylation and transport of anthocyanin into the vacuole, were upregulated by ABA treatment. The Genechip analysis showed that the ABA treatment significantly up- or downregulated a total of 345 and 1,482 transcripts in the skins of berries grown on the vine and cultured in vitro, respectively. Exogenous ABA modulated the transcripts associated with osmotic responses, stress responses, cell wall modification, auxin and ethylene metabolism and responses, in addition to the induction of anthocyanin biosynthetic genes, and reduced those associated with photosynthesis; approximately half of these transcripts were identical to the previously reported ripening-specific genes.
Collapse
Affiliation(s)
- Kazuya Koyama
- Fundamental Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | | | | |
Collapse
|
302
|
Huang J, Bhinu VS, Li X, Dallal Bashi Z, Zhou R, Hannoufa A. Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. PLANTA 2009; 230:1057-1069. [PMID: 19714359 DOI: 10.1007/s00425-009-1007-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/05/2009] [Indexed: 05/28/2023]
Abstract
Hydrocinnamic acid esters, lignin, flavonoids, glucosinolates, and salicylic acid protect plants against UV exposure, oxidative stress, diseases, and herbivores. Through the phenylpropanoid pathway, certain Brassicaceae family members, including Arabidopsis thaliana and Brassica napus, accumulate large amounts of the anti-nutritive sinapoylcholine (sinapine) in the seed. We successfully down-regulated activities of key enzymes in the pathway including F5H and SCT and achieved reduction of sinapine and lignin in B. napus seeds. Despite this success, it was unclear how multiple agronomic traits were affected in the transgenic plants. Here, we report altered large-scale gene expression of new alleles of f5h and sct mutants of A. thaliana and resultant accumulation of sinapoylglucose, disinapoylglucose, quercetin-3-O-rhamnoside, salicylic acid glucoside, and total indolyl glucosinolates in the two mutants. Expression of several flowering genes was altered in these mutants when grown under drought and NaCl treatments. Furthermore, both mutants were more susceptible to fungal infection than the wild type. Microarray experiments identified distinctive spatial and temporal expression patterns of gene clusters involved in silique/seed developmental processes and metabolite biosynthesis in these mutants. Taken together, these findings suggest that both f5h and sct mutants exhibit major differences in accumulation of diverse metabolites in the seed and profound changes in global large-scale gene expression, resulting in differential pleiotropic responses to environmental cues. Electronic supplementary material The online version of this article (doi:10.1007/s00425-009-1007-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Huang
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK, Canada
| | | | | | | | | | | |
Collapse
|
303
|
Sirikantaramas S, Yamazaki M, Saito K. A survival strategy: the coevolution of the camptothecin biosynthetic pathway and self-resistance mechanism. PHYTOCHEMISTRY 2009; 70:1894-1898. [PMID: 19709698 DOI: 10.1016/j.phytochem.2009.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 05/28/2023]
Abstract
A diverse array of secondary metabolites in plants represents the process of coevolution between the plants and their natural enemies including herbivores and pathogens. For defense, plants produce many toxic compounds that harm other organisms. However, if the target of these compounds is a fundamental biological process then the producing plant may also be harmed. In such cases self-resistance strategies must coevolve with the biosynthetic pathway of toxic metabolites. In this review, we discuss the recent elucidation of the self-resistance mechanism of camptothecin (CPT)-producing plants. In this case the target protein of CPT, topoisomerase (Top) 1, has been mutated in order to overcome the toxicity of the compound. Similar mechanisms might also be used by other plants producing different toxic compounds which target fundamental metabolism.
Collapse
Affiliation(s)
- Supaart Sirikantaramas
- Department of Plant Biology and Biotechnology, VKR Research Centre for Pro-Active Plants, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
304
|
Ikegami A, Akagi T, Potter D, Yamada M, Sato A, Yonemori K, Kitajima A, Inoue K. Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.). PLANTA 2009; 230:841-55. [PMID: 19641937 PMCID: PMC2729980 DOI: 10.1007/s00425-009-0989-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/10/2009] [Indexed: 05/19/2023]
Abstract
Fruits of persimmon (Diospyros kaki Thunb.) accumulate large amounts of proanthocyanidins (PAs) in the early stages of development. Astringent (A)-type fruits remain rich in soluble PAs even after they reach full-mature stage, whereas non-astringent (NA)-type fruits lose these compounds before full maturation. As a first step to elucidate the mechanism of PA accumulation in this non-model species, we used suppression subtractive hybridization to identify transcripts accumulating differently in young fruits of A- and NA-type. Interestingly, only a few clones involved in PA biosynthesis were identified in A-NA libraries. Represented by multiple clones were those encoding a novel 1-Cys peroxiredoxin and a new member of family 1 glycosyltransferases. Quantitative RT-PCR analyses confirmed correlation of the amount of PAs and accumulation of transcripts encoding these proteins in young persimmon fruits. Furthermore, the new family 1 glycosyltransferase was produced in Escherichia coli and shown to efficiently catalyze galactosylation at 3-hydroxyl groups of several anthocyanidins and flavonols. These findings suggest a complex mechanism of PA accumulation in persimmon fruits.
Collapse
Affiliation(s)
- Ayako Ikegami
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
- Laboratory of Pomology, Department of Bioproduction Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836 Japan
| | - Takashi Akagi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Daniel Potter
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Masahiko Yamada
- Department of Citrus Research, National Institute of Fruit Tree Science, Kuchinotsu, Nagasaki 859-2501 Japan
| | - Akihiko Sato
- Grape and Persimmon Research Station, National Institute of Fruit Tree Science, Akitsu, Hiroshima 739-2494 Japan
| | - Keizo Yonemori
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Akira Kitajima
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Takatsuki, Osaka 569-0096 Japan
| | - Kentaro Inoue
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
305
|
Jasinski M, Banasiak J, Radom M, Kalitkiewicz A, Figlerowicz M. Full-size ABC transporters from the ABCG subfamily in medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:921-31. [PMID: 19589068 DOI: 10.1094/mpmi-22-8-0921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Full-size ATP-binding cassette (ABC) transporters belonging to the ABCG subfamily are unique for plants and fungi. There is growing evidence that certain of these proteins play a role in plant defense or signaling systems. As yet, a complete set of full-size ABCG protein genes has been inventoried and classified in only two plants: Arabidopsis thaliana and Oryza sativa. Recently, a domain-based clustering analysis has predicted the presence of at least 12 genes encoding such proteins in the Lotus japonicus genome. Here, we identify and classify 19 genes coding full-size ABCG proteins in Medicago truncatula, a model legume plant. We have found that the majority of these genes are expressed in roots and flowers whereas only a few are expressed in leaves. Expression of several has been induced upon pathogenic infection in both roots and leaves. ABCG messenger RNAs have been detected in root nodules forming during symbiosis of legume plants and nitrogen-fixing bacteria. The data presented provide a scaffold for further studies of the physiological function of Medicago ABCG transporters and their possible role in modulating plant-microorganism interactions.
Collapse
Affiliation(s)
- Michal Jasinski
- Institute of Bioorganic Chemistry PAS, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | | | | | | |
Collapse
|
306
|
Zhao J, Dixon RA. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. THE PLANT CELL 2009; 21:2323-40. [PMID: 19684242 PMCID: PMC2751950 DOI: 10.1105/tpc.109.067819] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Expression of the Arabidopsis thaliana MYB transcription factor TRANSPARENT TESTA 2 (TT2) in Medicago trunculata hairy roots induces both proanthocyanidin accumulation and the ATP-dependent vacuolar/vesicular uptake of epicatechin 3'-O-glucoside; neither process is active in control roots that do, however, possess anthocyanidin 3-O-glucoside vacuolar uptake activity. A vacuolar membrane-localized multidrug and toxic compound extrusion (MATE) transporter, Medicago MATE1, was identified at the molecular level and shown to preferentially transport epicatechin 3'-O-glucoside. Genetic evidence has implicated TT12, a tonoplastic MATE transporter from Arabidopsis, in the transport of precursors for proanthocyanidin biosynthesis in the seed coat. However, although Arabidopsis TT12 facilitates the transport of cyanidin 3-O-glucoside into membrane vesicles when expressed in yeast, there is no evidence that cyanidin 3-O-glucoside is converted to proanthocyanidins after transport into the vacuole. Here, we show that Arabidopsis TT12, like Medicago MATE1, functions to transport epicatechin 3'-O-glucoside as a precursor for proanthocyanidin biosynthesis, and Medicago MATE1 complements the seed proanthocyanidin phenotype of the Arabidopsis tt12 mutant both quantitatively and qualitatively. On the basis of biochemical properties, tissue-specific expression pattern, and genetic loss-of-function analysis, we conclude that MATE1 is an essential membrane transporter for proanthocyanidin biosynthesis in the Medicago seed coat. Implications of these findings for the assembly of oligomeric proanthocyanidins are discussed.
Collapse
Affiliation(s)
- Jian Zhao
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | |
Collapse
|
307
|
Robinson SJ, Tang LH, Mooney BAG, McKay SJ, Clarke WE, Links MG, Karcz S, Regan S, Wu YY, Gruber MY, Cui D, Yu M, Parkin IAP. An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC PLANT BIOLOGY 2009; 9:101. [PMID: 19646253 PMCID: PMC3091532 DOI: 10.1186/1471-2229-9-101] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/31/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Functional genomics tools provide researchers with the ability to apply high-throughput techniques to determine the function and interaction of a diverse range of genes. Mutagenized plant populations are one such resource that facilitate gene characterisation. They allow complex physiological responses to be correlated with the expression of single genes in planta, through either reverse genetics where target genes are mutagenized to assay the affect, or through forward genetics where populations of mutant lines are screened to identify those whose phenotype diverges from wild type for a particular trait. One limitation of these types of populations is the prevalence of gene redundancy within plant genomes, which can mask the affect of individual genes. Activation or enhancer populations, which not only provide knock-out but also dominant activation mutations, can facilitate the study of such genes. RESULTS We have developed a population of almost 50,000 activation tagged A. thaliana lines that have been archived as individual lines to the T3 generation. The population is an excellent tool for both reverse and forward genetic screens and has been used successfully to identify a number of novel mutants. Insertion site sequences have been generated and mapped for 15,507 lines to enable further application of the population, while providing a clear distribution of T-DNA insertions across the genome. The population is being screened for a number of biochemical and developmental phenotypes, provisional data identifying novel alleles and genes controlling steps in proanthocyanidin biosynthesis and trichome development is presented. CONCLUSION This publicly available population provides an additional tool for plant researcher's to assist with determining gene function for the many as yet uncharacterised genes annotated within the Arabidopsis genome sequence http://aafc-aac.usask.ca/FST. The presence of enhancer elements on the inserted T-DNA molecule allows both knock-out and dominant activation phenotypes to be identified for traits of interest.
Collapse
Affiliation(s)
- Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Lily H Tang
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Brent AG Mooney
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Sheldon J McKay
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Wayne E Clarke
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Matthew G Links
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Steven Karcz
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Sharon Regan
- Department of Biology, Biosciences Complex, Queens University, Kingston, Ontario, K7L 3N6, Canada
| | - Yun-Yun Wu
- Department of Biology, Biosciences Complex, Queens University, Kingston, Ontario, K7L 3N6, Canada
| | - Margaret Y Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Dejun Cui
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Min Yu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| | - Isobel AP Parkin
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, S7N 0X2, Canada
| |
Collapse
|
308
|
Bertolini A, Peresson C, Petrussa E, Braidot E, Passamonti S, Macrì F, Vianello A. Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3861-71. [PMID: 19596699 PMCID: PMC2736896 DOI: 10.1093/jxb/erp225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 05/28/2023]
Abstract
A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both K(m) and V(max), than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues.
Collapse
Affiliation(s)
- Alberto Bertolini
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Carlo Peresson
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Elisa Petrussa
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Enrico Braidot
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Sabina Passamonti
- Dipartimento di Scienze della Vita, Università di Trieste, via L. Giorgieri, 1, I-34127 Trieste, Italy
| | - Francesco Macrì
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| | - Angelo Vianello
- Dipartimento di Biologia e Protezione delle Piante, Sezione di Biologia Vegetale, Università di Udine, via delle Scienze 91, I-33100 Udine, Italy
| |
Collapse
|
309
|
Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verriès C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. PLANT PHYSIOLOGY 2009; 150:402-15. [PMID: 19297587 PMCID: PMC2675721 DOI: 10.1104/pp.109.135624] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/16/2009] [Indexed: 05/18/2023]
Abstract
In grapevine (Vitis vinifera), anthocyanins are responsible for most of the red, blue, and purple pigmentation found in the skin of berries. In cells, anthocyanins are synthesized in the cytoplasm and accumulated into the vacuole. However, little is known about the transport of these compounds through the tonoplast. Recently, the sequencing of the grapevine genome allowed us to identify genes encoding proteins with high sequence similarity to the Multidrug And Toxic Extrusion (MATE) family. Among them, we selected two genes as anthocyanin transporter candidates and named them anthoMATE1 (AM1) and AM3. The expression of both genes was mainly fruit specific and concomitant with the accumulation of anthocyanin pigment. Subcellular localization assays in grapevine hairy roots stably transformed with AM1 or AM3green fluorescent protein fusion protein revealed that AM1 and AM3 are primarily localized to the tonoplast. Yeast vesicles expressing anthoMATEs transported acylated anthocyanins in the presence of MgATP. Inhibitor studies demonstrated that AM1 and AM3 proteins act in vitro as vacuolar H(+)-dependent acylated anthocyanin transporters. By contrast, under our experimental conditions, anthoMATEs could not transport malvidin 3-O-glucoside or cyanidin 3-O-glucoside, suggesting that the acyl conjugation was essential for the uptake. Taken together, these results provide evidence that in vitro the two grapevine AM1 and AM3 proteins mediate specifically acylated anthocyanin transport.
Collapse
Affiliation(s)
- Camila Gomez
- UMR Sciences pour l'OEnologie, INRA Campus SupAgro, F-34060 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L. Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. PLANT MOLECULAR BIOLOGY 2009; 69:633-48. [PMID: 19096760 DOI: 10.1007/s11103-008-9446-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/04/2008] [Indexed: 05/22/2023]
Abstract
The colour of the red wine is essentially due to the release of anthocyanins from the red skin of grape berries during the process of wine making. Anthocyanins are synthesized during ripening of the berries under the control of VvMYBA1 transcription factor that controls the expression of UFGT. In order to identify the whole set of downstream regulated genes, we targeted constitutive ectopic expression of VlmybA1-2 into grapevine hairy roots and plants. The ectopic expression of VlmybA1-2 triggered de novo production and storage of anthocyanins in all transgenic vegetative organs, leading to a very intense red coloration, and did not interfere with proanthocyanidin (PA) biosynthesis. The ectopic red pigmentation was due to the accumulation of anthocyanins in vacuoles and anthocyanin vacuolar inclusion (AVIs) in all organs but only in specific tissues. A transcriptomic analysis using a 14 K oligoarray revealed that the ectopic expression of VlmybA1-2 activated only few genes, most of which are involved in both PA and anthocyanin biosynthesis, while the expression of BAN and LAR (two specific genes of the PA biosynthesis pathway) was unaffected. Among these, 4 genes emerged given the amplitude of their up-regulation, quantitatively similar to VlmybA1-2 itself. In addition to the previously described UFGT, this set comprised an isogen of GST, an O-methyltransferase, both of which are supposed to play a role in the anthocyanin biosynthesis pathway, as well as a candidate gene putatively involved in the vacuolar anthocyanin transport in grapevine (anthoMATE). Together, these results suggest that MybA1 activates the last steps of anthocyanin synthesis and transport through the regulation of a narrow, specific spectrum of genes regulated as a cluster.
Collapse
|
311
|
|
312
|
Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D, Rischer H, Goossens A, Oksman-Caldentey KM, Moriyama Y, Yazaki K. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci U S A 2009; 106:2447-52. [PMID: 19168636 PMCID: PMC2650162 DOI: 10.1073/pnas.0812512106] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Indexed: 11/18/2022] Open
Abstract
Alkaloids play a key role in plant defense mechanisms against pathogens and herbivores, but the plants themselves need to cope with their toxicity as well. The major alkaloid of the Nicotiana species, nicotine, is translocated via xylem transport from the root tissues where it is biosynthesized to the accumulation sites, the vacuoles of leaves. To unravel the molecular mechanisms behind this membrane transport, we characterized one transporter, the tobacco (Nicotiana tabacum) jasmonate-inducible alkaloid transporter 1 (Nt-JAT1), whose expression was coregulated with that of nicotine biosynthetic genes in methyl jasmonate-treated tobacco cells. Nt-JAT1, belonging to the family of multidrug and toxic compound extrusion transporters, was expressed in roots, stems, and leaves, and localized in the tonoplast of leaf cells. When produced in yeast cells, Nt-JAT1 occurred mainly in the plasma membrane and showed nicotine efflux activity. Biochemical analysis with proteoliposomes reconstituted with purified Nt-JAT1 and bacterial F(0)F(1)-ATPase revealed that Nt-JAT1 functioned as a proton antiporter and recognized endogenous tobacco alkaloids, such as nicotine and anabasine, and other alkaloids, such as hyoscyamine and berberine, but not flavonoids. These findings strongly suggest that Nt-JAT1 plays an important role in the nicotine translocation by acting as a secondary transporter responsible for unloading of alkaloids in the aerial parts and deposition in the vacuoles.
Collapse
Affiliation(s)
- Masahiko Morita
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Nobukazu Shitan
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Keisuke Sawada
- Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | - Marc C. E. Van Montagu
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium; and
| | - Dirk Inzé
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium; and
| | - Heiko Rischer
- VTT Technical Research Centre of Finland, Tietotie 2, FIN-02044 VTT, Espoo, Finland
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium; and
| | | | - Yoshinori Moriyama
- Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8530, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
313
|
Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C, Cheynier V, Romieu C. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. PLANT PHYSIOLOGY 2009; 149:1028-41. [PMID: 19098092 PMCID: PMC2633825 DOI: 10.1104/pp.108.131862] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/16/2008] [Indexed: 05/18/2023]
Abstract
Grapevine (Vitis vinifera) proanthocyanidins contribute to plant defense mechanisms against biotic stress and also play a critical role in organoleptic properties of wine. In grapevine berry, these compounds are mainly accumulated in exocarps and seeds in the very early stages of development. A previous study has already identified VvMybPA1 as the first transcription factor involved in the regulation of the proanthocyanidin pathway during seed development in grapevine. A novel Myb factor, VvMybPA2, which is described in this study, is in contrast mainly expressed in the exocarp of young berries and in the leaves. This transcription factor shows very high protein sequence homology with other plant Myb factors, which regulate flavonoid biosynthesis. Ectopic expression of either VvMybPA1 or VvMybPA2 in grapevine hairy roots induced qualitative and quantitative changes of the proanthocyanidin profiles. High-throughput transcriptomic analyses of transformed grapevine organs identified a large set of putative targets of the VvMybPA1 and VvMybPA2 transcription factors. Both genes significantly activated enzymes of the flavonoid pathway, including anthocyanidin reductase and leucoanthocyanidin reductase 1, the specific terminal steps in the biosynthesis of epicatechin and catechin, respectively, but not leucoanthocyanidin reductase 2. The functional annotation of the genes whose expression was modified revealed putative new actors of the proanthocyanidin pathway, such as glucosyltransferases and transporters.
Collapse
Affiliation(s)
- Nancy Terrier
- UMR SPO 1083, Campus SupAgro-INRA, F-34060 Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
314
|
Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:389-99. [PMID: 18826429 DOI: 10.1111/j.1365-313x.2008.03696.x] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.
Collapse
Affiliation(s)
- Jiping Liu
- US Plant Soil and Nutrition Laboratory, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
315
|
Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, Yazaki K, Goto Y, Toyooka K, Matsuoka K, Hashimoto T. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. PLANT PHYSIOLOGY 2009; 149:708-18. [PMID: 19098091 PMCID: PMC2633862 DOI: 10.1104/pp.108.132811] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/16/2008] [Indexed: 05/17/2023]
Abstract
Nicotine is a major alkaloid accumulating in the vacuole of tobacco (Nicotiana tabacum), but the transporters involved in the vacuolar sequestration are not known. We here report that tobacco genes (NtMATE1 and NtMATE2) encoding transporters of the multidrug and toxic compound extrusion (MATE) family are coordinately regulated with structural genes for nicotine biosynthesis in the root, with respect to spatial expression patterns, regulation by NIC regulatory loci, and induction by methyl jasmonate. Subcellular fractionation, immunogold electron microscopy, and expression of a green fluorescent protein fusion protein all suggested that these transporters are localized to the vacuolar membrane. Reduced expression of the transporters rendered tobacco plants more sensitive to the application of nicotine. In contrast, overexpression of NtMATE1 in cultured tobacco cells induced strong acidification of the cytoplasm after jasmonate elicitation or after the addition of nicotine under nonelicited conditions. Expression of NtMATE1 in yeast (Saccharomyces cerevisiae) cells compromised the accumulation of exogenously supplied nicotine into the yeast cells. The results imply that these MATE-type proteins transport tobacco alkaloids from the cytosol into the vacuole in exchange for protons in alkaloid-synthesizing root cells.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. PLANT PHYSIOLOGY 2009; 149:297-305. [PMID: 19011004 PMCID: PMC2613705 DOI: 10.1104/pp.108.128132] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 11/10/2008] [Indexed: 05/18/2023]
Abstract
Multidrug and toxic compound extrusion (MATE) transporters represent a large family in plants, but their functions are poorly understood. Here, we report the function of a rice (Oryza sativa) MATE gene (Os03g0216700, OsFRDL1), the closest homolog of barley (Hordeum vulgare) HvAACT1 (aluminum [Al]-activated citrate transporter 1), in terms of metal stress (iron [Fe] deficiency and Al toxicity). This gene was mainly expressed in the roots and the expression level was not affected by either Fe deficiency or Al toxicity. Knockout of this gene resulted in leaf chlorosis, lower leaf Fe concentration, higher accumulation of zinc and manganese concentration in the leaves, and precipitation of Fe in the root's stele. The concentration of citrate and ferric iron in the xylem sap was lower in the knockout line compared to the wild-type rice. Heterologous expression of OsFRDL1 in Xenopus oocytes showed transport activity for citrate. Immunostaining showed that OsFRDL1 was localized at the pericycle cells of the roots. On the other hand, there was no difference in the Al-induced secretion of citrate from the roots between the knockout line and the wild-type rice. Taken together, our results indicate that OsFRDL1 is a citrate transporter localized at the pericycle cells, which is necessary for efficient translocation of Fe to the shoot as a Fe-citrate complex.
Collapse
Affiliation(s)
- Kengo Yokosho
- Research Institute for Bioresources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | |
Collapse
|
317
|
Yazaki K, Shitan N, Sugiyama A, Takanashi K. Chapter 6 Cell and Molecular Biology of ATP‐Binding Cassette Proteins in Plants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:263-99. [DOI: 10.1016/s1937-6448(09)76006-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
318
|
TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics 2008; 281:109-23. [PMID: 19018571 DOI: 10.1007/s00438-008-0399-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Molecular dissection of the Brassica yellow seed trait has been the subject of intense investigation. Arabidopsis thaliana TRANSPARENT TESTA 12 (AtTT12) encodes a multidrug and toxic compound extrusion (MATE) transporter involved in seed coat pigmentation. Two, one, and one full-length TT12 genes were isolated from B. napus, B. oleracea, and B. rapa, respectively, and Southern hybridization confirmed these gene numbers, implying loss of some of the triplicated TT12 genes in Brassica. BnTT12-1, BnTT12-2, BoTT12, and BrTT12 are 2,714, 3,062, 4,760, and 2,716 bp, with the longest mRNAs of 1,749, 1,711, 1,739, and 1,752 bp, respectively. All genes contained alternative transcriptional start and polyadenylation sites. BrTT12 and BoTT12 are the progenitors of BnTT12-1 and BnTT12-2, respectively, validating B. napus as an amphidiploid. All Brassica TT12 proteins displayed high levels of identity (>99%) to each other and to AtTT12 (>92%). Brassica TT12 genes resembled AtTT12 in such basic features as MatE/NorM CDs, subcellular localization, transmembrane helices, and phosphorylation sites. Plant TT12 orthologs differ from other MATE proteins by two specific motifs. Like AtTT12, all Brassica TT12 genes are most highly expressed in developing seeds. However, a range of organ specificity was observed with BnTT12 genes being less organ-specific. TT12 expression is absent in B. rapa yellow-seeded line 06K124, but not downregulated in B. oleracea yellow-seeded line 06K165. In B. napus yellow-seeded line L2, BnTT12-2 expression is absent, whereas BnTT12-1 is expressed normally. Among Brassica species, TT12 genes are differentially related to the yellow seed trait. The molecular basis for the yellow seed trait, in Brassica, and the theoretical and practical implications of the highly variable intron 1 of these TT12 genes are discussed.
Collapse
|
319
|
An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 2008; 10:1456-62. [DOI: 10.1038/ncb1805] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 09/26/2008] [Indexed: 11/08/2022]
|
320
|
He F, Pan QH, Shi Y, Duan CQ. Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 2008; 13:2674-703. [PMID: 18971863 PMCID: PMC6245171 DOI: 10.3390/molecules13102674] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/21/2008] [Accepted: 10/23/2008] [Indexed: 01/15/2023] Open
Abstract
Proanthocyanidins (PAs), also known as condensed tannins, are a group of polyphenolic secondary metabolites synthesized in plants as oligomers or polymers of flavan-3-ol units via the flavonoid pathway. Due to their structural complexity and varied composition, only in the recent years has the study on the biosynthesis and regulation of PAs in plants taken off, although some details of the synthetic mechanism remain unclear. This paper aims to summarize the status of research on the structures of PAs in plants, the genes encoding key enzymes of biosynthetic pathway, the transport factors, the transcriptional regulation of PA biosynthesis and the genetic manipulation of PAs. The problems of this field were also discussed, including the nature of the final "enzyme" which catalyzes the polymerization reaction of PAs and the possible mechanism of how the elementary units of flavanols are assembled in vivo.
Collapse
Affiliation(s)
- Fei He
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, PR China.
| | | | | | | |
Collapse
|
321
|
Reinders A, Sivitz AB, Starker CG, Gantt JS, Ward JM. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. PLANT MOLECULAR BIOLOGY 2008; 68:289-99. [PMID: 18618272 DOI: 10.1007/s11103-008-9370-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 06/25/2008] [Indexed: 05/18/2023]
Abstract
Sucrose transporters in the SUT family are important for phloem loading and sucrose uptake into sink tissues. The recent localization of type III SUTs AtSUT4 and HvSUT2 to the vacuole membrane suggests that SUTs also function in vacuolar sucrose transport. The transport mechanism of type III SUTs has not been analyzed in detail. LjSUT4, a type III sucrose transporter homolog from Lotus japonicus, is expressed in nodules and its transport activity has not been previously investigated. In this report, LjSUT4 was expressed in Xenopus oocytes and its transport activity assayed by two-electrode voltage clamping. LjSUT4 transported a range of glucosides including sucrose, salicin, helicin, maltose, sucralose and both alpha- and beta-linked synthetic phenyl glucosides. In contrast to other sucrose transporters, LjSUT4 did not transport the plant glucosides arbutin, fraxin and esculin. LjSUT4 showed a low affinity for sucrose (K(0.5)=16 mM at pH 5.3). In addition to inward currents induced by sucrose, other evidence also indicated that LjSUT4 is a proton-coupled symporter: (14)C-sucrose uptake into LjSUT4-expressing oocytes was inhibited by CCCP and sucrose induced membrane depolarization in LjSUT4-expressing oocytes. A GFP-fusion of LjSUT4 localized to the vacuole membrane in Arabidopsis thaliana and in the roots and nodules of Medicago truncatula. Based on these results we propose that LjSUT4 functions in the proton-coupled uptake of sucrose and possibly other glucosides into the cytoplasm from the vacuole.
Collapse
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota Twin Cities, 1445 Gortner Ave. 250 Biological Sciences Center, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
322
|
A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci U S A 2008; 105:14210-5. [PMID: 18772380 DOI: 10.1073/pnas.0805954105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Expression of the Arabidopsis TRANSPARENT TESTA 2 (TT2) MYB family transcription factor leads to massive accumulation of proanthocyanidins (PAs) in hairy roots of Medicago truncatula. Microarray analysis showed that TT2 induces genes for flavonoid/PA biosynthesis, transcription factors, and a large number of genes of unknown function. A second microarray dataset identified genes that were preferentially expressed in the M. truncatula seed coat. Comparison of the two datasets defines target genes for steps that are yet unidentified in PA biosynthesis and accumulation. Of these genes, a glycosyltransferase, UGT72L1, was active specifically toward the PA precursor (-)-epicatechin, and its expression pattern in developing seeds correlated with the presence of epicatechin glucoside and accumulation of PAs. UGT72L1 may be involved in the production of epicatechin 3'-O-glucoside in the seed coat as a key step in PA biosynthesis or its regulation.
Collapse
|
323
|
Abstract
Flavonoids are synthesized on the cytoplasmic surface of the endoplasmic reticulum (ER). As is the case for several other phytochemicals, anthocyanins and other products of the pathway often accumulate in the large central vacuole. This review summarizes recent findings on the possible mechanisms by which flavonoids traffic between the ER and the vacuole, and discusses the frequent localization of anthocyanins in sub-vacuolar structures with variable characteristics.
Collapse
Affiliation(s)
- Erich Grotewold
- Department of Plant Cellular & Molecular Biology and Plant Biotechnology Center, The Ohio State University, 1060 Carmack Rd, Columbus OH 43220, USA
| | - Kevin Davies
- Crop & Food Research, Private Bag 11- 600, Palmerston North, New Zealand
| |
Collapse
|
324
|
Braidot E, Petrussa E, Bertolini A, Peresson C, Ermacora P, Loi N, Terdoslavich M, Passamonti S, Macrì F, Vianello A. Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. PLANTA 2008; 228:203-13. [PMID: 18365247 DOI: 10.1007/s00425-008-0730-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 03/10/2008] [Indexed: 05/11/2023]
Abstract
During maturation, Vitis vinifera berries accumulate a large amount of several anthocyanins in the epidermal tissue, whereas their precursors and intermediates are ubiquitously synthesized within the fruit. Up to date, several mechanisms of flavonoid transport at subcellular level have been hypothesized, but it is not possible to identify a general model applicable in every plant tissue and organ. Recently, a putative anthocyanin carrier, homologue to mammalian bilitranslocase (BTL) (TC 2.A.65.1.1), was found in Dianthus caryophyllus petal microsomes. In the present paper, an immunohistochemical and immunochemical analysis, using an antibody raised against a BTL epitope, evidences the expression and function of such a transporter in V. vinifera berries (cv. Merlot). Specific localisations of the putative carrier within berry tissues together with expression changes during different developmental stages are shown. Water stress induces an increase in protein expression in both skin and pulp samples. A bromosulfalein (BSP) uptake activity, inhibitable by the BTL antibody, is detected in berry mesocarp microsomes, with K (m) = 2.39 microM BSP and V (max) = 0.29 micromol BSP min(-1) mg(-1) protein. This BSP uptake is also competitively inhibited by quercetin (K (i) = 4 microM). A putative role for this carrier is discussed in relation to the membrane transport of secondary metabolites.
Collapse
Affiliation(s)
- E Braidot
- Department of Biology and Plant Protection, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:733-49. [PMID: 18476875 DOI: 10.1111/j.1365-313x.2008.03447.x] [Citation(s) in RCA: 1121] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant compounds that are perceived by humans to have color are generally referred to as 'pigments'. Their varied structures and colors have long fascinated chemists and biologists, who have examined their chemical and physical properties, their mode of synthesis, and their physiological and ecological roles. Plant pigments also have a long history of use by humans. The major classes of plant pigments, with the exception of the chlorophylls, are reviewed here. Anthocyanins, a class of flavonoids derived ultimately from phenylalanine, are water-soluble, synthesized in the cytosol, and localized in vacuoles. They provide a wide range of colors ranging from orange/red to violet/blue. In addition to various modifications to their structures, their specific color also depends on co-pigments, metal ions and pH. They are widely distributed in the plant kingdom. The lipid-soluble, yellow-to-red carotenoids, a subclass of terpenoids, are also distributed ubiquitously in plants. They are synthesized in chloroplasts and are essential to the integrity of the photosynthetic apparatus. Betalains, also conferring yellow-to-red colors, are nitrogen-containing water-soluble compounds derived from tyrosine that are found only in a limited number of plant lineages. In contrast to anthocyanins and carotenoids, the biosynthetic pathway of betalains is only partially understood. All three classes of pigments act as visible signals to attract insects, birds and animals for pollination and seed dispersal. They also protect plants from damage caused by UV and visible light.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Institute for Plant Science, Suntory Ltd, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| | | | | |
Collapse
|
326
|
Schneider S, Beyhl D, Hedrich R, Sauer N. Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. THE PLANT CELL 2008; 20:1073-87. [PMID: 18441213 PMCID: PMC2390729 DOI: 10.1105/tpc.107.055632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana INOSITOL TRANSPORTER1 (INT1) is a member of a small gene family with only three more genes (INT2 to INT4). INT2 and INT4 were shown to encode plasma membrane-localized transporters for different inositol epimers, and INT3 was characterized as a pseudogene. Here, we present the functional and physiological characterization of the INT1 protein, analyses of the tissue-specific expression of the INT1 gene, and analyses of phenotypic differences observed between wild-type plants and mutant lines carrying the int1.1 and int1.2 alleles. INT1 is a ubiquitously expressed gene, and Arabidopsis lines with T-DNA insertions in INT1 showed increased intracellular myo-inositol concentrations and reduced root growth. In Arabidopsis, tobacco (Nicotiana tabacum), and Saccharomyces cerevisiae, fusions of the green fluorescent protein to the C terminus of INT1 were targeted to the tonoplast membranes. Finally, patch-clamp analyses were performed on vacuoles from wild-type plants and from both int1 mutant lines to study the transport properties of INT1 at the tonoplast. In summary, the presented molecular, physiological, and functional studies demonstrate that INT1 is a tonoplast-localized H(+)/inositol symporter that mediates the efflux of inositol that is generated during the degradation of inositol-containing compounds in the vacuolar lumen.
Collapse
Affiliation(s)
- Sabine Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
327
|
Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ, Dixon RA. Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci U S A 2007; 104:17909-15. [PMID: 17971436 PMCID: PMC2084270 DOI: 10.1073/pnas.0708697104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Indexed: 11/18/2022] Open
Abstract
Cell suspensions of the model legume Medicago truncatula accumulated the isoflavonoid phytoalexin medicarpin in response to yeast elicitor or methyl jasmonate (MJ), accompanied by decreased levels of isoflavone glycosides in MJ-treated cells. DNA microarray analysis revealed rapid, massive induction of early (iso)flavonoid pathway gene transcripts in response to yeast elicitor, but not MJ, and differential induction by the two elicitors of sets of genes encoding transcription factors, ABC transporters, and beta-glucosidases. In contrast, both elicitors induced genes encoding enzymes for conversion of the isoflavone formononetin to medicarpin. Four MJ-induced beta-glucosidases were expressed as recombinant enzymes in yeast, and three were active with isoflavone glucosides. The most highly induced beta-glucosidase was nuclear localized and preferred flavones to isoflavones. The results indicate that the genetic and biochemical mechanisms underlying accumulation of medicarpin differ depending on the nature of the stimulus and suggest a role for MJ as a signal for rapid hydrolysis of preformed, conjugated intermediates for antimicrobial biosynthesis during wound responses.
Collapse
Affiliation(s)
- Marina Naoumkina
- *Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401
| | - Mohamed A. Farag
- *Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, Egypt; and
| | - Lloyd W. Sumner
- *Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401
| | - Yuhong Tang
- *Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401
| | - Chang-Jun Liu
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973
| | - Richard A. Dixon
- *Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401
| |
Collapse
|